9335 A2

\o

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 September 2001 (20.09.2001)

PCT

A A

(10) International Publication Number

WO 01/69335 A2

(51) International Patent Classification’:

GO5B 19/05

(21) International Application Number: PCT/US01/05564

(22) International Filing Date: 20 February 2001 (20.02.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/524,171 13 March 2000 (13.03.2000) US
(71) Applicant: SCHNEIDER AUTOMATION INC.
[US/US]; One High Street, North Andover, MA 01845

(Us).

(72) Inventor: BAKER, Richard, A.; 288 Middle Street, West
Newbury, MA 01985 (US).

(74) Agent: GOLDEN, Larry, I.; General Patent Counsel,
Square D Company, 1415 South Roselle Road, Palatine, IL
60067 (US).

(81) Designated States (national): AU, CA, MX.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: A WEB BROWSER

(57) Abstract: A control system includes an Internet web interface to a network of at least one programmable logic control system
~~ running an application program for controlling output devices in response 1o status of input devices. The Web interface runs Web
= pages from an Ethernet board coupled directly to the PLC back plane and includes an HTTP protocol interpreter, a PLC back plane

drive, a TCP/IP stack, and an Ethernet board kernel. The web interface provides access to the PLC back plane by a user at a remote
location through the Internet. The interface translates the industry standard Ethernet, TCP/IP and HTTP protocols used on the Internet
into data recognizable to the PLC. Residing in the PLC is a programming package accessible to a user through this interface which
will allow the user to edit programs controlling the operation of the programmable logic controller system.

W

10

15

20

25

30

WO 01/69335 PCT/US01/05564

A WEB BROWSER

TECHNICAL FIELD

Applicants’ invention relates generally to the field of programmable controllers
and more particularly to a system for coupling a network of programmable controllers

through an internetwork to a monitoring and control device.

RELATED APPLICATIONS
This application is a continuation-in-part of U.S. Patent Application No.
09/303,458, which is a continuation-in-part of U.S. Patent Application No. 08/927,005.

This application is also related to the following, commonly assigned application, entitled
“Apparatus for Controlling Internetwork Communications,” U.S. Patent Application No.
08/926,837. The contents of these Applications are expressly incorporated herein by

reference.

BACKGROUND OF THE INVENTION

Remote monitoring and control of systems and processes have taken many

forms. In the past, dedicated lines became the most common forms of communication
between a control system and a remote location. This has limited application since the
control system was not accessible from multiple locations. Modems have made it
possible to access the control system from different locations, but these types of
systems are generally restricted to downloading and uploading data files. Providing
any type of control function between locations is rather limited in this type of
environment. Further, an end user generally required a customized interface to access
the control system.

With the growth of Internet, and its World Wide Web providing a deliver platform
for organizing Internet data through hypertext links, a client server system can be
designed that will give each end user the same type of a user friendly interface with the
same universal access to services on the Web. The Web is a network of documents

called sites or pages stored on server computers throughout the world Each page will

10

15

20

30

WO 01/69335 PCT/US01/05564

usually contain text, sc 3 type of multimedia offerings such as ar hic images, video
or audio, and possible hypertext links to other documents. A browser allows a user to
read the pages and interact with the choices associated with it. The browser is a
graphical software program that sends commands to the Internet Web site and displays
whatever information is available on the page. Various browser programs are
commercially available from different manufacturers.

The Internet network employs methods designed to handle thousands of general
purpose computers sharing a single cable, and therefore has no ability to differentiate
traffic in terms of its purpose or the criticality of its data. The Internet is no longer a
network of computers sharing a single cable, but rather a web of interconnected point to
point links involving both general purpose stations and specialized infrastructure
components such as routers and firewalls.

The type of personal computer or work station used by the end user to connect
to the Web is of no regard. Communication over the Internet and other networks
requires one of several types of protocols. Protocols such as Internet Protocol (IP)
provide for file transfers, electronic mail, and other services. A Sun Microsystem
programming language known as Java, along with Hypertext Markup Language (HTML)
used in designing layouts and graphics for a Web site or page has extended Internet
technology such that a web site can be used for dynamic applications, commonly called
applets, that can be downloaded and run by the end user. These applets are
interpreted and run within a Web browser and have been generally restricted to word
processing and similar uses. Downloading and running applets can be slow in
comparison to other types of compiled languages. Security rules imposed on a browser
and enforced by the underlying JAVA language prevent applets from obtaining certain
data from any other device other than the Web server itself.

Programmable logic controllers (PLCs) are widely used in industry and process
control. Many manufacturers provide factory automation information using Microsoft
Windows and other types of communication networking environments. These networks
are usually slow, are not universally accessible and are limited to monitoring and data
exchange. Control may be implemented, but since the communication networks are
non-deterministic, control is not real time. Specialized industrial networks using

proprietary fieldbus alternatives can be very expensive. Conversion products are

2

10

15

20

25

WO 01/69335 PCT/US01/05564

required to allow inforr ion carried over those networks to bey' le onageneral
purpose network. There are significant installation and other deployment costs
associated with the existence of such intermediate devices. Firewalls between the Web
server and the application are designed to-solve problems of security and are not
designed for high performance.

Programming the PLCs in these environments has many shortcomings. With
many different PLCs possible in an integrated control system, making changes or
updates may be difficult and expensive. The programming package is usually sold
separate from the PLC. The user may need to purchase and maintain separate
programming packages and may need training for each programming package. The
package may have a different look and feel from others within the control system.

It would be desirable to develop an automation control system whereby an user
could use general, commercial networks such as the Internet in place of specialized
industrial networks to remotely monitor and program automation control devices such

as PLCs.

SUMMARY OF THE INVENTION

Accordingly, the principal object of the present invention is to provide an

interface between an industrial control system and a Web browser coupled to a
network such as Internet.

Another object of the present invention is to provide remote access through a
web browser to information and data contained in an industrial control system having a
Programmable Logic Controller.

A further object of the present invention is to provide remote programmability of a
Programmable Logic contained in an industrial control system.

In the preferred embodiment of the invention, the invention allows for easy
access over a commercial network such as Internet to information within a
programmable logic controller (PLC). Access can be made locally or woridwide using a
commercial Web browser. The invention is comprised of a control system of essential
elements including, but not limited to a Web interface, a local network, and a network
interface to at least one PLC control system running an application program for

controlling output devices in response to status of input devices. The Web interface

wn

10

15

20

25

WO 01/69335 PCT/US01/05564

runs Web pages from : Ethernet board coupled directly to the P' ~ back plane and
includes an hypertext transfer protocol (HTTP) interpreter, a PLC back plane driver, a
Transmission Control Protocol/internet Protocol (TCP/IP) stack, and an Ethernet board
kernel. The Web interface provides access to the PLC back plane by a user at a
remote location through the Internet. The interface translates the industry standard
Ethernet, TCP/IP and HTTP protocols used on the Internet into data recognizable to the
PLC. Using this interface, the user can retrieve all pertinent data regarding the
operation of the PLC, including PLC configuration, Input/Output (1/0) and register
status, operating statistics, diagnostics, and distributed I/O configurations. Updates to
operating software can also be downloaded through the Internet access. Residing in
the PLC is a programming package accessible to a user through this interface which
will allow the user to edit programs controlling the operation of the programmable logic
controller system.

Other features and advantages of the invention, which are believed to be novel
and nonobvious, will be apparent from the following specification taken in conjunction
with the accompanying drawings in which there is shown a preferred embodiment of the
invention. Reference is made to the claims for interpreting the full scope of the

invention which is not necessarily represented by such embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows an overview block diagram of a typical system illustrating the
relationship between an user at a remote location and an Internet Web site used for
monitoring a process control system according to the present invention.

Figure 2 is a basic block diagram of the present invention illustrating an Internet
interface to a programmable logic controller system.

Figure 3 is a block diagram of the Web server module illustrated in Figure 2
according to the present invention.

Figure 4 is a typical mimic page available to a user at a remote location utilizing
a browser which illustrates the present invention for monitoring a programmable

controller system.

w

10

15

20

25

30

WO 01/69335 PCT/US01/05564

DETAILED DESCRIPT 'N

Although this invention is susceptible to embodiments of many different forms, a

preferred embodiment will be described and illustrated in detail herein. The present
disclosure exemplifies the principles of the-invention and is not to be considered a limit
to the broader aspects of the invention to the particular embodiment as described.

Figure 1 shows an overview block diagram of typical system iilustrating the
relationship between an user 2 at a remote location and an Internet web site 4 used for
monitoring a process control system 6. The user 2 will have a personal computer (PC)
8 having a commercially available browser 10, such as Netscape Communication’s
Navigator or Microsoft's Internet Explorer, installed for viewing the contents at the web
site 4 by a monitor 12 through a network, such as the Internet 14. The PC provides a
remote human-machine interface (HMI) to the process control system 6. Various
interconnection services are readily available to provide the physical and electrical
interconnection from the PC to the Internet 14 itself. The internet 14 is a collection of
independent world wide communication networks that are interconnected to each other
and function as a single connectionless entity. Communication is based on a
client-server basis, using a number of established protocols that allow for
communication and file transfers between the client and the server. The most widely
used protocol is Internet Protocol (IP).

The web site 4 includes a network interface 16 having an unique Internet
address 18, a server 20, and an application program 22. The server 20 acts as a
hypertext transfer protocol (HTTP) interpreter which uses Transmission Control
Protocol (TCP) in conjunction with Internet Protocol, through a Transmission Control
Protocol/Internet Protocol (TCP/IP) stack 24 to interact with the network interface 16
and the application program 22. This enables the data transfer between the application
program 22 and the user 2 through the Internet 14. The application program provides
data from the process control system 6. This data can be used to monitor the control
process by the user 2 at the remote location. The TCP/IP stack 24 enables data
transfers over the Internet 14 between the user 2 and the web site 4 as required for the
various layers specified by the IP protocol.

The user 2 can connect to the Internet 14 using one of a number of internet

service providers and will enter the address of the web site 4 when connected. The

thn

10

15

20

25

WO 01/69335 PCT/US01/05564

web site 4 will display ‘ome page which may contain text, some 'pe of multimedia
offerings such as graphic images, video, or audio, and possible hypertext links to other
documents. The browser 10 will allow the user 2 to read the page and interact with the
choices associated with it. The browser 10 will send commands to the web site 4 which
will use the application program 22 to display. whatever information is available from the
process control system 6. The browser 10 functions as a remote human-machine
interface or HMI control of the process control system as will be detailed below.

Figure 2 shows a basic block diagram of the present invention illustrating the
Internet interface to a programmable logic controller system. The web site 4 includes
the network interface 16 having an unique Internet address 18 and a web server 30.
The web server 30 provides the home page for the website. A firewall or security for
the overall system can be included in the web server 30, but is generally maintained as
part of the network interface 16. In addition to providing security for various pages at
the site, the user can disable the web server 30. A password and user list is provided
in initial configuration files stored in the web server 30 that are downloaded from a
remote server. Protection of the configuration file is then provided by the remote server
and the web server 30 through the password and the user list. The web server 30
provides a direct connection for a programmable logic controller (PLC) 32 to the
Internet 14 by plugging the web server 30 into its back plane 34. The web server 30
provides both a client and server interface. All signals between the PLC 32 and the
web server 30 are through the back plane 34 rather than over a set of cables which
would normally have to be coupled to input/output modules that are themseives
plugged into the back plane 34. The back plane signals include addressing, control,
data, and power. The client interface aliows a user to send commands to a remote
node over the Internet and the server interface allows for processing commands that
originated from a remote node. Controlling the PLC 32 from a remote HMI, essentially
on a real time basis is possible by controlling the data flow through the web server 30.

Associated with the PLC 32 are its application programs 36, dual port memory
38 and Input/Output (1/0) modules 40. The application programs 36 include a ladder
logic program for controliing the 1/O modules 40. The web server 30 functions as a
node on a TCP/IP network 42 allowing it to send commands to the PLC 32 and receive

the response. Although the TCP/IP network 42 in the preferred embodiment is an

10

15

20

25

WO 01/69335 PCT/US01/05564

Ethernet network, othe igh level protocols could be used. Usinc web browser at a
remote location through the Internet 14, a user can control and view configuration
information of the PLC 32.

A programming package 33, using either Java or HTML resides in the PLC 32. It
is based on Ethernet and Web technology and allows editing of the application
programs 36 using the personal computer 8 by the user 2. The application programs
36 stored as either a ladder logic or an IEC 1131 language program, are viewed as
PLC programs within the PLC 32, accessible using either the standard HTTP or custom
PLC protocols that run over TCP/IP. The information needed to edit the PLC 32,
including web pages 35 for the editing procedures, reside in the PLC 32 itself. The
programming package 33 converts these application programs 36 to and from formats
needed for editing with a browser. The programming package 33 also includes symbol
editors 37 and language editors 39.

The user 2 will be able to view and edit the PLC application programs 36 from
anywhere a browser is available. A firewall or security for the overall system,
maintained as part of the network interface 16 that prevents unauthorized users from
accessing the programming package 33.

In addition to providing the ability to edit the application programs 36, by
providing a File Transfer Protocol (FTP) based view of the application programs 36, file
backup and restore can be handled through standard programming tools, allowing the
user to manage the application programs 36 directly and efficiently and to also use
standard revision control software to manage the application programs 36. Further,
since all the symbols are stored within the PLC, any personal computer can be used to
edit the application programs 36.

The web server 30 is shown in greater detail in Figure 3. Various components
provide the required connectivity to perform its functionality. A real time operating
system 44 controls the interaction between the components. The operating system 44
allocates processor time on a central processor unit (CPU) 46 to various tasks, provides
memory management, and provides a set of message services and signal services.
The message and signal services allow for communication between tasks, and between

drivers and a task.

10

15

20

25

30

WO 01/69335 PCT/US01/05564

Connection to tt TCP/IP network 42 is through an Ethern driver 48 which
transmits and receives messages at a rate of 10 Mbs (megabits per second) or faster
via an Ethernet communication chip 49, such as, in the case of 100 Mbs Ethernet, a
Crystal CS8952 available from Cirrus Logic, inc. It is contemplated that in the future
Ethernet communication chips capable of speeds of 1 Gbs (gigabits per second) and
faster can be used. The physical connection over which communication is facilitated
can be over a fiber optic cable or a twisted pair-type copper wire. In the case of 10 Mbs
Ethernet over twisted pair-type copper wire, the copper wire and wire connections must
conform to at least the Category 5 copper wire standard.

Alternatively, the TCP/IP stack 24 could be replaced by a dual TCP/IP stack.
The dual TCP/IP stack comprises a first TCP/IP stack which provides support for a
broad range of TCP/IP messages. The second TCP/IP stack is a “short stack” which
manages high priority control messages between the PLC 32 and I/O modules 40. For
outgoing TCP/IP messages, the appropriate TCP/IP stack would be chosen by an
application program 36 associated with the PLC 32. On incoming TCP/IP messages,
the TCP/IP message would be intercepted and examined to see if it is a TCP/IP
message that is intended for the Modbus on Ethernet protocol. [fitis a TCP/IP
message intended for the Modbus on Ethernet protocol, then the message is delivered
to the second stack. f it is not a TCP/IP message intended for the Modbus on
Ethernet protocol, the first TCP/IP stack handles the message. In this manner, TCP/IP
messages intended for the Modbus on Ethernet protocol are handled more quickly and
efficiently than when a singie TCP/IP stack is implemented.

The web server will have an unique global address 18, aliowing it to be
addressed by other devices on the network. The Ethernet driver 48 manages transmit
50 and receive 51 buffers in memory 52, and interfaces with the Ethernet
communication chip 49. The transmit 50 and receive 51 buffers are shared both by the
Ethernet communication chip 49 and the Ethernet driver 48. The Ethernet driver 48
also provides a transmit request interface and a receive indication interface to a TCP/IP
stack 54. The Ethernet communication chip 49 provides a transmit queue interface. a
receive queue interface, and generates interrupts on completion of transmitting a
message, and on receiving a new message. The Ethernet driver 46 places receive

buffers in the receive queue. In the interrupt routine, the Ethernet driver 46 examines

10

15

20

WO 01/69335 PCT/US01/05564

the receive queue. If: ' messages are in the receive queue. itr ses the receive
buffer to the TCP/IP stack 54. The TCP/IP stack 54 copies the buffer, and sometime
later calls the Ethernet driver 48 to return the buffer and place the returned buffer back
into the receive queue.

The TCP/IP stack 54 calls the Ethernet driver 48 to transmit a message. The
Ethernet driver 46 attempts to allocate a buffer from the shared memory 52. Ifit
succeeds, it copies the message into the buffer, and places the buffer into the Ethernet
communication chip 49 transmit queue. If there is no transmit buffer, then the driver
drops the transmit message. In the interrupt routine, the Ethernet driver 48 examines
the transmit queue, and frees the transmitted buffers.

The TCP/IP network 42 allows special MSTR (master) functions that allow nodes
on the network to initiate message transactions. These MSTR functions include
reading and writing data and are used for commands and responses. They allow
programs running in the PLC 32 to send commands to a remote node on the TCP/IP
network 42 and receive the responses. A back plane driver 56 sends commands and
receives the response to the PLC 32 over the back plane 34.

The back plane driver 56 receives request from the PLC’s ladder logic MSTR
blocks stored in its memory 38. When a response is available, the back plane driver 56
passes it back to the MSTR block. The back plane driver 56 provides a client task 58, a
FTP task 59, and server task 60 to the applications. The server task 60 interface allows
an application to issue a request command to the PLC’s 32 executive program and
receive its response. The client task 58 allows an application to receive a new MSTR
request and pass back the response to the ladder logic program. The FTP task 59
provides a FTP based view of the application programs 36, allowing the user to
manage the application programs 36 directly and efficiently and to also use standard
revision control software to manage the application programs 36.

The server task 60 uses a queuing mechanism and call back functions. An
application queues both the request and the call back function associated with the
request. When the back plane driver 56 services the request in its interrupt routine, it
calls the associated call back function. The response and the original request is
passed to the call back function. The call back function can call an operating routine to

either pass a message or signal the application.

wh

10

15

20

30

WO 01/69335 PCT/US01/05564

The client task "~ also uses queues and call back functior The client
application queues both an indication request on queue and a call back function
associated with the request. When the back plane driver 56 detects a new MSTR block
request in its interrupt routine, it calls the associated call back function. The request is
passed into the call back function. The call back function can call an operating system
routine to either pass a message or signal the application. If the back plane driver 56
detects that the MSTR block has been aborted, or is no longer being solved, it calls an
user supplied associated abort call back function. The application calls a routine to
pass the MSTR response and an associated call back routine to the driver. Sometime
later, the driver passes back the response to the ladder logic program in its interrupt
service routine, and then calls the user supplied call back function.

The PLC 32 interfaces with the web server 30 hardware via the dual port
memory 38. It reads and writes to the dual port memory 38 using an ASIC chip.
Writing to a specified location will cause an interrupt. The PLC 32 first writes a
message in the dual port memory 38, and then causes an interrupt. The message
indicates a type of command. One type indicates that a MSTR block is being solved.
Other types are used for passing requests to the PLC 32 and obtaining the responses
to the requests. After the PLC 32 passes the message, it polis the dual port memory 38
for commands placed by the back plane driver 56. These commands are read memory,
write memory, and processing is complete. The back plane driver 56 uses state
machines to process the MSTR interrupts. The maximum number of active MSTR
blocks is set at four in the present invention, requiring four state machines. When the
back plane driver 56 receives a MSTR interrupt, it attempts to find an associated state
machine that matches with the MSTR block. If there are already four outstanding
transactions, no more are available, and the back plane driver 56 will set the MSTR’s
outputs to false. if a state machine is found, the back plane driver 56 determines if it is
a new transaction, an outstanding transaction, or a response is available. If it is a new
transaction it copies the request and calls the appiication’s associated call back routine.
If its an outstanding transaction, it indicates to the ladder logic program that the MSTR
block is still busy. If a response is available, the back plane driver 56 copies the
response, sets either the MSTR’s completion or error output, and calls the application’s

call back routine.

10

10

15

20

30

WO 01/69335 PCT/US01/05564

Two interrupts -~ used for processing a request. On the ¥ st interrunt. called
the preport interrupt, the back plane driver 56 copies the request into a data structure
located in the PLC’s 32 dual memory 38. On the second interrupt, called the end of
scan interrupt, the back plane driver 56 capies the response from the controller's data
structure into the user's buffer. It then calls the user's associated call back function.

The request for accessing the PLC's 32 registers is processed by the back plane
driver 56 and is not sent to the PLC’s executive program for processing. The back
plane driver 56 determines the memory location in the memory 38 of the registers the
PLC 32. At an end of scan interrupt, the back plane driver 56 processes the read/write
register requests by sending commands via the dual port memory 38 to the PLC 32 to
read or write the locations containing the registers. The back plane driver 56 will
service a maximum of four read/write register requests at the end of a scan interrupt.

A client task 58 interfaces with the TCP/IP stack 54, the back plane driver 56 and
uses the operating system 44 message services. It processes the MSTR request.
When the client task 58 receives a MSTR request from the back plane driver 56, it
passes the request to the TCP/IP stack 54. When the TCP/IP stack 54 returns a
response to the client task 58, it passes the response to the back plane driver 56. The
TCP/IP stack 54 provides a Berkeley TCP/IP interface and a signal extension. The
signal extension calls a user supplied function which passes in a socket number, a task
ID, and an event. The signal function calls the operating system 44 to send a message
to the task indicated by the task ID. It sends a message either to the client task 58 or
server task 60. The client task 58 posts request indications to the back plane driver 56,
and the associated call back routine calls the operating system 44 to send a message
to the client task 58 for a new MSTR transaction.

The client task 58 manages multiple outstanding MSTR transactions using the
state machines. There is a linked list of connection state machines. The connection
state machines are used for establishing connection and closing connections. In
addition each connection state machine contains a list of transaction state machines.
Each transaction machine on the connection state machine represents a transaction to
a node represented by the connection machine. The transaction machines are used to
send a request, and process the response. The client task 58 enters a loop after

performing initialization. It calls the operating system 44 to receive a message. The

11

(o4

10

15

20

25

30

WO 01/69335 PCT/US01/05564

operating system will b~ =k the client task 58 until there is amess ‘e or until there i< 2
time out. It either receives a message from the TCP/IP stack 54, from a MSTR call
back routine, or it times out. It process the message or the time out and then reenters
the loop. If the message received from the operating system 44 is a new MSTR
request, the client task will obtain a connectian state machine, and places a new
transaction machine at end of the list of the connection state machine’s list. At this
point the transaction machine will attempt to transmit the message. It may not be
possible to transmit the message because no connection has been established, or the
because the remote side may have applied flow control.

If the message received from the operating system 44 is a TCP/IP event, the
client task 58 finds the associated connection machine and determines if the TCP/IP
event is an accepted connection, an aborted connection, or a received data event.
Based on the connection state, and the transaction machine’s state, the client task 58
processes the message to advance the transactions if there are any. Receiving data
for the MSTR responses may occur over several TCP/IP events, and the transaction
state machine assembles the data into a response. When the client task 58 requests
the TCP/IP stack to transmit a message, not all of the message may be transmitted.
This occurs when the remote node is flow controlled, which is explained below. If the
call to the operating system 44 to receive a message returns with a time out, or if there
is a message, the client task 58 searches the list of connection machines that are
flowed controlled. For each flow controlled connection, it tries to advance the
transaction state machines on the connection state machine list that are flow controlled.

The server task 60 processes a request originating from the user at the remote
location. The server task 60 interfaces with the back plane driver 56, the TCP/IP stack
54, and the operating system’s 44 message services. The server task 60 posts
requests to the back plane driver 56, and an associated call back routine uses the
operating system 44 message services to send the response to the server task 60. A
TCPI/IP stack 54 signal function also uses the operating system’s 44 send service to
send an TCP/IP event to the server task 60. The server task 60 can handle multiple
transactions and connections. Like the client task 58, it maintains a list of connection

machines, and each connection machine contains a list of transaction machines. The

12

10

15

20

25

30

WO 01/69335 PCT/US01/05564

connection machines ¢ for managing the connection and the Ir¢ action machines
manage the incoming requests and responses.

The server task 60 enters a loop after performing initialization. It calls the
operating systems 44 to receive a message. The operating systems 44 block the
server task 60 until there is a message or until it times out. It either receives a message
from the TCP/IP task’s 54 signal handler, from the back plane driver 56 or it times out.
It processes the message or the time and reenters the loop. If the message received
from the operating systems 44 is from the TCP/IP task's 54 signal handler, the server
task 60 determines if the event is a connection request, a close socket event, or a
receive data event. Based on the TCP/IP event, the server task 60 uses the connection
machine and transaction machine to advance the transaction. Received data for a
request may occur over several receive data events, and the transaction machine
assembles the events into a request message. When the response message is
received from the operating system 44, the server task 60 finds the connection and
transaction machine in order to send the response.

When the server task 60 requests the TCP/IP stack 54 to transmit a message,
not all of the message may be transmitted. This occurs when the remote node is flow
controlled. If the call to the operating system 44 is to receive a message returns with a
time out, or if there is a message, the server task 54 searches the list of connection
machines that are flowed controlled. For each flow controlled connection, it tries to
advance the transaction state machines on the connection state machine list that are
flow controlled.

After the server task 60 has parsed the header of an incoming request, it
attempts to allocate a structure to pass the request to the back plane driver 56. If the
server task is already processing a predetermined number of outstanding requests, the
attempt fails, the connection is placed into a blocked state, and the body of the request
is not read from the TCP/IP stack 54. As a result the TCP/IP stack may apply flow
control to the remote node. When one of the other requests is complete, the free data
structure event causes a blocked connection machine to continue processing the
incoming Modbus request.

The HTTP task 62 interfaces with the TCP/IP stack 54, and the back plane driver
56. The HTTP server task 62 receives a HTTP request from the TCP/IP stack 54. To

13

W

10

WO 01/69335 PCT/US01/05564

process the request. it ay access the PLC 32 through the back ' 1ne driver 56 and
back plane 34. The HTTP server task 62 sends back the response over the FCPIIP
stack 54. The framework is supplied by the operating system 44. The framework
creates the HTTP task, accepts connection, and parses the HTTP request. After
parsing the request, it calls the operating system 44 to process the request. Processing
the request involves determining the request type and processing the actual request.
The different request types allow a user to acquire a snapshot of the PLC 32 operations
by allowing a view of various registers within the PLC 32 and dual memory 38. These
request types also include display of the PLC 32 configuration, remote and distributed
1/0 and module health statistics, display registers, back plane configuration, Ethernet

statistics, editing the PLC program, and others, as shown in Table 1:

Show the home page

Show the programmable logic controller's configuration

Show the Ethernet statistics

Show the read register request page

Show the 4x registers

Show the racks attached to the controliers back plane

Send an image. The different images are gif files that are

displayed on the various pages

Show the remote |/O statistics

Show the list of configured remote 1/O drops

Show a remote 1/O rack’s configuration and health

Show a remote /O drop's communication statistics

Show the 1/O reference vaiues of a remote /O module

Show a list of configured distributed 1/0 nodes

Show the configuration and the health of a distributed 1/0

14

10

15

20

25

WO 01/69335 PCT/US01/05564

node

Show the /O reference values of a distributed 1/0 module

Edit the PLC Program

TABLE 1

The home page contains hyperlinks to many pages of data. The configuration
page will display the configuration of PLC 32. The remote I/0 and distributed I/O
module health status pages are a series of linked pages. The first page displays the
communication health statistics at the Remote 1/0 and Distributed 1/O head and
contains a link to a configured drop page. The configured drop page displays a table
containing drop numbers which are linked to a drop status page and rack numbers
which are linked to the drop and rack configuration pages. Two tables are included in
the drop status page, one for showing the communication status of the drop and the
other for showing which racks are populated with the 1/O modules. The drop and rack
configuration page displays the I/O modules, their health, and slot location for the given
rack. From a selected module, a user can view it's input and output values. Register
data is displayed in a template having a form and a table, with the user entering an
address and a length. The table will display the register’s values A table showing
option modules and their slot location is displayed on the back plane configuration
page. The data appearing on the pages is static but can be automatically updated at
preselected times.

The operating system 44 processes these requests and responds by sending
HTTP messages through the TCP/IP stack 54. Processing some of these requests
involves reading the PLC'’s traffic cop, registers, coils, or various page zero locations
where statistics are kept. To perform these reads, the operating system 44 sends a
request to the back plane driver 56 and uses an event signal mechanism and event
flags to determine when the request is complete. After sending the request to the back
plane driver 56, the operating system 44 waits for an event flag to be sent. When the

back plane driver completes the request, the back plane driver 56 calls a call back

15

10

15

20

25

30

WO 01/69335 PCT/US01/05564

routine, which sets the ‘ent. The operating system 44 then resu” =s processing the
request.

A mimic page which represents some of the hardware physically connected to a
programmable logic controller system can he constructed utilizing the graphical editing
technique that is part of the present invention. The present invention allows a user at a
remote location, using a browser, to create, view, modify, and delete the mimic page
and actually control various components illustrated in the mimic page. Figure 4 shows
a simple motor start-stop control in ladder logic diagram form that could be available as
a mimic page to the user. Pushing a motor start push button 150 will cause a motor
start reiay 152 to energize through a normally closed stop push button 154 and a
normally closed overload contact 156. Auxiliary motor start contact 158 will latch relay
152 after the start push button 150 is released and pilot light 160 will illuminate.
Aucxiliary motor start contact 162 will provide power to pump motor 164 which will
remain running until stop push button 154 is depressed or overload relay 166 detects
an overload condition. In this example, start push button 150, stop push button 154,
overload contact 156, auxiliary motor start contacts 158 and 162, and overload relay
166 are inputs to the programmable logic controller system. Relay 152, pilot light 160,
and pump motor 164 are outputs. The PLC will have the registers containing the
animation data for the inputs and outputs. An application program in the PLC will
respond to the inputs to control the outputs

A user at a remote location will browse the Internet for the home page of the
installation of the programmable logic controller system. The PLC wili have other
control functions as well and if the user has the necessary authorizations, various
options will become available. The home page will allow the user to acquire a snapshot
of the PLC operations by allowing a view of various pages that will allow access to
registers within the PLC. Other pages will also include displays of the PLC's
configuration, remote and distributed I/O modules health statistics, display registers,
back plane configuration, Ethernet statistics and others as shown previously shown in
Table 1.

The mimic diagram page will be called up on a browser screen which will allow
the user to view the status of the system. The mimic diagram’s light 160, relay 152,

contacts 158, 162, and pump motor 164 will be updated to correspond to the state of

16

W

WO 01/69335 PCT/US01/05564

the actual devices. T+ states of the inputs and outputs will ther =2 shown on the
ladder diagram which will be automatically updated as they are changed. Through the
use of applets representing the start 150 and stop 154 buttons, the user could manually
control start and stopping of the motor by using a mouse or keyboard to position a
cursor and “clicking” on either the start 168 or stop 170 boxes.

While the specific embodiments have been illustrated and described, numerous

modifications are possible without departing from the scope or spirit of the invention.

17

10

15

WO 01/69335 PCT/US01/05564

CLAIMS

We ciaim:

1.

A system for programming application programs controlling a programmable

logic controller from a communication network, comprising:

a. an interface module for coupling the programmable logic controller to the
communication network;

b. a program editor resident in the programmable logic controller, the
program editor for creating and editing the application programs;

c. at least one Web page resident in the programmable logic controller, the
Web page linked to the program editor;

d. wherein the Web page is accessible to a user at a remote location using a
web browser coupled to the communication network through the interface
module; and

The system of claim 1 further including wherein the application programs

are viewed as files within the programmable logic controller, accessible to

the communication network using a standard File Transfer Protocol.

e. wherein the Web page allows the user at the remote location to access
the program editor to edit the application programs controlling the

programmable logic controller.

The system of claim 1 wherein the application programs arée viewed as files
within the programmable logic controiler, accessible to the communication

network using a standard File Transfer Protocol.

The system of claim 1 wherein the application programs are converted by the
programming package and viewed on a web browser through either Java or
HTML.

The system of claim 3 wherein the programming package further includes
symbol editors and language editors and wherein all symbois are stored within
the programmable logic controller, allowing any authorized personal computer

coupled to the communication network to edit the application programs.

18

10

15

20

25

30

WO 01/69335 PCT/US01/05564

10.

The system of ¢ ‘'m 1 wherein the interface module includ-

a real time operating system operating a central processing unit,

a network interface for communicating with the communication network,

a driver for communicating with the. programmable logic controller,

a protocol stack,

a client task for communicating with the protocol stack for initiating received
requests,

a server task for communicating with the protocol stack for responding to
received requests, and

a protocol task for communicating with the protocol stack for receiving and

responding to protocol task requests.

The system of claim 5 wherein the communication network is a world-wide

network known as the Internet using an Internet Protocol (IP).

The system of claim 6 wherein the interface module functions as a web site on

the Internet, the interface module including a global IP address.

The system of claim 7 wherein the protocol stack is a Transmission Control
Protocol stack and wherein the protocol task includes a server task using a
hypertext transport protocol (HTTP) task to deliver hypertext documents to the

network interface.

The system of claim 8 wherein the HTTP task accepts a connection, parses an

HTTP request, and cails the real time operating system to process the request.

The system of claim 9 wherein the interface module further includes a dual
TCP/IP stack for data transferring comprising a first stack capable of handling a
broad range of TCP/IP messages and a second stack capable of handling a less

broad range of TCP/IP messages more quickly than the first stack.

19

10

15

20

25

WO 01/69335 PCT/US01/05564

11.

12.

13.

14.

A system for prc amming application programs contralling programmable

logic controller from a communication network, comprisi.ng:

a. means for coupling the programmable logic controller to the
communication network;

b. means resident in the programmable logic controller for creating and
editing the application programs;

C. at least one Web page resident in the programmable logic controller, the
Web page linked to the creating and editing means resident in the
programmable logic controller;

d. wherein the Web page is accessible to a user at a remote location using a
web browser coupled to the communication network through the coupling
means; and

The system of claim 1 further including wherein the application programs

are viewed as files within the programmable logic controller, accessible to

the communication network using a standard File Transfer Protocol.

e. wherein the Web page allows the user at the remote location to access
the creating and editing means to edit the application programs controlling

the programmable logic controiler.

The system of claim 11 wherein the application programs are viewed as files
within the programmable logic controller, accessible to the communication

network using a standard File Transfer Protocol.

The system of claim 11 wherein the creating and editing means includes a
programming package whereby the application programs are converted by the

programming package and viewed as either Java or HTML.

The system of claim 13 wherein the programming package further includes
symbol editors and language editors and wherein all symbols are stored within
the programmable logic controller, allowing any authorized personal computer

coupled to the communication network to edit the application programs.

20

10

15

20

25

30

WO 01/69335 PCT/US01/05564

15.

16.

17.

18.

19.

20.

The system of ¢ m 11 wherein the coupling means includ- an interface

module, the interface module including

a real time operating system operating a central processing unit,

a network interface for communicating with the communication network,

a driver for communicating with the proagrammable logic controller,

a protocol stack,

a client task for communicating with the protocol stack for initiating received
requests,

a server task for communicating with the protocol stack for responding to
received requests, and

a protocol task for communicating with the protocol stack for receiving and

responding to protocol task requests.

The system of claim 15 wherein the communication network is a world-wide

network known as the Internet using an Internet Protocol (IP).

The system of claim 16 wherein the interface module functions as a web site on

the Internet, the interface module including a global IP address.

The system of claim 17 wherein the protocol stack is a Transmission Control
Protocol stack and wherein the protocol task includes a server task using a
hypertext transport protocol (HTTP) task to deliver hypertext documents to the

network interface.

The system of claim 18 wherein the HTTP task accepts a connection, parses an

HTTP request, and calls the real time operating system to process the request.

The system of claim 19 wherein the interface module further includes a dual
TCP/IP stack for data transferring comprising a first stack capable of handling a
broad range of TCP/IP messages and a second stack capable of handling a less

broad range of TCP/IP messages more quickly than the first stack.

21

WO 01/69335 PCT/US01/05564

5 | USER

g ~—~—~{

PERSONAL
COMPUTER —3 MONITOR

AN

O <

12

4 INTERNET

: T
4 NETWORK4"""|
~ INTERFACE

| AODR ESS' 18
1

SERVER -7
1P STACK 2

T _

APPLICATION] | 55
- PROGRAM -1~

PROCESS 6
contrROL 3~
SYSTEN

FIG. 1

WO 01/69335 PCT/US01/05564

14
INTERNET
A /x
14
PROGRAMMABLE
K LOGIC
NETWORK | ™= 16 CONTROLLER
INTERFACE croorem - 33
ADDRESS o PACKAGE
WEB PAGE 35
I SYMBOL |
EDITOR TT 37
30 WE PROGRAM
8 EDITOR 1
SERVER N
T 39
H—F BACKPLANE
b [" L
DUAL
APPLICATION PORT /0 DEVICES
PROGRAMS MEMORY ’
(ST ¢ N N
\ N ~
% 38 40
FIG. 2

WO 01/69335 PCT/US01/05564

REALTIME | _— 44
OPERATING
SYSTEM
50 L
ES 56
48 54
v T 1,
%
ETHERNET — CTLAES';T
DRIVER L5
XMIT [RCVR 58 | BACK
BUF | BUF TCPAP FTP
. |sTack] TASK PLANE
MEMORY_ | 80 | oriver
52 SERVER
¢ TASK
GLOBAL |
ADDRES3S M HTTP
\18 TASK
AMTECEE1 ‘ 62 T
: WWEB SERVER MODULE
/s A o
/s
49 | \ -
30 34 BACKPLANE
n,\
NETWORK | %2 DUAL PORT
B /" MEIDRY
32—t PLC

FIG. 3

WO 01/69335 PCT/US01/05564

L1 MOTOR
MOTOR MOTOR a2 START Lz
START PB 150 STOP PB o 4 RELAY
- _ LR
L © o 210 H K1
MATOR START L
PILOT LIGHT
AUX CDNTACT 1 164 168
11 |
11— s 160
MOTOR START
OVERLDOAD
AUX CANTACT 2 MOTOR RELAY
1
——-I =< 141
162 156
154

Gl o]

168 170

FIG. 4

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

