wo 2012/158341 A1 || IO OO0 O A AR

(43) International Publication Date
22 November 2012 (22.11.2012)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(10) International Publication Number

WO 2012/158341 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
(73)

International Patent Classification:
G11C 16/34 (2006.01) GO6F 12/14 (2006.01)

International Application Number:
PCT/US2012/036015

International Filing Date:
1 May 2012 (01.05.2012)

Filing Language: English
Publication Language: English
Priority Data:

13/109,972 17 May 2011 (17.05.2011) US
Applicant (for all designated States except US):

SANDISK TECHNOLOGIES INC. [US/US]; Two Leg-
acy Town Center, 6900 North Dallags Parkway, Plano,
Texas 75024 (US).

Inventors; and

Inventors/Applicants (for US ornly): HSU, Jonathan
[US/US]; 36667 Bishop Street, Newark, California 94560
(US). AVILA, Chris Nga Yee [US/US]; 19839 Charters
Avenue, Saratoga, California 95070 (US). MAK, Alexan-

(74

(8D

der Kwok-Tung [US/US]; 26100 Moody Road, Los Altos,
California 94022 (US). GOROBETS, Sergey
Anatolievich [RU/GB]; 1F1, 92 Blackford Avenue, Edin-
burgh Midlothian EH9 3ES (GB). KUO, Tien-chien
[CN/US]; 315 Dunsmuir Terrace, Apt. 2, Sunnyvale, Cali-
fornia 94085 (US). KOH, Yee Lih [MY/US]; 1926 Crater
Lake Avenue, Milpitas, California 95035 (US). WAN, Jun
[CN/US]; 6113 Brigantine Drive, San Jose, California
95219 (US).

Agents: YAU, Philip et al.; Davis Wright Tremaine LLP,
505 Montgomery Street, Suite 800, San Francisco, Califor-
nia 94111 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,

[Continued on next page]

(54) Title: NON-VOLATILE MEMORY AND METHOD WITH IMPROVED DATA SCRAMBLING

T T e 7]
Ky Koo e I K
DATA SCRAMBLER 400
Logical
LogicalAddr 5]
Key Selector
410
LocPhysicalAddr
————
T
| Selected Key KV,
X.
Daia | Data Scrambler/ | Scrambled Data
Unscrambler
420

(57) Abstract: A memory device cooperating with a memory con-
troller scrambles each unit of data using a selected scrambling key
before storing it in an array of nonvolatile memory cells. This helps
to reduce program disturbs, user read disturbs, and floating gate to
floating gate coupling that result from repeated and long term stor-
age of specific data patterns. For a given page of data having a lo-
gical address and for storing at a physical address, the key is selec-
ted from a finite sequence thereof as a function of both the logical
address and the physical address. In a block management scheme
the memory array is organized into erase blocks, the physical ad-
dress is the relative page number in each block. When logical ad-
dress are grouped into logical groups and manipulated as a group
and each group is storable into a sub-block, the physical address is
the relative page number in the sub-block.

WO 2012/158341 A1 WK 00N 0 T 0

84)

SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every

kind of regional protection available): ARTIPO (BW, GH,

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, S, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2012/158341 PCT/US2012/036015

NON-VOLATILE MEMORY AND METHOD
WITH IMPROVED DATA SCRAMBLING

FIELD OF THE INVENTION

[0001] This application relates to the operation of re-programmable non-volatile
memory systems such as semiconductor flash memory, and, more specifically, to
efficient scrambling of data in order to avoid occurrence of regular pattern of data

stored in a memory array that may exacerbate disturbance between cells.
BACKGROUND OF THE INVENTION

[0002] Solid-state memory capable of nonvolatile storage of charge, particularly in
the form of EEPROM and flash EEPROM packaged as a small form factor card, has
recently become the storage of choice in a variety of mobile and handheld devices,
notably information appliances and consumer eclectronics products. Unlike RAM
(random access memory) that is also solid-state memory, flash memory is non-
volatile, and retaining its stored data even after power is turned off. Also, unlike
ROM (read only memory), flash memory is rewritable similar to a disk storage
device. In spite of the higher cost, flash memory is increasingly being used in mass
storage applications. Conventional mass storage, based on rotating magnetic medium
such as hard drives and floppy disks, is unsuitable for the mobile and handheld
environment. This is because disk drives tend to be bulky, are prone to mechanical
failure and have high latency and high power requirements. These undesirable
attributes make disk-based storage impractical in most mobile and portable
applications. On the other hand, flash memory, both embedded and in the form of a
removable card are ideally suited in the mobile and handheld environment because of

its small size, low power consumption, high speed and high reliability features.

[0003] Flash EEPROM is similar to EEPROM (electrically erasable and
programmable read-only memory) in that it is a non-volatile memory that can be
erased and have new data written or “programmed” into their memory cells. Both
utilize a floating (unconnected) conductive gate, in a field effect transistor structure,

positioned over a channel region in a semiconductor substrate, between source and

-1-

WO 2012/158341 PCT/US2012/036015

drain regions. A control gate is then provided over the floating gate. The threshold
voltage characteristic of the transistor is controlled by the amount of charge that is
retained on the floating gate. That is, for a given level of charge on the floating gate,
there is a corresponding voltage (threshold) that must be applied to the control gate
before the transistor is turned “on” to permit conduction between its source and drain
regions. In particular, flash memory such as Flash EEPROM allows entire blocks of

memory cells to be erased at the same time.

[0004] The floating gate can hold a range of charges and therefore can be
programmed to any threshold voltage level within a threshold voltage window. The
size of the threshold voltage window is delimited by the minimum and maximum
threshold levels of the device, which in turn correspond to the range of the charges
that can be programmed onto the floating gate. The threshold window generally
depends on the memory device’s characteristics, operating conditions and history.
Each distinct, resolvable threshold voltage level range within the window may, in

principle, be used to designate a definite memory state of the cell.

[0005] It is common in current commercial products for each storage eclement of a
flash EEPROM array to store a single bit of data by operating in a binary mode,
where two ranges of threshold levels of the storage element transistors are defined as
storage levels. The threshold levels of transistors correspond to ranges of charge
levels stored on their storage clements. In addition to shrinking the size of the
memory arrays, the trend is to further increase the density of data storage of such
memory arrays by storing more than one bit of data in each storage element transistor.
This is accomplished by defining more than two threshold levels as storage states for
cach storage element transistor, four such states (2 bits of data per storage element)
now being included in commercial products. More storage states, such as 16 states per
storage element, are also being implemented. Each storage element memory transistor
has a certain total range (window) of threshold voltages in which it may practically be
operated, and that range is divided into the number of states defined for it plus
margins between the states to allow for them to be clearly differentiated from one
another. Obviously, the more bits a memory cell is configured to store, the smaller is

the margin of error it has to operate in.

WO 2012/158341 PCT/US2012/036015

[0006] The transistor serving as a memory cell is typically programmed to a
"programmed" state by one of two mechanisms. In "hot electron injection,” a high
voltage applied to the drain accelerates electrons across the substrate channel region.
At the same time a high voltage applied to the control gate pulls the hot electrons
through a thin gate dielectric onto the floating gate. In "tunneling injection,” a high
voltage is applied to the control gate relative to the substrate. In this way, electrons
are pulled from the substrate to the intervening floating gate. While the term
“program” has been used historically to describe writing to a memory by injecting
electrons to an initially erased charge storage unit of the memory cell so as to alter the
memory state, it has now been used interchangeable with more common terms such as

“write” or “record.”

[0007] The memory device may be erased by a number of mechanisms. For
EEPROM, a memory cell is electrically erasable, by applying a high voltage to the
substrate relative to the control gate so as to induce electrons in the floating gate to
tunnel through a thin oxide to the substrate channel region (i.e., Fowler-Nordheim
tunneling.) Typically, the EEPROM is erasable byte by byte. For flash EEPROM,
the memory is electrically erasable either all at once or one or more minimum
crasable blocks at a time, where a minimum erasable block may consist of one or

more sectors and each sector may store 512 bytes or more of data.

[0008] The memory device typically comprises one or more memory chips that may
be mounted on a card. Each memory chip comprises an array of memory cells
supported by peripheral circuits such as decoders and erase, write and read circuits.
The more sophisticated memory devices also come with a controller that performs

intelligent and higher level memory operations and interfacing.

[0009] There are many commercially successful non-volatile solid-state memory
devices being used today. These memory devices may be flash EEPROM or may
employ other types of nonvolatile memory cells. Examples of flash memory and
systems and methods of manufacturing them are given in United States patents nos.
5,070,032, 5,095,344, 5,315,541, 5,343,063, and 5,661,053, 5,313,421 and 6,222,762.
In particular, flash memory devices with NAND string structures are described in

United States patent nos. 5,570,315, 5,903,495, 6,046,935. Also nonvolatile memory

-3-

WO 2012/158341 PCT/US2012/036015

devices are also manufactured from memory cells with a dielectric layer for storing
charge. Instead of the conductive floating gate elements described earlier, a dielectric
layer is used. Such memory devices utilizing dielectric storage element have been
described by FEitan et al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile
Memory Cell,” IEEE Electron Device Letters, vol. 21, no. 11, November 2000, pp.
543-545. An ONO dielectric layer extends across the channel between source and
drain diffusions. The charge for one data bit is localized in the dielectric layer
adjacent to the drain, and the charge for the other data bit is localized in the dielectric
layer adjacent to the source. For example, United States patents nos. 5,768,192 and
6,011,725 disclose a nonvolatile memory cell having a trapping diclectric sandwiched
between two silicon dioxide layers. Multi-state data storage is implemented by
separately reading the binary states of the spatially separated charge storage regions

within the dielectric.

NAND Memory and Program Disturb

[0010] NAND memory is prone to data dependency related program disturb. Program
disturb happens when programming of the target word line unintentionally program
adjacent word lines, resulting in potential data corruption. Data dependency can make
program disturb problem worse, and one of the problematic pattern could be repeating

of the same data for the NAND chain.

[0011] United States Patent 7,885,112 discloses on-chip randomization schemes in

non-volatile memory, based on page offset address in a block.

[0012] There is still a general need for more flexible schemes to scramble data stored
in a nonvolatile memory to help avoid problematic data pattern that will exacerbate

program disturb problems.
SUMMARY AND OBJECTS OF THE INVENTION

[0013] According to a general aspect of the invention, a memory device cooperating
with a memory controller scrambles each unit of data using a selected scrambling key
before storing it in an array of nonvolatile memory cells. For a given page of data

having a logical address and for storing at a physical address, the key is selected from

WO 2012/158341 PCT/US2012/036015

a finite sequence thereof as a function of both the logical address and a localized

physical address.

[0014] In particular, where the memory has a block management scheme, the memory
array is organized into erase blocks, and when logical address are grouped into logical
groups and manipulated as a group and each group is storable into a sub-block, the
physical address is the relative page number in the sub-block. In this way, when a
logical group is relocated to another memory location, the copying is done on the
group boundary (i.e., sub-block by sub-block). The logical group can be copied to the
new location in its scrambled state. When reading back the logical group at the new
location, the same scrambling key can be used to perform the unscrambling because,
the logical address of each page in the group has not changed, nor has its localized
physical address. Relocation of data from one physical location to another in a
memory array is a common internal memory operation such as for garbage collection
and for caching in single-level memory (SLC) before folding to multi-level memory

(MLC).

[0015] The physical address is a localized one that aligns with the boundary of a
logical group of pages that is expected to be relocated to any portion of the memory as
a unit. In a specific embodiment, the finite sequence of keys is of length L and the
localized physical addresses have a length N, and the sequence number of the selected

key is given by [(logical address) mod L + (physical address) mod N] mod L.

[0016] In another embodiment, the sequence number of the selected key is further

randomized by selectively inverting predetermined physical addresses.

[0017] Scrambling of data before storing in the memory array helps to reduce
program disturbs, user read disturbs, and floating gate to floating gate coupling that
result from repeated and long term storage of specific data patterns. The present
invention is a computational and memory efficient scheme to achieve data scrambling
for a memory. In particular, key selection based on relative physical addresses having
a boundaries conforming to logical groups defined by a block management system
allows individual logical group to be relocated to another physical locations in the
memory array without having to change the key for each data unit in the process since

the relative addresses remain the same. Having the key selection depending on both

-5-

WO 2012/158341 PCT/US2012/036015

the logical address and the localized physical address overcomes the shortcomings of

using only a small set of keys defined by the logical group size.

[0018] Additional objects, features and advantages of the present invention will be
understood from the following description of its preferred embodiments, which

description should be taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1 illustrates a host in communication with a memory device in which the

features of the present invention are embodied.

[0020] FIG. 2 illustrates a page of memory cells, organized for example in the

NAND configuration, being sensed or programmed in parallel.

[0021] FIG. 3 is a functional block diagram of read/write circuits in the peripheral
circuits of FIG. 2.

[0022] FIG. 4 illustrates schematically an example of a memory array organized in

erasable blocks.
[0023] FIG. S illustrates a table storing scrambling key value for every key number.
[0024] FIG. 6 illustrates a key selection based on the logical address of the data.

[0025] FIG. 7 illustrates a problem with the key selection based on the logical

address alone.

[0026] FIG. 8 illustrates is a function block diagram of the data scrambler shown in

FIG. 1.

[0027] FIG. 9 illustrates an erase block being organized into multiple sub-blocks

according to another embodiment of the invention.

[0028] FIG. 10 illustrates the relocation of a sub-block from a first block to a second
block.

[0029] FIG. 11 illustrates one example of data pattern scrambling with a scrambling

WO 2012/158341 PCT/US2012/036015
key being a function of both the logical address and localized physical address.

[0030] FIG. 12 illustrates one example of data pattern scrambling with a scrambling
key being a function of both the logical address and localized physical address.

[0031] FIG. 13 illustrates an example of inverting being based on the physical

address the data every 2 word lines.
[0032] FIG. 14 illustrates an example of selectively inverting at the page level.

[0033] FIG. 15 illustrates a table similar to that shown in FIG. 12 in which the data is
scrambled by a key dependent on both the logical and localized physical addresses.

DESCRIPTION OF THE PREFERRED EMBODIMENTS
MEMORY SYSTEM

[0034] FIG. 1 illustrates a host in communication with a memory device in which the
features of the present invention are embodied. The host 80 typically sends data to be
stored at the memory device 90 or retrieves data by reading the memory device 90.
The memory device 90 includes one or more memory chip 100 managed by a memory
controller 102. The memory chip 100 includes a memory array 200 of memory cells
with each cell capable of being configured as a multi-level cell (“MLC”) for storing
multiple bits of data, as well as capable of being configured as a single-level cell
(“SLC”) for storing 1 bit of data. The memory chip also includes peripheral circuits
204 such as row and column decoders, sense modules, data latches and 1/O circuits.
An on-chip control circuitry 110 controls low-level memory operations of each chip.
The control circuitry 110 is an on-chip controller that cooperates with the peripheral
circuits to perform memory operations on the memory array 200. The control
circuitry 110 typically includes a state machine 112 to provide chip level control of

memory operations via a data bus 231 and control and address bus 111.

[0035] In many implementations, the host 80 communicates and interacts with the
memory chip 100 via the memory controller 102. The controller 102 co-operates with
the memory chip and controls and manages higher level memory operations. A

firmware 60 provides codes to implement the functions of the controller 102. An

WO 2012/158341 PCT/US2012/036015

error correction code (“ECC”) processor 62 processes ECC during operations of the

memory device.

[0036] For example, in a host write, the host 10 sends data to be written to the
memory array 100 in logical sectors allocated from a file system of the host’s
operating system. A memory block management system implemented in the
controller stages the sectors and maps and stores them to the physical structure of the
memory array. A preferred block management system is disclosed in United States
Patent Application Publication Number: US-2010-0172180-A1, the entire disclosure

of which is incorporated herein by reference.

Physical Memory Architecture

[0037] In order to improve read and program performance, multiple charge storage
elements or memory transistors in an array are read or programmed in parallel. Thus,
a “page” of memory elements are read or programmed together. In existing memory
architectures, a row typically contains several interleaved pages or it may constitute

one page. All memory elements of a page will be read or programmed together.

[0038] FIG. 2 illustrates a page of memory cells, organized for example in the
NAND configuration, being sensed or programmed in parallel. FIG. 2 essentially
shows a bank of NAND strings 50 in the memory array 200 of FIG. 1. A “page” such
as the page 60, is a group of memory cells enabled to be sensed or programmed in
parallel. This is accomplished in the peripheral circuits by a corresponding page of
sense amplifiers 210. The sensed results are latches in a corresponding set of data
latches 220. Each sense amplifier can be coupled to a NAND string, such as NAND
string 50 via a bit line 36. For example, the page 60 is along a row and is sensed by a
sensing voltage applied to the control gates of the cells of the page connected in
common to the word line WL3. Along each column, each cell such as cell 10 is
accessible by a sense amplifier via a bit line 36. Data in the data latches 220 are

toggled in from or out to the memory controller 102 via a data 1/O bus 231.

[0039] The page referred to above is a physical page memory cells or sense

WO 2012/158341 PCT/US2012/036015

amplifiers. Depending on context, in the case where each cell is storing multi-bit

data, each physical page has multiple data pages.

[0040] The NAND string 50 is a series of memory transistors 10 daisy-chained by
their sources and drains to form a source terminal and a drain terminal respective at its
two ends. A pair of select transistors S1, S2 controls the memory transistors chain’s
connection to the external via the NAND string’s source terminal and drain terminal
respectively. In a memory array, when the source select transistor S1 is turned on, the
source terminal is coupled to a source line 34. Similarly, when the drain select
transistor S2 is turned on, the drain terminal of the NAND string is coupled to a bit
line 36 of the memory array. Each memory transistor 10 in the chain acts as a
memory cell. It has a charge storage element 20 to store a given amount of charge so
as to represent an intended memory state. A control gate of each memory transistor
allows control over read and write operations. The control gates of corresponding
memory transistors of a row of NAND string are all connected to the same word line
(such as WLO, WLI1, ...) Similarly, a control gate of each of the select transistors S1,
S2 (accessed via select lines SGS and SGD respectively) provides control access to

the NAND string via its source terminal and drain terminal respectively.

[0041] FIG. 3 is a functional block diagram of read/write circuits in the peripheral
circuits of FIG. 2. The read/write circuits 206 include sense amplifiers 212, data
latches 230 and a common processor 250. The 1/O circuits are coupled to the data
latches and not shown explicitly except of a data I/O bus 231. In the embodiment
shown, the sense amplifiers and data latches are organized into read/write stacks 206,
with each stack serving & memory cells via the bit lines 1 to k, which is a subset of a
page in parallel. There are a plurality of such read/write stacks to service the entire
pare in parallel. In this way, the number of the common processor 250 for the page is
reduced. Each stack 206 contains a stack of sense amplifiers 212-1 to 212-k and a
stack of data latches 430-1 to 430-k. The stack of sense amplifiers and the stack of
data latches share the common processor 250 which is able to process data among
them. The sense amplifiers 212 communicate with the common processor 250 via a
bus 211. The data latches 220 communicate with the common processor 250 via a
bus 221. At any one time the common processor 250 processes the data related to a

given memory cell. For example, for the memory cell coupled to bit line 1, the

-9.

WO 2012/158341 PCT/US2012/036015

corresponding sense amplifier 212-1 latches the data sensed from the memory cell
into a sense amplifier latch, SA Latch 214-1. Similarly, the corresponding set of data
latches 220-1 stores input or output data associated with the memory cell coupled to
bit line 1. In the preferred embodiment, the set of data latches 220-1 comprises a set
of data latches, 224-0, ..., 224-q or respectively DLO, DL1, ..., DLq for storing (q+1)-
bits of information. The read/write stack 206 is controlled by the on-chip control
circuit via control and address bus 111 and exchange data with the memory controller

102 via the data 1/0 bus 231 (see also FIG. 1).

[0042] The page of memory cells shares a common word line and each memory cell
of the page is coupled via bit line to a sense amplifier. When the page of memory
cells is read or written, it is also referred to as being read from or written to the word
line associated with the page of memory cells. Similarly, the data associated with the

page of memory cell is referred to as a page of data.

[0043] Such read/write circuits have been described in United States Patent
Application Publication US-2006-0140007-A1, published on June 29, 2006, the entire

disclosure of which is incorporated herein by reference.
Erase Blocks

[0044] One important difference between flash memory and other type of memory is
that a cell must be programmed from the erased state. That is the floating gate must
first be emptied of charge. Programming then adds a desired amount of charge back
to the floating gate. It does not support removing a portion of the charge from the
floating to go from a more programmed state to a lesser one. This means that update
data cannot overwrite existing one and must be written to a previous unwritten

location.

[0045] Furthermore erasing is to empty all the charges from the floating gate and
generally takes appreciably time. For that reason, it will be cumbersome and very
slow to erase cell by cell or even page by page. In practice, the array of memory cells
is divided into a large number of blocks of memory cells. As is common for flash
EEPROM systems, the block is the unit of erase. That is, each block contains the

minimum number of memory cells that are erased together.

-10 -

WO 2012/158341 PCT/US2012/036015

[0046] FIG. 4 illustrates schematically an example of a memory array organized in
erasable blocks. Programming of charge storage memory devices can only result in
adding more charge to its charge storage eclements. Therefore, prior to a program
operation, existing charge in charge storage eclement of a memory cell must be
removed (or erased). A non-volatile memory such as EEPROM is referred to as a
“Flash” EEPROM when an entire array of cells 200, or significant groups of cells of
the array, is electrically erased together (i.e., in a flash). Once erased, the group of
cells can then be reprogrammed. The group of cells erasable together may consist of
one or more addressable erase unit 300. The erase unit or block 300 typically stores
one or more pages of data, the page being a minimum unit of programming and
reading, although more than one page may be programmed or read in a single
operation. Each page typically stores one or more sectors of data, the size of the
sector being defined by the host system. An example is a sector of 512 bytes of user
data, following a standard established with magnetic disk drives, plus some number of

bytes of overhead information about the user data and/or the block in with it is stored.

[0047] In the example shown in FIG. 4, individual memory cells in the memory array
200 are accessible by word lines 42 such as WL0O-WLy and bit lines 36 such as BLO —
BLx. The memory is organized into erase blocks, such as erase blocks 0, 1, ... m. If
the NAND string 50 (see FIG. 2) contains 16 memory cells, then the first bank of
NAND strings in the array will be accessible by select lines 44 and word lines 42 such
as WLO to WL15. The erase block 0 is organized to have all the memory cells of the
first bank of NAND strings erased together. In memory architecture, more than one

bank of NAND strings may be erased together.

Single-level (SLC) and Multi-level (MLC) Memory Cells

[0048] As described earlier, an example of nonvolatile memory is formed from an
array of field-effect transistors, each having a charge storage layer between its
channel region and its control gate. The charge storage layer or unit can store a range
of charges, giving rise to a range of threshold voltages for each field-effect transistor.
The range of possible threshold voltages spans a threshold window. When the
threshold window is partitioned into multiple sub-ranges or zones of threshold

voltages, each resolvable zone is used to represent a different memory states for a

-11 -

WO 2012/158341 PCT/US2012/036015

memory cell. The multiple memory states can be coded by one or more binary bits.
In SLC memory, each memory cell stores one bit of data. In MLC memory, cach

memory cell stores more than one bit of data.

RANDOMIZATION OF DATA PATTERN TO MINIMIZE PROGRAM DISTURB

[0049] Data scrambling is used to randomize data in order to avoid data
dependency. The intended data is scrambled through a key in the controller 102 (see
FIG. 1) before sending to the NAND flash 200. When data is read back, it is then
descrambled with the same key. To map the correct key, controller could either use

the physical address of the data, or the logical address of the data.

[0050] FIG. S illustrates a key table storing scrambling key value for every key
number. For example, the key table 401 is stored in a system portion of the memory
array. In operation, it is retrieved into a register as an ordered sequence of key values
(KVi) with each position in the sequence being labeled by a key number (K;). In one
embodiment, each key value may be as simple as “0” or “1”. If there are L keys, then
they are stored in order in the register and the position in the register could be
regarded as the key number. Generally, a unit of data is scrambled and unscrambled

as follows:

ScrambledData = T(KeyValue)UnscrambleData, where T is the transform

function dependent on the key value.

UnsrambledData = T™'(KeyValue)ScrambledData, where T is the inverse

transform.

[0051] In one embodiment, the transform function can be as simple as inverting or

not inverting the bits in the unit of data depending on the key value being “0” or “1”.

[0052] Physical address mapping is straightforward, using the physical location
within a block to determine the key to be used. However, a general application of this
approach has limitations, as for example, when one wishes to move data from one
physical location (word line) of the block to a different physical location of another
block. Since the location is different, data will have to be read out to the controller,

descrambled, and then scrambled with a new key depending on the new physical

-12-

WO 2012/158341 PCT/US2012/036015

address and finally toggled back to the memory. This approach is more time
consuming since it requires multiple data toggling operations between the memory

chip and the controller.

[0053] Logical address mapping is more flexible since the same key will always be
used for each logically addressed data. This allows the data to travel freely from one
block to another block without having to change the corresponding key. However, if
the same logical address is updated repeatedly with the same data, such mechanism

will be defeated.

[0054] FIG. 6 illustrates a key selection based on the logical address of the data. If
there are L key values in a key list, and L=32 in this example, then starting from the
first logical address, a different key will be assigned from the key list to the each
logical address until all L keys are used up. Then the next logical address will start

again from the first key in the key list.

[0055] Logical address is used for the mapping of scrambling key. The scrambling
is done before data gets transferred to the NAND memory, and the same key is used

to descramble the data. In this scheme, the key K;=K;(Logical Addr).

[0056] This scheme works if the logical address of each data write is different.
However, having the key being a function of the logical address alone may not
randomize some data patterns. There are two problems with using just the logical
address to select the scrambling key. First, as can be seen in FIG. 6, a short key list
will result in a short periodicity. Secondly, multiple updates corresponding to the
same logical address will have the same scrambling key and if the updates are the

same, so will the data and an undesirable, regular pattern will result.

[0057] FIG. 7 illustrates a problem with the key selection based on the logical
address alone. If the data associated with the same logical address is being repeatedly
updated, each update will being using the same key. Furthermore, if the update data
are all the same, the scramble data will also be all the same, thereby resulting in an
undesirable regular pattern across the rows of the memory array. To avoid this
possibility, one can put a restriction on updating the same logical address in the same

block, but such limitation leads to additional garbage collection, resulting in poorer

-13 -

WO 2012/158341 PCT/US2012/036015

performance and additional wear on the memory cells.

[0058] Thus, as described above, selecting a key based on logical address alone has

its shortcomings.

Scrambling Data according to Both Logical and Local Physical Addresses

[0059] According to a general aspect of the invention, a memory device cooperating
with a memory controller scrambles each unit of data using a selected scrambling key
before storing it in an array of nonvolatile memory cells. For a given page of data
having a logical address and for storing at a physical address, the key is selected from
a finite sequence thereof as a function of both the logical address and a localized

physical address.

[0060] In particular, where the memory has a block management scheme, the
memory array is organized into erase blocks, and when logical address are grouped
into logical groups and manipulated as a group and each group is storable into a sub-
block, the physical address is the relative page number in the sub-block. In this way,
when a logical group is relocated to another memory location, the copying is done on
the group boundary (i.e., sub-block by sub-block). The logical group can be copied to
the new location in its scrambled state. When reading back the logical group at the
new location, the same scrambling key can be used to perform the unscrambling
because, the logical address of each page in the group has not changed, nor has its

localized physical address.

[0061] FIG. 8 illustrates is a function block diagram of the data scrambler shown
in FIG. 1. The data scrambler 400 is typically implemented in the memory controller
102 because of its processing facilities. The data scrambler 400 includes a key
selector 410 which selects a key out of the key table 401 (see FIG. 5) based on the
data wunit’s logical address (LogicalAddr) and localized physical address
(LocalPhysicalAddr). A data scrambler/unscrambler 420 then uses the selected key to

scramble or unscramble the data.

[0062] For example, in the case of a host write, the incoming data is scrambled

using the selected key into scrambled data which is then stored by being programmed

-14 -

WO 2012/158341 PCT/US2012/036015

into the memory array at the localized physical address. In the case of a memory
read, the read data, which was stored as scrambled data is unscrambled by the data
scrambler/unscrambler 420 using the selected key. In one embodiment, the selected
key value is a binary number and the scrambler/unscramble 420 treats the selected
key value as a polarity bit and either invert or not invert the unit of data depending on

the key’s bit value.

[0063] The data is typically operated in unit of a page of data and the logical
address is typically a logical sector address assigned by a host. In a multi-sector page,
it could be the logical address of the first sector of the page. The localized physical
address is typically the row number within a block such as the erase block 300 shown
in FIG. 4. Alternatively, the localized physical address is the page number within a
block. As will be described later, in an embodiment where the data are organized into
logical groups, where data of more than on logical groups can be accommodated in a
block, the localized physical address is the row or page number within a physical

group or sub-block in the block accommodating the logical group.
[0064] In a general embodiment, the key is generally given by:
Ki=Ki(LogicalAddr, LocalPhyiscalAddr).

[0065] In one embodiment, for a given logical address, the scrambling key is first
determined by the logical address, then it is further determined by the localized
physical location. Thus, it may be considered as a two-step function. In the first step,
the key is selected based on the logical address. In the second step the key is further

modified based on the localized physical address.

[0066] Thus, even when there are a limited number L of keys, for example, L=32,
the key selection based on the logical address is further randomized by selection
based on the localized physical address. In this embodiment, the localized physical
address is typically a page offset number in a block, which in many architecture is
also the row number in a block. The block is an erase block 300 shown in FIG. 4
with as many as 64 or more rows. The scrambling by localized physical address has a
periodicity of N. In one embodiment, N may be as large as the maximum page

numbers Nmax in the block. Thus, after N pages, the selection repeats itself again. In

-15 -

WO 2012/158341 PCT/US2012/036015
other words, the key number would be a function of (page # mod Nmax).

[0067] FIG. 9 illustrates an erase block being organized into multiple sub-blocks
according to another embodiment of the invention. In this embodiment, N may be
smaller than the maximum page number Nmax in the block. This is applicable to a
block management system in which the logical address assigned by a host are
organized into a plurality of logical groups, and each block accommodates multiple
sub-blocks each accommodating one logical group of data. For example, if the
maximum number of pages in a block is Nmax = 64, and the block can accommodate
data up to 16 logical groups, then each logical groups has 4 pages and N=4, and each
subgroup has 4 pages.

[0068] Thus, the erase block 300 contains a plurality of pages 60, each page
accessible by a word line. The localized physical address for the block is the block’s
page offset number. Starting from one end of the block (in this example, the bottom
end) the first page has a page offset number of “0”, the next page has “1”, and each
next one has the page offset number incremented by one until Nmax at the end of the
block is reached. The block 300 is organized into multiple sub-blocks 310. In this
example, each sub-block accommodates 4 pages. The localized physical address in
this case is the page offset number in a sub-block 310. This can be obtained from the

block’s page offset number as:

Sub-block’s page offset number = [Block’s page offset number] mod N,

where N=4 in this example.

[0069] FIG. 10 illustrates the relocation of a sub-block from a first block to a
second block. In this example, sub-block 310-2 is relocated from block 300-1 to
become sub-block 301-2’ in block 300-M. Since the physical address is the relative
physical address of a sub-block, it does not change in the relocation and the key for

cach page in the sub-block will remain the same.

[0070] FIG. 11 illustrates the example of data pattern shown in FIG. 7 but with the
scrambling key depending on only the localized physical address. In this example,
the logical address is constant, implying that data of the same logical address is

repeatedly being updated as in the scenario illustrated in FIG. 7. For example if the

- 16 -

WO 2012/158341 PCT/US2012/036015

size of the physical group corresponding to the logical group is N= 4 pages, and the
localized physical address is LocalPhysicalAddr, then the selection of key K:
Ki=K;(PageOffsetAddr mod N)
= LocalPhysicalAddr.

[0071] Thus, if the data is stored in the physical block page by page, each page is
scrambled with one of 4 keys. It will be seen that unlike that of FIG. 7, repeated
pattern will now be randomized. While this method alone with take care of repeated
pattern like that illustrated in FIG. 7, but keeping the group size N small will also
limit the number of possible keys (e.g., only 4 keys in FIG. 11.

[0072] FIG. 12 illustrates a preferred data pattern scrambling with a scrambling
key being a function of both the logical address and localized physical address. For
example if the size of the key list = L, the size of the physical address group = N, then

one function is given as:
Ki=Kj(LogicalAddr, LocalPhysicalAddr)
=[(logicalAddr mod L) + (LocalPhysicalAddr mod N)) mod L]
With the example L=32 and N=4, logical address=100, and at page# the key is:
K; =[100 mod 32 + page# mod 4] mod 32

=[4 + 0] mod 32

Similarly, for the data stored in page #1:

K;=[8 + 1 mod 4] mod 32

[0073] When the two methods of logical address and localized physical address
mapping are combined, the number of keys is not limited to the logical group size N
(e.g., 4) but is now drawn from the pool of key of size L (e.g., 32). The repeated
pattern is no long an issue. Relocation of data can still be done from one physical

location to another in the memory array since the copy is done on the group boundary

-17 -

WO 2012/158341 PCT/US2012/036015

(in this case defined by a sub-block having N=4 pages), thus scrambling key used is
still the same regardless of where the other group is located physically in the memory

array.

Scrambling Data by Pseudorandom Inversion

[0074] According to another aspect of the invention, the scrambling data is a
function of inversion or not inversion of data. The decision to invert data or not could
be simply based on the physical address to provide a pseudorandom pattern, or it
could be based on device physics analysis that tailor the algorithm to combat the
worst data dependency pattern. In the first case, it is a simple function of the physical
address. In the latter case, it could be a more involved function of the physical

address. In this scheme, scrambled data is generally given by:
ScrambledData = Invert(UnscrambledData, PhysicalAddr) .

[0075] NAND memory uses data latches to store data temporarily, and does logical
manipulation to the data during normal program or read command. One such
manipulation is inversion. This invention utilizes the native inversion function on the
memory data latch, to randomize the data based on physical address. FIG. 3
illustrates that the data latches 220 can be manipulated by the common processor 250.

One such on-chip manipulation is the inversion of the data bits in the data latches.

[0076] FIG. 13 illustrates an example of inverting being based on the physical
address the data every 2 word lines. In this case, inversion is based on the word line
number. For SLC pages, each word line has one page, so every other two SLC pages,
the data is inverted. In the case of a 2-bit MLC memory, there will be a lower and
upper page per word line. So, in the case of an MLC memory, every 4 pages will be
inverted. In any case, it will be seen that the pattern repeats itself every two word

lines.

[0077] According to another embodiment, to increase the randomness of data, the

data may also be inverted at the page level at predefined page numbers..

[0078] FIG. 14 illustrates an example of selectively inverting at the page level.

For example, in the same case where data is inverted every two word lines and 4

- 18 -

WO 2012/158341 PCT/US2012/036015

MLC pages, we could permutation the inversion within each group of 4 pages and

change the inversion decision to 2**4 = 32 different combinations.

[0079] The controller will issue command to invert data in the data latches before
programming is done, and also invert the data back before data is read back. This is
done internally to the memory, and thus data need not be toggled out if such data is to
be moved to a different block. Alternatively, the inversion can be done internally

without the controller's knowledge if the desired pattern is known.

[0080] The method of generating the scrambling key as a function of localized
physical address also allows fast on-chip copy of data from one physical location to
another physical without having to toggle the data out to the controller to do the
scrambling. Scrambling can be simply done on chip given that the minimum copy
size is the size of the group. This is achieved due to the alignment of scrambling key

along the group boundary.

[0081] According to yet another embodiment, data is scrambled by a combination
of all three scrambling schemes described above, namely, scrambling the data with a
scrambling key dependent on the logical address and physical address individually or
in combination and then invert the data as a function of either the physical address or

logical address.

[0082] FIG. 15 illustrates a table similar to that shown in FIG. 12 in which the
data is scrambled by a key dependent on both the logical and localized physical
addresses. Furthermore, it has an additional column showing the scrambled data to be

inverted or not inverted.

[0083] The combination of logical/physical mapping, and physical inversion based
on memory word line location will ensure no repeated pattern that may cause data
dependency program disturb. This does not sacrifice performance, has not limitation,

and does not require additional gates.

[0084] The various mappings described above can be performed at the controller

102 or on-chip or by a combination of the two.

[0085] No added cost to the overall system since scrambler is already part of the

-19 -

WO 2012/158341 PCT/US2012/036015

ASIC and data inversion is already part of memory logic.

[0086] Compared to using just physical address, this invention will eliminate the
need to toggle data, therefore improve overall performance Using it in conjunction

with logical mapping also improves the randomness of data.

[0087] Compared to using just logical address, this invention will allow the same
logical address to be written repeatedly on the same block, therefore decreasing the

frequency to garbage collect. It also solves the repeated pattern problem.

[0088] While the embodiments of this invention that have been described are the
preferred implementations, those skilled in the art will understand that variations
thereof may also be possible. Therefore, the invention is entitled to protection within

the full scope of the appended claims.

-20 -

WO 2012/158341 PCT/US2012/036015
IT IS CLAIMED:

1. A memory, comprising:

an array of nonvolatile memory cells accessible page by page;

cach page being a group of data with a logical address and for storing in the
array at a physical address;

said array of nonvolatile memory cells are organized into a plurality of blocks,
cach block having memory cells that are erasable together;

each block further partitioned into a plurality of sub-blocks, each sub-block for
accommodating data corresponding to a logical group of logical addresses;

a sequence of scrambling keys;

a key selector for selecting a key for scrambling a page of data, said key
selector selecting the key from said sequence of scrambling keys as a function of the
logical address and the physical address;

said physical address is a relative page address in a sub-block;
and

a data scrambler/unscrambler for scrambling the page of data when it is
unscrambled as a function of the selected key or for unscrambling the page of data

when it is scrambled as a function of the selected key.

2. The memory as in claim 1, further comprising:

a memory controller controlling memory operations of said array of
nonvolatile memory cells; and

wherein said key selector and said data scrambler/unscrambler are

implemented in said memory controller.

3. The memory as in claim 1, further comprising:
read/write circuits; and
said read/write circuits programming the current page of data after it is

scrambled into said array of memory cells at the physical address.

4. The memory as in claim 1, further comprising:

read/write circuits; and

221 -

WO 2012/158341 PCT/US2012/036015

said read/write circuits reading the current page of data stored as scrambled

data from said array of memory cells at the physical address.

5. The memory as in claim 1, wherein:
said array of nonvolatile memory cells are organized into a plurality of blocks,
cach block having memory cells that are erasable together; and

said physical address is a relative page address in a block.

6. The memory as in claim 1, wherein:
said array of nonvolatile memory cells are organized into a plurality of blocks,
cach block having memory cells that are erasable together; and

said physical address is a relative row address in a block.

7. The memory as in claim 1, wherein:

said sequence of scrambling keys has a length L;

said physical address is one of a sequence of such physical addresses having a
length N; and

said function of the logical address and the physical address of the page of
data includes depending on (logical address) mod L and (physical address) mod N.

8. The memory as in claim 1, wherein:

said sequence of scrambling keys has a length L;

said physical address is one of a sequence of such physical addresses having a
length N; and

said function of the logical address and the physical address of the page of
data includes depending on [(logical address) mod L + (physical address) mod N]
mod L.

9. The memory as in claim 1, wherein:

said physical address is one of a sequence of such physical addresses having a
length N; and

said function of the logical address and the physical address of the page of

-0

WO 2012/158341 PCT/US2012/036015

data includes depending on inverting or not inverting based on the physical address.

10. A method of scrambling or unscrambling a page of data in a non-volatile
memory, comprising:

providing an array of nonvolatile memory cells accessible page by page;

cach page being a group of data with a logical address and for storing in the
array at a physical address;

said array of nonvolatile memory cells are organized into a plurality of blocks,
cach block having memory cells that are erasable together;

cach block further partitioned into a plurality of sub-blocks, each sub-block for
accommodating data corresponding to a logical group of logical addresses;

providing a sequence of scrambling keys;

selecting a key for scrambling the page of data, the key being selected from
said sequence of scrambling keys as a function of the logical address and the physical
address of the page of data;

said physical address is a relative page address in a sub-block; and

scrambling the page of data when it is unscrambled as a function of the
selected key or unscrambling the page of data when it is scrambled as a function of
the selected key.

an array of nonvolatile memory cells accessible page by page;

11. The method as in claim 10, further comprising:
providing a memory controller controlling memory operations of said array of
nonvolatile memory cells including said selecting a key and said scrambling or

unscrambling the page of data.

12. The method as in claim 10, further comprising:
programming the current page of data after it is scrambled into said array of

memory cells at the physical address.

13. The method as in claim 10, further comprising:
reading the current page of data stored as scrambled data from said array of

memory cells at the physical address.

-23 -

WO 2012/158341 PCT/US2012/036015

14. The method as in claim 10, wherein:
said array of nonvolatile memory cells are organized into a plurality of blocks,
cach block having memory cells that are erasable together; and

said physical address is a relative page address in a block.

15. The method as in claim 10, wherein:
said array of nonvolatile memory cells are organized into a plurality of blocks,
cach block having memory cells that are erasable together; and

said physical address is a relative row address in a block.

16. The method as in claim 10, wherein:

said sequence of scrambling keys has a length L;

said physical address is one of a sequence of such physical addresses having a
length N; and

said function of the logical address and the physical address of the page of
data includes depending on (logical address) mod L and (physical address) mod N.

17. The method as in claim 10, wherein:

said sequence of scrambling keys has a length L;

said physical address is one of a sequence of such physical addresses having a
length N; and

said function of the logical address and the physical address of the page of
data includes depending on [(logical address) mod L + (physical address) mod N]
mod L.

18. The method as in claim 10, wherein:

said physical address is one of a sequence of such physical addresses having a
length N; and

said function of the logical address and the physical address of the page of

data includes depending on inverting or not inverting based on the physical address.

-4 -

WO 2012/158341 PCT/US2012/036015

1/12

HOST 80

FLASH MEMORY DEVICE 80
Memory Chip 100
Memory
Controller On-Chip
102 Control
Circuit
110 Memory Array
« 112 00
State W
FIRM- Mach- ||
WARE - 60 ine
y
111, 231 Peripheral Circuits
ECC 1 g2 (204
Processor
1 400 "
Data)
Scrambler)
| SEREERE >

FIG. 1

WO 2012/158341

200

PCT/US2012/036015
2/12
Data
e
220~ Physical Page of Data Latches 4-(—>
210 231
Physical Page of Sense Amps
BLC BL1 BL2 BL3 BL4 BL5 BLm-1 BLm
[""'__l
SGD N 'E‘ /X
R
Win —H— — —
o/ e T T T T TG
Poil i P
| i P10
(I E
10\‘1_ : E__ ‘‘‘‘‘ (.
wrs —Ld
LM
WL2 i
'3
WL1 Ht—
P
WLO ,rj : :
"::” tr
SGS i
i ' !
u’ 1] 1

Source Line\ 34

FIG. 2

WO 2012/158341

PCT/US2012/036015

3/12
Bitlinek =+=r---- Bit line 7
f f Read/Write Stack 206
SENSE AMP 212-1 - DATA LATCHES | Data
M | 2201 ("’0 .
214-1
P 224-0-] | 231
I SA Latch \-—«l DLO
224-q ~1
CTRL ““-~| DLg CTRL
& CLK & CLK
e o’ o
] (111 Y 111
I |
211 221
COMMON PROCESSOR 250 CTRL
& CLK
111

FIG. 3

WO 2012/158341

4112

PCT/US2012/036015

200

ERASE BLOCK m

WL3T e

WLT6 =i

ERASE BLOCK 17

ERASE BLOCK 0

BLO

BL1

FIG. 4

Bf x

300

300

WO 2012/158341 PCT/US2012/036015

5712

BoY
-,

Ki KV, ‘/
{(Key #) (Key Value)

FIG. 5

Physical e _
PageOffsetAddr LogicalAddr Ki KE(LogzcsilAddr mod L)
{ £=32
in a block
0 32 0
L 100 4
2 1000 8
3 1 ’
Physical . _
PageOffsetAddr | LogicalAddr Ki=Ki(LogicalAddr mod L)
[L=32
in a block
0 32 0
1 32 0
2 32 0
3 32 0

FIG. 7

WO 2012/158341 PCT/US2012/036015
6/12
401
/‘
KVi | KV | eeeeeee KV | eeeeeeeees KV,
K Ky womees Kil e K.
A
DATA SCRAMBLER 400
LogicalAddr .
Key Selector
410
LocPhysicalAddr |
Selected Key KV,
Data Data Scrambler/ Scrambled Data

Unscrambler
420

FIG. 8

WO 2012/158341 PCT/US2012/036015

7112
Block 1
300
|
7113
6lls Sub-block 2
5011 T310-2
4110
3113
5| 1s Sub-block 1
1111 1 310-1
0110 :
5 — i 60
,/f *Subnbiock’s page offset
BloCl;fzefC;age = [Block's page offset] mod N, N=4
0

FIG. 9

WO 2012/158341

8/12

MEMORY ARRAY 200

PCT/US2012/036015

Va 300-M
Block M
Sub-block 2 T’ 310-2°
\
\.\
\
i‘
|
- 300-1 /}
Block 1 /
/
Sub-block 2 -
-1 310-2
- 1
Sub-block L 340.1

FIG. 10

WO 2012/158341 PCT/US2012/036015
9/12
Physical -
PageOffsetAddr | LogicalAddr | Sub-Block :(I;:gageo’;fset’\ddr mod N)
in a block
0 32 1 0
1 32 1 1
2 32 1 2
3 32 1 3
4 32 2 0
5 32 2 1
6 32 2 2
Physical K= [(LogicalAddr mod L) +
PageOffsetAddr | LogicalAddr | Sub-Block | (Pa980fsetAddrmod N) mod L
in a block (L=32, N=4)
0 100 1 4
1 1000 1 9
2 2010 1 28
3 2011 1 30
4 32 2 0
5 32 2 1
6 32 2 2

FIG. 12

WO 2012/158341 PCT/US2012/036015

10/ 12

WL | Lower | Upper

2 /69 IAB

3 /D7 b2

4 69 AB

5 D7 D2

6 169 {AB

7 07 D2

8 69 AB

9 D7 D2

Psuedo Random Data invertion

FIG. 13

WO 2012/158341 PCT/US2012/036015

11712

WL | Lower | Upper WL | Lower | Upper WL | Lower | Upper
0 69 AB 12 /69 AB 24 69 AB
1 | D7 D2 13 D7 /D2 25 /D7 /D2
2 69 AB 14 169 /AB 26 /69 /AB
3 D7 /D2 15 D7 /D2 27 /D7 D2
4 89 AB 16 69 AB 28 69 /AB
5 D7 D2 17 D7 D2 29 D7 D2
6 69 IAB 18 169 {AB 30 69 /AB
7 D7 iDZ 19 D7 D2 31 D7 D2
8 69 AB 20 69 IAB
9 D7 /D2 21 D7 D2
10 69 /AB 22 /69 JAB
11 D7 D2 23 D7 /D2

FIG. 14

WO 2012/158341 PCT/US2012/036015

12712
pageOfsenaar | Logieal Adar | Ko en
0 100 4 No
1 1000 9 No
2 2010 28 No
3 2011 30 No
4 32 0 Yes
5 32 1 No
6 32 2 Yes
7 32 2 Yes

FIG. 15

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/036015

A. CLASSIFICATION OF SUBJECT MATTER

INV. G11Cl6/34
ADD. GO6F12/14

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

G11C GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

13 August 2009 (2009-08-13)
paragraphs [0007],
[0094], [0095]

8 February 2011 (2011-02-08)
cited in the application

24 December 2009 (2009-12-24)
paragraphs [0087], [0093],

31 December 2009 (2009-12-31)
paragraphs [0085], [0089],
[6095], [0136]

[0072] - [0078],

column 9, 1ine 38 - column 10, Tine 25

[0094]

[0090],

A US 2009/204824 Al (LIN JASON T [US] ET AL) 1-18

A US 7 885 112 B2 (LI YAN [US] ET AL) 1-18

A US 2009/316490 ALl (TAKADA TOMOJI [JP]) 1-18

A US 2009/323942 Al (SHARON ERAN [IL] ET AL) 1-18

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

28 August 2012

Date of mailing of the international search report

04/09/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Nielsen, Ole

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2012/036015
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2009204824 Al 13-08-2009 EP 2240937 Al 20-10-2010
JP 2011508363 A 10-03-2011
KR 20100121472 A 17-11-2010
W 200935420 A 16-08-2009
US 2009204824 Al 13-08-2009
WO 2009088920 Al 16-07-2009

US 7885112 B2 08-02-2011 AT 549719 T 15-03-2012
CN 102318007 A 11-01-2012
EP 2186094 A2 19-05-2010
JP 2010538408 A 09-12-2010
KR 20100075833 A 05-07-2010
TW 200929219 A 01-07-2009
US 2009067244 Al 12-03-2009
WO 2009035834 A2 19-03-2009

US 2009316490 Al 24-12-2009 CN 101611386 A 23-12-2009
EP 2109823 Al 21-10-2009
JP 4498370 B2 07-07-2010
JP 2008198299 A 28-08-2008
KR 20090118060 A 17-11-2009
W 200907972 A 16-02-2009
US 2009316490 Al 24-12-2009
WO 2008099958 Al 21-08-2008

US 2009323942 Al 31-12-2009 TW 201007737 A 16-02-2010
US 2009323942 Al 31-12-2009
US 2012163605 Al 28-06-2012
WO 2010001383 Al 07-01-2010

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - wo-search-report
	Page 40 - wo-search-report

