PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6

GO6F 12/14, 13/00, 15/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/16200

23 March 2000 (23:03.00)

(21) International Application Number:

(22) International Filing Date: 10 September 1998 (10.09.98)

(71) Applicant: PERFECTO TECHNOLOGIES LTD. [IL/IL];
Medinat Hayehudim Street 103, 46733 Herzliya (IL).

(72) Inventors: RESHEF, Eran; Lotem Street 16, 85338 Lehavim
(IL). RAANAN, Gil; Hadarim Street 19, 42823 Zoran (IL).
SOLAN, Eilon; Ha~Yarden Street 5, 46377 Herzelia (IL).

(74) Agent: SELIGSOHN & GABRIELIL P.O. Box 1426, 61013
Tel Aviv (IL).

PCT/IL98/00443 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, Fl, GB, GE,
GH, GM, HR, HU, ID, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL;- TJ,
T™, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Titlee METHOD AND SYSTEM FOR MAINTAINING RESTRICTED OPERATING ENVIRONMENTS FOR APPLICATION

PROGRAMS OR OPERATING SYSTEMS

(57) Abstract

A method for protecting an operating environment on a processor
from a rogue program operating on the processor comprising isolating
simultaneously executing programs or operating systems is disclosed
(502). Memory space for use only by the first program (306) while the
first program executing is allocated (504). Communication between the
first program and the computer’s operating environment is accomplished
through a single link employing one of several methods including using
shared memory space (508), a dedicated interrupt or a dedicated I/O port
(510). The monitor manages (546) a restricted operating environment
for the first program (306) on the processor, the restricted operating
environment preventing the first program from accessing resources on
the processor except for the allocated memory space and the single
communication link (516-522).

ALLOCATE MEMORY FOR MASTER AND CELLS
AND CREATE AKD (NSTALL A Y486 TASK

528~/ CONTROL IS ATTH
HASTEX'S INTERAUPT

AUNNING THE PROGRAM:! 515
MASTER HOYES CONTROL

MASTER COPIES THE
RESULT BUFFERS

CONTROL IS BACKAT
THE MASTER'S
IKTERRUPT STUB

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
CZ
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI

FR
GA
GB
GE

GH -

GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
Kz
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Tsrael

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
TT
UA
UG
Us
vz
VN
YU
ZW

Slovenia

Stovakia

Senegal

Swazitand

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 00/16200 PCT/IL98/00443

METHOD AND SYSTEM FOR MAINTAINING RESTRICTED OPERATING
ENVIRONMENTS FOR APPLICATION PROGRAMS OR OPERATING
SYSTEMS
5 BACKGROUND OF THE INVENTION
The present invention relates to computer program isolation methods.)
Specifically, the invention is a method and system for establishing and maintaining a
restricted operating environment for a computer program to prevent the program from
exploiting bugs and/or data of another computer program which shares the same
10 hardware, while at the same time allowing some form of restricted, well-controlled
communication
Contemporary computers rely on a special set of instructions which
define an operating system (O/S) in order to provide an interface for computer
programs and computer components such as the computer’s memory and central
15 processing unit (CPU). Current operating systems have multi-tasking capability which
allows computer programs to run simultaneously, each program not having to wait for
termination of another in order to execute instructions. Multi-tasking O/S’s allow
programs to execute simultaneously by allowing programs to share resources with other
programs. For example, an operating system running multiple programs executing at
20 the same time allows the programs to share the computer’s CPU time. Programs which
run on the same system, even if not simultaneously with other programs, share space on
the same permanent storage medium. Programs which are executing simultaneously are
presently able to place binaries and data in the same physical memory at the same time,

limited to a certain degree by the O/S restrictions and policy, to the extent that these are

25 properly implemented. Memory segments are shared by programs being serviced by

20

WO 00/16200 PCT/IL98/00443

the O/S, in the same manner. O/S resources, such as threads, process tables and
memory segments, are shared by programs executingi simultaneously as well.

While allowing programs to share resources has many benefits, there are
resulting security related ramifications. Some programs can have problems in
execution due to mistakes or bugs in the program’s instructions, or from conflicts with
other running programs, or from ill-formatted or mischievous input handed to them.
Further, some programs have been circulated which have intentionally embedded
mistakes in them so that the program runs astray and becomes a so-called computer
virus. Whether by mistake, or by a programmer’s malicious intent, many major
problems can, and often do occur, which can be traced back to these untrusted programs
whose execution results are unpredictable and undesired. These problems include
allowing the untrusted or rogue program: to capitalize CPU time, leaving other
programs without CPU time; to read, forge, write, delete or otherwise corrupt files
created by other programs; to read, forge, write, delete or otherwise corrupt executable
files of other programs; and to read and write memory locations used by other programs
to thus corrupt execution of those programs. As above, this may be a result of an
intentionally malicious code, or a bug in an innocent code, or bad input handed to a
code, or malicious input handed to a code, or a combination of these.

An example of such a scenario, where a set of trusted program has to run
concurrently with a second set of untrusted programs, is a computer connected to the
Internet. In this case, the computer may run an O/S, with several user applications,
together comprising the trusted set of programs, concurrently with an Internet browser,

possibly requiring also the execution of downloaded code, such as Java applets, or

WO 00/16200 PCT/IL98/00443

15

20

EXE/COM executables, the latter programs comprising the untrusted set. Sometimes
the origin of such program cannot be verified, theréfore it may be suspected of beiné
malicious; the browser, when browsing an ill-formatted web-site or a malicious
web-site may be subject to inputs that attempt to corrupt its behavior, e.g. too large
input streams causing buffer overflow and possible undesired execution of code. It is
desired that the execution of the untrusted programs has the least effect on the trusted
programs, and this effect should be controlled and confined to a restricted form through,
for example, preset file or memory locations, specific interrupts, etc.

Many security features and products are being built by software
manufacturers and by O/S programmers to prevent such breaches from taking place,
and to ensure the correct level of isolation between programs. Among these are generic
architectonic solutions such as rings-of-protection in which different trust levels are
assigned to memory portions and tasks, paging which includes mapping of logical
memory into physical portions or pages, allowing different tasks to have different
mapping, with the pages having different trust levels, and segmentation which involves
mapping logical memory into logical portions or segments, each segment having its
own trust level wherein each task may reference a different set of segments. Since the
sharing capabilities using traditional operating systems are extensive, so are the security
features. However, the more complex the security mechanism is, the easier it is for a
rogue program to bypass the security and to corrupt other programs or the operating
system itself, sometimes using these very features that allow sharing and

communication between programs to do so.

10

15

20

WO 00/16200 PCT/IL98/00443

Further, regarding rogue or virus programs, for virtually every software
security mechanism, a programmer has found a way to subvert, or hack around, the
security system, allowing a rogue program to cause harm to other programs in the
shared environment. This includes every operating system and even the Java language,
which was designed to create a standard interface, or sandbox, for Internet
downloadable programs or applets.

The vulnerability of computer programs lies in the architecture of the
computer operating system itself. A typical prior art operating system scheme is
depicted in Fig. 1. The traditional, multi-tasking O/S environment includes an O/S
kernel 100 loaded in the computer random access memory (RAM) at start-up of the
computer. The O/S kernel 100 is a minimal set of instructions which loads and
off-loads resources and resource vectors into RAM as called upon by individual
programs executing on the computer, generally indicated at 102. Sometimes, when two
or more executing programs require the same resource, such as printer output, O/S
kernel 100 leaves the resource loaded in RAM until all programs have finished with
that resource. Other resources, such as disk read and write, are left in RAM while the
operating system is running because such resources are more often used than others.

The inherent problem with the prior art architecture depicted in Fig. 1 is
that resources, such as RAM, or disk, are shared by programs simultaneously, giving a
rogue program a pipeline to access and corrupt other programs, or the O/S itself through
the shared resource. Furthermore, as the applications that are to be used in the prior art
are of general nature, many features are made enabled to them by the O/S, thus in many

cases bypassing the O/S security mechanism. Such is the case when a device driver or

10

15

20

WO 00/16200 PCT/IL98/00443

daemon is run by the O/S in kernel mode, which enables it unrestricted access to all the
resources. Corruption can thus occur system wide.
SUMMARY OF THE INVENTION

Accordingly, it is an object of this invention to solve the problems with
existing systems described above.

It is another object of this invention to provide a system and method for
isolating multiple computer programs and operating systems executing simultaneously.

It is another object of this invention to provide true protection of
multiple computer programs and operating systems executing simultaneously from
untrusted and potentially rogue programs and operating systems.

It is another object of this invention to provide a simple, secured sharing
environment for multiple computer programs and operating systems executing

simultaneously.

It is another object of this invention to provide limited, controlled
sharing of data and resources between muitiple computer programs and operating
systems executing simultaneously while protecting the multiple processes from each
other.

It is another object of this invention to prevent defects present in one
program or operating system from causing defects in another program or operating
system on the same computer.

These objects and other advantages are provided by a method and
system for protecting an operating environment on a processor from a first program

operating on the processor. The method includes the steps of allocating memory space

WO 00/16200 PCT/IL98/00443

10

20

for use only by the first program while the first program is executing, allowing
communication between the first program and the operating environment through only
a single link employing a single method selected from the group consisting of a shared
memory space, a dedicated interrupt, and a dedicated I/O port, and managing a
restricted operating environment for the first program on the processor, the restricted
operating environment preventing the first program from accessing resources on the
processor except for the allocated memory space and the single communication link.

In order to create a truly secured sharing environment, the system of the
present invention provides a simple, shared environment which allows very restricted
resource access. The system limits sharing capabilities to those provided directly by the
hardware as opposed to the sharing capabilities supplied by the O/S or other programs,
and does nothing except activating and de-activating these sharing capabilities. This
results in a truly simple and secured way of running several programs on the same
computer. Many aspects of the system may be formally verified, including special I/O
routines which implement the format and protocol for data passing between the
restricted operating environment and the remaining processing environment as well as
the protocol itself.

The system does not allow traditional sharing of resources, such as disk
read and write, printer output, interrupts, I/O port access, etc. Although almost any
type of computer program may be implemented using the system, it is very effective for
programs or operating systems which require high security and limited resources. For
example, a computer running several operating systems on the same computer can

divide hardware resources between those operating systems using the system of the

WO 00/16200 PCT/IL98/00443

10

20

present invention. Each operating system would only be allowed direct access to
hardware resources which are different than the co-executing operating systems at the
same time, while possibly using the restricted link between the programs to share
access to the resource in a very controlled and restricted way. With respect to each
hardware resource, the trust level or security level afforded each running operating
system is different.

This same scheme may also be equally applied to multiple computer
programs within one or several operating systems executing on the same computer.
Each application is able to receive input, process it and then output results without any
other system resource being involved.

This undisturbed hardware resource acquisition allows an
implementation of a security policy wherein a first operating system or program has a
different trust level or security level than a second or plurality of operating systems or
programs which sharé the same hardware. While maintaining several programs with
potentially different trust levels on the same processor, and keeping those programs
separated by means of hardware mechanisms provided by the processor, the present
invention allows a very restricted, highly controlled means for communication between
the programs, again by exploiting mechanisms natural to the processor, thus keeping
the communication mechanism relatively simple.

In the discussion below, the term "program" can be interchanged with
operating system to describe an alternative embodiment unless otherwise stated for a
specific feature. In the first embodiment, the system of the present invention is able to

isolate a program executing in a single operating system from other programs executing

WO 00/16200 PCT/IL98/00443

10

15

20

in that single operating system. In an alternative embodiment, the system of the present
invention is able to isolate an operating system from other operating systems executing
on a computer system which may have one or several computer programs executing

within each operating system.

BRIEF DESCRIPTION OF THE DRAWINGS
For a fuller understanding of the invention, reference is made to the
following description taken in connection with the accompanying drawings, in which:
Fig. 1 is a ring diagram representing system layers of a prior art O/S

kernel and application program;

Fig. 2 is a diagram representing system layers of a first embodiment of

the present invention;

Fig. 3 is a schematic overview of the operating environment of the first

embodiment of the present invention;

Fig. 4 is a flow diagram representing major operations for implementing

the first embodiment of the present invention;

Fig. 5 is a detailed flow diagram representing system control of the first

embodiment of the present invention;

Fig. 6 is a ring diagram representing system layers of a second

embodiment of the present invention;

Fig. 7 is a flow diagram representing major operations of the second

embodiment of the present invention;

Fig. 8 is a detailed flow diagram representing system control of a second

embodiment of the present invention;

WO 00/16200 PCT/IL98/00443

10

15

Fig. 9 is a block diagram of a gateway system employing the security
architecture of the present invention;

Fig. 10 is a block diagram of a gateway system connected between an
internal and external computing environment of one preferred embodiment of the
present invention;

Fig. 10b is a block diagram showing an alternative architecture for a
gateway system connected between an internal computing environment connected to
the Internet in accordance with the present invention;

Figs. 11a and 11b are block diagrams of the external and internal robots,
respectively, shown in Figs. 10a and 10b;

Fig. 12a is a flow chart showing a process of processing incoming data
performed by the apparatus of Fig. 10a in accordance with an embodiments of the
present invention;

Fig. 12b is a flow chart showing the process shown in Fig. 12a in greater
detail, referring to elements of the block diagrams shown in Figs. 11a and 11b;

Fig. 13a is a flow chart showing a process of processing outgoing data
performed by the apparatus of Fig. 10a in accordance with an embodiment of the
present invention;

Fig. 13b is a flow chart showing the process shown in Fig. 13a in greater
detail, referring to elements of the block diagrams shown in Figs. 11a and 11b;

Fig. 14 is a flow diagram of the Protocol Manager module shown in

Figs. 11aand 11b;

WO 00/16200 PCT/IL98/00443

10

15

20

Fig. 15 is a block diagram of the object repository and a session
sub-module for the apparatus shown in Fig. 14;

Fig. 16 is a flow diagram showing a process for converting data from an
application protocol to a simplified internal protocol in accordance with one
embodiment of the present invention;

Fig. 17 is a flow diagram showing a process for converting data from a
simplified internal protocol to an application protocol in accordance with one
embodiment of the present invention; and

Fig. 18 is a sample of a protocol entity table shown in the apparatus of

Fig. 14.

In these drawings, like items are assigned like reference numerals.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

With reference to Fig. 2, in a computer system 300, a first embodiment
of the present invention comprises two entities, a master software program 202
controllably acting as a protective container, and a restricted operating environment or
cell 204 acting as a RAM segment container through which master 202 monitors and
controls programs executing inside the cell 204 container. Master 202 protects other
processes, such as the computer’s O/S 200, from a program executing inside cell 204.
The system may be implemented on a Windows/NT system in VM86 switchable mode.
A system implemented using Windows/NT may run on Intel's CPUs, 80386 and above.
Master 202 switchably operates along side O/S 200 at the same priority and system

level as O/S 200.

10

WO 00/16200 PCT/IL98/00443

10

20

A process master 202 constructs a cell 204 and loads a program into the
cell 204. Master 202 is responsible for executing the program inside cell 204, and
passing data from cell 204 into an outside environment 302 comprising O/S 200, master
202, and other programs and resources such as peripherals. Master 202 is also%
responsible for shutting down the program and dismantling cell 204.

With reference to Fig. 3, a schematic overview of a computer 300 is
depicted with an exemplary system of the present invention installed and running.
Computer 300 includes an outside system environment, generally indicated at 302
which includes an operating system 200.

The processor in the following examples is assumed to be an Intel
Pentium, although the examples are basically applicable to Intel’s model 80386 and
80486 processors, and with the necessary modifications known to those of skill in the
art, to various other CPUs.

The system depicted in Fig. 3 is executing a program in cell 204 which
communicates with outside environment 302 using a link, or vector, 304, which
comprises, in this example, shared memory. The program executing in this example is
a TCP/IP stack driver for communicating with a hardware component, such as a
network communications card. The system of the present invention is excellent for
execution of such hardware driver programs because of the complexity in their software
which may have many bugs and potential software conflicts with programs in outside
environment 302. Master 202 acts as a mediator between an executing program in cell
204 and the outside environment 302. The exemplary program 306 executing in cell

204 includes TCP/IP communications stack which queues data for routing to an outside

11

WO 00/16200 PCT/IL98/00443

10

15

20

resource, which in this case is a network communications card. Master 202 allows
passage of the information only through the well-defined, narrow, controllable link or
vector 304, described in detail below.

Outside environment 302 may comprise hardware peripherals, operating
systems or other computer programs. The environment is protected from the program
executing in cell 204 by master 202. However, the program is able to send and receive
information from environment 302 through vector 304.

Master 202, is a process in outside environment 302, executing as a
privileged task, such as a device driver, and has potentially full control over at least one
CPU. Master 202 may isolate cell 204 from outside environment 302, so that outside
environment 302 is not aware of cell 204. O/S 200 grants master 202 an execution
time-slice, during which master 202 may access resources such as the an interrupt
description table (IDT) 308, which maps each interrupt to its handler and page
directory tables provided in task descriptors set during initialization of the master.
Master 202 then grants the time-slice to the program in cell 204. Master 202 provides a
connection 304 between outside environment 302 and the program executing in cell
204. Master 202 is also responsible for cleanup once the execution of the program ends.
Master 202 dismantles cell 204 after the program terminates.

Cell 204 is the loaded executable program’s 306 immediate
environment. Master 202 provides cell 204 with virtual interrupt handlers, or stubs,
task descriptors or other resources needed within cell 204 for executing program 306.
Cell 204 allows the executing program 306 to access only RAM address space assigned

to it by master 202 via the page tables provided in the task descriptors loaded during

12

WO 00/16200 PCT/IL98/00443

15

20

setup. The means for communication for program 306 with outside environment 302 is
through vector 304. Vector 304 may be either an interrupt, 1/O port or a speciall);
designated shared memory address space in RAM which can be strictly controlled and
evaluated by master 202 before allowing access to the data from vector 304, or allowing 7
the program 306 in cell 204 to access data vectored from other programs or operating
system 200.

Although not necessary for operation of the present invention, the
program 306 loaded for execution in cell 204 comprises software designed or adapted
to run, independent of any service other than vector 304 to outside environment 302.
The program 306 software cannot invoke system calls except in the case where the
program is an O/S of the second embodiment discussed separately below. In the first
embodiment, the program 306 cannot issue interrupts or I/O instructions unless they are
part of its controlled link vector 304 to outside environment 302. The program 306 is
thus confined in cell 204, and serviced by master 202.

However, even with the most CPU intensive programs, certain resources
in outside environment 302 communicate with the program 306 executing in cell 204.
For example, when the clock interrupt handler 310 of O/S 200 is invoked, master 202
must communicate the event to the program 306 executing in cell 204. Likewise, when
a hardware (H/W) interrupt is invoked, the H/W interrupt handler of O/S 200 associated
with the particular hardware event must communicate the event to the program 306
executing in cell 204. Master 202 provides a link or vector 304 between the program
306 executing in cell 204 and the outside environment 302 which is simple and

restricted in order to keep implementation as simple as possible. The H/W interrupt is

13

WO 00/16200 PCT/11.98/00443

10

needed for communication with hardware peripherals, such as a network card accessed
by the exemplary TCP/IP program 306 of Fig. 3. When a program 306 is executing in
cell 204 which does not require communication with H/W peripherals, then there is no
need for such H/W handler, which further simplifies operation of the system of the
present invention.

One method for providing link 304 is by use of a passive memory link.
The passive memory link is the most secure method, but is also the most restricting one.
With a passive memory link, master 202 loads program 306 together with a specially
created input buffer, into cell 204. Thus, the input buffer is already in the accessible
memory area for program 306 when program 306 begins execution. Likewise, an
output buffer is extracted by master 202 after program 306 is terminated. The benefit to
this method is that there is no interaction, between program 306 and entities of outside
environmental 302. The drawbacks to this method is that program 306 is not interactive
with outside environment 302 during execution of the program 306. Communication is
thus provided with only two transactions, an input to program 306 at the beginning of
execution, and an output at termination of execution.

An alternative method for providing a link vector 304 between the
program 306 and outside environment 302 is through a small shared memory segment
with or without interrupts. A predefined part of the memory assigned to the program
306 to serve as shared memory. The area is used for communication between the
program 306 and outside environment 302, or with master 202 itself. The program 306
may write data onto the shared memory, indicating the completion of the write by either

flagging a bit in a preset position in a shared memory control block, or by invoking an

14

WO 00/16200 PCT/IL98/00443

15

20

interrupt as discussed below. Outside environment 302, or master 202, may later read
the data, flagging its completion in a similar manner. Reading data by the program 306
is accomplished in similar fashion.

The shared memory link method may be implemented using dedicated
interrupts. As part of cell 204, the master may install special link interrupt handlers, or
stubs, for cell 204. The 1/O stubs are responsible for moving data from the program’s
306 allocated memory space to memory space in the outside environment, or master
204, and vice versa. The program 306 can perform I/O by invoking standard interrupt
calls.

Another alternative method for providing a data link between the
program 306 in cell 204 and outside environment 302 is through use of dedicated I/O
ports. As part of cell 204, I/O ports can be reserved for the program 306. The I/O ports
may be connected to a peripheral device such as a serial bus, parallel bus, NIC or SCSI
device, etc., which in turn is connected to another peripheral device, connected to an
I/O port for outside environment 302. Alternatively, to gain more security, the I/O port
for outside environment 302 may be connected to master 202. In this way, the program
306 communicates with outside environment 302 by reading data from I/O port(s) and
writing data to I/O port(s).

By using any of the above link methods, outside environment 302 may
send/receive data either directly, or through master 202. Operating through master 202
has the advantage of being more secure, as master 202 becomes a mediator to the data
arriving from the program 306. It is therefore possible, especially with respect to the

second embodiment to have two programs effectively using a single resource, although

15

WO 00/16200 PCT/IL98/00443

10

20

in a very restricted, controlled manner, through a link as described above, and not
transparently. This mechanism may be implemented in the by assigning a resource to a
first program, which has complete control over it. This program may relay data to and
from the resource to a second program using the restricted link between the two
programs. Both programs are aware of this mechanism and take the necessary steps in
its establishment and maintenance, making the mechanism non-transparent.

With reference to Fig. 4 the flow diagram depicted represents the major
steps to implementing the first embodiment of the present invention. The first step is to
initialize and load master 202 into memory which gains complete control over the CPU
and sets up needed data, step 400. Next, each program 306 cell 204 is initialized, step
402.

Step 402 comprises several sub-steps. For each cell 204, an executable
program 306 is loaded into physical memory. Memory is allocated for each cell 204, as
well as hardware resources, CPU timing, interrupt vectors and any other resource
supported directly by the CPU for the program cell 204. Master 202 then constructs
each Cell by first setting up the CPU’s protection, including I/O permission tables,
virtual memory tables, interrupt re-direction maps, task tables, segmentation tables, etc.,
to isolate the program 306 from any memory or hardware except that allocated to it by
master 202. The CPU’s scheduling mechanism, or clock interrupt, is then set up to
distribute CPU time between cells 204 and outside environment 302. The scheduling
mechanism is then started.

Execution of each program 306 is then begun within each cell 204 as the

CPU’s scheduling mechanism allocates a time slice to each cell 204, step 404. As each

16

WO 00/16200 PCT/IL98/00443

20

program 306 executes, various requests from the program 306, e.g. I/O, are serviced,
step 406. As services are provided, outside environment 302 is protected by
disallowing each program 306 to access resources other than its allocated memory and
the preset resources assigned to it, step 408. In case of an attempt to violate these
restrictions, master 202 can terminate the program 306, or ignore the attempt, or take
any other appropriate measure programmed into master 302. Hardware interrupts are
handled by master 202, step 410, as explained in detail below, as well as clock
interrupts, step 412. When a program 306 terminates, master 202 shuts down cell 204
and resets the memory allocated to cell 204, step 414.

In order to make it easier to confine a program 306 in a cell to only CPU
level services a program 306 may be especially adopted for executing in cell 204.
Software written from scratch can be coded to take into account the limited sharing
environment of the present invention. For existing programs, the source code may be
modified to eliminate all calls to services at the level of O/S 200. Otherwise, if the
program 306 running in cell 204 attempts to use resources in outside environment 302
not assigned to it, master 202 may invoke an interrupt stub to ignore the request. For
example, a program 306 that calculates an output buffer from an input buffer may
attempt to write messages to a screen while it’s processing the data when the screen has
not been allocated to cell 204 by master 202. In such a case, where the attempt to
violate the restrictions is expected, an interrupt stub for the resource, in this case, the
stub for the write-to-screen interrupt, can be constructed such that instead of
terminating the program 306 and/or informing outside environment 204, the interrupt

stub simply ignores the request, emulating a successful operation, and returning control

17

WO 00/16200 PCT/IL98/00443

10

15

20

to the program 306. In this example, the interrupt stub for the write-to-screen interrupts

should return to the program 306 with a successful status, emulating a successful
write-to-screen, where in fact, nothing has happened. In this way, the program 306 may
finish its task, terminating with the desired results, possibly in an output buffer. In this

way, a program 306 can be executed in a cell without modification of the program 306.

With reference to Fig. 5, a control and data flow is depicted for the first
preferred embodiment of the present invention. After the Windows/NT system is up
and running, the system performs an initialization of a master 202, step 500. The
system allocates memory for master 202 and a cell 204, step 502. The master creates a
Windows/NT standard VM86 task, step 504. Next, master 202 loads a program 306 for
execution into the cell 204, step 506. Master 202 then may define an I/O vector or
buffer 304 for the program 306 to have limited contact with outside environment 302,
or master 202 itself, step 508. The I/O buffer 304 may either comprise an interrupt, I/O
port or a specially designated shared memory address space in RAM which can be
strictly controlled and evaluated by master 202 before allowing access to the data
vectored by the program 306 to other programs.

The last step in initialization comprises replacing the normal computer
interrupt routines for the program 306 in cell 204 with interrupt handlers or stubs, step
510. The interrupt stubs can handle interrupt calls performed by the program 306 in a
number of different ways which keeps the program 306 isolated from outside
environment 302. For certain kinds of interrupts, such as calls to write to areas of the
computer’s physical memory addresses, an interrupt stub for that interrupt may

terminate program 306 execution for cell 204 and return an error in any output buffers

18

WO 00/16200 PCT/IL98/00443

10

15

20

for the program 306. For other kinds of interrupts, such as screen output which may not
be as crucial to the program 306 execution itself,i an interrupt stub may handle the
write-to-screen interrupt call by simply ignoring it. Different cells 204 may require
different interrupt stubs depending on the program’s 306 purpose and level of security 7
with respect to the outside environment 302.

The memory allocation for a particular cell 204 may vary. With today’s
applications, one megabyte (IM) or more of memory may need to be allocated. Other
programs, such as standard MS-DOS programs, require less than IMB to execute. Step
502, comprising allocating memory also comprises creating a virtual memory mapping
table. When the program 306 loads, the program 306 is not aware of any memory
above or below the space allocated in RAM for the particular cell 204 the program 306
has been loaded in. To the program 306, the lower end of memory is, for example 0,
and the upper end of memory equals the amount of space which has been allocated to
cell 204. The table translates memory access interrupt calls from the program 306 to
the physical memory address so that only the data allocated to that cell 204 is read or
written.

To complete step 504 the master allocates a VM86 CPU task by
inserting a task state segment (TSS) entry into a global description table (GDT), which
contains pointers to TSS entries and shared memory segments or other loaded
resources. A register within the TSS which points to the physical memory location of
the page directory for the task for cell 204 is set. The VM86 bit in the EFLAGS
register of the TSS is set so that the task is run in VM86 mode, as well as the current

privilege level (CPL) for the TSS, which is set to 3, the least privileged level. A CPL

19

WO 00/16200

10

15

20

PCT/IL98/00443

of 3 means that the TSS is unable to modify its cell. The privilege level for the task or
interrupt gate is similarly set to 3 for master services.

After the program 306 is loaded into cell 204 and ready for execution,
the master requests a time-slice from Windows/NT for the cell 204, step 512. Once the A
time-slice is granted, control moves to the program 306, step 515, within cell 204 for its
CPU time share, step 514. The program 306 executes as a VM86 task within cell 204,
using standard long-jump instructions.

As with programs running in outside environment 302, a program 306
within cell 204 may trigger several events, or several events may interrupt execution of
the program 306. One of those events is that the program 306 may encounter or
produce a software I/O interrupt, step 516. If an I/O interrupt occurs, control is passed
to the corresponding interrupt stub for an I/O installed in step 510. If cell 204 is one
which allows limited input and output through an I/O interrupt, the cell stub may relay
the request through Windows/NT to perform the I/O operation, step 520. Before doing
so, a routine may be in place which checks the request to make sure it will not cause
damage to Windows/NT or any other running applications in outside environment 302.

After processing the request, master 202 sends control back to the I/O
interrupt stub for cell 204, step 522. If the I/O operation was a request for data, then
master 202 routes the data from shared memory 304 to the program 306, step 524. The
program 306 receives the input, if requested, and continues execution, step 514.

A hardware (H/W) interrupt may be produced while the program 306 is
executing, step 526. Control is passed to the interrupt stub for the particular H/'W

interrupt produced, step 528. If the H/W interrupt is one which is allowed during

20

WO 00/16200 PCT/IL.98/00443

20

execution of the program 306, cell 204 passes control to master 202, which then passes
control to the particular Windows/NT routine, step 529, which services the H/W
interrupt by switching the CPU back to NT mode, step 530. After the H/W interrupt is
handled, control is passed back to the interrupt stub in VM86 mode, step 532, which in
turn passes control back to the program 306, step 534.

The time slice allocated to the VM86 task may expire producing a clock
interrupt, step 636. The interrupt stub for a clock interrupt receives the interrupt call,
step 538. The clock interrupt is serviced by returning the CPU to NT mode and passing
control to Windows/NT, step 540.

The program 306 may naturally terminate, step 542. The master then
cleans up and returns allocated memory and resources used by the cell 204, and then
releases control back to NT, step 544.

A program 306 may try to perform a prohibited operation, step 542. If
this occurs, the CPU issues a general protection fault (GPF), step 546. Control is kept
within master 202 and handled by shutting down the program 306 so as not to disturb
other programs which are running under in Windows/NT, step 548. The master
terminates execution of the program 306 and reports back to NT, step 570.
Alternatively, the system may ignore the violation and return control to the program
306 for execution of further instructions.

With reference to Fig. 6, a second preferred embodiment of the present
invention is employed to isolate several operating systems executing on one physical

computer. An O/S monitor 600 gains full control of the computer. A monitor 600 can

21

WO 00/16200 PCT/IL98/00443

10

15

20

selectively enable or disable access to I/O ports and other memory locations. For
example, monitor 600 can disable access to the 1/0 pbrt for a floppy disk controller.

The second embodiment comprises an O/S layer 602 above monitor 600
which contains one or more simultaneously executing operating systems. User
programs may execute in a an application layer 604 above the O/S layer 602.

An operating system is a particular type of program that does not assume
O/S services. In the second embodiment of the invention the system uses monitor 640
as a mechanism which allows an O/S to assume it has full control over the computer by
creating a virtual environment for the O/S.

The system traps any attempt of the confined O/S to re-program the
security feature of the CPU, or any other O/S level feature, such as virtual memory.
Monitor 600 services these attempts in a way similar to master 202 of the first
embodiment described above. The system further traps any attempt to receive
information about the state of the CPU's security features, and the monitor emulates the
results of the CPU instruction which was supposed to be executed, without actually
modifying the security configuration. The master may have to replace subroutines for
an O/S because some CPU instructions on certain systems return information about the
CPU state which cannot otherwise, without those replacements, be trapped. For
example, an O/S such as Windows/NT running on Intel-Pentium may query the CPU to
find the current privilege level in which it is running, expecting the result “0”, which is
the most privileged ring of execution. As this query is not trappable, each such
instruction within the O/S is replaced with a call to a specially designed routine which

emulates the desired result of 0.

22

WO 00/16200 PCT/IL98/00443

10

15

20

With reference to Fig. 7 the flow diagram depicted represents the major
steps for implementing the second embodiment of the present invention. At computef
system boot-up, the first step is to initialize and load monitor 600 into memory, and .
execute it so that it gains complete control over the CPU, step 700. In step 700 CPU
tasks are allocated by monitor 700 as explained in more detail below. Each O/S is
loaded into their allocated task in step 700.

Execution of each O/S is then begun within each task as the CPU’s
scheduling mechanism allocates a time slice to each O/S, step 702. As each O/S
executes, various requests from the O/S, for example I/O, are serviced, step 704. As
services are provided, other O/S tasks are protected by disallowing each O/S from
accessing resources other than its allocated memory and the preset resources assigned
to it, step 706. In case of an attempt to violate these restrictions, monitor 600 can
terminate the program, or ignore the attempt, or take any other appropriate measure

programmed into monitor 600.

In the system of the second embodiment, an O/S may have read only
access to special shared memory segments of other O/Ss, step 708, as explained in more

detail below.

A clock interrupt is filtered through the monitor to the O/S running in
the current time slice, step 710, or is trapped by the monitor, signaling it to move

control to a different O/S.

When an O/S terminates, step 712, the monitor shuts down the task the

O/S was executing in and resets the memory allocated to the task.

If the last O/S terminates, step 714, the monitor may shut down or

23

WO 00/16200 PCT/IL98/00443

10

15

20

change to configuration mode.

With reference to Fig. 8, a control and data flow is depicted for the

second embodiment of the present invention. Initialization of the system occurs when

the computer boots up, step 800. The monitor initially is inserted as the lowest layer
above the computer’s hardware interface.

The configuration information for each operating system (O/S) is read
into the monitor, step 802. A virtual environment for each O/S is initialized which
mimics the actual computer system’s firmware. Alternatively, if a particular O/S is not
compliant with the specific hardware of the computer system, an emulation layer can be
installed by the monitor for that particular O/S.

Tasks are initiated with allocated memory pages for each O/S which is to
be loaded, step 806. As in the first embodiment, each memory page is installed with a
virtual memory address table so that the O/S is not aware of any other memory space
other than that allocated to it. In this step, the monitor sets up low level segmentation,
interrupts and any other security and control mechanism for the CPU. For each O/S a
task is setup with a low permission level, either 1 or 2. The O/S is given an execution
privilege which is still more privileged than the user applications running within the
O/S itself, which can receive a permission level of 3. However each O/S receives a
permission level which gives it less privilege than the monitor itself, which runs at the
most privileged execution layer of the system, level 0. Each O/S can be allocated CPU
time as with application programs in the first embodiment, step 808. A time scheduler

to distribute time between the O/Ss is setup, step 810.

24

WO 00/16200

10

15

20

PCT/1L.98/00443

Next, the O/S images are loaded into their respective task spaces, step
812. As in the first embodiment, limited shared mefnory may be set up between O/Ss,.
step 814. However, the shared memory is not activated in this step. Further, protection
of critical tables, such as GDT and IDT page directory and page tables is provided by
the monitor, step 816. If available, this protection can be achieved by using a CPU
paging mechanism such as the paging mechanism built into Intel’s PENTIUM
processor.

Next, exception and interrupt handlers replaced for each O/S cell, step
818. This step is similar to step 510 in the first embodiment described above. However
exception handlers for operating systems are more extensive than for applications. For
example, a general protection exception handler is installed to enable the Windows/NT
O/S to run in layer 602 (Fig. 6) by carefully emulating privileged instructions for the
Windows/NT O/S on behalf of the CPU. A page fault exception handler implements
the protection on critical tables to trap references to memory areas which do not belong
to the O/S causing the page fault.

Once the O/Ss are loaded and ready for execution, the first O/S on the
time slice stack will retain a time slice from the CPU, step 820. The monitor’s
scheduling mechanism grants time slice for an O/S, causing it to run in its own virtual
environment. If this is the first time the O/S runs, then the virtual environment
emulates a user or automatic boot-up sequence, as expected by the O/S. Otherwise, the
O/S resumes running where it was stopped, step 824.

As with the first embodiment, a number of events may occur during a

running O/S’s CPU time slice, one of which may be a H/W interrupt, step 826. The

25

wn

10

15

20

WO 00/16200 PCT/IL98/00443

interrupt stub for the particular hardware must determine which O/S the interrupt
should be routed to, step 828. This may depend on the hardware resource which the '
specific piece of hardware is allocated to. In the second embodiment, service of the
interrupt is assigned to the O/S which the hardware is servicing, step 830. Control is
then passed back to the monitor interrupt stub, step 832, which passes control back to
the O/S which has been allocated the current time slice, step 834.

Similarly to the first embodiment, a clock interrupt causes the current
O/S to stop, step 836. However, unlike the first embodiment, control is transferred to
the next O/S, step 838. The monitor simply arbitrates which O/S is to receive the next
time slice, step 840.

Any attempt to modify the virtual environment by an O/S, step 842, such
as changing an interrupt or modifying a virtual page directory, causes the CPU to
generate a general protection fault, step 844. This fault is handled by the monitor,
which emulates the modification so that it appears to the O/S that the modification was
successful, step 846.

In case a reference or request is made to the virtual environment it can
be trapped, or intercepted by a CPU mechanism. There are interrupts that may be
activated as a result of such an attempted reference. In a case where there is no way for
CPU to trap references to the environment, for example using the segment register to
determine the current permission, the O/S must be patched by replacing the problematic
instruction with a call or branch to special code which emulates the action, returning the
expected result to the O/S so that the monitor can be used to confine it. If the O/S

references the segment register directly, it may not be trappable/interruptable. In this

26

10

15

20

WO 00/16200 PCT/IL98/00443

specific scenario, the monitor’s existence may not be transparent to the O/S because the
segment register contains information which discloses the fact that the O/S is running .
with a monitor, and is less privileged than expected. So, the O/S may not behave well
after receiving this information. One way to resolve this is to completely remove the
instruction from the O/S which discloses the information. For example, the
read-segment-register instruction may be replaced with a call to a monitor routine
which emulates the call so that the routine provides the expected result. This type of
patch is made prior to the execution of the code, e.g. at the binary, or just after loading
the O/S image, in the memory image of the O/S.

Each O/S has a shared memory page for which only it has write
privileges, and can be read by any other O/S. For an O/S requesting data from another
O/S to take advantage of this page, it sends a request to the monitor to activate it by
invoking a software interrupt, step 848. A special driver is loaded which facilitates
information sharing between the O/Ss, step 850. The requesting O/S may initiate a
finish interrupt once it receives the data, step 852. Control then passes back to the
monitor’s data-share interrupt routine, step 854, which finishes execution. The monitor
copies the result buffers, if any, to shared memory, step 856.

When the O/S invokes a halt (HLT) instruction, step 870, the monitor
ceases to allocate time for the calling O/S, step 872. The monitor ceases servicing the
specific O/S invoking the HLT instruction, and may possibly restart it, step 878. If all
O/Ss shutdown, step 874, the monitor may either shutdown the computer or,
alternatively, move to configuration mode, step 876. This mode can also be activated by

a special hot-key combination.

27

10

15

20

WO 00/16200 PCT/IL98/00443

Both the first and second embodiments of the present invention can be
implemented on any processor supporting isolation and/or protection mechanisms such
as privilege levels, virtual machines and paging memory. Intel’s 80386 or higher
(80386+) protected mode and Intel’s 80386+ VM86 mode is supported by the system.
The monitor supports any operating system consistent with protective mode that is used
for the isolation. For example Linux, Windows/95, Windows/NT, Solaris/x86, all
operate on Intel’s 80386+ protected mode. MS-DOS cannot be used in Intel’s 80386+
real-mode, because no protection/isolation is offered in this mode, but the system may
be implemented using VM86 mode for MS-DOS.

The system of the present invention can be used with other, similar
processors. It should be understood that the system of the present invention is not
restricted to the Intel 80386+ architecture.

Programs which are CPU intensive work best with the system of the
present invention because of the reduced need for environmental resources, although
other programs which are less CPU intensive may be executed within a cell. The
preference is to limit operating system services needed to for each cell. The system
works best with programs’ for which, once all the required input is given, most of the
programs’ activities occur within each cell’s allocated memory segment, while using
limited I/O functions, if at all. A good example of an application which executes best
with the system of the present invention is a protocol processor, such as an SSL
decryptor or HTTP parser, because it is CPU intensive, while having low demand for

I/O other than an initial input buffer and final output buffer.

28

w

10

15

20

WO 00/16200 PCT/IL98/00443

With reference to Fig 9, and as described in greater detail below, the

system of the present invention may be used to operate two or more programs which

form a security gateway system for protecting an internal trusted network from the
external environment. An external program or robot 6 receives messages from the
external environment 7, converts the content of these messages to a simple, harmless
form, and passes them along to an internal robot 3 which converts the simplified form
of the content to a form usable by applications in the internal network 2. The external
and internal robots 6, 3 may be operated on a single processor while maintaining
security of the internal network 2 using the systems described herein. For example, the
external robot 6 may be operated in the restricted operating environment so that attacks
on the external network will not proliferate into the rest of the operating environment
including the internal robot. Alternatively, both the external and internal robots 6, 4
may be operated in restricted environments, thus providing further protection.

The two robots 4, 6 are implemented on a single CPU using a protected
mode such as the VM86 mode or the restricted operating environment provided by the
master or monitor programs represented as VMM program 9 and Pentium technology.
For example, in a single CPU running the Windows NT™ (WINNT) operating system,
each robot, or at least the external robot 6, is operated in protected mode under the
supervision of a monitor program which prevents each robot from affecting the
operation of the other and the rest of the CPU's environment. The monitor program
also negotiates the communication of data between them, implementing the
communication channel or bus 4 between them using shared memory resources 5 and a

special API for each protected mode. Thus, the two software robots 4, 6 are separated

29

15

WO 00/16200 PCT/IL98/00443

by the CPU under the control of the VMM program in a way that each robot is assigned
some resources of the computer 1, 8 (such as disk space, memory address range,.
peripheral devices like floppy disks or tape drives) which are not shared with the other
robot, and the policy of separation is enforced by the VMM program. Only one
resource, the communication bus 28, is shared by the two robots 4, 6, and this bus 4

may be implemented, for example, by a dedicated memory address space.

The VMM program 9 and the robots 4, 6 running in their private
environments may be executed on a dedicated computer. They may also run on a
non-dedicated computer, in which case certain modification to the standard OS (e.g.,
Windows) might be necessary in order to force it to run in a protected mode. The
VMM program 9 controls all the events at the CPU level, and enforces the two virtual

processing entities on a single CPU machine by hardware interrupts.

Embodiments of the architecture and operation of the gateway system

will now be described in greater detail with reference to Figs. 10a-18.

Referring to Fig. 10a, a network security gateway 10 is connected
between an internal computing environment 12 and an external computing environment
16. In the embodiment shown in Fig. 10a, the internal computing environment contains
a web server 13, which may belong to a web subnet, and a sensitive system server 14.
The external environment 16 may be any environment external to the web and system
servers 13, 14, but typically includes the Internet. The gateway 10 is connected to the
internal system server 14 via communication bus 20a, to the web server 13 via bus 20b,
and to the external environment via bus 22. These buses may be implemented as

Ethernet connections, using conventional network interface cards such as Ethernet PCI
30

10

15

20

WO 00/16200 PCT/IL98/00443

cards, or may be implemented as serial connections using a V.35 interface. Other
connection methods may be used as known to those of skill in the art. The buses 20a, .
20b, and 22 may use the same or different types of connections.

The security gateway 10 contains two separate and distinct processing
entities 24, 26, referred to herein as robots, connected via a dedicated, secure
communication bus 28. The internal robot 24 is connected to the web server 13 and
system server 14 via the buses 20b, 20a, respectively, and the external robot 26 is
connected to the Internet or other external environment 16 via the bus 22. As described
in greater detail below, each robot is capable of translating or reducing a
communication or message received from the respective environment to a simplified
message using a simplified protocol format referred to herein as a clear inter-protocol or
CIP, transmitting the CIP message to the other robot using the inter-robot bus 28 using
an inter-robot transfer protocol or IRP, and translating such CIP messages received
from the other robot into messages formatted for the respective environment.

In one embodiment, the security gateway 10 is connected to an
organization’s internal networks in the following manner. An application proxy is
connected through bus 20a to the internal system server 14, and a web proxy is
connected through bus 20b to the web subnet wherein the web-server 13 resides. As
one skilled in the art will appreciate, it is possible to have multiple web-subnets, with a
dedicated interface per each, or to have several web servers in the same subnet;
likewise it is possible for the apparatus to serve multiple internal environments with a
dedicated interface per each, and also several servers and/or applications in the same

internal zone. The embodiment described with reference to Fig. la services a single

31

10

15

20

WO 00/16200 PCT/IL98/00443

internal environment with a single server running a single application, and a single
web-server in a single web-subnet, for reasons of simplicity and ease of .
implementation. However, the principle of replication and extension of the gateway
system 10 is a system design parameter understood by those of skill in the art.

For example, Fig. 10b illustrates an alternative architecture which may
be used for the internal environment 12a. As shown in Fig. 10b, a LAN server 13a is
connected to the internal robot 24 via several interfaces 20a, 20b, 20c. The LAN server
13a services communications for a number of internal application servers 14a-14f,
including for example an SQL database server 14a and a banking server 14b having its
own additional server security process 11 that provides access control and other
security measures. The three interfaces 20a, 20b, and 20c provide for a variety of
communication protocols to be used, including one 20a for issuing SQL commands to
the SQL database server 14a, one 20b for transmitting email and web communication
protocols including CGI calls within HTML data, and one 20c for high security
financial communication protocols specific to the banking server 14b. Corresponding
multiple interfaces 22a-22¢ may be provided between the external robot 26 and external
environment 16 to receive message having various communication protocols.

There may be a separate processing module for each message protocol or
this combination may be streamlined to provide one module for the “gateway” transfer
protocols implemented in the security gateway, one for “middleware” protocols that
bypass the web server, perhaps also one for encryption protocols and one for
applications protocols. The streamlined alternative does away with the system

overhead incurred by the double-filtering of HTTP-protocol messages that otherwise

32

W

10

20

WO 00/16200 PCT/IL98/00443

occurs to less than that of a linear addition, while being free of obvious security flaws
or leaks and still blocking tapping. On the other hand, a very “strong” machine with
advanced operating system performance and features, such as a SUN SPARC station is
required to run it, adding to its overall cost for low-end users. The advantage of the
modular design is the economies of being able to selectively implement additional
protocols by adding individual modules specific to the tasks at hand.

The internal communications bus 28 connects the respective robots 24,
26 in accordance with the serial bus, parallel bus or universal serial bus standard. In
accordance with the present invention the internal bus 28 linking the two robots may,
alternatively, be a SCSI bus, fiber-optic, a network interface link or even a radio link,
where the robots must operate over a greater distance, VMM-protected shared memory,
or the like.

Together, these three elements 24, 26, 28 implement the protection
provided by the network security gateway 10 for the protected internal environment 12.
The robots 24, 26 are two separate and independent logical processes that execute
routines defined by respective security gateway software packages. The robots 24, 26
may be installed on two separate processing devices or one a single processing device

operating the one or both of the robots 24, 26 in protected mode.

In some embodiments, the respective software packages are installed on
two or more respective separate CPUs, for the sake of simplicity and off-the-shelf
component availability. In this approach, each robot runs on a single independent
computer processor with non-shared resources assigned to it (for example, disk space,
memory address, network adapter, various peripherals, and the like). The only shared

33

WO 00/16200 PCT/IL.98/00443

10

15

20

resource in this approach is the communication bus 28. Several configurations may be
used to implement this approach. One such configuration is different independent.
computers (PCs) connected by a communication bus like a serial line, SCSI line and the
like, with each PC having at least another network adapter for communicating with the
internal network or the rest of the external world. Alternatively, one robot program
may run on a computer (PC) and the other on an add-on card, which may be a dedicated
card or device, or a standard card (like Intel 80x86 add-on card), installed in one slot of
the PC, with this slot serving as the communication bus 28. Both the PC and the add-on
card have at least one additional network adapter for communicating with the internal
network or the rest of the external environment. The two robot programs may also be
run on different independent processors implemented on a standard (e.g., dual Intel
80x86 processors card) or a dedicated add-on card. These two processors are connected
by a communication bus like a SCSI line, IDE bus, PCI bus, and the like. Each robot
also includes at least another network adapter for communicating with the internal
environment 12 or the external environment 16. This add-on card is installed in a
standard or dedicated network communications device like a router, bridge,

communication server, and the like.

In other embodiments, the two robots 24, 26 are implemented on a single
CPU using a protected mode such as the VM86 mode provided by VMM and Pentium
technology. For example, in a single CPU running the Windows NT™ (WINNT)
operating system, each robot, or at least the external robot 26, is operated in protected
mode under the supervision of a monitor program or “mediator” which prevents each

robot from affecting the operation of the other and the rest of the CPU's environment.

34

WO 00/16200 PCT/IL98/00443

15

20

The monitor program also negotiates the communication of data between them,
implementing the communication channel 28 between them using shared memory
resources and a special API for each protected mode. Thus, the two software robots 24,
26 are separated by the CPU under the control of the VMM program in a way that each
robot is assigned some resources of the computer (such as disk space, memory address
range, peripheral devices like floppy disks or tape drives) which are not shared with the
other robot, and the policy of separation is enforced by the VMM program. Only one
resource, the communication bus 28, is shared by the two robots 24, 26, and this bus 28

may be implemented, for example, by a dedicated memory address space.

The VMM and the robots running in their private environments may be
executed on a dedicated computer. They may also run on a non-dedicated computer, in
which case certain modification to the standard OS (e.g., Windows) might be necessary
in order to force it to run in a protected mode. The VMM program controls all the
events at the CPU level, and enforces the two virtual processing entities on a single

CPU machine by hardware interrupts.

Structure and Operation of the External and Internal Robots

The external and internal robots 26, 24 are now described in more detail
with reference to Figs. 11a and 11b.

Referring to Fig. 11a, the external robot 26 contains a channel manager
4a for wrapping outgoing CIP messages to the internal robot 24 in the inter-robot
protocol or IRP and removing the IRP from incoming messages. The external robot
also contains a network proxy 4e which wraps messages in TCP/IP or other transfer

protocols used in the external environment 16. These protocols may include TCP/IP,

35

10

15

20

WO 00/16200 : PCT/IL98/00443

UDP, SPX/IPX, HTTP, SNA, NCP, CORBA, RMI, RPC, or communications transfer
protocols. The CIP is also specific to the applicati.on protocol used, such as SMTP,.
POP3, SQL, CGI, and applications-specific protocols such as those used in banking.
Because the protected environment 12 may use the secure hypertext translation protocol
(S-HTTP) over TCP/IP (or likewise security scheme, e.g. SSL) and structured query
language (SQL) over TCP/IP, as well as a specialized financial communication protocol
and application protocol, the robots may need respective complementary sets of at least
three CIP protocol stacks.

The external robot further contains a routing manager 4b for routing CIP
or application format messages between the various elements of the external robot 26, a
protocol manager 4c connected to the routing manager 4b for reducing a message from
the application format received from the external environment 16 to the CIP in
accordance with procedures described further below, and a Communication Layer
Security (CLS) routine 4d which provides decryption and authentication services for
the security gateway 10 under the direction of the routing manager 4b. The routing
manager 4b first forwards application messages to the CLS routine 4d, and then
forwards the authenticated, decrypted data from the message to the protocol manager
4c. The protocol manager 4c reduces the native-application protocols it receives from
the untrusted environment into a respective CIP format for its particular native
protocol(s). The channel manager 4a in the external robot 26 then moves the CIP
formatted data onto the inter-robot communication bus 28.

As seen in Fig. 2b, the internal robot 24 has an architecture similar to the

external robot 26. The internal robot 24 thus contains a channel manager 2a similar to

36

10

15

20

WO 00/16200 PCT/IL98/00443

channel manager 4a of the external robot 26, a routing manager 2b, a protocol manager
2¢, and a number of proxies depending upon the architecture of the interﬁall
environment. Given the internal environment illustrated in Fig. la, the proxies include ,
an application proxy 2e and a web proxy 2f.

Data received by the channel manager 2a of the internal robot 24 is
forwarded to its protocol manager 2¢ under the direction of its routing manager 2b to be
retranslated from the CIP format back into respective native application protocols, and
then the retranslated result is sent to the internal environment 12 through the application
proxy 2e and the bus 20a or through the web proxy 2f to the web-server 13 which
responds in a data stream which is sent back to the gateway 10 through the bus 20b to
the web-proxy 2f and then re-directed into the protected system server 14.

Although these various tasks are described as being carried out in
separate modules in this embodiment, so long as analogous functions are provided so
that they cooperate in producing the described result, these tasks may be grouped,
divided between different modules or appended to each other or elsewhere. For
example, the security functions (as performed for example, by CLS module 4d) can be
divided between the internal and the external robot, perhaps in order to provide better
security for the cryptographic variables stored in it (keys and signatures).

The communication between the external robot and the internal robot is
carried out solely through a dedicated simple inter-robot protocol or IRP, over the
dedicated inter-robot bus 28. The data is translated using a security protocol specific to
the applications protocol of the data received and internal to the security gateway

operation. Applications within the trusted environment can configure the robots to

37

10

15

20

WO 00/16200 PCT/IL98/00443

authorize data flows using selected communications transfer protocols (CTP), such as
the simple mail transfer protocol (SMTP), file transfer protocol (FTP) and secure
electronic transfer (SET) protocol. Preferably, the CIP assigned to a communication is
specific to the CTP in use.

Any breach of the permitted flow sequences by disorderly operating
system calls or looping will be trapped and logged. For example, in the file transfer
protocol (FTP) a GET command cannot be recognized unless preceded by a successful
login sequence including the USER command, followed by a PASS command.
Violation of the required flow order will cause an alarm to be logged and terminate the
FTP session. The gateway 10 further enforces data flow requirements, since each
translator and interpreter pair is a pair of ad hoc transforms derivative of the protocol
used in the incoming message and the types of data flow permitted by the security
administrator. For example, if an external SMTP user issues the “MAIL FROM”
command, the external server will send the ART equivalent of a “MAIL FROM”
command, only when it follows a “HELO” command.

Figs. 12a and 12b show the data flow implemented by the apparatus
shown in Figs. 10a, 11a and 11b. In overview as shown in Fig. 12a, at the start 40 of
the process, communications packets received from the external environment 16 are
time stamped and logged by the external robot 26, step 50, followed by the
data-security processing functions such as decryption to plain data. Logging is initiated
by a synchronous API module within the security gateway on a “write once” media

(e.g. CDW). The logging process performs sparse notations of program state changes,

38

WO 00/16200 PCT/IL98/00443

10

15

20

time-stamped message IDs, system errors, access and flow violation attempts, rule
firing for each packet, etc.

Generally error and debug entries are kept in greater detail than the
message and state entries. Each service module is automatically periodically polled to
maintain a complete audit trail of every administrator action, user login/logout,
database error, simplified network management protocol trap or alarm. A database of
known intrusion patterns is provided and habitual usage patterns of groups within the
trusted environment are monitored and the administrator notified of incidents that
diverge from that pattern.

For the sake of security, the log is accessed locally only through the
internal, trusted terminal. However, external logs are securely copied to the internal
record using the internal CIP protocol corresponding to the external log’s native
protocol and interpreted into an item format distinct from that used by internal entries,
to further frustrate counterfeiting. Alternatively, the external logs may be written to a
separate system to decrease the overhead imposed on the internal robot by the logging
process. A “dual Channel Manager structure” wherein there is an additional Channel
Manager in each robot, dedicated for logging messages, may also be used. The
software to handle the logging may use the ACE package or any other commercial
product for the implementation. The internal and external logs are recorded
asynchronously, using a logger daemon, so that logged items go immediately to the
written record without waiting in vulnerable queues during thread lockouts or I/O busy
states. This can be implemented by an asynchronous wrapper using generic OS

logging, such as UNIX’s Syslogd & MSEventLogger for errors and violations, and an

39

10

15

20

WO 00/16200 PCT/IL98/00443

ODBC-standard file structure for the transactional information concerning program
state and messages. The open data base convention (ODBC) logger has some
asynchronous behavior options, but they are not directly applicable, so it may not

represent a realistic alternative.

Then in step 60, the plain data is edited to reduce it to clear data and then

translated into CIP format, after which the CIP format is sent over the security
gateway’s internal communication bus 28 to the internal robot 24. At step 70, the
internal robot 24 retranslates, and perhaps also reconstructs, the data from its CIP
format back to the format native to the application it is addressed to, perhaps
introducing some further editorial changes.
In step 90, if the data belongs to a web-session (HTTP) it is first sent to the web-server
12, the web-server 12 may then initiate an application request, sending a response back
to the Internet source of the data the web server received, back through that
network-security gateway 10, while the data proceeds to its destination, as noted in step
1100. If, on the other hand, the data does not belong to a web-session, such as data
communicated directly to the application server, then the internal robot simply sends
that data to the application proxy 2e and over the bus 20a to the internal environment
14, comprising step 1100 and finishing the security gateway’s security-assurance
process at step 1104.

More specifically, referring to Fig. 12b, if a TCP/IP packet, or some
other basic unit of data associated with a suitable communications protocol for the
media available, is received by a security gateway proxy 4e corresponding to that

protocol, through the external bus 22, it is logged in by the external robot at step 51.

40

10

20

WO 00/16200 PCT/IL98/00443

This records the packet’s ID number and operational state codes representing the
transfer steps completed for the packet. Howevef, since this robot is barricaded,.
detailed logs are not kept.

At step 52 the security gateway proxy 4e, after having removed the
encapsulation provided by TCP/IP or by some other transport protocol used for
communicating the data to the security gateway, sends the data to the routing manager
4b which forwards it to the Communication Layer Security (CLS) module at step 53.
At step 54 the CLS module decrypts the SSL format , if such encryption is present (or
any other security scheme, e.g. S-HTTP), of the message and interfaces with and
mediates information required by “mechanisms” that authenticate the identity of the
sender, if such authentication is needed, thus providing plain application-format data to
the routing manager 4b. Preferably, the public key infrastructure is used for the
decryption.

The routing manager 4b then sends the plain application-format data to
the protocol manager 4c which edits the application data into clear data and translates it
into CIP format at step 61. The protocol manager 4c then moves the CIP data back to
the routing manager 4b at step 62. The routing manager 4b sends the CIP data on to the
channel manager 4a at step 63, which encapsulates the CIP data using the IRP,
transmitting this IRP-encapsulated CIP-format data to the internal robot 24 over the
internal communication bus 28 in step 64. The IRP transport protocol may encapsulate
CIP data originating from different native application and transport protocols.

The CIP-format data, encapsulated in accordance with the internal IRP

transport protocol, is received from the internal-communication bus 28 by the channel

41

WO 00/16200 PCT/1L98/00443

15

20

manager 2a in step 71. The channel manager 2a removes the IRP encapsulation and

sends the CIP-format data to the routing manager 2b in step 72, which sends the

CIP-format data to the protocol manager 2c in step 73. It is the protocol manager 2¢ in
the internal robot 24 that finally re-translates the CIP-format data back into its native
application format, possibly modifying the data the data in so doing. Thus the plain
application-format data decrypted by the external robot 26 from communications
received through the extcfnal bus, may not be identical to the clear data in native
application format that is supplied to the trusted environment 14 by the
network-security gateway 10 over the internal communication bus 20a.

Some additional acceptance test, such as tests directed to authorizing
particular actions by particular users for access-control, may be applied to the data at
this point in order to further verify the legitimacy of the data. Providence is made in the
architecture of the present invention to allow for third party integration of processing
modules, to enhance to adaptivity and flexibility of the system. These modules,
hereinafter referred to as “Plug-In’s,” are callable at various places in the process flow
of the apparatus, both in the external and the internal robots. An example of a useful
such plug-in is the access-control as described immediately below, applied at the
internal robot after the CIP is interpreted, possibly at the Protocol Entity level as
described later with reference to Figs. 17-16.

When such an access control plug-in is provided, the protocol manager
controls access control through editing its rules. The protocol manager invokes access
control by sending it four query parameters: actor, action, resource and attributes.

Context-sensitive testing may be used to identify redundant messages that are received

42

WO 00/16200 PCT/IL98/00443

10

15

more than three times from the same source. The access-control plug-in must then also
have reading access to the transactions log maintained by the security gateway 10 in
order to make such context-sensitive determinations. For this reason, intrusion
detection may also use the access-control interface to the log. The access control logic _
(ACL) may be extracted from monitoring network activity or by extracting rules from
the responses of the network administrator to packets parsed under the control of the
administrator. The concept of automatic and/or guided, semi-automatic recognition of
flow, access-rules, access-lists and valid/invalid data is intended to supply, along with
the apparatus itself, a utility which will intercept all the traffic to and from the secured
servers, analyze this traffic and produce a list of users, their allowed activities, and
other relevant parameters (time and date of the action, etc.). It is also intended to
provide a utility which will extract access information from the server itself, be it a
Windows/NT server (registry, etc.) or a UNIX station (/etc/passwd, etc.). ACL data is
imported into the gateway 10, partly in off-time (initialization), and partly on-line
(updates). Security standards implemented may include RADIUS and TACACS RAS
standards, the TSS mainframe standard, or the modern alternatives: NIS, NT domain.

If it passes all such tests, at step 74 the protocol manager 2c¢ sends the
application-format data back to the routing manager 2b which determines its
destination. If the data is to be sent directly to the application, it proceeds to step 1101.
If the data was addressed to the web-server, e.g., if its application format is HTTP, the
routing manager 2b sends the application format data to the web proxy 2f at step 91,
which re-encapsulates it as a TCP/IP packet, or whatever other suitable transfer

protocol is in the protocol stacks being used by the web-server. At step 92 the web

43

10

15

20

WO 00/16200 PCT/IL98/00443

proxy 2f finally forwards the re-encapsulated data to the bus 20b. The web-server 12 in

step 93 processes the data. It is expected that the wéb server 12 translates the data to.
some application format before transferring it back to the apparatus.

For example, when a user invokes a CGI script on the web-server 12 using a CGI

request encapsulated in HTTP transfer protocol, and the CGI script translates that

request into an application format, e.g. SQL or banking, the web-server 12 transmits the

application format back (e.g. SQL query, banking command) to the network-security

gateway 10, where the web proxy 2f receives it and removes the TCP/IP encapsulation

of the application data in step 94, before sending the application data to the routing

manager 2b.

In step 1101 the routing manager 2b sends the application-format data to
the application proxy 2e. The application proxy 2e re-encapsulates the application data
in TCP/IP, or whatever protocol was used for communicating the data to the
network-security gateway 10, and sends the data to the application server 14 in the
internal environment 12 in step 1102, whereupon the security-assurance processing in
accordance with present invention, for that data, ends at step 1104.

The reverse process performed by the gateway 10 of processing and
transmitting outgoing data from the internal domain 12 into the external domain 16 is
now described with reference to the flow charts in Figs. 13a and 13b and with
continued reference to the elements identified in figs. 10a, 11a, and 11b. Referring to
Fig. 13a, processing by the gateway 10 of outgoing data begins at step 110. At step
120, the internal robot 24 receives application data from the internal system 12. At step

130, the destination of the data is determined: if it is originated from an indirect session

44

15

20

WO 00/16200 PCT/1L98/00443

(i.e., a session that involves a gateway, such as a web-server 13), then the data is
relayed to the gateway (web-server), whereas if the data originated from a direct session 4
(user client communicating directly with the internal system server 14), then the
processing of the data proceeds directly to step 150.

While at the web-server 13, step 140, the data is translated and
restructured by the web-server 13 in order to be presented in a web format (e.g., HTML
page over HTTP protocol), and then sent back to the gateway 10, to be further
processed. At this stage, execution proceeds at step 150. At step 150, the data is
reduced into CIP format, possibly with some alterations, possibly with some filtering
pertaining to the nature of the information, e.g., a “Top-Secret” titled article may not be
allowed to pass out of the internal zone. Then the data is transmitted over the
communication bus 28 into the external robot 26.

The external robot 26 re-composes the CIP format data back into
application format, possibly with some changes to the data, step 160. It then proceeds
to perform some communication security tasks associated with the data, such as
encrypting it and/or affixing it with authentication data, and finally, the secure data is
sent to the external zone 5, step 170, which completes the process, step 180.

A more detailed representation of the process in shown in Fig. 13b.
Beginning at step 110, application data arrives from the internal system 12 to the
application proxy 2e, step 121. At step 122, the application proxy 2e removes the
TCP/IP encapsulation (or whichever protocol used to communicate with the internal
system’s network) and sends the data (which is in application format) to the routing

manager 2b. The Routing Manager 2b determines the destination of the data, step 130,

45

WO 00/16200 PCT/IL98/00443

10

20

according to its association with a session. If the data belongs to a direct session, that
is, a session in which the client communicates directly with the internal system 14, the
routing manager proceeds immediately to step 151. If, on the other hand, the data
belongs to an indirect session in which the client communicates with a gateway such as
a web-server 13, and the latter relays the information to and from the internal system,
then the routing manager 2b sends the data to the web proxy 2f, step 141.

The web proxy 2f encapsulates the data in TCP/IP (or whichever
protocol is used to communicate with the web-server 13 or any other gateways
employed), and sends it to the web-server 13, step 142. The web-server 13 then
processes the data, which is typically a reply to a previous query sent from the
web-server 13 to the internal system 14 via the apparatus 10, and represents it in a
web-format (e.g., typically, an HTML data “page” over HTTP protocol, all
encapsulated in TCP/IP), and sends this data to the web proxy 2f, step 143. The web
proxy 2f removes the TCP/IP (or any other protocol used for communication with the
web-server) encapsulation, step 144, and sends the application data to the routing
manager 2b.

In step 151, the routing manager 2b sends the application data to the protocol manager
2c. The protocol manager processes the data, step 152. This process may include
performing several tests and/or modifications, in order to further protect the internal
system 12 and carry out the security policy exercised in the internal domain. For
example, it may refuse to forward documents or pages according to the information
they carry, or it may remove or conceal some information or all based on its content.

The protocol manager translates the data into CIP, which may be a different coding

46

10

15

20

WO 00/16200 PCT/IL98/00443

scheme than that of the incoming direction. At the end of step 152, the CIP data is sent
to the routing manager 2b. The routing manager 2b at step 153 sends the data to the
channel manager 2a. At step 154, the channel manager 2a encapsulates the CIP data
with the IRP protocol used for the bus communications, and transmits the data over the
communication bus 28 to the external robot 26.

In step 161, the data arrives through the communication bus 28 to the
external robot 26, where it is handled by the external robot's channel manager 4a, step
162. The channel manager 4a removes the IRP encapsulation and sends the CIP data to
the routing manager 4b. The routing manager 4b at step 163 sends the data to the
external robot's protocol manager 4c. The protocol manager 4c translates the data from
CIP format into application format, step 164, possibly with some alterations to the data.
The data is then sent back to the routing manager 4b. In step 171, the Routing Manager
4b sends the application data to the CLS module 4d, which performs several
communication security duties, step 172, such as encryption and affixing authentication
information to the data, according to the security model employed (e.g. SSL). The CLS
module 4d then sends the secure data back to the routing manager 4b. The routing
manager 4b finally sends the data to the network proxy, step 173, where the application
or secure data is encapsulated with TCP/IP (or whichever protocol used for
communication with the client in the external zone 16), and sent to the external zone 16
using the NIC, step 174. The flow of information from the internal zone 12 to the
external zone 16 is thus completed, step 180.

Structure and Operation of the Protocol Managers

47

10

20

WO 00/16200 PCT/IL98/00443

The core of the robot operation is the protocol manager, denoted 2¢ and
4c in Figs. 11b and 1la, respectively. The protdcol managers provide translation
between the various application formats used by application protocols that are
authorized for use by and implemented through respective CIP protocols in the security
gateway 10 and the CIP formats used internally by security gateway 10. The protocol
managers 2c, 4c may also perform various other tasks, pertaining to the content of the
data, such as access-control.

As shown in Fig. 14, the protocol managers2b and 4b have respective
input queues 210, 410, and output queues 250, 450, several analogous processing
entities between them, and two common objects. The internal input queue 210 holds
data coming from a routing manager 2b, 4b that is in native application protocol format,
and the external input queue 410 holds data from the routing manager, which is in CIP
application format. The internal output queue 250 holds data going to a routing
manager 2b or 4b in CIP application format after having been translated from the native
application format into CIP, and the external output queue 450 holds data that was
translated from CIP and is going to a routing manager 2b, 4b in native application
format 50.

The processing objects between the input and output queues of the
respective protocol managers 2c, 4c are session managers 220, 420, which provide
workload balancing for their respective sets of session handlers 230, 430, each session
handler handling a single session object 240, 440 at a time. The session handler 230,

430 determines where incoming data belongs, which “session”, and if no such session is

48

10

20

WO 00/16200 PCT/IL98/00443

active the handler initiates one. The respective sets of session objects 240, 440
comprise generic session processors.

By combining the data currently being received by the protocol manager
2¢, 4c and session records obtained from the object repository 1300 of the protocol
manager 2¢, 4c each element in the respective sets of session objects 240, 440 processes
a respective session, that is, a respective communication stream received by the security
gateway as multiple, not necessarily contiguous packets. However, two sessions are
usually combined into a single entity, a “twin-session”, whenever there are two coupled
sessions pertaining to the same circuit of information flow, namely that one session
handles incoming data and the other handles outgoing data. The coupling is necessary
in order for both the sessions to be synchronized in the state of the server and the
context of the whole circuit. Similarly, a mechanism is provided for the internal robot
(more accurately, the session objects of the internal robot) to be able to synchronize the
session objects of the external robots, where the session objects of the internal robot
will act as master and those of the external robot as slave in order to maintain security.

Each session object 240, 440 may also write data back to the object
repository 1300. The session objects 240, 440 also consult a protocol entities table
(PET) 1310, as described further below, to determine the sequence order prescribed by
the applicable protocol for processing data received by the session object in a format
prescribed by that protocol. The session objects each write the output of their
respective translations and editing processes to a respective one of the output queues

250, 450.

49

WO 00/16200 PCT/IL98/00443

10

20

The protocol managers’ shared storage entities, the object repository
1300 and PET 310, hold information that is at least more global or less temporary in
nature than what is held in the queues 210, 250, 410, 450. The information in the object
repository 1300 is either global to the whole security gateway 10, or at least global
for-each user or for each session, or session-wide, that is, global to a whole session as
opposed to local information used in a single protocol layer or information used in a
single packet. For example, a user-name entry in the object repository 1300 is global to
all the communications transmitted between the user and the server. The PET 1310, on
the other hand, is global in that it is used to enforce the rules by which a particular
session object chooses which protocol entity to employ to reduce the data or reconstruct
it.

A block diagram of one of the session objects is shown in Fig. 15. A
session object 240, 440, employs various protocol entities 1710 for handling the
different protocols encountered within the data within a session. The session object
240, 440 consults the PET 1310 in order to determine which protocol entity 1710 to use
next. The protocol entities 1710 deposit information to and retrieve information from
the object repository 1300. That done, the session object 240, 440 then calls
packers/unpackers 720 corresponding to those same protocols reflected in the selection
of the protocol entities 1710, in order to streamline the required information deposited
in the object repository 1300 into a sequence of bytes to be output by the session object
240, 440.

The flow of data coming in to the security gateway 10 in application

format through the protocol manager 2¢ and 4c is shown in Fig. 16. The data arrives in

50

WO 00/16200 PCT/IL98/00443

w

15

20

its native application format at step 1500 and is read by the protocol manager 2¢ and 4c¢
from the queue 210 containing data coming from the routing managers 2b, 4b. This
application-format data is then transferred to the session manager 220 at step 1510. At
step 1520 the session manager 220 locates an available session handler 230, and sends
the data buffer to that session hander.
At step 1530, the session handler 230 scans the sessions currently active or “open”, to
determine which session the data belongs to before sending the data to the
corresponding session object 240 for processing. If the data does not belong to one of
the open sessions, the session handler 230 initiates a new session object 240 and sends
the data, all this comprising step 1530. The session object 240 begins by storing the
data buffer in the object repository (OR) 1300, step 1540. The session object 240 then
consults the PET 1310 to get the identity of the next protocol entity 1710 that should be
used to process the data, reducing it to clear data in CIP format at step 1550. If other
protocol entities are needed to process the data, then the data is handed on to the next
protocol entity 1710 for processing in step 1560, that protocol entity 1710 retrieves the
data from the buffer in the OR 1300 and deposits the processed result there in step 1570
when its process is complete.

When the data has been completely processed by the protocol entity
1710 currently processing it at step 1580, the session object repeats step 1550 to check
whether more protocol entities are needed for the data. Should the data provided in the
buffer stored in the OR 1300 end before the protocol is satisfied, the data is assumed to
be incomplete at step 1580. If the data is incomplete, the protocol entity 1710 and the

session object 240, 440 cannot complete their respective tasks, so another buffer is read

5t

10

15

20

WO 00/16200 PCT/I1.98/00443

from the input channel, repeating step 1510, and the session object waits until further
data for this session is sent to it by the session managér.

If no more protocol entities are needed at step 1560, the session object 240 uses the
packers 720 corresponding to the protocol entities used by the session object to pack the
data from the buffer in the OR 1300 into a serial stream of bytes, at step 1590. This
CIP-formatted stream of bytes is transferred to the output queue 250 going to the
routing manager. At this point, the processing cycle is complete, step 1600.

Referring to FIG. 17, the process of converting content data from CIP to
application format is described and starts at step 1700. The protocol manager 2¢ and 4¢
reads data from the input queue 1410 and sends the data to the session manager 420,
step 2710. Next, the session manager 420 sends the data buffer to one of the available
session handlers 430, step 720. The available session handler checks whether the data
belongs to an existing session or whether a new session needs to be created.

The session handler then sends the data to the appropriate session object
440, step 730. The session object 440 uses various unpackers 720 to unpack the CIP
information included in the data and stores the individual data items in the OR 1300,
step 740. The session object 440, at step 750, consults the PET 310 and information in
the OR 1300 for the identity of the next Protocol Entity that should process the data
which is now in the Object Repository 1300. If there is such a Protocol Entity 710, step
760, the control passes to it, and that Protocol Entity 1710 reconstruct its application
layer data from the data in the OR 1300, step 770. At step 780, the Protocol Entity 710

determines if the operation is completed, upon which case execution resumes at step

52

15

20

WO 00/16200 PCT/IL98/00443

750 by determining the next Protocol Entity. Otherwise, execution proceeds at the
beginning, where more data is awaited, step 2710.

When all Protoco! Entities are exhausted, step 760, the reconstructed
data (which is deposited in the Object Repository 1310) is sent to the “Queue To
Routing in Application” 450, and the process cycle is complete 790.

A sample PET 1310 is shown in Fig. 18. As seen in the drawing, the
PET 1310 indicates which Protocol Entities are selected at given points, such as the
start of the processing (when the TCP/IP Protocol entity is used), and thereafter. The
PET 1310 also indicates what rules and conditions are required to trigger use of the
given Protocol Entity. As explained above, the session handlers consult the PET 1310
to determine which Protocol Entities are to be employed at given stages in the
conversion process.

The CIP and IRP Protocols

In accordance with the present invention, the security gateway’s internal
CIP and IRP protocols replace a message’s native protocols in the link between the
robots. In this way, data transfer is implemented only for specified data content within
a given protocol. For instance, when a message using a particular application protocol
is decomposed by the external robot the external robot’s CIP translator for that protocol
may encode only the image information that provides the application’s GUIL. Similarly,
the internal robot’s translator may implement CIP encoding only for the user’s mouse
and keyboard input responding to those graphics. In this instance, command codes are

not passed.

The process that defines permissible sub-set of the syntax and the

53

10

15

20

WO 00/16200 PCT/IL98/00443

functional suite of a given protocol that is to be allowed to pass into the trusted
environment, as well as defining its representationb in CIP, is carried out in several
separate steps, occurring at different times in the robot processes. First, the user
identifies the set of protocols or protocol characteristics that will be allowed to pass into
the trusted environment. This can be conveniently done in a fourth generation language
(4GL) referred to as protocol-definition language (“PeDal”), which handles string

literals, and provides a binary virtual machine language (VML) to replacing “C” as the

target language.

Selected command codes may also be passed, by being either explicitly
or implicitly coded by the translator. For example, a bill-viewing application can be
secured in accordance with the present invention by generating a corresponding CIP
protocol, using normative rules used by the messages native protocol and selecting from
the native protocol only content that the network administrator of the secure
environment deems to be secure from attacks that could use the bill-viewing application

as vehicle for entering the trusted environment.

For the sake of simplicity, assume that only the following commands and flow
sequences are defined by the bill-viewing protocol:
1) The “LOGIN” command should be issued, with “username” (8 characters
exactly) and “password” (8 characters exactly) as its arguments; then
2) The user may choose to issue one of three commands: PRINT, VIEW or
LOGOUT to either produce a printout of a bill, to view a bill on the screen, or to
quit the application, respectively. However, when response to a PRINT or

VIEW command has been completed, the system is ready to receive a new

54

WO 00/16200 PCT/IL98/00443

command. In contrast, after receiving the LOGOUT command, the system

resets to its initial state, and so, responds only to a LOGIN command thereafter. -
The corresponding CIP protocol format for command sequences compliant with the
bill-viewer’s native application protocol is as follows:

5 1) The unknown structured string of 16 bytes representing a
username+password (first 8 bytes represent the 8 characters of the
username, in ASCII code, and the last 8 bytes represent the password in
ASCII code) pair come first in this format.

2) One of the known limited set of strings:, three commands: 0 and 3 for

10 PRINT, 1 for VIEW and 2 for LOGOUT, is identified in the next two
bits,

3) The commands PRINT (=0 or =3) and VIEW (=1) can be followed by
any other command identifier., whereas

4) The command LOGOUT ends any sequence.
15 After an initial valid string of sixteen characters is received the interpreter responds in
one of two ways: Any time a CIP interpreter receives a LOGOUT command, coded as
“2”, the interpreter resets to its initial state and awaits the next 16-byte sequence. If
PRINT (=0 or =3) or VIEW (=1) appear instead, the interpreter will then respond to any
of the three commands’ codes. Since every sequence of bits must have a valid
20 interpretation, having three commands represented by two bits makes one of the bit
combinations superfluous. As still an interpretation is needed for the redundant
combination, an arbitrary command is chosen to be represented also by this

combination, in this example, the PRINT command.

55

15

20

WO 00/16200 PCT/IL98/00443

Note that the LOGIN command is, in effect, a “constant” string. Therefore it is

not explicitly coded by the CIP protocol. LOGiN can be implicitly passed and‘
reinserted by the complementary interpreter in the other robot, because at the time when
the sixteen character string is received, no command other than LOGIN can be
processed by the interpreter, nor is LOGIN processed under any other circumstances.
Therefore there is no point in explicitly providing a command-identifier value for
LOGIN or other such “constant strings”.
Numbers are accompanied by a logically associated “sanity range” for consistency
checking, except for dates. Only a single date format is allowed from any one given
CIP translator or interpreter. Similarly, unknown, unstructured strings are provided a
“sanity check” value stating an expected length limit for the string. The elements of the
string are preferably mapped to a sequential range of characters.

Thus this CIP coding process simultaneously clears application-level
messages of suspect classes of data and verifies the integrity of the internal robot,
because corruption of the translator operation will produce a sequence of (although
meaningless) valid commands, which do not harm the internal zone.

The IRP is a simplified transfer protocol adapted for use in a
point-to-point communication link such as between the internal and external robots.
Since the communication is point-to-point, no routing information is needed in the
transfer protocol. In one embodiment, the IRP consists of a header to the CIP data
having twelve bytes, of which four are used as follows, with the remaining bytes being
made available for reserved uses:

o the first byte is NULL;

56

10

15

20

WO 00/16200 PCT/IL98/00443

e the second byte contains a packet ID, i.e., a number from 0 to 127, for which a static
variable 1s used to track and increment assigned packét IDs; and
e the third and fourth bytes contain the length of the data in the CIP message.

Formal Verification

For a security software product to fulfill its role, it should be totally
reliable, i.e., the product must be proven to show it complies with its specification. The
unique combination of ART algorithm/technology, and the specific architectures
described, i.e. strongly decoupling the two robots, with a single link between them,
enables one to prove the whole security gateway by verifying the correctness of the
internal robot only. This is so because according to the use of reduction methodology
as described herein, anything sent on the communication bus has a valid interpretation
by the internal robot, assuming it is verified, although that interpretation may be to
meaningless data, as explained above. Furthermore, the separation of the security tasks
into internal robot and external robot, keeping the internal robot as simple as possible
by having all the “heavy” work, e.g. parsing protocols, carried out in the external robot,
and furthermore using a simple point-to-point inter-robot protocol such as IRP to
simplify the bus driver, makes verifying the internal robot a practical goal.

In order to formally verify the internal robot, it may be useful to take the
top-down approach, assuming first that the robot modules (PM, RM, CM, App-Proxy,
Web-Proxy) are verified, proving that their combination yields the desired properties
(proper interpretation of the input to CM, i.e. the output from the Web-proxy and the
application proxy should comply with the specifications provided by the owners of the

internal applications.

57

10

15

20

WO 00/16200 PCT/IL98/00443

The properties of each module can be expressed in terms of the output it
produces, e.g., in the various output channels available to it - whether as memory area
in a shared memory, or as I/O ports connected to peripheral equipment/devices,
assuming the input it receives is in a preset format. This enables the verification of the
overall property by means of an individual module verification in terms of 1/O
channels. Abstracting unnecessary information, such a system can be described by a
specification language such as CSP or its derivatives, and be proven by such tools as
SPIN and FDR2.

Therefore, verifying the internal robot amounts to verifying each module
against its output channel properties, assuming the correctness of its input channels.

Then, one may proceed to proving each individual module, again by
decomposing it to its sub-modules. The process of decomposition repeats itself down
to the level of “atomic” code pieces, e.g. functions and procedures, where the
decomposition can no longer be applied. However, these code pieces are usually small,
therefore are verifiable by “direct” methods. These methods may include manual
arguments, as well as mechanized methods such as theorem provers (NQTHM, ACL2,
PVS) and model checkers (SPIN, STeP, etc.).

The invention has been described with particular reference to presently
preferred embodiments thereof, but it will be apparent to one skilled in the art that

variations and modification are possible within the spirit and scope of the invention.

58

10

15

20

WO 00/16200 PCT/IL98/00443

WHAT IS CLAIMED IS:

1. A method for protecting an opefating environment on a processor.
from a first program operating on the processor, the method comprising:

allocating memory space for use only by the first program while the first
program is executing;

allowing communication between the first program and the operating
environment through only a single link employing a single method selected from the
group consisting of a shared memory space, a dedicated interrupt, and a dedicated I/O
port; and

managing a restricted operating environment for the first program on the
processor, the restricted operating environment preventing the first program from
accessing resources on the processor except for the allocated memory space and the
single communication link.

2. The method of claim 1, comprising executing the first program within
the restricted operating environment.

3. The method of claim 2, comprising terminating execution of the first
program upon an attempt by the first program to access a resource on the processor
which is restricted by the restricted operating environment.

4. The method of claim 2, comprising ignoring any request by the first
program to access a resource on the processor which is restricted by the restricted
operating environment and attempting to continue execution of the first program

without granting access to the restricted resource.

59

10

15

20

WO 00/16200 PCT/IL98/00443

5. The method of claim 2, comprising allowing the operating
environment to access the allocated memory space 6nly prior to execution of the ﬁrsti
program and after termination of first program execution.

6. The method of claim 5, comprising the operating environment writing
data to the allocated memory space for use by the first program prior to execution of the
first program, and the operating environment reading data generated by the first
program from the allocated memory space after termination of first program execution.

7. The method of claim 1, wherein the step of allowing communication
between the first program and the operating environment comprises allowing
communication through only the shared memory space.

8. The method of claim 7, comprising the first program and operating
environment each writing data to the shared memory space and indicating the
availability of the data written to the shared memory space by setting a bit in a
predefined location in the shared memory space.

9. The method of claim 8, comprising the operating environment and
first program reading the data written to the shared memory space when the bit is set.

10. The method of claim 1, wherein the step of allowing communication
between the first program and the operating environment comprises allowing

communication through only the dedicated interrupt.

11. The method of claim 10, comprising handling the dedicated
interrupt by moving data written by the first program to the allocated memory space to
memory space of the operating environment or by moving data from memory space of

the operating environment to the allocated memory space.

60

WO 00/16200 PCT/IL98/00443

12. The method of claim 1, wherein the step of allowing communication
between the first program and the operating environment comprises allowing

communication through only the dedicated 1/O port.
13. The method of claim 1, comprising, upon the occurrence of a B
5 hardware interrupt in the processor while the first program is executing, handling the
hardware interrupt through an interrupt routine in the operating environment.
14. The method of claim 1, wherein the first program is an operating
system.
15. A method for protecting an operating environment on a processor
10 from a first program operating on the processor, the method comprising:
allocating memory space for use only by the first program while the first
program is executing;
allowing the operating environment to access the allocated memory
space only prior to execution of the first program and after termination of first program
15 execution;
executing the first program; and
managing a restricted operating environment for the first program on the
processor, the restricted operating environment preventing the first program from
accessing resources on the processor except for the allocated memory space.
20 16. The method of claim 15, comprising the operating environment
writing data to the allocated memory space for use by the first program prior to

execution of the first program, and the operating environment reading data generated by

61

WO 00/16200 PCT/1L.98/00443

15

20

the first program from the allocated memory space after termination of first program
execution.

17. A system for protecting an operating environment on a processor .
coupled to a memory device from a first program operating on the processor, the system
comprising:

an allocated memory space in the memory device for use only by the
first program while the first program is executing;

a communication link between the first program and the operating
environment employing a single method selected from the group consisting of a shared
memory space, a dedicated interrupt, and a dedicated I/O port; and

a mediator program for managing a restricted operating environment for
the first program on the processor, the restricted operating environment preventing the
first program from accessing resources on the processor except for the allocated
memory space and the single communication link.

18. A method for operating a plurality of operating systems on a single
processor, the method comprising:

allocating sets of resources on the processor, each set being available for
use by only one of the plurality of operating systems;

allowing each of the operating systems to operate on the processor and
access the set of resources available to the respective operating system;

upon an attempt by a first of the operating systems to access one or more
resources outside the set of resources available to the first operating system,

determining which set of resources contains the one or more resources attempted to be

62

10

15

20

WO 00/16200 PCT/IL98/00443

accessed and determining a which second operating system of the other operating
systems has such set available to it; and

handling such attempted access of one or more resources through the .
second operating system.

19.The method of claim 18, wherein the one or more resource attempted
to be accessed by the first operating system is a hardware interrupt issued by the first
operating system.

20.The method of claim 18, comprising handing a H/W interrupt
invoked by a peripheral wherein the monitor determines which operating system
services the interrupt

21.A system monitor for operating a plurality of operating systems on a
single processor comprising:

means for allocating sets of resources on the processor, each set being
available for use by only one of the plurality of operating systems;

means allowing each of the operating systems to operate on the
processor and allowing access to the set of resources available to the respective
operating system;

means for determining, upon an attempt by a first of the operating
systems to access one or more resources outside the set of resources available to the
first operating system, which set of resources contains the one or more resources
attempted to be accessed and for determining which second operating system of the

other operating systems has such set available to it; and

63

WO 00/16200 PCT/IL98/00443

means for handling such attempted access of one or more resources

through the second operating system.

64

WO 00/16200

1/22

100
0/S KERNEL

102

EXECUTING
PROGRAMS

FIG. 1

(PRIOR ART)

SUBSTITUTE SHEET (RULE 26)

PCT/11.98/00443

WO 00/16200 PCT/IL98/00443

2/22

PROGRAM CELL 0/s \ 300
306

20
.CLOCK
SHARED
SERVICES MEMORYf -
ICP e MASTER 308 310

STACK
.\
204 200

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 00/16200 PCT/IL98/00443

3/22
400
)
410
~ MASTER INITIALIZE \ 10
v,
HARDWARE INTERRUPT
INITIALIZE EACH CELL
\ 4
A PROGRAM EXECUTING
s1yf| CLOCKINTERRUPT N ACELL
404
INTERRUPT EXECUTING
106 PROGRAM
PROGRAM EXITS SECURITY VIOLATION
414/ ' \. 408

SUBSTITUTE SHEET (RULE 26)

WO 00/16200 PCT/IL98/00443

4/22

soo

2
INITIALIZATION BY MASTER]f5 ’
¥
ALLOCATE MEMORY FOR MASTER AND CELLS |-504
AND CREATE AND INSTALL A VM86 TASK

"
oAD PROGRAM maGE V"8
Y 508
DEFINE SHARED MEMORY
v

REPLACE PROGRAM'S INTERRUPTS (IDT), 10 PORTS (10...) WITH MASTER sTugs !0

CONTROL AT \, 518

THE PROGRAM MASTER
INTERRUPT 516 RECEIVES |
ROUTINE 2 \ATIME-SLICE FRoM/
(MASTER) PROGRAN WINDOWS/NT
INTERRUPT 699~ //CONTROL IS AT THE
(REQUEST SHARED- MASTER'S INTERRUPT
_ MEMORY | RUNNING THE PROGRAM: | 515 STUB (PROTECTED
170" SERVICES) | MASTER MOVES CONTROL HODE)

T0 THE PROGRAM TASK 52\6

H/W INTERRUPT |
SERVICE THE INTERRUPT
529

MASTER COPIES BUFFERS FROM
SHARED MEMORY (IF NECESSARY);
RELAY THE REQUEST THROUGH

PROGRAM

WINDOWS/NTTOTHE | 520 RUNNING THROUGH WINDOWS/NT
APPLICATION, POSSIBLY AWAIT (V486 MODE) 534 INTERRUPT ROUTINE
INTERRUPT WHICH MARKS
APPLICATION IS FINISHED RETURN FROM 530

INTERRUPT STUB

MASTER COPIES THE

1 RESULT BUFFERS (IF CONTROLIS BAC AT
EXIST) TO THE SHARED 536
CONTROL IS BACK MEMORY AREA P INTERRUPT STUB
AT THE PROGRAM J CLOCK INTERRUPT |
INTERRUPT ROUTINE SECURITY VIOLATION
(MASTER) BY PROGRAM,
CAUSING A GPF OR PF
P 542
546 .
CONTROL AT THE | PROGRAM HALTS |
GPFORPF |/548 , M 540
HANDLERS rSMASTER CLEANUP BY I
HOUTINES MASTER, CONTROL INTEkglCIIIST 5
20 HALTING MASTER IS AT THE MASTER'S SERVICED BY
SHUTTING DOWN THE CLOCK INTERRUPT =1 wiNpows/nT [~
PROGRAM RounNE1 3%REOTECTED INTERRUPT
REPORTING BACK TO) ROUTINE
FIG. 5 APPLICATION

SUBSTITUTE SHEET (RULE 26)

WO 00/16200

5/22

602

600
MONITOR

APPLICATION PROGRAMS

FIG. 6

SUBSTITUTE SHEET (RULE 26)

PCT/IL98/00443

WO 00/16200

104
>

6/22

100
p,

CAGE INIT.

HARDWARE INTERRUPT

102

A 4

05s RUNNING

CLOCK INTERRUPT

A 4

—
110

ALL 0Ss SHUTDOWN

P
114

FIG. 7

SUBSTITUTE SHEET (RULE 26)

PCT/IL98/00443

112
)

0S SHUTDOWN

ATTEMPT TO MODIFY OR
QUERY VIRTUAL
ENVIRONMENT

ACCESSING SHARING
CHANNEL

=
108

WO 00/16200 PCT/IL98/00443

7122

@ 800

802
INITIALIZATION (BY MONITOR), FOR EACH /S
Y 804
READ CONFIGURATION FOR 0/S (BOOT PARAMETERS, ETC)
I
ALLOCATE MEMORY FOR 075 308
v
CREATE AND INSTALL AN 0/S PRIVILEGED TASK (PROTECTED MODE, RING | 08 2) |808
y 810
LOAD 0/S IMAGE V'
y 812
DEFINE SHARED MEMORY 1~
7
REPLACE 0/5'S INTERRUPTS (IDT), 10 PORTS(0..., HANDLERS (PF, GPF) WITH MONITOR ROUTINES | Bl4
v
/816

PROTECT ITSELF AND CRITICAL TABLES (GDT, IDT, PAGE DIR/TABLE) USING PAGING

(SEE 88)

FIG. 8A

SUBSTITUTE SHEET (RULE 26)

PCT/IL98/00443

WO 00/16200
8/22
(SEE 8A)
CONTROL AT THE \ -850 820
DATA-SHARE SPECIFICO/S \4
INTERRUPT ROUTINE 818 GETS ATIME SLICE ¢
() DATASHARE FROM MONITOR
(RE(;{‘,E’T‘%mED_ 828~/ CONTROL I5 AT THE
MEMORY TR AL MONITOR INTERRUPT
"|/0"SERVICES) | MONITOR MOVES CONTROL STUB
T0 THE SPECIFIC /S| 826
MONITOR COPIES BUFFERS FROM H/W INTERRUPT
SHARED MEMORY (IF NECESSARY) y
INTO THE RECEIVING 0/5 SHARED 830~| SERVICE THE INTERRUPT
MEMORY. 85 SPECIFIC 0/ N THROUGH THE /S THAT IS
POSSIBLY AWAIT A DATA-SHARE RUNNING 834 | ASSIGNED THIS H/W INTERRUPT
FINISH INTERRUPT WHICH MARKS RETGRN oo
THAT 0/5 IS FINISHED WRITING INTERRUPT STUB
DATA, BEFORE RETURNING TO
THE ORIGINATING 0/ CONTEXT cor%rROL ISN fTACK AT
—_—= ‘ HE MONITOR
MONITOR COPIES THE 36
B54 RESULT BUFFERS (I > INTERRUPT STUB
EXIST) TO THE SHARED CLOCK INTERRUPT
CONTROL IS MEMORY AREA

BACK AT THE DATA-
SHARE INTERRUPT
ROUTINE

ATTEMPT TO QUERY
VIRTUAL ENV. OR TO

(MONITOR) MODIFYE(GPF) 5L
842 / HLT
CONTROL AT THE\ | GPF HANDLER e
GPF HANDLER | |EMULATES THE MONITOR'S
847\ " (MONITOR) REQUIRED gy [CONTROLIDAT SCHEDULER
BEHAVIOR THE MONITOR L3 ne10ES T0 WHICH >
846 ROUTINE
L TIME-SLICE
NO MORE 0/5s ARE
876 |SERVICED BY MONITOR s
MONITOR CEASES
SH%%M%R SERVICING THIS
CONFIGHRATION SPECIFIC 0/5 (POSSIBLY
MODE RESTARTING IT)
¥

SUBSTITUTE SHEET (RULE 26)

WO 00/16200 PCT/1L98/00443
9/22
NON-SHARED RESOURCES 9 NON-SHARED RESOURCES

"WENORY ADDRES PAC " "\ VekoRt Abokes sac

- MEMORY ADDRESS SPACE - MEMORY ADDRESS SP

- NETWORK ADAPTER VHM PROGRAH - NETWORK ADAPTER
-VARIOUS PERIPHERALS A -VARIOUS PERIPHERALS
 DISPLAY ADDRESS SPACE - DISPLAY ADDRESS SPACE

J HARDWARE EVENTS (INTERRUPTS)

' INTERNALROOT EUERNALROBOT)
PRIVATE = — — —— — I ity | PRIATE
ENVIRONMENT | [===—==x] 1 0 | [r====r=], ENVIRONMENT
2 | === [CONMUNICATION | =777 ! | 1
) | I , (| BUS_ | l lll g
L 2T L 4
INTERFACE | | INTERFACE
TOINERNAL —————— | —————-— T0 EXTERNAL
APPLICATIONS APPLICATIONS
SHARED RESOURCE

DISK SPACE
- HEMORY ADDRESS SPACE
AS A "COMMUNICATION BUS"

FIG. 9

SUBSTITUTE SHEET (RULE 26)

PCT/IL98/00443

WO 00/16200

10/22

91

[44

VOl

RIE

NS

9t
10904
TYNY¥3IXY

o

7
10904
TYNY3INI

—\

SUBSTITUTE SHEET (RULE 26)

PCT/IL98/00443

11/22

WO 00/16200

- T T T T 7=]
_ i
I =
a0l ‘9|4 | — g
|
|
_
|
_ il
_
o @ |
: 10904 10904 -
1t VNN —{ TngaIN 0t
4 3 200 | Prl
97
\
f]
_
|
_NN___ eyl
|

SUBSTITUTE SHEET (RULE 26)

WO 00/16200 PCT/IL98/00443

12/22

4c
S

PROTOCOL
MANAGER

A

APPLICATION
/CIP

CPOVER da 4b de APPLICATION
il{rggg{% RP 2 2 OVERTCP EXTERNAL
— NETWoRk " IONE I6

THROUGH CHANNEL ROUTING >
COMMUNICATION MANAGER (P | ManaGe |APPLICATION] “ppoxy ‘\T*f;ﬁ?%”

BUS28 4 | -

A

APPLICATION

4d
2

(LS
MODULE

FIG. 11A

SUBSTITUTE SHEET (RULE 26)

WO 00/16200

le
S
APP

PROXY

APPLICATION
INTERNAL OVER TCP

IONE 14

APPLICATION
WwEp (HTTP)OVERTCP

SERVER 12 «—— WEB

13/22

2c
>,

PROTOCOL
MANAGER

APPLICATION

APPLICATION
/CIP

b
L

la
-

CIP OVER

PCT/IL98/00443

EXTERNAL

APPLICATION

THROUGH ———>{ PROXY

BUS 20b

ROUTING
MANAGER

(P

CHANNEL

»| MANAGER

ROBOT 26
“ THROUGH
COMMUNICATION
BUS 28

FIG. 11B

SUBSTITUTE SHEET (RULE 26)

WO 00/16200 PCT/IL98/00443

14/22

(START Y "

y

A
RECEIVE PACKET
FROM THE EXTERNAL Va 50
IONE 16 AND DECRYPT IF
NECESSARY

y

RECOMPOSE THE CIP DATA | ~ 70
INTO APPLICATION FORMAT

h 4

REDUCE THE DATATO A CIP Ve 60
FORMAT, AND SEND ITTO
THE INTERNAL ROBOT 24

80

WEBSERVER
SESSION?

YES NO

90

p | |/| 00
SEND THE DATA TO THE

wEssERER 2 a0 || | et
RECEIVE ITS APPLICATION ()

DATA SYSTEM 14b
\ 4
END
/D
EXTERNAL INTERNAL
ROBOT ROBOT

SUBSTITUTE SHEET (RULE 26)

WO 00/16200

r

— — — — — — —— o—

A
ATCP/IP PACKET ARRIVES AT

THE EXTERNAL ROBOT'S
NETWORK PROXY

v

THE PACKET IS SENT FROM

THE NETWORK PROXY TO

THE EXTERNAL ROUTING
MANAGER

v

PACKET TO THE CLS MODULE

THE EXTERNAL ROUTING |5
MANAGER SENDS THE

y

THE CLS MODULE DECRYPTS

THE PACKET IF NECESSARY

AND SENDS IT BACKTO THE
ROUTING MANAGER

THE EXTERNAL ROUTING
MANAGER SENDS THE
PACKET TO THE EXTERNAL
PROTOCOL MANAGER

v

THE EXTERNAL PROTOCOL
MANAGER REDUCES THE
DATA IN THE PACKET TO CIP
DATA, AND SENDS IT BACK
T0 THE ROUTING MANAGER

v

THE EXTERNAL ROUTING

MANAGER SENDS THE CIP

DATATO THE EXTERNAL
CHANNEL MANAGER

v

THE EXTERNAL CHANNEL
MANAGER SENDS THE
PACKET OVER THE BUS IN
IRP FORMAT

r-— - —_— T T T e e = = =)

15/22

EXTERNAL
ROBOT

PCT/1L98/00443

l
I
I
el
I
I
I
I

A CIP DATA ENCAPSULATED
[N IRP ARRIVES AT THE
INTERNAL ROBOT'S
CHANNEL MANAGER

THE INTERNAL CHANNEL
MANAGER REMOVES THE IRP
AND SENDS THE DATA TO
THE INTERNAL ROUTING

I

I

I
L 2

|

I

v

I
MANAGER :
|
I

THE ROUTING MANAGER (73
SENDS THE DATA TO THE
PROTOCOL MANAGER

THE INTERNAL PROTOCOL
MANAGER COMPOSES THE
CIP DATA BACK INTO
APPLICATION FORMAT, AND
SENDS THE DATA BACK TO

I
v I
I
I

[e e e e s e - e —— — — — — — —

ROUTING MANAGER SENDS
THE DATA TO THE WEB
PROXY

v

THE WEB PROXY
ENCAPSULATES THE
APPLICATION DATA WITH
TCP, AND SENDS ITVIA A
NETWORK INTERFACE TO
THE WEBSERVER

v

THE WEBSERVER PROCESSES
THE DATA AND SENDS BACK
AN APPLICATION PACKET

v

THE WEB PROXY RECEIVES
AN APPLICATION PACKET
FROM THE WEB SERVER,
REMOVES THE TCP, AND

SENDS IT TO THE ROUTING

MANAGER

I

I

THE ROUTING MANAGER I
-

WEBSERVER
SESSION?

SUBSTITUTE SHEET (RULE 26)

ROUTING MANAGER SENDS
THE DATATO THE
APPLICATION PROXY

y

THE APPLICATION PROXY
ENCAPSULATES THE DATA IN
TCP, AND SENDS IT TO THE

INTERNAL SYSTEM VIA A
NETWORK INTERFACE.

_.

%

1104
INTERNAL
ROBOT
FIG. 12B

[—3

D
o

WO 00/16200

16/22

110
(swT Y

A

RECEIVE AN APPLICATION fl20
DATA PACKET FROM THE
INTERNAL SYSTEM

WEBSERVER
SESSION?

PCT/IL98/00443

160
_J

TRANSFORM THE TRIVIAL
CIP INTO APPLICATION
FORMAT

170
v

ENCRYPT THE DATA IF
NECESSARY AND SEND
THEM TO THE EXTERNAL
DOMAIN

YES
140 150
, >,
SEND THE DATA TO THE CHECK THE DATA AND

WEBSERVER, AND TRANSFORM IT INTO
RECEIVE ITS DATA TRIVIAL CIP FORMAT

INTERNAL

ROBOT

SUBSTITUTE SHEET (RULE 26)

o o —— e —— mn o Gt — — E—— G— — — — tu— —— . —

Y.

END
180

EXTERNAL
ROBOT

WO 00/16200

7722

START o

APPLICATION DATA
ARRIVE AT THE INTERNAL
APPLICATION PROXY IN

TCP FORMAT

Yall

v
APPLICATION PROXY
REMOVES THE TCP AND
SENDS THE DATA TO THE
ROUTING MANAGER

122

YES

130
WEBSERVER
SESSION? NO

INTERNAL ROUTING
MANAGER SENDS THE DATA
T0 THE WEB PROXY

v

WEB PROXY ENCAPSULATES
THE DATA WITH TCP, AND
SENDS IT VIA A NETWORK

INTERFACE TO THE WEB
SERVER

v

THE WEBSERVER
PROCESSES THE DATA AND
SENDS BACK AN HTTP
FORMAT RESPONSE TO THE
WEB PROXY

143

y

WEB PROXY REMOVES THE
TCP AND SENDS THE DATA
TO THE ROUTING MANAGER

144

L

INTERNAL
ROBOT

THE INTERNAL ROUTING
MANAGER SENDS THE DATA
T0 THE PROTOCOL
MANAGER

THE INTERNAL PROTOCOL
MANAGER CHECKS THE
DATA AND TRANSFORMS IT
INTO A TRIVIAL CIP
FORMAT, THEN SENDS IT TO
THE ROUTING MANAGER

THE INTERNAL ROUTING
MANAGER SENDS THE DATA
TO THE INTERNAL CHANNEL

MANAGER

THE INTERNAL CHANNEL
MANAGER ENCAPSULATES
THE TRIVIAL CIP DATA WITH
IRP, AND SENDS IT ONTO
THE BUS

PCT/IL98/00443

BHE

152 .

153

154

FIG. 13B

SUBSTITUTE SHEET (RULE 26)

y

161,

AN IRP ENCAPSULATED
TRIVIAL-CIP DATA ARRIVES
AT THE EXTERNAL CHANNEL
MANAGER

2

| 62\

THE EXTERNAL CHANNEL

MANAGER REMOVES THE

IRP AND SENDS THE DATA
10 THE EXTERNAL
ROUTING MANAGER

Y

1634

THE EXTERNAL ROUTING
MANAGER SENDS THE DATA
TO THE EXTERNAL
PROTOCOL MANAGER

v

164~

THE EXTERNAL PROTOCOL
MANAGER TRANSFORMS THE
TRIVIAL-CIP FORMAT BACK
INTO THE APPLICATION
FORMAT, AND SENDS THE
DATA TO THE ROUTING
MANAGER

v

1714

THE ROUTING MANAGER
SENDS THE DATA TO THE
(LS MODULE

y

1124

THE CLS MODULE ENCRYPTS
THE DATA IF NECESSARY
AND SENDS THEM TO THE
ROUTING MANAGER

v

LN

THE EXTERNAL ROUTING
MANAGER SENDS THE DATA
T0 THE NETWORK PROXY

v

174~

THE NETWORK PROXY
ENCAPSULATES THE DATA
WITH TCP, AND SENDS IT

VIATHE NETWORK
INTERFACE TO THE
EXTERNAL DOMAIN

|so

EXTERNAL
ROBOT

PCT/IL.98/00443

WO 00/16200

18/22

vl "9ld

(NOLIYDI1ddY NI ONILNOY 01 3n3ND) C dDNIONINO¥OLININD)
\

\

4011504 7Y
Difgo

Y31ANYH

YI1ANYH
NOISS3S

NOISS3§

YI10ANVH
NOI5S3S

1117 0€t

¥ITANVH
NOISS3S
(13d) 318v1L

ALIIN3 7001044
j
01¢€l 0Tt

LERLLLIY

YIOVNVH
NOISS3§

NOISS3S

0ty

o151 SO NLONILNOY WY 3030) 017 CNOILYDITddV NI ONILNOY HOY 303D)

SUBSTITUTE SHEET (RULE 26)

PCT/1L.98/00443

WO 00/16200

19/22

0tL

¥3NVdNN
NIV

Gt "Old

LELMERIL
NINIvd

JYULE
10201044

ALIIN3
10J0104d

ALING
100010¥44 0111

1401150434 1)3[90

00¢1

0bb/ 0T

SUBSTITUTE SHEET (RULE 26)

WO 00/16200 PCT/11.98/00443

20/22

1500
(START Y

>

\ 4
PM MODULE READS A BUFFER FROM ITS INPUT CHANNEL AND| 1510
SENDS IT TO THE SESSION MANAGER

y
SESSION MANAGER SENDS THE BUFFER TO AN AVAILABLE 1520
SESSION HANDLER

y
SESSION HANDLER OPENS A NEW SESSION OBJECTIF | /1530
NECESSARY, AND SENDS THE BUFFER TO ITS SESSION

NO-AWAIT FOR v 1540
MORE DATA THE SESSION STORES THE BUFFERINTHEOR |

y
THE SESSION CONSULTS THE PET FOR THE IDENTITY OF THE | 1550
NEXT PE WHICH SHOULD BE CALLED

1560

i MORE PES o,
- 1570
P
THE PE PARSES THE BUFFER (AT THE OR), AND UPDATES THE

OR

1580

DATA IS
COMPLETE?

y
TARIOUS PACKERS PACK THE OR DKTAINTO P |/
y
G
FIG. 16

SUBSTITUTE SHEET (RULE 26)

WO 00/16200

NO-AWAIT FOR

MORE

21/22

1700
(STRT)

DATA

»

A 4

PCT/IL98/00443

PM MODULE READS A BUFFER FROM ITS INPUT
CHANNEL AND SENDS IT TO THE SESSION MANAGER

y
SESSION MANAGER SENDS THE BUFFER TO AN
AVAILABLE SESSION HANDLER

A
SESSION HANDLER OPENS A NEW SESSION OBJECT IF
NECESSARY, AND SENDS THE BUFFER TO ITS SESSION

!

VARIOUS UNPACKERS UNPACK THE CIP BUFFER INTO
OR DATA

A
THE SESSION CONSULTS THE PET FOR THE IDENTITY
OF THE NEXT PE WHICH SHOULD BE CALLED

160

NO

MORE PE'S?
170
Y

A 4

THE PE COMPOSES THE BUFFER (AT THE OR) FROM
DATA IN THE OR

180

DATA I§

COMPLETE?

190

FIG. 17

SUBSTITUTE SHEET (RULE 26)

PCT/IL98/00443

WO 00/16200

22/22

81 Ol

Jsond g
§= ww..t_w:;&_.ﬁ.

=J3awered-|) INTHAVY 19)
..&m-;@_?__s..
=Iajawesed-|n) MIIA-TIIE 19)
W98/, =H1Yd8®
o150d,,=puewwo 1) dLH
08=104 dLIH di/diL
~INYL, di/d)l (uexs)
NOILIONOD 7Y 1401 1d HOY
01¢1

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT International application No.
PCT/IL98/00443

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOGF 12/14, 13/00, 15/00
US CL : 713/200, 201
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.s. : 713/200, 201, 202
395/200.43, 200.46, 200.54, 200.55, 200.56

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Blectronic data base consulted during the international scarch (name of data base and, where practicable, search terms used)
APS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5,566,326 A [HIRSCH et al] 15 October 1996, abstract, figs. | 1-21
la, 1b; col. line 40 through col. 5. line 26.
A US 4,876,664 A [BITTORF et al] 24 October 1989, see entire| 1-21
document.
A US 4,937,777 A [FLOOD et al] 26 June 1990, see entire document. | 1-21
A US 5,619,657 A [SUDAMA et al] 08 April 1997, see entire{ 1-21
document.
A US 5,689,708 A [REGNIER et al] 18 November 1997, see entire| 1-21
document.

D Further documents are listed in the continuation of Box C. D See patent family annex.

. Sp i gories of cited d ts: T later document published after the international filing date or priority
date and not 1n conflict with the application but cited to understand

"A* docum ent defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particuiar relevance
‘B’ carlier document published on or after the international filing date X document of particular relevmce;Athe d'i“!ed invenu'_on cannot be
considered novel or cannot be considered to invoive an inventive step
"L document which may throw doubts on priority claim(s) or which is when the document is taken sione
cited to estsblish the publication date of another citation or other .
special reason (as specified) 'Y* document of particular relevance; the cisimed invention cannot be
considered to involve an inventive step when the document is
0 document refernng to an orsl disclosure, use, oxhibition or other combined with one or more other such documents, such combination
means botng obvious o & person skilled in the art
°pr document published prior 10 the internauonal filing date but later than + 4+ document member of the same patent family
the prionty date claimed
Date of the actual completion of the international search Date of mailiniof the international search report
13 MARCH 1999 MAY 1999
Name and mailing address of the ISA/US Authorized officer P .
Commissioner of Patents and Trademarks Lr viie p . /;
Box FCT DIEU-MINH THAI LE /%477 A ek
Washing'on, D.C. 20231 v
Facsimile No. (703) 305-3230 Telephone No. (703) 305-9408

Form PCT/ISA/210 (second sheet)(July 1992)»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

