PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4,

GOGF 09/00 // GOGF 11/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 89/ 03556

20 April 1989 (20.04.89)

(21) International Application Number: PCT/US87/02653

(22) International Filing Date: 8 October 1987 (08.10.87)

(71) Applicant: CLYDE, INC. [US/US]; 371 East 800 South,
Orem, UT 84058 (US). ,

(72) Inventor: CLYDE, Robert, A. ; 216 East 600 North,
Orem, UT 84058 (US).

(74) Agents: NYDEGGER, Rick, D. et al.; Workman, Ny-
degger & Jensen, American Plaza II, Third Floor, 57
West 200 South, Salt Lake City, UT 84101 (US).

(81) Designated States: AT (European patent), AU, BE (Eu-
ropean patent), CH (European patent), DE (European
patent), FR (European patent), GB (European pa-
tent), IT (European patent), JP, LU (European pa-
tent), NL (European patent), SE (European patent).

Published
With international search report.
With amended claims and statement.

(54) Title: SYSTEM FOR EFFECTIVELY PARALLELING COMPUTER TERMINAL DEVICES

\\/

PORT
VECTOR

OLD
GET

TT
DRIVER

uc
DRIVER

DZ

VECTOR

uc
DEVICE

DRIVER

(57) Abstract

In a digital computing system, in which terminal devices are connected to the system through terminal dependent
device drivers coupled to terminal independent device drivers so that the operating system of the computer system need
not be modified each time a terminal device is added or subtracted, a system is used for effectively paralleling an auxiliary
terminal with a seleted terminal of the system so that the selected terminal can be monitored by creating a user controlling
driver and a user controlling device coupled thereto, and coupling the combination thereof between the terminal device
drivers so that the output of the terminal independent device driver intended for the terminal dependent device driver
passes through the user controlling driver and user controlling device before arriving at the terminal independent device
driver and making the information passing through the user controlling driver available to the auxiliary terminal device.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pampbhlets publishing international appli-
cations under the PCT. .

AT Austria FR France ML Mali

AU Australia GA Gabon MR Mauritania
BB Barbados GB United Kingdom MW Malawi

BE Belgium HU Hungary NL Netherlands
BG Buigaria IT Italy NO Norway

BJ Benin JP Japan RO Romania

BR Brazil KP Democratic People’s Republic SD Sudan

CF Central African Republic of Korea SE Sweden

CG Congo KR Republic of Korea SN Senegal

CH Switzerland LI Liechtenstein SU Soviet Union
CM Cameroon LK Sri Lanka TD Chad

DE Germany, Federal Republic of LU Luxembourg TG Togo

DK Denmark MC Monaco US United States of America
FI Finland MG Madagascar

4
»

WO 89/03556

10

15

20

25

30

35

-1~

SYSTEM FOR EFFECTIVELY PARALLELING COMPUTER TERMINAL DEVICES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention is in the field of me£hods and devices
to enable the linking of a computer terminal device to
one or more additional terminal devices so that each of
the linked devices effectively operates in parallel to
receive information from the computer or to input

information into the computer.

2. State of the Art

Some computer systems are configured to allow
several terminal devites to be connected effectively in
parallel so that each of the parallel terminal devices
receives identical information from the computer or each
can supply information to the computer and to each
other. For example, if two CRT input/output terminals
are connected in parallel in such a system, any
information from the computer will be displayed on both
paralleled terminals. Also, in most instances either may
be used to enter data or instructions into the computer
and the entered data or instructions on one terminal will
show on the other paralleled terminal.

Most computer systems today are designed to be
connected to many terminal devices, such as many CRT
displays, with each terminal device operating
independently of the other terminal devices. In fact,

most systems are designed specifically to prevent

PCT/US87/02653

WO 89/03556 , PCT/US87/02653

10

15

20

25

30

35

terminal devices from being paralleled so that a person
on one terminal cannot spy on another terminal and cannot
interfere with the operation of such_ other terminal.
With such systems, it is possible to electrically connect
two or more terminals together in parallel, but once such
electrical connection is made, the terminals are always
connected 1in parallel. Further, unless an elaborate
mechanical switching arrangement 1is used, a particular
terminal cannot be easily paralieled to a desired one of
a plurality of terminals. Such a switching system is
completely impractical where terminals are located at
physiéally separated locations such as in different parts
of a city or country.

In many instanbes it may be desirable to effectively
parallel two terminal devices on a selectable basis. For
example, if an operator is having a problem with a
particular program or particular operations in a program,
rather than having a person more knowledgeable in
operation of that program or a special program

troubleshooter or instructor physically travel to the

‘operator's terminal, or orally describe, such as by

telephone, therproblem and solution, that person could
merely connect his terminal in parallel to the operator's
terminal, find the problem, and show the operator the
correct procedure. Another example where selectable
parallel connection might be desirable is where a
supervisor or other official may wish to observe for

security reasons what a particular operator is doing.

WO 89/03556 PCT/US87/02653

10

15

20

25

30

With a parallel connection, the actions of the operator
could be monitored unknown to the operator. In such
instance, it is not necessary that the effective parallel
connection provide for input from the auxiliary terminal,
but merely for the providing of the same information flow
between the CPU and monitored terminal to the auxiliary
terminal. Further, rather than actually observing the
operator, it may be desired to actually record and make a
record or'audit trail of an operator's actions to check
at a later time, if necessary.

One computer -system in wide use today is the VAX
Computer system manufactured by Digital Equipment
Corporation (DEC). This system uses what DEC calls the
VMS operating systeﬁ. Such system is different than most
systems in use today in that rather than having the
drivers for each terminal device a fixed portion of the
operating system of the computer so that such operating
system must be modified each time a terminal device is
added or subtracted from the system, the VMS operating
system provides a generalized or terminal independent
device driver which is connected through specific or
terminal dependent device drivers to specific terminal
devices. Thus, it is not necessary to modify the
operating system when terminal devices are added or
subtracted, but to merely connect the terminal device to

an appropriate specific terminal dependent device driver.

WO 89/03556 PCT/US87/02653

1

10

15

20

25

30

35

There is currently no known way to effectively and
easily provide selected parallel operation of two or more

terminal devices with such an operating system.

SUMMARY OF THE INVENTION

According to the invention, a system of effectively
connecting an auxiliary terminal device in parallel with
a selected terminal device comprises a user controlling
driver (UC Driver) and a user controlling device (UC
Device) cdupled together and coupled betweén the terminal
independent device driver and the terminal dependent
device driver associated with the terminal device to be
paralleled so that the output of the terminal independent
device driver intended for the terminal dependent device
driver and a specific terminal device passes through the
UC Driver and UC Device before arriving at the terminal

dependent device driver and the output of the terminal

‘dependent device driver from a specific terminal device

and intended for the terminal device independent driver
passes tﬁrough the UC Driver and UC Device before
arrivihg at the terminal independent device driver. 1In
this way, all information passing to or from a particular
terminal deﬁice passes through the UC Driver which stores
such information and makes it available to the auxiliary

terminal device.

WO 89/03556

1

10

15

20

25

30

35

=5- PCT/US87/02653

The auxiliary terminal device can merely monitor the
information either storing it, displaying it, or printing
it, or can interact with the paralleled terminal so that
information caﬁ be inputed to the computer at either
terminal device. Thus, the auxiliary terminal device
could be a CRT, hard copy device, or secondary storage
device such as for example, magnetic disc, magnetic tape,

or laser disc.

THE DRAWINGS

In the accompanying drawings, which illustrate an
embodiment of the inventioo constituting the best mode
presently contempléted for carrying out the invention in
actual practice:

Fig. 1 is a block diagram showing the terminal
device driving system in the existing Digital Equipment
Corporation VMS operating system and represents the prior
art environment for the invention;

Fig. 2, a block diagram showing a portion of prior
art environment of Fig. 1, with additional blocks as
created by the invention, but not connected into the
blocks shown from Fig. 1;

Fig. 3, a block diagram showing the combination of
the additional blocks of the invention interconnected

with the blocks of the existing environment;

WO 89/03556 PCT/US87/02653

10

15

20

25

30

35

Fig. 4, a block diagram showing additional blocks
necessary to make wuse of the monitored terminal
information and shows the program and information links
for getting monitored data from the UC Device and UC
Driver of Fig. 3 into a temporary buffer;

Fig. 5, a block diagram showing additional blocks
necessary to transfer the information from the temporary
buffer as obtained in the system of Fig. 4 to any
aﬁxiliary terminal device, Figs. 4 and 5 together showing
transfer of the monitored data to the auxiliary terminal;

Fig. 6, a block diagram showing an alternate
arrangement to perform the same function as performed by
combined Figs. 4 and 5, to get the monitored data to an
auxiliary terminal device;

Fig. 7, a block diagram similar to Fig. 5, showing
the program and information links required to transfer
information from an auxiliary terminal device to a
temporary buffer; and

Fig. 8, a block diagram similar to Fig. 4, showing
the program and information links required to transfer
information from the temporary buffer to the UC Driver
and UC Device, Figs. 7 and 8 together showing forcing of
data fromran auxiliary terminal to the CPU and monitored

terminal.

WO 89/03556 PCT/US87/02653

1

10

15

20

25

30

35

DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENT

Although the invention may be used with any computer
system using an operating system having independent
device drivers and dependent device drivers for driving

terminal devices, the invention will be described with

particular reference to Digital Equipment Corporation's

VMS operating system. Device drivers are explained in

detail in the VAX/VMS Guide to Writing a Device Driver

published by Digital Equipment Corporation.

As shown by Fig. 1, the standard Digital Equipment
Corporation's (DEC's) VMS operating system is arranged
with at least one terminal independent device driver, one
such driver called TT Driver by DEC, which receives
information from the centfal processing unit (CPU) of the
system intended for a specific terminal device and
receives information from specific terminal devices
intended for the CPU. The terminal independent device
driver 1is designed to be substantially terminal
independent meaning that the information is directed to
or from a particular terminal regardless of the
particular physical, electrical, and software
requirements of the terminal. The terminal independent
driver contains all of the basic routines which all

programs call through VMS for doing terminal input and

output. The present VMS systems utilize a single

independent device driver to drive all terminal dependent

device drivers and all terminal devices.

WO 89/03556 PCT/US87/02653

10

15

20

25

30

35

Since the terminal independent device driver is
substantially terminal device independent, in order to
provide input or accept output from a particular
terminal, such driver must work through a terminal

dependent device driver. This is a driver which takes

the information from the terminal independent device

driver and puts it in a form necessary to operate the
hardware terminal controller which actually operates the
terminal itself. The terminal dependent device drivers
are of various types dependent upon the particular
hardware terminal devices to be operated by the driver.
In DEC terminology such dependent device drivers may be,
for example DZ Drivers, ¥YC Drivers, or Console Drivers.

Thus, if the hardware terminal controller to be operated

is a DEC DZ-11l or DZ-32, the terminal dependent device

d;iver is the DZ Driver. If the controller is a DMF-32,
the terminal dependent device driver is the YC Driver.
Other controllers will require other dependent device
drivers. Here again, in DEC systems, one controller can
control a number of actual terminals, and if all
controllers used are of a single type, a single terminal
dependent device driver may be used to drive all terminal
controllers and all terminal devices. The terminal
dependent device driver contains the routines necessary
for actually placing output in a hardware register,
getting input from | a hardware register, handling

interrupts, and handling other hardware dependent tasks.

WO 89/03556 , PCT/US87/02653

10

15

20

25

30

35

As indicated above, a computer system may include
many hardware termiﬁal devices, such as CRT input/output
terminals, printers, readers, or data storage devices,
yet have a single hardware terminal controller, a single
terminal dependent device driver and a single terminal
independent device driver. In such instance, each actual
terminal device has its own identifying data and any
information from the CPU directed to a particular
terminal device will also contain the identifying data
for the terminal device to which it is directed. With
the DEC VMS system, when the information directed to a
particular terminal device reaches the terminal
independent device driver, such driver looks up the
identifying data by which the terminal dependent device
driver identifies the terminal which has been identified
by the CPU. The identifying data for the terminal
dependent device driver is known in VMS as the Port
Vectors and terminal Unit Control Block (UCB). These
Port Vectors identify to the terminal independent device
driver the corresponding terminal dependent device
drivér. The terminal UCB identifies the exact hardware
terminal device to which the information from the CPU is
to be directed. Thus, Figs. 1 and 2 show the terminal
independent device driver connected through the Port
Vector to the terminal dependent device driver indicating
that information for a particular terminal device, passes
by reason of the Port Vectors from the terminal

independent device driver to the terminal dependent

=10-

WO 89/03556 PCT/US87/02653

10

15

20

25

30

device driver. The information then passes directly to
ﬁhe hardware terminal controller and the terminal. The
address of the terminal UCB is always kept in a known
general register so that it is available to any terminal
device driver. Since the address §f the UCB is always
known and thus the UCB is always available to any of the
terminal device drivers, the UCB is not shown in the
drawings.

Infofmation passing from the CPU to the terminal in
the VMS system can be passed in one of two ways. The
terminal indeéendent device driver includes several
registers which store information for direct transfer to
ﬁherterminal dependent device driver. If the information
to be passed is a single character, it can be placed in
the general registers and passed directly from the
terminal < independent device driver to the terminal
dependent device driver by use of the Port Vectors. If

the information is more than a single character, such

information to be transferred is stored in physical main

memory and directions or a pointer to the location of the
information in memory is placed in the general registers
in the CPU and passed from the terminal independent
device driver to the terminal dependent device driver
through the Port Vectors. At the same time, control of
the CPU is turned over to the terminal dependent device
driver which then, through another communication
direction referred to as the Get Vector, transfers the

information from the CPU's memory directly to memory in

WO 89/03556 —l1- PCT/US87/02653

10

15

20

25

30

35

the hardware terminal controller; this transfer may be
done by either the terminal dependent device driver or
the hardware terminal controller. Whether one character
or many characters are output, the Port Vectors and
terminal UCB serve as a directing means to identify the
proper terminal device and direct information to the
terminal dependent device driver so that it reaches the
proper terminal device.

In reverse fashion, when a terminal sends
information to theVCPU, it has to let the CPU Kknow from
which terminal the information 1is coming. When
information from a terminal device reaches the terminal
dependent device driver, such driver looks wup the
identifying information by which the terminal independent
device driver identifies the terminal from which the
information comes and through such identifying
information, known as the terminal UCB, looks up the Put
Vector in said UCB and then transfers the information £o
the terminal independent device driver through the Put
Vector. As mentioned earlier, the address of the
terminal device's UCB is always stored in a specific
general register. Again, such information transfer can
bé accomplished in two ways. When the information is a
single character in length, it is stored in general
registers in the terminal dependent device driver and can
be transferred directly from the terminal dependent
device driver to the terminal independent device

driver. If the information is longer than a single

-12~

WO 89/03556 PCT/US87/02653

1@

15

20

25

30

35

character, then such information is stored in memory by
either the terminal dependent device driver or the
hardware terminal controller and directions or a pointer
to the information is passed via the Put Vector through
the general registers in the CPU to the terminal
independent device driver which then, transfers the
information to a temporary buffer controlled by the
terminal independent device driver. 1In either case, the
Put Vector and terminal UCB serve as directing means to
identify the ©proper terminal device and direct

information to the terminal independent device driver so

- that it is properly identified as to the terminal from

which it came.

The Get Vector which in many instances facilitates
two-way communication and information transfer between
the two drivers is considered as part of each of the

directing means which couple the two drivers together for

information transfer.

The drivers in VMS, both device independent and
device dependent, are separate and exist as separate
executable images storedrin separate disk files in the
system. These drivers are created and exist as soft-
ware. The hardware terminal controller and the terminals
themselves represent actual hardware. The controller and
the terminals are connected by a hardware communication
link. When the system starts up, VMS automatically loads
the drivers into various sections of system physical

memory. New drivers can be added and loaded at

4

-13-

WO 89/03556 : PCT/US87/02653

10:

15

20

257

30

35

anytime. In the drawings, the drivers, which represent
software, énd the' hardware are shown as rectangular
boxes. Data structures which represent stored data, such
as the DPort Vectors, are represented with rounded
corners.

While operation of the VMS system has been described
in a general sense above, a more detailed description as
to program structure and, steps follows. Since the
drivers are not bound into the operating system by a link
editor, VMS requires all drivers to use position-
independent code and to follow a rigid protocol in
handling user requests and servicing device interrupts.
Part of this protocol requires a description of various
data structures "for handling user reguests and
interrupts. Some of these structures are:

Channel Reguest Block (CRB) - Used to handle the

allocation and transfer of data to the device hardware

controller.

Unit Control block (UCB) - There is a UCB for each:

unit of a particular device type. The drivers use this
block to store information about each wunit. Such
information is generally device dependent, but usually
includes at least the following items: pointer to the
CRB, device unit number, owner process identification,
de&ice characteristics, device status (on-line, busy,
waiting for interrupt and/or timeout), device state
(reading, writing, output stopped, etc.), information

about I/0 currently being handled, pointer to IRP

-14~

WO 89/03556 PCT/US87/02653

1

10

15

20

25

30

35

(described below) currently being processed, and saved
registers and program counter if driver execution is
suspended.

I/0 Regquest Packet (IRP) - A driver can actually
complete the processing of an I/0 request while allowing
the calling user process to continue executing. When
this occurs, the I/0 request is placed in an IRP and is
then .delivered by the I/0 scheduler to a STARTIO routine
in the device driver code. When the I/0 is completed,
the driver causes the operating system to set an event
flag. The user process can then check this flag to
verify that. the I/0 has in fact completed. The IRP
includes the following information: requesting process
identification, address of requested device's UCB, type
of request (read, write, set characteristics, etc.),
address of user buffer, length of user buffer, and event
flat to set when I/O request is completed.

As explained abo#e, the individual terminal inde-
pendent device drivers and the terminal dependent device
drivers are not connected directly together but communi-
cate via a VAX jump subroutine through special Vector
tables (i.e., Port Vectors, Get Vector, and Put Vector)
which are included at a known position in each driver.
The address of Ehe Vector tables for a particular device
is always placed in the UCB. The Port Vector table

contains the. Port Vectors which point to port driver

WO 89/03556 -15- PCT/US87/02653

10

15

20

25

30

35

routines in the terminal device dependent driver. The
special port driver routines which are of particular
interest for this invention are:

Start Terminal Output - This routine is used to
initiate the terminal controller to ensure that it will
cause an output interrupt to occur. It also is used to
make sure that the data passed in the general registers
is ready to output as soon as the interrupt occurs.
Consequently, this routine has the following input from
the general registers:

Input: Register 5 contains address of terminal's
UCB. Register 3 contains either the character to output
or the address of the data in memory to output and
register 2 contains the number of characters to output.
A condition code is set to indicate which case applies.

Start Terminal DMA Output - This routine is func-
tionally the same as the Start Terminal Output
routines. However, it is able to set up a direct memory
access (DMA)' transfer to be performed by the hardware
terminal controller. Although the input is specified
through different registers, it remains the same, except
more than one character is always output if this routine
is called.

In addition, the terminal dependent device driver
can call routines in the terminal independent device
driver in order to retrieve more characters to output and

to give it input characters £from the terminal. The

WO 89/03556 - —le- PCT/US87/02653

I1¢

15

20

25

30

35

~addresses for these routines are stored in the Get and

Put Vectors in the terminal device's UCB. These routines
are described below:

Get Output Data - This routine is called whenever an
outpué interrupt occurs and there is no more data to
output to the terminal. Whenever an output interrupt
occurs, the output interrupt routine in a driver like
DZDRIVER immediately outputs any data that was passed
earlier to the Start Terminal OQutput routine. Once this
data has been outputed and another output hardware inter-
rupt occurs, the interrupt routine calls the get output
data routine via the Get Vector to get more data to
output. If there is no more data to output, then the
interrupt routine does not ask the controller to generate
another outéut interrupt, thereby terminating the output

sequence. The Get Output Data routine has the following

input and output passed through the general registers:

Input: Register 5 contains the address of the
terminal's UCB.

Output: Register 3 contains either the character to
output or the address of the data in memory to output and
register 2 cqntains the number of characters to output.
A condition code is set to indicate which case applies.

Put Input Data - Whenever input is available from a
terminal, the hardware controller generates a terminal
interrupt. This in turn causes VMS to call the terminal
input interrupt routine in the terminal dependent device

driver. This routine then reads the character from the

WO 89/03556 -Lli- PCT/US87/02653

1

Ig:

15

20

25

3Q

35

controller and then calls the Put Input Data routine via
the Put Vector to let the terminal independent device
driver process, echo and buffer the character.
Eventually, the terminal independent device driver passes
a stream of terminal input to the user process requesting
it. The Put Input Data routine has the following input

and output:

Input: Register 3 contains the input character from
terminal. Register 5 contains the address of the
terminal's UCB. .

| Output: The Put Input Data routine calls the Get
Output Data routine in order to output any echo for the
typed characters. Thus, the output from the Put Input
Data routine is the same as the output from the Get
Qutput Data routine.

Thus, as shown in Fig. 1, the output information
from VMS to a terminal passes through a terminal indepen-
dent device driver through the Port Vectors or Get Vector
which direct the information to the appropriate terminal
dependent device driver which, in turn, directs the
information to the appropriate hardware terminal
cqntroller which actually causes the information to
appear at the appropriate output terminal. With
information from the terminal, it passes through the
hardware terminal cont;oller to the terminal device

dependent driver which directs the information through

-18=-

WO 89/03556 - ' PCT/US87/02653

1 the appropriate Put Vector to the terminal independent

10

15

20

25

30

35

device driver which then directs the information on to
the CPU.

When it is desired to monitor a particular terminal
device using another terminal device, herein referred to
as an auxiliary terminal device, it is necessary to
effectively connect the auxiliary terminal device 1in
parallel with the device to be monitored. As used in
this application, the term "effectively parallel™ a
terminal device does not mean a true electrical parallel
connection of the auxiliary terminal device and the
terminal device being monitored, but merely a hook-up or
linking of the two terminal devices so that information
from the CPU to thé monitored terminal device appears at

both terminal devices. In some instances, the linking

will also provide for information entered at the

auxiliary terminal device to be directed to the CPU and
appear on both terminal devices.

In order to create the parallel 1linking of the
desired terminal devices, it is necessary to create

another driver device, herein arbitrarily referred to as

‘a user controlling driver or UC Driver, and to create

another device for each terminal to be monitored, herein
arbitrarily referred to as a user controlling device or
UC Device. Figure 2 shows a UC Driver and UC Device. 1In
order to direct information from the terminal independent
device driver to the UC Driver, it is necessary to insert

a set of New Port Vectors and a New Get Vector for the

WO 89/03556 -19- , PCT/US87/02653

1

10

15

20

25

30

35

output of the terminal independent device driver.
Similarly, in order to direct information <£from the
terminal dependent device drivers to the UC Driver, it is
necessary to insert a New Put Vector at the output of the
terminal dependent device drivers. These are shown as
blocks labeled "New Port Vectors" and "New Put Vector.”
The UC Driver is a software driver not inherent or
existing in the VMS software and 1is created by a
programmer in accordance with the invention which may be
loaded using the normal driver loading procedure provided
by VMS. Once the driver is loaded, it remains in main
memory until the system is taken down. When needed, the
UC Driver creates a UC Device and the necessary New Port
Vectors, New Put Vector and New Get Vector.

UC Driver allows a system manager to create as many
UC Devices as he desires. Each of these software devices
is capable of monitoring any terminal on the. system.
However, each device can only monitor one terminal at a
time. ‘Therefore, if ten terminals need to be monitored
simultaneously then the system manager should create 10
UC Devices. This can be done through normal DEC utili-
ties provided with VMS. The UC Driver is basically a
program device and is shown as a rectangular box in the
drawing while the individual UC Devices are data struc-
tures and shown with rounded corners.

In general termé, the UC Driver is set up to take
the place of and act as the terminal dependent device

driver when looking from the terminal independent device

WO 89/03556 =20~ PCT/US87/02653

10

15

20

25

30

35

driver and to take the place of and act as the terminal
independent device driver when looking from the terminal
dependent device driver. Initially, the UC Driver
creates a UC Device and the New Port Vectors, New Put
Vector and New Get Vector. - These are set up and exist
separately from the system. This is shown in Figure 2
where the system of Figure 1 exists as in Figure 1 and
the UC Driver, UC Device, New Port Vectors, New Put
Vector, and New Get Vector exist separately as shown.

In order to monitor a desired termfnal, the links as
shown in Figures 1 and 2 are broken so that the UC
Driver, UC Device, New Port Vectors, New Put Vector and
New Get Vector are inserted and linked as shown in Figure
3. With this arranéement, all information from the CPU's
operating system to be directed to the terminal device
being monitored is directed from the terminal independent
device driver through the New Port Vectors, and in some
cases, as described above, using the 0ld Get Vector, to
UC Driver. It is then directed through the UC Device and
the 014 Port Vector, sometimes also using the New Get
Vector, to the terminal dependent device driver. Infor-

mation from the terminal is directed by the New Put

~Vector, and in some cases, as described above, using the

New Get Vector, to UC Driver. It is then directed
through the UC Device and the 01d Put Vector, again
sometimes also using the 0ld Get Vector, to the terminal
independent device driver. As the information passing in

either direction between the CPU and the terminal passes

WO 89/03556 -21- PCT/US87/02653

10

15

20

25

30

35

through the UC Driver, the UC Driver sets up the informa-
tion so that it can be made available to an auxiliary
terminal device. This usually will take the form of at
least one memory buffer into which the information is
placed and a program in the system that accesses the
memory buffer and transfers the information to the
auxiliary terminal. Where it is desired to use the
auxiliary terminal not only to monitor a terminal but
also to provide input into the system, the program will
also provide for taking input from the auxiliary terminal
and providing it to the UC Driver for further transmis-
sion to the CPU.

We now turn to a more detailed discussion of the UC
Driver, UC Device,'and their operation and linking into
the system. Each UC Device has a UCB associated with it
as mentioned above. However, no hardware is associated
with the device. The UCB does contain the following
additional information:

Address of monitored terminal's UCB

Monitored terminal's Old Get Vector

Monitored terminal's 0ld Put Vector

Address of Monitored terminal's 0ld Port Vector Table

Address of buffer to hold terminal output

Size of buffer to hold terminal output

Current position pointer within output buffer

Address of buffer to hold terminal input

Size of buffer to hold terminal input
Current position pointer within output buffer

WO 89/03556 =22- PCT/US87/02653

ut

10

15

20

25

30

In addition, the UC Driver maintains a list of the

UCB for each monitored terminal and the UCB for each

correspohding UC Device. This list is used at times to
find out which UC Device UCB be;ongs with a given
terminal UCB.

In order to use a UC Device, a user program just
calls and performs a normal VMS ASSIGN system service as

described in the VAX/VMS System Services Guide published

by Digital Equipment Corporation. This service assigns a
channel number that is to be used py the user program in
conjunction with all I/0 calls to the UC Device. As with
all I/0 calls, VMS automatically uses this channel number
to Figure out the appropriate UCB associated with the I/0
reguest and passeé* the address of this UCB on to UC
Driver.

Different I/O operations like Read, Write, Set Up
Monitoring and Take Down Monitoring are performed using

the QIO system service provided by VMS again as described

in the VAX/VMS Systems Service Guide. The user program
simply passes a function code indicating which particuiar
I/0 service it desires from the device driver. The

device driver protocol as described in the VAX/UMS Guide

to Writing A Device Driver as referred to earlier allows

a driver to define a variety of different functions and
the addresses of the subroutines within the driver which

are designed to handle those functions.

i

WO 89/03556 ~23- ~ PCT/US87/02653

10

15

20

25

30

35

Whenever a program wishes to cause UC Driver to
begin monitoring a given terminal, it assigns a free UC
device and then performs a QIO call with the following
input. |

Function Code = Set Up Monitoring

UC device identifier (VMS channel number)

Name of terminal to monitor

UC Driver then breaks the logical link and inserts
jtself between the terminal independent device driver and
the terminal dependent device driver. If insertion was
successful, it returns a success status to the userf
otherwise, it tells the'user than an error occurred.

UC Driver actually breaks the normal logical link in
VMS to move from Figure 2 to Figure 3 as follows:

1. It calls a VMS routine which takes the
terminal name for input and returns the address to
the corresponding terminal UCB as output.

2. The program allocates a section of memory
large enough to hold the terminal's Port Vector
table (it is pointed to by the terminal UCB).

3. The program copies the terminal's Port
Vector Table to the new section of memory. This
will become the New Port Vector Table.

4, The address for the terminal's Port Vector
table is stored in the UC device's UCB. This is now

referred to as the 0ld Port Vector Table.

WO 89/03556

ot

10

15

20

25

30

35

-24- PCT/US87/02653

5. The addresses for the terminal's Start
Terminal Output and Start Terminal DMA Output
routines in the New Port Vector table are changed to
point to UC Driver's own UC Start Terminal Outpﬁt
and UC Start DMA Terminal Output routines.

6. The terminal UCB and the UC Device's UCB
are added to UC Driver's 1list of monitored
terminals.

7. UC Driver allocates two memory buffers,
one to hold the data being outputed to the terminal
and another to hold the data being inputed fromrthe
tefminal. The addresses of these buffers are stored
in the UC Device'é UCB. The starting addresses of
these buffers are also placed in the current posi-
tion pointers in the UC Device's UCB, thereby
indicating that the buffers are empty.

8. The driver temporarily disables interrupts
at this point to keep the terminal device it is
moniﬁoring from interrupting the CPU while the
terminal's UCB is in an unstable state.

9. The address of the Port Vector table in
the terminal UCB is changed to point to the New Port
Vector table. Thus, TT Driver will call UC Driver's
Start Terminal Output routines rather. than the
terminal dependent device driver's routine.

10. The address of the Get OQutput Data routine
(Get Vector) and the address of the Put Input Data

routine (Put Vector) that are stored in the

WO 89/03556 -25- PCT/US87/02653

10

15

20

25

30

35

terminal's UCB are saved in the UC Device's UCB as

the 01d Get Vector and the 01d Put Vector. Then UC

Driver changes the addresses stored 1in the

terminal's UCB so that UC Driver's UCGet Output Data

and UCPut Input Data routines will be called
instead. These changed addresses in the terminal's

UCB are the New Get Vector and the New Put Vector.

11. Interrupts are reenabled.

At this point, the link has been broken and all data
between the terminal independent device driver and the
terminal will fléw.into UC Driver.

Once the connections have been made as in Figure 3
and as described above, all terminal output passes
through one of the UC Driver subroutines: UCStart
Terminal Output, UCStart Terminal DMA Output, and UCGet
Output Data. In order to emulate the normal Start
Terminal Output and Start Terminal DMA Output routines,
UC.Driver's routines preserves the input passed to the
routines and calls the device dependént driver's Start
Terminal Output and Start Terminal DMA Output réutines,
just before exiting. UC Driver knows where these
routines are because it stored the addresses to the 0ld
Port Vector table in the UC Device's UCB. When the UC
Start Terminal Output and UC Start Terminal DMA Output
routines are called with the address of the terminal's
UCB, UC Driver uses that address to look up the corres-
ponding UC Device's UCB in UC Driver's list of monitored

terminals. Now with the UC Device's UCB, it can £ind the

WO 89/03556

10

15

20

25

30

35

-26-

address of the 01d Port Vector table for the terminal and

finally through this table it can get the address of the

‘appropriate Start Terminal Output routine in the terminal

dependent device driver.

A_ significant amount of output data also £flows
through the UCGet Output Data routine. This routine is
called by the terminal dependent device driver in order
to get more data to output. As in the case of the Start
Terminal Output routines, UC Driver figures out the
corresponding UC Driver's UCB using UC Driver's list of
monitored terminals. ‘It then uses the 0ld Get Vector in
the UC Device's UCB to call the Get OQutput Data routine
in the terminal independent device driver which returns
additional data to output as described before. UC Driver
carefully preserves this output so that when it exits,
the output is available to the calling terminal dependent
device driver Jjust as though the driver had called the
terminal independent device driver's Get Output Data
routine.

Although terminal output data flows through three
routines in UC Driver, terminal input and any resulting
echorback £flows throughronly one routine, UC Put Input
Data. This routine is entered with the same input as the
terminal independent device driver's Put Input Data
routine which is described earlier. As in the other
three routines, UC Driver first looks up in the corres-

ponding UC device's UCB for the given terminal UCB. It

then uses the 01ld Put Vector in the UC device's UCB to-

PCT/US87/02653

£

1]

-27-

WO 89/03556 PCT/US87/02653

10

15

20

25

30

35

call the Put Input Data routine in the terminal indepen-
dent device driver which returns any data to echo back to
the terminal. UC Put Input Data carefully preserves the
output which contains the echo back (if any) from the
input. In this way, it appears to the device-dependent
driver that it had just called the TT Driver Put Input
Data routine directly.

The reason for passing all data through the UC
Driver is to make such data available to an auxiliary
terminal device, thus effectively paralleling the two
terminal devices. .= For this purpose, the information
passing through the UC Driver is stored in memory buffers
associated with the UC Device and such information is
then accessed and sent to the auxiliary terminal
device. The memory is accessed and the information sent
to the terminal device by means of a program.

As described earlier, the UCStart Terminal Output
and UCStart Terminal DMA Output are both called with
input parameters containing the data to output to the
terminal. Before UC Driver exits, it records this infor-
mation in the output buffer pointed to by the UC device's

UCB. This buffer is shown as the Output Buffer in

‘Figures 4, 6, and 8. Also, after UCGet Output Data calls

TT Driver's Get Output Data routine, via the 01d Get
Vector it now has access to the terminal output returned
by this routine and it records this output in the same

output buffer. Similarly, after UCPut Input Data calls

-28=-

WO 89/03556 , PCT/US87/02653

1 pr priver's Put Input Data routine via the 01d Put

10

15

20

25

30

35

Vector, it now has access to the echo back and records
this echo back in the same output buffer.

The UCPut Input Data is called with general register
3 containing the input character. This character is
placed in the input buffer shown as the Input Buffer in
Figures.4, 6, and 8.

Data is always placed into the buffer starting at
the current position pointer which is stored in the UC
Device's UCB. When data is placed into either of these
buffers, the corresponding pointer to the current posi-r
tion is updated to point to the next free byte in the
buffer. When both buffers are full, data will be
disqarded. However, if the user program accessing the UC
Device empties the buffers on a regular basis, this will
not happen.

iFignres 4, 5, and 6 show general user program
arrangements for accessing the information in the Input
and Output Buffers and feeding such information to an
auxiliary terminal device while Figures 7 and 8 show a
general user program arrangement £for accepting informa-
tion from an auxiliary terminal device and forcing it
into the Input and Output buffers so that it is supplied
to the CPU as if it had come from the monitored
terminal.

As shown in Figure 4 the user program, indicated as

- box labeled Program, is linked to the operating system

input/output interface, here labeled VMS I/O Interface.

"

@

-29-

WO 89/03556 PCT/US87/02653

10

15

20

25

30

35

The VMS I/0 Interface is linked to the UC Driver which is
linked to the UC Device. Such linkage is shown by solid
lines between the blocks. The UC Device is shown as
having accesses to the Input Buffer and the Output
Buffer. The access is shown by the broken lines. Thus,
the Input buffer is an information structure that the UC
Driver has access to through the UC Device, also an
information structure. As described above, as
information passes through the UC Driver and UC Device,
UC Driver causes the information to be placed into the
Input Buffer or Output Buffer as appropriate. To access
such information, the program works through the VMS I/0
interface to cause the UC Driver to transfer the informa-
tion, if any, from ‘the Input Buffer (information from the
terminal to the CPU) to a First Temporary Buffer. Once
in the First Temporary Buffer, the program, again through
the VMS I/0 interface, causes the information to be
transferred to the Buffer. Moving to Figure 5, the
Buffer, Program, and VMS I/0 Interface are the same as
shown in Figure 4, but have been separated for ease of
illustration. The Program causes the information now in
the Buffer to be transferred to a Secondary Temporary
Buffer from where it is directed by the program through
the VMS I/0 Interface and the terminal independent device
driver (TT Driver) to the terminal device in normal VMS
manner as shown in Figure 1. Thus, in Figure 5, the
Terminal Device is represented as a data structure. It

actually includes everything to the right of TT Driver in

-30-

WO 89/03556 PCT/US87/02653

10

15

20

25

30

35

Figure 1 and the information from the Secondary Temporary

- Buffer is transferred via the TT Driver, Port Vectors and

Get Vector, Terminal Dependent Device Driver, and Hard-
ware Terminal Controller to the desired auxiliary
terminal. After information from .the Input Buffer of
Figure 4 has been transferred, »information from the
OQutput Buffer is similarly transferred and then the
process is repeated as long as new information is placed
by UC Driver in either of the Input or Output Buffers.
Figures 4 and 5 together show one way in which a program
can access andrcause the information stored in the Input
and Output Buffers to be monitored by an auxiliary
terminal device.

While the prodram described above takes information
from the input buffer first and then from the output
buffer, a program could take information from the output
buffer first. It is currently preferred to look at the
Input buffer first because generally there will be less
information going into the Input buffer than into the
Output buffer. This seems to provide a more equitable
distribution in looking at both buffers. Also, while an
input and output buffer memory is used and is preferred,
a single memory buffer could also be used.

Figure 6 shows an alternate, and more direct way in
which information from the Output and Input Buffers may
be transferred to an auxiliary terminal device such as a
disk or other secondary memory device for direct

storage. In this embodiment, the Program through VMS I/0

-3]-

WO 89/03556 PCT/US87/02653

10

15

20

25

30

35

Interface and through direct linkage with UC Driver, sets
up a direct access to the Input Buffer and Output Buffer
by the Program and the VMS 1I/0 Interface so that
information in the Output Buffer is transferred directly
to the Disk Driver and placed in disk memory and
similarly, information in the Input Buffer is transferred
directly to the Disk Driver and placed in disk memory.
The embodiment of Figure 6 is used when a terminal is to
be monitored such that the information passing to or from
the terminal is stored for later use. It is not used for
interactive use of an auxiliary terminal device.

Figures 7 and 8 are similar to Figures 4 and 5 in
that they show the same block arrangement, but show
information access 1links differently. Figures 7 and 8
show the linkage for forcing information from an
auxiliary terminal into UC Driver from where it is sent
to the CPU and appears on the monitored terminal. Figure
7 shows the program linked to the VMS I/O Interface which
is linked to TT Driver. As in Figure 5, the Terminal
Device block 1is. indicated as a data structure and
includes the Put Vector, Get Vector, Terminal Dependent
Device Driver, Hardware Terminal Controller and Terminal
as shown in Figure 1. The terminal in this case is the
auxiliary terminal. The information fed <£from the
auxiliary terminal is transferred through VMS I/0 Inter-
face and TT Driver to the Secondary Temporary Buffer from
where it is transferred to the Buffer. There, moving to

Figure 8, the information is transferred from the Buffer

-32=-

WO 89/03556 PCT/US87/02653

1 to the First Temporary Buffer where it is then treated as

10

15

20

25

30

35

input from the monitored terminal by UC Driver and UC
Device and placed in the Input Buffer generally by
calling the UC Put Input Data routine. As that input is
echoed back from the CPU, it goes into the Output Buffer
and also appears on the monitored terminal as information
entered by the terminal into the CPU.

From this general description of the program
function, any person skilled in the~domputer programming
art and familiar with VMS programming could set up the
specific program necessary to access and monitor the
information. The actual access by the program is
initiated by doing a Q10 request with a read Function
Code. The request passes the following output:

Input: Function Code = Read

Assigned channel number f£cr UC Device
Address of user buffer to receive data
Address of place to return extended status
Output: User buffer contains data read
Extended status contains number of bytes
read and a bit indicating whether the
data read is terminal input or output

The user program uses the extended status word to
determine how many bytes were read from the UC Driver and
whether the data read is terminal input or output.

When the UC Driver receives a read request of this
type,'it follows these steps:

| 1. Disables Terminal Interrupts. A terminal

interrupt could mess up the Terminal Input and

Output buffers.

WO 89/03556

10

15

20

25

30

=33- PCT/US87/02653

2. If there is any data in the Terminal Input
Buffer, UC Driver moves all of the data from the
Terminal Input Buffer up until the current position
pointer into the user program's read buffer and sets
the status bit indicating that the data is terminal
input. The current position pointer in the UC
device's UCB for the Terminal Input Buffer is reset
to point to the beginning of the buffer to indicate
that it is empty.

3. Otherwise, if there 1is no data in the
Terminal Input Buffer, UC Driver moves all of the
data from the Terminal OQutput Buffer up until the
current position pointer into. the user program's
read buffer and sets the status bit indicating that
the data is terminal output. The current position
pointer for the Terminal Output Buffer is reset to
point to the beginning of the buffer to indicate
that it is empty.

4. UC Driver returns the number of bytes read
in the buffer for extended status. If no bytes were
read, then a zero is returned.

5. Interrupts are reenabled and the I/0 call
is completed.

With the user program merely accessing the data, the

data may be stored in secondary memory as a log file or

audit trail for later use, or the data may be displayed

35
on

a CRT terminal or printed out on on a hardcopy

device.

-34-

WO 89/03556 ' PCT/US87/02653

10

15

20

25

30

Where input from the auxiliary terminal is to be
directed into the computer system a user program can
force input to the process running on the wuser's
terminal. This input looks just like the monitored user
had typed that input at his own terminal, even though he
didn't. A user program forces input of this type by
issuing a Q10 call to the UC Device with the following
input pér ameter: '

Input: Function Code = Write

Assigned channel number for UC Device
Data to write
Number of bytes to write

When UC Driver receives a request with a write
function code it performs the following steps:

1. Look up the corresponding Terminal UCB for
the UC Device and places this in general register 5
as input for calling the Put Input Data routine.

2. Disable terminal interrupts.

3. Move a single byte from the data to write
Q10 parameter into the register 3 as input parameter
for Put Input Data.

4. Call UCPut Input Data which eventually
causes TT Driver to think that a character has just
been typed on the monitored terminal. Also, UCPut
Input Data correctly buffers the echo back. See the
previous description of the UC Put Input Data

routine.

3=

WO 89/03556 PCT/US87/02653

10

15

20

25

30

35

5. Move the next byte from the data to write

010 parameter into the input parameter for Put Input

Data. If there is no next byte, then go to step

6. Otherwisé loop back to step 4.

6. Reenable terminal interrupts.

As described earlier, UC Driver just discards data
once the Terminal Output Buffer is full. However, in
order to avoid this situation a feature may be built into
UC Driver which allows it to automatically turn off the
output to the terminal device until the Terminal Output
buffer is emptied.

In the terminal dependent device driver there is a
routine called Stop Output which stops terminal output.
The address of this routine is found in the Port Vector
Table. Whenever, the output buffer is two-thirds full,
UC Driver calls this routine in order to stop output.
The only input this routine requires is the address of
the terminal's UCB. Once the buffer is almost empty, UC
Driver calls another routine called Resume Output (its
address is also found in the Port Vector Table) which
starts the terminal output up again. This routine also
requires the address of the terminal's UCB as input.

When it is desired to merely monitor a terminal
device a program can be used which runs in the background
and records all of the data passing between a monitored
terminal and VMS. This data is stored in a log file (on
disk or some other secondary memory device)} that can be

kept for documentation or security purposes. The program

WO 89/03556

10

15

20

25

30

35

-36-

does this by executing a "Set up" Ql0 call to UC Driver

giving the terminal to monitor and then doing "Read" Q10

‘calls to UC Driver in order to read the data passing

between the terminal and VMS. The data the program reads
is then outputed to the log file.

When it 1is desired to interact with a terminal
device, a program caﬁ bé used which does a "Set Up" Q10
call to set up monitoring on a specified terminal. After
this it does "Read" Q10 calls to retrieve the data going
to and from the monitored terminal. This data is then
displayed oﬁ‘the specified user's terminal so that he can
watch what is happening.

In addition, the program also provides a mechanism
so that if the user hits a character on his terminal, the
program issues a "Write" Ql0 call to the UC Driver so
that the character is sent to the monitored user's
process Jjust as though tﬁe user had hit the character
himself.

Whén a user érogram has finished monitoring a
particular terminal, it can cause UC Driver to disconnect
U.C. Driver and reconnect the normal link between therTT
Driver and the terminal device dependent driver. It does
this by issuing a Q10 call with the "take down" function

code to UC Driver. As input the user program passes the

- VMS channel number assigned to the UC device.

PCT/US87/02653

i

WO 89/03556 =37- PCT/US87/02653

o

15

20

30

35

When UC Driver executes the take down function it
performs the following steps:

1. Remove the monitored terminal's UCB and
the corresponding UC Device's UCB from UC Driver's
list of monitored terminals.

2. Disable interrupts.

3. Restore the addresses saved in the UC
Device's UCB to the terminal's UCB for the Get
Vector, Put Vector the Port Vector table.

4, Reenable Interrupts. At this point the
terminal 1s no 1longer being monitored aﬁd the
logical link has been reconnected.

5. Deallocate the memory buffer used to hold
the New Port Vector table created when the logical
link was originally broken.

6. Deallocate the memory buffers used to hold
the terminal input and output data.

The invention also contemplates the method of
connecting, in a computer system as described, an
auxiliary terminal device effectively in parallel with a
selected terminal device of the system so that the
selected terminal device <can be monitored by the
auxiliary terminal. The method includes the steps of
creating a UC Driver and a UC Device coupled to the UC
Driver and coupling that combination in between the
terminal independent device driver and the terminal
dependent device driver associated with the terminal

device to be paralleled so that the output of the

WO 89/03556

-38-

1 terminal independent device driver intended for the

10

15

20

25

30

35

terminal dependent device driver passes through the UC
Driverr and UC Device before arriving at the terminal
independent device driver and making the information
passing through the UC Driver available to an auxiliary
terminal device.

Whereas this invention is here illustrated and
described with specific reference to an embodiment
thereof presently contemplated as the best mode of
carrying out such invention in actual'practice, it is to
be understood that various changes ﬁay be méde in
adapﬁing the invention to different embodiments without
deparfing from the broader inventive concepts disclosed

herein and comprehended by the claims that follow.

) PCT/US87/02653

"

WO 89/03556 =39- PCT/US87/02653

10

15

20

25

30

35

CLAIMS
I Claim:

1. In a digital computing system having a central
processing unit with an operating system, at least one
terminai independent device driver, at least one terminal
dependent device driver, a plurality of terminal devices
each coupled to an associated one of the at least one
terminal dependent device drivers, first directing means
coupling the at least one terminal independent device
driver with one of the at least one terminal dependent
device drivers so that information from the CPU's
operating system directed to a particular terminal device
is properly identified for the intended terminal device
and is directed to the appropriate terminal dependent
device driver for that terminal device, second directing
means coupling the at least one terminal depgndent device
driver with the at least one terminal independent device
driver so that information from the particular terminal
device is properly identified and directed to the
terminal independent device driver and then to the CPU's
operéting system, a system for connecting an auxiliary
terminal device effectively in parallel with a selected
terminal device comprising a user controlling driver; a
user'controlling device coupled to the user controlling
driver, the user controlling driver and user controlling
device combination being coupled between the terminal
independent device driver and the terminal dependent

device driver associated with the terminal device to be

WO 89/03556 | -40- PCT/US87/02653

1 paralleled so that the output of the terminal independent
device driver intended for the terminal dependent device
driver passes through the user controlling driver and

5 user controlling device before arriving at the terminal
dependent device driver and the output of the terminal
dependent device driver intended for the terminal
independent device driver ©passes through the user

1o controlling driver and user controlling device before

arriving at the terminal independent device driver; and

-

means in the user controlling driver for making the

15 informatioﬁ passing therethrough available to an

auxiliary terminal device.

20

25

30

35

-4]1-

WO 89/03556 PCT/US87/02653

10

15

20

25

30

35

2. A system for connecting an auxiliary terminal
device effectively in parallel with a selected terminal
device according to claim 1, wherein the first directing
means is positioned to direct information from the user
controlling device to the terminal dependent device
driver; wherein new first directing means are provided to
direct information from the terminal independent device
driver to the user controlling driver; wherein the second
directing means is positioned to direct information from
the user controlling device to the terminal independent
device driver, wherein new second directing means are
provided to direct inférmation from the terminal
dependent device driver to the user controlling driver,
and wherein the user <controlling driver directs

information to the user controlling device.

3. A system for connecting an auxiliary terminal
device effectively in parallel with a selected terminal
device according to claim 1, wherein the means in the
user controlling driver for making information available
to an auxiliary terminal device includes a memory
associated with the user controlling driver for storing

information passing therethrough.

~42-

WO 89/03556 PCT/US87/02653

10

15

20

25

30

35

4. A system for connecting an auxiliary terminal

device effectively in parallel with a selected terminal

"device according to claim 3, wherein means is included

for accessing the memory and providing the information in

the memory to the auxiliary terminal.

5. A system for connecting an auxiliary terminal
device effectively in paréllel with a selected terminal
device according to claim 4, wherein the means for
accessing the memory and pﬁoviding the information to the

auxiliary terminal is a computer program.

6. AArsystem for connecting an auxiliary terminal
device effectively 'in parallel with a selected terminal
device according té claim 5, wherein the program causes
the information stored in the memory associated with the
user controlling driver to be transferred to a first
temporary buffer memory, then to be transferred from the
first buffer memory to a second buffer memory, then to be
transferred from the second buffer memory by reason of

the terminal independent device driver to the auxiliary

terminal in normal manner.

WO 89/03556 =43- PCT/US87/02653

10

15

20

25

30

35

7. A system for connecting an auxiliary terminal
device effectively in parallel with a selected terminal
device according to claim 5, wherein the program causes
the information stored in the memory associated with the
user controlling device to be transferred directly from

such memory to the auxiliary terminal device.

8. A system for connecting an auxiliary terminal
device effectively in parallel with a selected terminal
device according to claim 7, wherein the auxiliary

terminal device is a secondary memory device.

9. A system for connecting an auxiliary terminal
device effectively’in parallel with a selected terminal

device according to claim 8, wherein the secondary memory

device is a disc memory device.

10. A system for connecting an auxiliary terminal
device effectively in parallel with a selected terminal
device according to <claim 3, wherein the memory
associated with the user controlling driver is an input
memory buffer for storing information passing through the
user controlling driver £from the monitored terminal
device to the CPU and an output memory buffer for storing
information passing through the user controlling driver

from the CPU to the monitored terminal device.

WO 89/03556 -44- PCT/US87/02653

190

15

20

25

30

35

1l1. A system for connecting an auxiliary terminal
device effectively in parallel with a selected terminal
device according to claim 10, wherein means is included
for alternately accessing the memory buffers and
préviding the information in the accessed memory buffer

to the auxiliary terminal.

12, A system for connecting an auxiliary terminal
device effectively in parallel with a selected terminal
device according to claim 11, wherein the input buffer is

accessed prior to accessing the output buffer.

13. A system for connecting an auxiliary terminal
device effectively in parallel with a selected terminal

device according to claim 2, wherein means is

additionally provided for supplying information from the -

auxiliary terminal device through the new second
directing means to the user controlling device and on to
the CPU and the terminal being monitored in normal

fashion.

1]

-45-

WO 89/03556 PCT/US87/02653

10

15

20

25

30

35

14. A system for connecting an auxiliary terminal
device effectively inrparallel with a selected terminal
device according to claim 13, wherein the means for
supplying information from the auxiliary terminal to the

user controlling device is a computer program.

15. A system for connecting an auxiliary terminal
device effectively in parallel with a selected terminal
device according to claim 14, wherein the program causes
the information from the auxiliary terminal device to be
transferred to a second temporary buffer memory, then to
be transferred from the second temporary buffer memory. to
a first temporary buffer memory from the second temporary
buffer memory, then to be transferred from the £first

temporary buffer memory to the user controlling driver.

16. A system for connecting an auxiliary terminal
devicé effectively in parallel with a selected terminal
device according to claim 1, wherein means is
additionally provided for supplying information from the
auxiliary terminal through the user controlling driver to

the CPU and the terminal being monitored.

-46—-

WO 89/03556 PCT/US87/02653

10

15

20

25

30

35

17. In a digital computing system having a central
processing unit with an operating system, at least one
terminal independent device driver, at least one terminal
dependent device driver, a plurality of terminal devices
each coupled to an associated one of the at least one
terminal Aependent device drivers, first directing means
coupling the at 1least one Vterminal independent device
driver with one of the at least one terminal dependent
device drivers so that information from the CPU's
operating system directed to a particular terminal device
is properly identified for the intended terminal device
and is directed to the appropriate terminal dependent
device driver for hat terminal device, second directing
means coupling the at least one terminal dependent device
driver with the at least.one terminal independent device

driver so that information from the particular terminal

device 1is properly identified and directed to the

terminal independent device driver and then to the CPU's
operating system, a method for connecting an auxiliary
terminal device effectively in parallel with a selected
terminal device comprising the steps of creating a user
controlling driver; creating a user controlling device

coupled to the user controlling driver; coupling the user

~ controlling driver and user controlling device

combination between the terminal independent device

driver and the , terminal dependent device driver
associated with the terminal device to be paralleled so

that the output of the terminal independent device driver

®

-47-

WO 89/03556 PCT/US87/02653

10

15

20

25

30

35

intended for the terminal dependent device driver passes
through the user controlling driver and user controlling
device before arriving at the terminal dependent device
driver and the outpuf of the terminal dependent device
driver intended for the terminal independent device
driver passes through the user controlling driver and
user controlling device before arriving at the terminal
independent device driver; and making the information
passing through the user controlling driver available to

an auxiliary terminal device.

10

15

20

25

30

35

WO 89/03556 -48- PCT/US87/02653

AMENDED CLAIMS
[received by the International Bureau on 5 April 1988 (05.04.88)
original claims 1 - 17 replaced by new claims 1 - 50 (17 pages)]

1. A method of controlling the movement of data
between a first driver program and a second driver program,
the first and second driver programs included in an
operating system for a digital computing system, the method
comprising the steps of:

generating a third driver program;

identifying an original set of vectors used by the
first and second driver programs to establish a
communication link between each other;

generating a new set of vectors to establish
communication links between (a) the first driver
program and the third driver program and (b) the second
device driver program and the third driver program;

inserting the new set of vectors in the locations
of the original set of vectors; and

communicating data between the first and third
device driver programs and between the second and third
driver programs by way of the communication 1links
established by the insertion of the new set of vectors
such that all data passing between the first and second
driver programs flows through the third driver program,
the flow of data being controlled by the third driver
program.

‘.

10

15

20

25

30

35

WO 89/03556 -49~- PCT/US87/02653

2. A method as defined in claim 1 wherein the digital
computing system further comprises an auxiliary terminal
device and wherein the method further comprises the step of
connecting the auxiliary terminal device to the digital
computing system so as to monitor all data input to and
output from the selected terminal device associated with the
second driver program.

3. A method as defined in claim 1 wherein the digital
computing system further comprises an auxiliary terminal
device and wherein the method further comprises the step of
connecting the auxiliary terminal device to the digital
computing system so as to monitor all data input to the
selected terminal device associated with the second driver
program.

4. A method as defined in claim 1 wherein the digital
computing system further comprises an auxiliary terminal
device and wherein the method further comprises the step of
connecting the - auxiliary terminal device to the digital
computing system so as to monitor all data output from the
selected terminal device associated with the second driver

program.

5. A method as defined in claim 1 wherein the digital
computing system further comprises an auxiliary terminal
device and wherein the method further comprises the step of
forcing input to the first driver program and to the second
driver program from the auxiliary terminal.

6. A method as defined in claim 1 wherein the step of
generating a third driver program comprises the step of
generating a third driver program which operates

independently of the operating system.

10

15

20

25

30

35

WO 89/03556 _50- PCT/US87/02653

7. A method as defined in claim 1 wherein the step of
generating a third driver program comprises the step of
providing an executable code 1listing which emulates the
first driver program when conducting input and output with
the second driver program.

8. A method as defined in claim 1 wherein the step of
generating a third driver program comprises the step of
providing an executable code listing which emulates the

second driver program when conducting input and output with
the first driver program.

9. A method as defined in claim 1 wherein the digital
computing system further includes a memory and wherein the
method further comprises the step of storing the original
set of vectors in the memory.

10. A method as defined in claim 1 wherein the digital
computing system further comprises an auxiliary terminal
device, a plurality of second driver programs, and a
plurality of terminal devices, each second driver program
associated with one terminal device, the method further
comprising the step of effectively paralleling an auxiliary
terminal device with any one of the plurality of second
driver programs.

[£3

10

15

20

25

. 30

35

WO 89/03556 -5~ _ PCT/US87/02653

11. A method as defined in claim 1 wherein the digital
computing system comprises a plurality of terminal devices
and a memory and wherein the method further ccmprises the
steps of: _

providing a first 1location in the memory for
storing input to the third driver program;

providing a second location in the memory for
storing output from the third driver program;

providing pointers indicating the next available
byte in the first and second locations;

providing a pointer to a third location in the
memory associated with a selected terminal device; and

providing a flow control flag for controlling the
flow of data through the third driver program.

12, A method as defined in claim 1 wherein the digital
computing system comprises a buffer located in memory and
wherein the method further comprises the step of storing

"input to the third driver program in the buffer.

13. A method as defined in claim 1 wherein the digital
computing system comprises a CPU and wherein the step of
inserting the new set of vectors comprises the step of
causing the execution of the CPU to jump to the third driver

program.

14, A method as defined in claim 1 wherein the digital
computing system comprises an auxiliary terminal device and
wherein the method further comprises the step of providing a
user program for (a) accessing the data flowing through the
third driver program and for (b) making the data available

to an auxiliary terminal device.

WO 89/03556 -52~ PCT/US87/02653

10

15

20

25

30

35

15. A method as defined in claim 14 wherein the user
program comprises the steps of:
directing the third driver program to place a data
word in the buffer; and
outputting the data word to the auxiliary terminal
device.

16. A method as defined in claim 15 wherein the user
program further comprises the steps of:

monitoring the buffer;

halting the input to the buffer from the second
driver program when the buffer is nearly full;

directing a routine which is called from the user
program to read the data in the buffer; and

resuming the input to the buffer from the second

driver program after the user program has read the data
in the buffer.

17. A method as defined in claim 14 wherein the user
program comprises the steps of:

accepting input from the auxiliary terminal
device;

placing the input in an allocated portion of the
memory associated with the third driver program; and

forcing the input to both the first driver program
and the second driver program.

18. A method as defined in claim 1 wherein the digital
computing system comprises a memory and wherein the method
further comprises the step of saving the original set of
vectors in the memory.

®

]

WO 89/03556 -53- PCT/US87/02653

1 19. A method as defined in claim 18 further comprising
the steps of: 7
breaking the communication link between the first,
second, and third driver programs, such that no data
5 flows through the third driver program;
removing the new set of vectors from the locations
of the original set of vectors;
replacing the original set of vectors in their
original locations; and
10 | reestablishing the communication link between the
first and second driver programs.

20. A method as defined in claim 1 wherein the digital
computing system comprises a selected terminal and wherein
15 the step of inserting the new set of vectors comprises the

steps of:
disabling ‘interrupts from a selected terminal
device;
inserting the new set of vectors; and

20 enabling interrupts from the selected terminal
device.
21. A method as defined in claim 1 wherein the digital

computing system comprises an addressable memory and wherein

25 the step of inserting the new set of vectors comprises the
step of moving an address associated with a third driver
program communication routine into the locations 1in an
allocated portion of memory associated with the second
driver program.

30
22. A method as defined 1in claim 21 wherein the

allocated portion of memory structure comprises a unit

control block.

35

WO 89/03556 -54- PCT/US87/02653

10

15

20

25

30

35

23. A method as defined in claim 1 wherein the first
driver program comprises a terminal independent device
driver and the second device driver program comprises a
terminal dependent device driver and wherein the step of
inserting the new set of vectors comprises the step of
moving an address location of at least one communication
routine associated with the third driver program into the
locations for a vector associated with the terminal

independent device driver and the terminal dependent device
driver.

WO 89/03556 55— PCT/US87/02653

10

15

20

25

30

35

24. A method of programming a digital computing system
so as to connect an auxiliary terminal device in parallel
with a selected terminal device, wherein the digital
computing system includes a CPU, a memory for storing
executable instructions and data, the selected terminal
device, an auxiliary terminal device, and an operating
system for controlling the flow of data between the CPU and
the selected terminal device, and wherein the operating
system includes a first device driver associated with the
CPU, a second device driver associated with the selected
terminal device, and a data communication pathway connecting
the first and second device drivers, the method comprising
the steps of:

generating a driver program adapted for
communicating with both the £first and second device
drivers;

allocating a portion of the memory for receiving
and storing data passed between the CPU and the
selected terminal device;

breaking the communication pathway and inserting
in the pathway the driver program;

reestéblishing the communication pathway between
the first and second device drivers such that all data
flows through the driver program without any apparent
interruption at the CPU or at the selected terminal
device; and

placing the data passed between the CPU and the
selected terminal device in a location in the allocated
portion of memory whereby the data is accessible by the

auxiliary terminal device.

25. A method as defined in claim 24 further comprising
the step of connecting the auxiliary terminal device to the
digital computing system so as to monitor all data input to

and output from the selected terminal device.

WO 89/03556

10

15

20

ZSZQ

30

3

_56m PCT/US87/02653

26. A method as defined in claim 24 further comprising
the step of connecting the auxiliary terminal device to the

digital computing system so as to monitor all data input to
the selected terminal device.

27. A method as defined in claim 24 further comprising
the step of connecting the auxiliary terminal device to the
digital computing system so as to monitor all data output
from the selected terminal device.

28. A method as defined in claim 24 further comprising
the step of forcing input to the first device driver and the
second device driver from the auxiliary terminal device.

29. A method as defined in claim 24 wherein the step
of generating a driver program comprises the step of

generating a driver program which is executed independently
of the operating system.

30. A method as defined in claim 24 wherein the step
of allocating a portion of memory comprising the step of
allocating sufficient space in the memory to store a
plurality of vectors associated with the driver program.

31. A method as defined in claim 24 wherein the
digital computing system comprises a plurality of second
device drivers, and a plurality of selectable terminal
devices, each second device driver associated with a
selectable terminal device, and wherein the method further
comprises the step of selectively connecting in parallel one
auxiliary terminal device with any one of the selectable
terminal devices. '

("

WO 89/03556 : PCT/US87/02653

10

15

20

30

-57=-

32. A method as defined in claim 24 wherein the step
of allocating a portion of the memory comprises the step of
allocating space in the memory for containing pointers to
vectors used to maintain the communication pathway between
the driver program and the first device driver and the

second device driver.

33. A method as defined in claim 24 wherein the step
of breaking the communication pathway and inserting in the
pathway the driver program comprises ﬁhe step of causing the
execution of the CPU to jump to the driver program.

34. A method as defined in claim 24 wherein the method
further comprises the step of providing a user program and
wherein the user program comprises the steps of:

reading a data word received from the first device
driver or the second device and stored in the allocated
portion of memory;

placing the data word in a buffer; and

outputting the data word to the auxiliary terminal

device.

35. A method as defined in claim 34 wherein the driver
program further comprises the steps of:
monitoring the buffer;
halting the input to the buffer from the selected
terminal device when the buffer is nearly full;
directing a routine which is called from the user
program to read the data in the buffer; and
resuming the input to the buffer from the selected
terminal device and the CPU after the user program has
read the data in the buffer.

WO 89/03556

10

15

20

25

30

35

_5e- PCT/US87/02653

36. A method as defined in claim 24 wherein the method
further comprises the step of providing a user program and
wherein the user program comprises the steps of:

accepting input from the auxiliary terminal
device;
- placing the input in the allocated portion of
memory; and
directing the driver program to force the input to
both the £irst device driver and the second device
driver.

37. A method as defined in claim 24 further comprising
the steps of:

. breaking the communication pathway such that no
data flows from the first device driver and the second
device driver;

removing the driver program from the communication
pathway; and

'reestablishing the communication link between the
first device driver and the second device driver.

38. A method as defined in claim 24 wherein the
communication pathway is maintained by an original set of

vectors and wherein the step of breaking the communication

- pathway and inserting a driver in the pathway comprises the

steps of:
disabling interrupts from the selected terminal
device;
overwriting the original vectors which establish
the communication pathway between the first and second
device drivers with new vectors which point to the

driver program; and

enabling interrupts from the selected terminal-

device.

[

WO 89/03556 ~59- PCT/US87/02653

10

15

20

25

30

35

39. A method as defined in claim 38 wherein the step
of overwriting the original vectors comprises the step of
moving the addresses of the communication routines

associated with the driver program into the locations of the

- original vectors.

40. A method as defined in claim 39 wherein the first
device driver comprises a terminal independent device driver
and the second device driver comprises a terminal dependent
device driver and wherein the step of moving the addresses
of the communication routines comprises the step of moving
the locations of the communication routines into the vector
locations associated with the terminal independent device
driver and the terminal dependent device driver.

WO 89/03556

10

15

20

25

30

35

0 PCT/US87/02653

41. A method of programming a digital computing system
including at least one terminal device, an auxiliary
terminal device, an operating system having a terminal
independent device driver program and at least one terminal
dependent device driver program associated with each
terminal device, the terminal independent device driver
program and the terminal dependent device driver program
having a communication link established between each other
by way of an original set of vectors, the method comprising
the steps of:

generating a user driver program structured to (a)
emulate the terminal dependent device driver program
when communicating with the terminal independent device
driver program and to (b) emulate the terminal
independent device driver progran when communicating
with the terminal dependent device driver program;

allocating a portion of memory to store the
original set of vectors and to store data passing
between the terminal independent device driver program
and the terminal dependent device driver programs;

generating a new set of vectors to establish a
communication link between (a) the terminal independent
device driver program and the user drivef program and
(b) the terminal dependent device driver program and
the user driver program;

establishing a communication link between the user
driver program and the terminal independent device
driver program and the terminal dependent device driver
program by -moving the new set of vectors into the
location of the original set of vectors such that all
data passing between the terminal independent device
driver and the terminal dependent device driver flows
through, and the flow may be controlled by, the user
driver program; and

w

2]

i1

4D

15

20

25

30

35

WO 89/03556

-61- PCT/US87/02653

moving the data passing through the user driver
program to a location where it may be monitored by an
auxiliary terminal device.

42. A method as defined in claim 41 further comprising
the step of forcing input to the terminal independent device
driver program and the terminal dependent device driver
program from the auxiliary terminal device.

43. A method as defined in claim 41 wherein the step
of generating a user driver program comprises the step of
generating a user driver program which method operates

outside of the operating system.

44, A method as defined in claim 41 further comprising
the step of saving the original vectors.

45, A method as defined in claim 44 further comprising
the steps of:
disabling the £flow of data from the terminal
independent device driver program and the terminal
dependent device driver program; ‘
removing the communication link between the user
driver program and the terminal independent device
driver program and the terminal dependent device driver
program; and
replacing the original set of wvectors to
reestablish the communication link between the terminal
independent device driver program and the terminal
dependent device driver program so as to restore the

original communication link therebetween.

46. A method as defined in claim 41 further comprising
the step of selectively connecting in parallel one auxiliary
terminal device with any one of the terminal devices.

WO 89/03556 —62— PCT/US87/02653

47. A method as defined in claim 41 further comprising
the step of providing a user program, the user program
comprising the steps of:

5 directing the user driver program to place a data
word in a buffer; and
outputting the data word to the auxiliary terminal
device.

10 48. A method as defined in claim 47 wherein the user
program further comprises the steps of:
monitoring the buffer;
halting the input to the buffer from a selected
terminal dependent device driver program when the
15 ' buffer is nearly full;
directing a routine which is called from the user
program to read the data in the buffer; and
resuming the input to the buffer from the selected
terminal dependent device driver program after the user
20 program has read the data in the buffer.

49. A method as defined in claim 41 further comprising
the step of providing a user program, the user program
comprising the steps of:

25 accepting input from the auxiliary terminal
device;
placing the input in the allocated portion of
memory;
'forcing the input to both the terminal independent
30 device driver program and the terminal dependent device
driver program.

35

10

15

20

25

30

35

WO 89/03556 63— PCT/US87/02653

50. A method for effectively paralleling an auxiliary
terminal device with a selected terminal device, the
auxiliary terminal device and the selected terminal device
both connected to a digital computer, the digital computer
including a CPU, an operating system, a terminal independent
device driver, a plurality of terminal dependent device
drivers, and a memory, the method comprising the steps of:

allocating a UC device data structure in the
memory;

generating a UC driver program comprising the
steps of: , _

calling a subroutine to return the address of a
unit control block associated with a first terminal
dependent device driver which is associated with the
selected terminal;

allocating sufficient space in the memory to hold
a first port vector table associated with the first
terminal dependent device driver;

copying the first port vector table to the
allocated portion of memory to create a second port
vector table;

storing the address of the first poré vector table
in a unit control block contained in the UC device;

changing the second port vector table pointers
which point to (a) a start terminal output routine and
(b) a start direct memory access output routine to
point to their corresponding subroutines contained in
the UC driver program;

adding the address of the unit control block
associated with the £first terminal dependent device
driver and adding the address of the unit control block
contained in the UC device to a list of monitored

devices;

WO 89/03556

10

15

20

25

30

35

-64- PCT/US87/02653

allocating a second block of memory for use as
input and output buffers and to store the address of
the input and output buffers in the unit control block
contained in the UC device;

disabling interrupts from the selected terminal;

changing the pointers contained in the unit
control block associated with the Ffirst terminal
dependent device driver to point to the second port
vector table;

copying the address of a get data routine, which
retrieves data from the terminal independent device
driver and makes that data available to the terminal
dependent device driver, from the unit control block
associated with the first terminal dependent device

driver to the unit control block contained in the UC.

device;

copying the address of a put data routine, which
moves data from the terminal dependent device driver to
the terminal independent device driver, from the unit
control Dblock associated with the first terminal
dependent device driver to the unit control block
contained in the UC device;

modifying two pointers in the unit control block
associated with the first terminal dependent device
driver such that the two pointers point to the get data
rdutine and the put data routine associated with the
unit control block contained in the UC device:; and

enabling interrupts from the selected terminal.

[

o

LS

WO 89/03556 —65- PCT/US87/02653

STATEMENT UNDER ARTICLE 19

Applicant believes that the new claims submitted
herewith more accurately and distinctly point out the
inventive concepts which Applicant wishes to claim. As is
readily apparent, the originally £iled claims were all‘
directed to an apparatus, whereas the new claims submitted
herewith are appropriately directed to a method for
programing a digital computer. .

WO 89/03556 1/3 PCT/US87/02653

| PORT
TERMINAL VECTORS ERMINAL HARDWARE
INDEPENDENT DEPENDENT]
‘ GET h TERMINAL
DEVICE >| VECTOR [®®IDEVICE CONTROLLER[®™] T ERMINAL
DRIVER DRIVER
I(TT DRIVER) PUT (DZ DRIVER;
VECTOR |

(NEW)

1 GET
NEW Uc | vECTOR |
PORT '
VECTORS DRIVER SRR

* * PUT

. | VECTOR |
uc
DEVICE
_
z
DRIVER s DRIVER
Ol
FIG. 2
PORT uc
. vecTors) | DRIVER
OLD DZ
AR [+ Velron ST 1Y
Ue DRIVER
DEVICE
UR
FIG. 3

SUBSTITUTE SHEET

WO 89/03556

PCT/US87/02653

2/3
PROGRAM vMs 170
I—— INTERFACE __I
| ! |
uc FIRST
BUFFER |——
DRIVER BORFoR Y
uc |
DEVICE
INPUT ~< OUTPUT
| BUFFER FIG 4 BUFFER
PROGRAM T S—
| INTERFACE '7'
— | o
: Y
BUFFER [~ TTDRIVER [~ ~| BUFFER
~ i
N\
FIG. 5 TERMINAL
DEVICE
VMS 1/0 |o+—e
PROGRAM | DISK
INTERFACE _[—— DRIVER
T TF _] ! L |
LT [Tue B } |
|| DRIVER | |
. ! |
| . |
N Drl-:JvaE _} ;
/

. L= r___ |
l_ INPUT ———1———-1 OUTPUT | |
| BUFFER - | BUFFER

~N FIG.6 N

SUBSTITUTE SHEET

WO 89/03556 3/3 PCT/US87/02653

s——a VMS |/0

IPROGRAM
- INTERFACE
T |
I
| { ‘
] UC FIRST
BUFFER TEMPORARY
: DRIVER
.ﬂ | BUFFER
: uc
DEVICE
// \\
INPUT OUTPUT
BUFFER BUFFER
FIG. 8
PROGRAM VMS /0
- INTERFACE
T |
! |
. i
N . SECOND
BUFFER I TT DRIVER TEMPORARY
| [BUFFER
__\‘ \ _-\1
AN
AN

\
TERMINAL
DEVICE
FIG. 7

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT
International Application No PCT/US87/02653

I. CLASSIFICATION OF SUBJECT MATTER (it several classification symbois apply, indicate all) 3

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC (4) GO6F 09/00 // GO6F 11/00
U.S. CL. 364/200

Il. FIELDS SEARCHED

Minimum Documentation Searched +

Classification System |

Classification Symbols

U.S. CL. 364/200, 900

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched &

IIl. DOCUMENTS CONSIDERED TO BE RELEVANT !+

Category * |

Citation of Document, 16 with indication, where appropriate, of the relevant pasézges 17

| Relevant ta Claim No. 18

See the entire document.

See the entire document.

See the entire document.

See the entire document.

See the entire document.

X |0S, A, 4,649,479 (ADVANI)
See the entire document.

A S,
See the entire document.

See the entire document.

E, X |US, A, 4,701,848 (CLYDE) 20 OCTOBER 1987
X [US, A, 3,701,971 (SANNER) 31 OCTOBER 1972

A US, A, 4,034,351 (TAKEZOE) 5 JULY 1977

A |US, A, 4,057,847 (LOWELL) 8 NOVEMBER 197?
Y [US, A, 4,125,892 (FUKUDA) 14 NOVEMBER 1978
10 MARCH 1987
A, 3,539,998 (BELCHER) 10 NOVEMBER 1970

A US, A, 4,034,346 (HOSTEIN) 5 JULY 1977

1-17

1-17

1-17

1-17

* Special categories of cited documents: 15

“A" document defining the general state of the art which is not
considered to be of particular reievance

“E" earlier document but published on or after the internationai
filing date .

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other spacial reason (as specifiad)

“Q" document referring to an orai disclosure, use, exhibition or
other means

“P” document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the appiication but
cited to understand the principle or theory underlying the
invention

“X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step

“Y" document of particular relevance; the claimed invention
cannot be considaered to invoive an inventive step when the
document is combined with one or more other such docu-
mer;lts. such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the international Search 2

04 JANUARY 1988

Date of Mailing of this International Search Report 3

04 FEB 1988

International Searching Authority 1

]

ISA/US

Signature of Authorizagomcsr 20

a . —
Robert D. Anderson

Form PCT/ISA/210 (second sheet) (May 1986)

international Application No. PCT/US87/02653

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

A ’FREE, et al., "IBM Personal Computer Local/Remote
‘Disvlay and Keyboard Sharing," IBM Tech. Disclosure

Bulletin, Vol. 27 No. 03, AUGUST 1984, page 1639.

A TS, A, 4,034,339 (Free) 5 JULY 1977

f
i

i
P
!
t
i
i
t

V.E] OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE 10

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1.|:] Claim numbers . because they relate to subject matter 12 not required to be searched by this Authority, namely:

Z.D Claim numbers ____ . because they relate to parts of the international application that do not comply with the prescribed require-
ments to such an extent that no meaningful international search can be carried out 13, specifically:

VI.G OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING 11

This International Searching Authority found muitiple inventions in this international application as follows:

1.D As all required additional search fees were timely paid by the applicant, this international search report covers ail searchable claims
of the international application.

Z.D As only some of the required additional search fees were timely paid by the applicant, this international search report covers otily
those claims of the international application for which fees were paid, specifically claims:

3.[] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to
: the invention first mentioned in the claims; it is covered by claim numbers:

4.D As all searchablaclaims could be searched without effort justifying an additional fee,. the International Searching Authority did not
invite payment of any additional fee.

Remark on Protest
D The additional search fees were accompanied by applicant's protest,
D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (supplementai sheet (2) (May 1986) B

-

)

	Abstract
	Bibliographic
	Description
	Claims
	Amendment
	Drawings
	Search_Report

