发明名称：改性共轭二烯类聚合物、聚合引发剂及其制备方法和橡胶组合物

摘要：本发明涉及能在不失去聚合活性的前提下在聚合起始末端引入活性氨基质子的新型聚合引发剂及与填充剂的相互作用优良、能改善橡胶组合物的低发热量的新型改性共轭二烯类聚合物，特别涉及下述聚合引发剂及聚合起始末端具有来源于二胺化合物的残基的改性共轭二烯类聚合物，所述聚合引发剂为二胺化合物的一个氨基被甲硅烷基化剂保护、另一个氨基的活性质子被碱金属或碱土类金属取代形成的聚合引发剂，所述改性共轭二烯类聚合物能使用该聚合引发剂制得，是共轭二烯化合物的均聚物或共轭二烯化合物与芳香族乙烯类化合物的共聚物。
1. 一种改性共轭二烯类聚合物，为共轭二烯化合物的均聚物、或共轭二烯化合物与芳香族乙烯类化合物的共聚物，其特征在于，所述改性共轭二烯类聚合物用下述式（I）表示：

\[
R^1 \quad N \quad R^2 \quad N \quad Poly \quad Z^1
\]

式中，R^1 及 R^2 分别独立地为碳原子数是 1～20 的烷基或芳基、取代甲硅烷基或氢原子；R^3 为碳原子数是 1～12 的亚烷基或亚芳基，只要不具有活性质子，也可以含有杂原子；Y^1 为取代甲硅烷基或氢原子；上述 R^1、R^2、R^3 及 Y^1 中的一部分可以相互键合形成环状结构；Poly 为共轭二烯化合物的均聚物部分，或共轭二烯化合物与芳香族乙烯类化合物的共聚物部分；Z^1 为碱金属或碱土类金属，或上述金属与负碳离子反应性化合物反应生成的残基，或氢。

2. 如权利要求 1 所述的改性共轭二烯类聚合物，其特征在于，式（I）中 R^2 为碳原子数是 1～20 的烷基或芳基。

3. 如权利要求 1 所述的改性共轭二烯类聚合物，其特征在于，所述共轭二烯化合物为 1，3-丁二烯或异戊二烯。

4. 如权利要求 1 所述的改性共轭二烯类聚合物，其特征在于，所述芳香族乙烯类化合物为苯乙烯。

5. 如权利要求 1 所述的改性共轭二烯类聚合物，其特征在于，所述改性共轭二烯类聚合物为所述共轭二烯化合物与芳香族乙烯类化合物的共聚物。

6. 如权利要求 1 所述的改性共轭二烯类聚合物，其特征在于，所述改性共轭二烯类聚合物的门尼粘度 ML_1.4（100℃）为 10～150。

7. 如权利要求 1 所述的改性共轭二烯类聚合物，其特征在于，所述改性共轭二烯类聚合物通过用负碳离子反应性化合物改性式（I）中的 Z^1 为碱金属或碱土类金属的改性共轭二烯类聚合物而形
成，式（Ⅰ）中的 Z^1 为与负碳离子反应性化合物反应生成的残基。

8、如权利要求 7 所述的改性共轭二烯类聚合物，其特征在于，所述用于改性的负碳离子反应性化合物为具有 C = X 及环氧化基中的至少一种作为负碳离子反应部位与含氮官能团的化合物、或含有硅原子的化合物或含有锌原子的化合物，其中，X 为 O、S 或 C。

9、如权利要求 8 所述的改性共轭二烯类聚合物，其特征在于，所述用于改性的负碳离子反应性化合物为选自下述化合物中的至少一种：4-二甲基氨基二苯酮、4-二乙基氨基二苯酮、4、4'-二（二甲基氨基）二苯酮、4、4'-二（二乙基氨基）二苯酮、4-二甲基氨基苯甲醚、4-二乙基氨基苯甲醚、1、1-二（4-二甲基氨基苯基）乙烯、1、1-二（4-二乙基氨基苯基）乙烯、1，1-二甲氧基三甲基胺、4-二甲基氨基亚苄基苯胺、N，N-二甲基甲酰胺、N，N-二乙基甲酰胺、N，N-二甲基乙酰胺、N，N-二乙基乙酰胺、4-吡啶甲胺、4-吡啶基-环氧乙烷、4-乙烯基吡啶、2-乙烯基吡啶、二环己基碳化二亚胺、ε-己内酰胺、N-甲基-ε-己内酰胺、1，3-二甲基-2-咪唑啉酮、N-甲基吡咯烷酮、异氰酸苯酯、异硫氰酸苯酯及二苯基甲烷二异氰酸酯。

10、如权利要求 8 所述的改性共轭二烯类聚合物，其特征在于，所述用于改性的负碳离子反应性化合物为用下述式（II）表示的偶联剂：

\[R_a^4 Z^2 X^1 \] \(\ldots \) （II）

式中，R^4 分别独立地选自碳原子数是 1～20 的烷基，碳原子数是 3～20 的环烷基，碳原子数是 6～20 的芳基及碳原子数是 7～20 的芳烷基；Z^2 为锡或硅；X^1 分别独立地为氯或溴；a 为 0～3 的整数，b 为 1～4 的整数，但是 a + b = 4。

11、如权利要求 8 所述的改性共轭二烯类聚合物，其特征在于，所述用于改性的负碳离子反应性化合物为选自用下述式（III）表示的烃氧基硅烷化合物及/或其部分缩合物、及下述式（IV）表示的烃氧基硅烷化合物及/或其部分缩合物中的至少一种，
式中，A^1为具有选自（硫代）环氧基、异（硫）氯酸酯、（硫）酮、（硫）醛、亚胺、酰胺、三聚异氰酸三酯、（硫代）羧酸烃基酯、（硫代）羧酸的金属盐、羧酸酐、羧酸的卤化物、碳酸二烃基酯、环状叔胺、非环状叔胺、腈、吲哚、硫醚、多硫醚、胺的碱金属化合物、胺的碱土类金属化合物、硅氮烷及二硅氮烷内的至少一种官能团的一价基团；R^5为单键或二价惰性烃基；R^6及R^7分别独立地为碳原子数是1～20的一价脂肪族烃基或碳原子数是6～18的一价芳香族烃基；n为0～2的整数；OR^7有多个时，多个OR^7可以彼此相同或不同；分子中不含有活性质子及鎓盐；

R^{8}_p-Si-(OR^{9})_{4-p} ... (IV)

式中，R^8及R^9分别独立地为碳原子数是1～20的一价脂肪族烃基或碳原子数是6～18的一价芳香族烃基；p为0～2的整数；OR^9有多个时，多个OR^9可以彼此相同或不同；分子中不能含有活性质子及鎓盐。

12. 一种改性共轭二烯类聚合物，是用具有异氰酸酯基的化合物及其缩合物中的至少一种进一步改性式(I)中的Y^1为氢原子的改性共轭二烯类聚合物而得到的。

13. 一种聚合引发剂，是下述式(V)表示的聚合引发剂，

\[\begin{array}{c}
 R^1 \\
 Y^2 \\
 R^3 \\
 R^2 \\
 M^1 \\
\end{array} \] \cdots (V)

式中，R^1、R^2及R^3的含义与上述含义相同；Y^2为取代甲硅烷基；R^1、R^2、R^3及Y^2中的一部分可以相互键合形成环状结构；M^1为碱金属或碱土类金属。

14. 一种聚合引发剂溶液，所述聚合引发剂溶液为向下述式(VI)表示的二胺化合物中，加入下述式(VII)表示的甲硅烷基化合物，在
得到的溶液中加入有机碱金属化合物或有机碱土类金属化合物而得到的，

\[
\begin{array}{c}
R^1 \\
N - R^3 - N \\
R^2 \\
\end{array}
\quad \cdots \text{(VI)}
\]

式中，R^1及 R^2 分别独立地为碳原子数是 1～20 的烷基或芳基、或氢原子；R^3 的含义与上述含义相同，R^1、R^2 及 R^3 中的一部分可以相互键合形成环状结构，

\[
Y^2 \rightarrow X^2 \quad \cdots \text{(VII)}
\]

式中，Y^2 的含义与上述含义相同；X^2 为选自卤原子、碳原子数是 1～20 的硫代烷基、溴基及三氯甲基硫酰基中的 1 种。

15. 一种聚合引发剂的制备方法，其特征在于，

(i) 向上述式 (VI) 表示的二胺化合物中，加入上述式 (VII) 表示的甲硅烷基化合物，生成下述式 (VIII) 表示的甲硅烷基化二胺化合物，

\[
\begin{array}{c}
R^1 \\
Y^2 \\
N - R^3 - N \\
R^2 \\
\end{array}
\quad \cdots \text{(VIII)}
\]

式中，R^1、R^2、R^3 及 Y^2 的含义与上述含义相同，R^1、R^2、R^3 及 Y^2 的一部分可以相互键合形成环状结构；

(ii) 向该甲硅烷基化二胺化合物中，加入有机碱金属化合物或有机碱土类金属化合物，生成上述式 (V) 表示的聚合引发剂。

16. 如权利要求 15 所述的聚合引发剂的制备方法，其特征在于，所述式 (VII) 中的 X^2 为卤原子。

17. 一种改性共轭二烯类聚合物的制备方法，其特征在于，

(i) 向上述式 (VI) 表示的二胺化合物中加入上述式 (VII) 表示的甲硅烷基化合物，生成上述式 (VIII) 表示的甲硅烷基化二胺化合物；
（ii）向该甲硅烷基化二胺化合物中加入有机碱金属化合物或有机碱土类金属化合物，生成上述式（V）表示的聚合引发剂；

（iii）使用该聚合引发剂，聚合共轭二烯化合物、或共轭二烯化合物及芳香族乙烯类化合物。

18. 一种改性共轭二烯类聚合物，通过使用权利要求14所述的聚合引发剂溶液，聚合共轭二烯化合物、或共轭二烯化合物与芳香族乙烯类化合物而得到。

19. 一种改性共轭二烯类聚合物的制备方法，其特征在于：

（i）向上述式（VI）表示的二胺化合物中加入上述式（VII）表示的甲硅烷基化合物，生成上述式（VIII）表示的甲硅烷基化二胺化合物；

（ii）向该甲硅烷基化二胺化合物中加入有机碱金属化合物或有机碱土类金属化合物，生成上述式（V）表示的聚合引发剂；

（iii）向含有共轭二烯化合物的溶液中加入该聚合引发剂，生成下述式（IX）表示的低分子量聚合物，

\[
\begin{array}{c}
\text{R}^1 \\
\text{Y}^2 \\
\end{array} \text{N} \quad \text{R}^3 \quad \text{N} \quad \text{Oli} \quad \text{M}\text{I} \\
\end{array} \quad \cdots \text{(IX)}
\]

式中，R^1、R^2、R^3、Y^2及M^1的含义与上述含义相同；R^1、R^2、R^3及Y^2中的一部分可以相互键合形成环状结构；Oli为3～300个共轭二烯化合物聚合形成的低聚物或聚合物部分；

（iv）向含有共轭二烯化合物的溶液或含有共轭二烯化合物与芳香族乙烯类化合物的溶液中加入该低分子量聚合物。

20. 一种改性共轭二烯类聚合物的制备方法，其特征在于：

（i）向上述式（VI）表示的二胺化合物中加入上述式（VII）表示的甲硅烷基化合物，生成上述式（VIII）表示的甲硅烷基化二胺化合物；

（ii）向含有共轭二烯化合物的溶液或含有共轭二烯化合物与芳香族乙烯类化合物的溶液中加入该甲硅烷基化二胺化合物；
(iii) 向该溶液中进一步加入有机碱金属化合物或有机碱土类金
属化合物。

21、一种橡胶组合物，其特征在于，含有权利要求 1～12 及 18
中的任一项所述的改性共轭二烯类聚合物作为橡胶成分。

22、如权利要求 21 所述的橡胶组合物，其特征在于，所述改性
共轭二烯类聚合物在橡胶成分中的含有率是 10 质量%以上。

23、如权利要求 21 所述的橡胶组合物，其特征在于，所述橡胶
组合物具有硫交联性。

24、如权利要求 21 所述的橡胶组合物，所述橡胶组合物是相对
于 100 质量份所述橡胶成分配合总计 10～100 质量份的炭黑及/或无机
填充剂而形成的。

25、如权利要求 24 所述的橡胶组合物，所述橡胶组合物是相对
于 100 质量份所述橡胶成分配合 10～100 质量份作为所述无机填充剂
的二氧化硅而形成的。
改性共轭二烯类聚合物、聚合引发剂及
其制备方法和橡胶组合物

技术领域

本发明涉及改性共轭二烯类聚合物及其制备方法，用于该制备方法的聚合引发剂及其制备方法和使用上述改性共轭二烯类聚合物的橡胶组合物，特别涉及与填充剂的相互作用优良、能改善橡胶组合物的低发热性的新型改性共轭二烯类聚合物。

背景技术

近年，随着对环境问题关注的提高，对降低汽车的燃料消耗的要求也越来越强烈。为了满足上述要求，在轮胎性能上希望降低滚动阻力。目前，作为减少轮胎滚动阻力的方法，也研究了优化轮胎结构的方法，但是，使用发热性更低的橡胶组合物作为适用于轮胎的橡胶组合物，是现在最常用的方法。

此处，为了得到发热性低的橡胶组合物，提高橡胶组合物中的填充剂的分散性是有效的，使用在具有聚合活性末端的共轭二烯类聚合物的该聚合活性部位引入能与填充剂相互作用的官能团得到的改性共轭二烯类聚合物作为橡胶组合物的橡胶成分，是极为有效的。

另外，已知除炭黑之外并用二氧化硅等无机填充剂作为填充剂，能较大幅度地改善橡胶组合物在润滑路面上的性能。因此，最近，增加橡胶组合物中二氧化硅的配合量，要求不仅对炭黑、对二氧化硅等无机填充剂也显示高相互作用的改性共轭二烯类聚合物。

作为上述改性共轭二烯类聚合物，可以举出使用改性引发剂及末端改性剂制得的两末端改性聚合物。但是，该两末端改性聚合物存在下述问题：与利用聚合活性末端引入官能团的末端改性技术相比，用于将官能团引入聚合起始末端的改性起始技术的技术难度高。因此，
现状即为现存的改性引发剂在分子设计方面有限，能满足所希望性能的改性引发剂很少。另外，尤其没有对二氧化硅充分发挥性能的改性引发剂。

例如，已知使用有机锡类化合物作引发剂的技术，使用由该技术得到的改性共轭二烯类聚合物的橡胶组合物，在使用炭黑作为填充剂时可见优良的效果，而使用二氧化硅作为填充剂时，效果不大。

另外，也已知使用使有机碱金属化合物作用于二烷基胺化合物或二烷基氨基取代苯乙烯化合物得到的引发剂的技术，但是，使用由该技术得到的改性共轭二烯类聚合物的橡胶组合物，使用二氧化硅作为填充剂时，多少显示了效果，而使用炭黑作为填充剂时，效果不及使用以上述有机锡类引发剂得到的改性共轭二烯类聚合物的橡胶组合物。

并且，还有使用醚化合物的方法，但是均无法期望对炭黑及二氧化硅的充分利用的相互作用。

另一方面，已知通过与 1,3-二甲基咪唑啉酮或氮基烷氧基硅烷等末端改性剂相关的技术，在末端具有含活性氨基质子的氨基或仲氨基的改性共轭二烯类聚合物对炭黑及二氧化硅两者均显示了优良的相互作用（参见特开公 6-18801 号公报）。

作为在聚合起始末端引入官能团的技术，已知有将哌啶的仲氨基质子锂化用于聚合反应的方法，但是，该方法中，由于仲氨基质子作为聚合性点被转化，故得到的聚合物中不存在活性氨基质子（参见特开平 6-211915 号公报、特开平 8-225604 号公报及特开平 8-231658 号公报）。另一方面，单纯锂化哌嗪等二胺类化合物，形成高次（high order）的缔合体，仅生成不溶性固体，不显示聚合活性。因此，目前还没有不失去聚合活性、能在聚合起始末端引入活性氨基质子的改性引发剂。

发明内容

本发明的目的在于解决上述现有技术的问题，提供不失去聚合活
性，能在聚合起始末端引入活性氨基质子的新型聚合引发剂。本发明
的其他目的为使用该聚合引发剂制得的与填充剂的相互作用优良、且
能改善橡胶组合物的低发热性的新型改性共轭二烯类聚合物。本发明
的另一其他目的为提供上述改性共轭二烯类聚合物及聚合引发剂的
制备方法。而且，本发明的其他目的还在于提供含有上述改性共轭二
烯类聚合物、低发热性优良的橡胶组合物。

本发明人等为了实现上述目的，进行了深入地研究，结果发现将
分子中具有2个含活性氨基质子的氨基的二胺化合物中的一个胺用甲
硅烷基化剂保护后，加入有机类化合物等形成聚合引发剂，通过使用
该聚合引发剂，能在不失去聚合活性的前提下聚合共轭二烯化合物及
芳香族乙烯类化合物，还可以在聚合物的聚合起始末端引入活性氨基
质子，从而完成了本发明。

即，本发明的改性共轭二烯类聚合物为共轭二烯化合物的均聚
物、或共轭二烯化合物与芳香族乙烯类化合物的共聚物，其特征在于，
所述改性共轭二烯类聚合物用下述式（I）表示:

\[\begin{array}{c}
\text{R}^1 \\
\text{Y}^1 \\
\text{N} \quad \text{R}^3 \quad \text{N} \\
\text{Y}^1 \\
\text{Poly} \quad \text{Z}^1 \\
\end{array} \]

式中，R^1及R^2分别独立地为碳原子数是1～20的烷基或芳基、
取代甲硅烷基或氢原子；R^3为碳原子数是1～12的亚烷基或亚芳基，
只要不具有活性质子，也可以含有杂原子；Y^1为取代甲硅烷基或氢原
子；上述 R^1、R^2、R^3及 Y^1 的一部分可以相互键合形成环状结构；Poly
为共轭二烯化合物的均聚物部分、或共轭二烯化合物与芳香族乙烯类
化合物的共聚物部分；Z^1为碱金属或碱土类金属、或上述金属与负碳
离子反应性化合物反应生成的残基、或氢）。此处，上述式（I）中，
R^2优选为碳原子数是1～20的烷基或芳基。

本发明的改性共轭二烯类聚合物的优选例中，上述共轭二烯化合物
为1,3-丁二烯或异戊二烯，上述芳香族乙烯类化合物为苯乙烯。另
外，本发明的改性共轭二烯类聚合物优选为上述共轭二烯化合物与
芳香族乙烯类化合物的共聚物。

本发明的改性共轭二烯类聚合物优选门尼粘度 $ML_{1.4}$ (100°C) 为 10 ~ 150。

本发明的改性共轭二烯类聚合物优选用负碳离子反应性化合物改性上述式（I）中的 Z^1 为碱金属或碱土类金属的改性共轭二烯类聚合物而形成。该情况下，上述式（I）中的 Z^1 为与负碳离子反应性化合物反应生成的残基。此处，作为用于上述改性的负碳离子反应性化合物优选具有 $C = X$ (此处，X 为 O、S 或 C) 及环氧化基中的至少一种作为负碳离子反应部位与含氮官能团的化合物、及含有硅原子的化合物及含有锡原子的化合物。

作为具有 $C = X$ 及环氧化基中的至少一种作为上述负碳离子反应部位与含氮官能团的化合物，优选 4-二甲基氨基二苯酮、4-二乙基氨基二苯酮、4、4’-二（二甲基氨基）二苯酮、4、4’-二（二甲基氨基）二苯酮、4-二甲基氨基苯甲醛、4-二乙基氨基苯甲醛、1、1-二（4-二甲基氨基苯基）乙烯、1、1-二（4-二乙基氨基苯基）乙烯、1、1-二甲基氨基三基胺、4-二甲基氨基亚苄基苯胺、N、N-二甲基甲酰胺、N、N-二乙基甲酰胺、N、N-二甲基乙酰胺、N、N-二乙基乙酰胺、4-吡啶甲酰胺、4-吡啶基-环氧乙烷、4-乙烯基吡啶、2-乙烯基吡啶、二环己基碳化二亚胺、ε-己内酰胺、N-甲基- ε-己内酰胺、1、3-二甲基-2-咪唑啉酮、N-甲基吡咯烷酮、异氰酸苯酯、异硫氰酸苯酯及二苯甲烷二异氰酸酯，更优选 4、4’-二（二甲基氨基）二苯酮、4-乙烯基吡啶及 1、3-二甲基-2-咪唑啉酮。

另外，作为用于上述改性的含有硅原子的化合物及含有锡原子的化合物，优选下述式（II）表示的偶联剂：

$$R^4_aZ^2X^1_b ... \text{(II)}$$

（式中，R^4 分别独立地选自碳原子数是 1 ~ 20 的烷基、碳原子数是 3 ~ 20 的环烷基、碳原子数是 6 ~ 20 的芳基及碳原子数是 7 ~ 20 的芳烷基；Z^2 为锡或硅；X^1 分别独立地为氯或溴；a 为 0 ~ 3 的整数，b
为 1～4 的整数，但是 a + b = 4。

作为用于上述改性的含有硅原子的化合物，优选用下述式（III）表示的烃氧基硅烷化合物及其部分缩合物，

\[
A^1 - R^6 \quad \text{Si} \quad \text{(OR)}^7_{3-n} \quad \cdots \quad \text{(III)}
\]

式中，A^1 为具有选自（硫代）环氧化基、异（硫）氰酸酯、（硫）酮、（硫）醛、亚胺、酰胺、三聚异氰酸三酯、（硫代）羧酸烃基酯、（硫代）羧酸的金属盐、羧酸酐、羧酸的卤化物、碳酸二烃基酯、环状叔胺、非环状叔胺、腈、吡啶、硫醚、多硫醚、胺的碱金属化物、胺的碱土类金属化物、硅氯烷及二硅氯烷中的至少一种官能团的一价基团；R^5 为单键或二价惰性烃基；R^6 及 R^7 分别独立地为碳原子数是 1～20 的一价脂肪族烃基或碳原子数是 6～18 的一价芳香族烃基；n 为 0～2 的整数；OR^7 有多个时，多个 OR^7 可以彼此相同或不同；分子中不含有活性质子及铵盐；

及下述式（IV）表示的烃氧基硅烷化合物及其部分缩合物，

\[
R^8_p \quad \text{Si} \quad \text{(OR)}^9_{4-p} \quad \cdots \quad \text{(IV)}
\]

式中，R^8 及 R^9 分别独立地为碳原子数是 1～20 的一价脂肪族烃基或碳原子数是 6～18 的一价芳香族烃基；p 为 0～2 的整数；OR^9 有多个时，多个 OR^9 可以彼此相同或不同；分子中不含有活性质子及铵盐）。

作为本发明的改性共轭二烯类聚合物，优选用具有异氰酸酯基的化合物及其缩合物中的至少一种进一步改性上述式（I）中的 Y^1 为氢原子的改性共轭二烯类聚合物得到的改性共轭二烯类聚合物。

另外，本发明的聚合引发剂的特征在于用下述式（V）表示的聚合引发剂，

\[
\text{R}^1 \quad \text{N} \quad \text{R}^3 \quad \text{N} \quad \text{M}^1 \quad \cdots \quad \text{(V)}
\]
（其中 R¹, R², 及 R³ 与上述含义相同；Y² 为取代甲硅烷基，上述 R¹, R², R³ 及 Y² 的一部分可以相互键合形成环状结构；M¹ 为碱金属或碱土类金属）。

本发明的聚合引发剂的制备方法中，可以采用通常所知的甲硅烷基化条件，即，本发明的聚合引发剂的制备方法的特征在于：

（i）向下述式 (VI) 表示的二胺化合物中，优选加入下述式 (VII) 表示的甲硅烷基化化合物，生成下述式 (VIII) 表示的甲硅烷基化二胺化合物，

\[
\begin{array}{c}
\text{N} \quad \text{R}^1 \quad \text{R}^2 \\
\text{H} \\
\end{array}
\] \(\cdots \text{(VI)} \)

（式中，R¹ 及 R² 分别独立地为碳原子数是 1~20 的烷基或芳基、或氢原子，R³ 与上述含义相同，R¹, R² 及 R³ 的一部分可以相互键合形成环状结构），

\[
\begin{array}{c}
\text{N} \\
\text{Y}^2 \\
\text{X}^2 \\
\end{array}
\] \(\cdots \text{(VII)} \)

（式中，Y² 与上述含义相同；X² 为选自卤原子、碳原子数是 1~20 的硫代烷基、氯基及三氟甲基磺酰基中的 1 个，更优选为卤原子），

\[
\begin{array}{c}
\text{N} \quad \text{R}^1 \quad \text{R}^2 \\
\text{Y}^2 \\
\text{H} \\
\end{array}
\] \(\cdots \text{(VIII)} \)

（式中，R¹, R², R³ 及 Y² 与上述含义相同，R¹, R², R³ 及 Y² 的一部分可以相互键合形成环状结构）；

（ii）向该甲硅烷基化二胺化合物中，加入有机碱金属化合物或有机碱土类金属化合物，生成上述式 (V) 表示的聚合引发剂。需要说明的是，生成上述式 (V) 表示的聚合引发剂时，可以采用适当的方法提纯上述式 (VIII) 表示的甲硅烷基化二胺化合物后进行使用，也可以直接使用式 (VIII) 表示的甲硅烷基化二胺化合物的反应物产物溶液。
本发明的改性共轭二烯类聚合物的第1制备方法的特征在于：

(i) 向上述式（VI）表示的二胺化合物中加入上述式（VII）表示的甲硅烷基化合物，生成上述式（VIII）表示的甲硅烷基化二胺化合物；

(ii) 向该甲硅烷基化二胺化合物中加入有机碱金属化合物或有机碱土类金属化合物，生成上述式（V）表示的聚合引发剂；

(iii) 使用该聚合引发剂，聚合共轭二烯化合物、共轭二烯化合物及芳香族乙烯类化合物。需要说明的是，生成上述式（V）表示的聚合引发剂时，可以采用适当的方法提纯上述式（VIII）表示的甲硅烷基化二胺化合物后进行使用，也可以直接使用上述式（VIII）表示的甲硅烷基化二胺化合物的反应粗产物溶液。

本发明的改性共轭二烯类聚合物的第2制备方法的特征在于：

(i) 向上述式（VI）表示的二胺化合物中加入上述式（VII）表示的甲硅烷基化合物，生成上述式（VIII）表示的甲硅烷基化二胺化合物；

(ii) 向该甲硅烷基化二胺化合物中加入有机碱金属化合物或有机碱土类金属化合物，生成上述式（V）表示的聚合引发剂；

(iii) 向含有共轭二烯化合物的溶液中加入该聚合引发剂，生成下述式（IX）表示的低分子量聚合物，

\[
R^1\overline{N} - R^3 - N\overline{O}i - M^1
\]

（式中，R^1、R^2、R^3、Y^2及M^1与上述含义相同；R^1、R^2、R^3及Y^2的一部分可以相互键合形成环状结构；Oli为3～300个共轭二烯化合物聚合形成的低聚物或聚合物部分）；

(iv) 向含有共轭二烯化合物的溶液或含有共轭二烯化合物与芳香族乙烯类化合物的溶液中加入该低分子量聚合物。需要说明的是，生成上述式（V）表示的聚合引发剂时，可以采用适当的方法提纯上述式（VIII）表示的甲硅烷基化二胺化合物后进行使用，也可以直接使
用式（VIII）表示的甲硅烷基化二胺化合物的反应粗产物溶液。

本发明的改性共聚二烯类聚合物的第3制备方法的特征在于：

（i）向上述式（VI）表示的二胺化合物中加入上述式（VII）表示的甲硅烷基化化合物，生成上述式（VIII）表示的甲硅烷基化二胺化合物；

（ii）向含有共聚二烯化合物的溶液或含有共聚二烯化合物与芳香族乙烯类化合物的溶液中加入该甲硅烷基化二胺化合物；

（iii）向该溶液中进一步加入有机碱金属化合物或有机碱土类金属化合物。

本发明的橡胶组合物，其特征在于，含有上述改性共聚二烯类聚合物作为橡胶成分。

本发明的橡胶组合物的优选例中，上述改性共聚二烯类聚合物的含有率在橡胶成分中占10质量%以上。

另外，本发明的橡胶组合物优选具有硫交联性。

本发明的橡胶组合物相对于100质量份上述橡胶成分，优选配合总计10～100质量份炭黑及/或无机填充剂形成。此处，该橡胶组合物相对于100质量份上述橡胶成分，更优选配合10～100质量份二氧化硅作为上述无机填充剂形成。

根据本发明，可以提供下述新型聚合引发剂，所述新型聚合引发剂为在分子中具有2个含活性氨基质子的氨基的二胺化合物中的一个胺用甲硅烷基化剂保护后，加入有机碱金属化合物或有机碱土类金属化合物而生成的，能够在不失去聚合活性的前提下聚合共聚二烯化合物及芳香族乙烯类化合物，还能在聚合物的聚合起始末端引入活性氨基质子。本发明还提供使用上述聚合引发剂制得的在聚合物的聚合起始末端具有活性氨基质子的新型改性共聚二烯类聚合物。本发明提供上述聚合引发剂及改性共聚二烯类聚合物的制备方法、及含有上述改性共聚二烯类聚合物形成的低发热性优良的橡胶组合物。

具体实施方式
<改性共轭二烯类聚合物>

下面，详细说明本发明的改性共轭二烯类聚合物。本发明的改性共轭二烯类聚合物为共轭二烯化合物的均聚物、或共轭二烯化合物与芳香族乙烯类化合物的共聚物，其特征在于，所述聚合物是用上述式（I）表示的聚合物。式（I）表示的改性共轭二烯类聚合物在分子中至少具有2个氮原子，与填充剂的相互作用优良，通过使用该改性共轭二烯类聚合物作为橡胶组份物的橡胶成分，可以改善橡胶组份物的低发热性能，通过在轮胎中使用该橡胶组份物，可以减少轮胎的滚动阻力。另外，式（I）中的Z1为碳金属或碳素类金属的改性共轭二烯类聚合物使用改性剂作为负碳离子反应性化合物，通过该改性剂改性，形成两末端改性的改性共轭二烯类聚合物。该两末端改性的改性共轭二烯类聚合物由于除聚合起始末端之外，聚合活性末端也被改性，故与填充剂的相互作用优良。而且，式（I）中的Y1为氢原子的改性共轭二烯类聚合物，由于分子中具有活性氨基质子，所以对炭黑及二氧化硅两者均显示了特别优良的相互作用。

式（I）中，R1及R2分别独立地为碳原子数是1~20的烷基或芳基，取代甲硅烷基或氢原子，优选碳原子数为1~20的烷基或芳基。上述烷基可以为直链状、支链状、环状中的任一种，例如，可以举出甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基、己基、辛基、癸基、十二烷基、环戊基、环己基等。另外，上述芳基可以在芳香环上具有低级烷基等取代基，例如可以举出苯基、甲苯基、二甲苯基、萘基等。作为上述取代甲硅烷基，优选三甲基甲硅烷基、三乙基甲硅烷基、甲基二乙基甲硅烷基、二甲基乙基甲硅烷基、三异丙基甲硅烷基、二甲基异丙基甲硅烷基、二乙基异丙基甲硅烷基、叔丁基二甲基甲硅烷基等三烷基甲硅烷基，除此之外，还优选三苯基甲硅烷基、叔丁基二苯基甲硅烷基等。上述R1及R2可以分别相同或不同。

式（I）中，R3为碳原子数是1~12的亚烷基或亚芳基，可以含有杂原子，除非其不具有活性质子。上述亚烷基可以为直链状、支链
状、环状中的任一种，特别优选为直链状的亚烷基。作为该直链状亚烷基，可以举出亚甲基、亚乙基、三亚甲基、四亚甲基、五亚甲基、六亚甲基、八亚甲基、十亚甲基、十二亚甲基等。另外，上述亚芳基，可以在芳香环上含有低级烷基等取代基，例如可以举出亚苯基、亚二甲苯基、苯基等。另外，作为上述杂原子，可以举出 O、S、P 等。

式（I）中，Y¹为取代甲硅烷基或氢原子。作为该取代甲硅烷基，优选三甲基甲硅烷基、三乙基甲硅烷基、二乙基甲硅烷基、二甲基乙基甲硅烷基等三烷基甲硅烷基，特别优选三甲基甲硅烷基。式（I）中的 Y¹ 为氢原子时，式（I）表示的改性共轭二烯类聚合物在聚合起始末端具有活性氨基基子，与炭黑及二氧化硅的相互作用优良。

式（I）中，上述 R¹、R²、R³ 及 Y¹ 中的一部分可以相互键合形成环状结构。另外，式（I）中，Poly 为共轭二烯聚合物的均聚物部分或共轭二烯化合物与芳香族乙烯类化合物的共聚物部分。

式（I）中，Z¹ 为碱金属或碱土类金属，或上述金属与负碳离子反应性化合物反应生成的残基或氢。此处，作为碱金属，可以举出锂、钠、钾等，作为碱土类金属，可以举出镁、钙等。另外，作为负碳离子反应性化合物，可以举出聚合反应停止剂或改性剂等。此处，作为聚合反应停止剂，优选水或醇化合物类等含有活性基子的化合物，该情况下，生成的残基为氢原子。另一方面，对使用改性剂作为负碳离子反应性化合物的情况如下所述。

本发明的改性共轭二烯类聚合物的门尼粘度 ML₁₄（100℃）优选为 10 ~ 150。改性共轭二烯类聚合物的门尼粘度 ML₁₄（100℃）小于 10 时，含有该改性共轭二烯类聚合物的橡胶组合物的破坏特性等力学特性不充分，如果超过 150，则混炼该改性共轭二烯类聚合物与填充剂等各种配合剂时的操作性显著变差。

另外，本发明的改性共轭二烯类聚合物的数均分子量（Mn）优选为 50,000 ~ 500,000。改性共轭二烯类聚合物的数均分子量小于 50,000 时，含有改性共轭二烯类聚合物的橡胶组合物硫化后的破坏特
性或耐磨性下降，如果超过500,000，则含有改性共轭二烯类聚合物的橡胶组合物的操作性变差，难以混炼。

〈聚合引发剂〉

适用于制备上述改性共轭二烯类聚合物的本发明的聚合引发剂，用上述式（Ⅴ）表示。如上所述，作为向聚合起始末端引入官能团的技术，已知有将哌啶的仲氨基质子锂化用于聚合反应的方法，但是，该方法由于仲氨基质子作为聚合活性点被转化，故得到的聚合物中不存在活性氨基质子。另一方面，即使单纯将哌啶等二胺类化合物锂化使用，也会形成高次的缔合体，仅生成不溶性固体，不显示聚合活性。与之相对，本发明的聚合引发剂，目的在于抑制引发剂分子之间形成缔合体，同时随着分子极性下降提高对烃类溶剂的溶解性，使甲硅烷基化剂作用于二胺类化合物中的一个具有活性氨基质子的氨基，保护该活性氨基，其后，用适当的有机碱金属化合物或有机碱土类金属化合物处理另一个活性氨基质子，故可以充分表现聚合活性。另外，使用该聚合引发剂制得的聚合物中，存在Si-N键，但是由于聚合停止后迅速被水解，故能容易地作为活性氨基再生，可以容易地得到聚合起始末端具有活性氨基的目标改性共轭二烯类聚合物。

式（Ⅴ）表示的聚合引发剂中，R₁、R₂及R₃与式（Ⅰ）中的R₁、R₂及R₃相同。另外，Y₂为取代甲硅烷基，该取代甲硅烷基，与式（Ⅰ）中Y₁表示的取代甲硅烷基相同，另一方面，M¹为碱金属或碱土类金属，该碱金属或碱土类金属与式（Ⅰ）中Z¹表示的碱金属及碱土类金属相同。并且，式（Ⅴ）中的R₁、R₂、R₃及Y²的一部分可以相互键合形成环状结构。

〈聚合引发剂的制备方法〉

作为上述聚合引发剂的制备方法，优选下述方法：（第1步骤）向上述式（Ⅵ）表示的二胺化合物中加入上述式（Ⅶ）表示的甲硅烷基化合物，生成上述式（Ⅷ）表示的甲硅烷基化二胺化合物，（第2步骤）向该甲硅烷基化二胺化合物中，加入有机碱金属化合物或有机碱土类金属化合物，生成上述式（Ⅴ）表示的聚合引发剂。但是，上
述聚合引发剂，也也可以在聚合反应体系中生成。

式（VI）表示的二胺化合物中，R^1及R^2分别独立地为碳原子数是1～20的烷基或芳基，或氢原子，R^3与式（I）中的定义相同，该R^1、R^2及R^3的一部分可以相互键合形成环状结构。另外，式（VI）中的R^1及R^2的碳原子数是1～20的烷基或芳基与式（I）中的定义相同。此处，作为式（VI）表示的二胺化合物，具体地可以举出N，N’-二甲基-1，2-二氨基乙烷、N，N’-二甲基-1，3-二氨基丙烷、N，N’-二甲基-1，4-二氨基丁烷、N，N’-二甲基-1，5-二氨基戊烷、N，N’-二甲基-1，6-二氨基己烷、N，N’-二甲基-1，7-二氨基庚烷、咪唑烷、吡唑烷、哌噪、1，2-二（4-哌啶基）乙烷、1，3-二（4-哌啶基）丙烷、1，4-二（4-哌啶基）丁烷、乙二胺、1，3-二氨基丙烷、1，4-二氨基丁烷、1，4-二氨基戊烷、1，4-二氨基己烷、N-甲基乙二胺、N-乙基乙二胺、N-异丙基乙二胺、N-丙基乙二胺、N-丁基乙二胺、N-甲基-1，3-丙二胺、N-乙基-1，3-丙二胺、N-丙基-1，3-丙二胺、N-乙基-1，3-丙二胺、1-（2-氨基乙基）哌噪等。

上述式（VII）表示的甲硅烷基化合物为用于保护上述二胺化合物中的一个活性氨基的甲硅烷基化剂，式（VII）中的Y^2与式（V）中的Y^2定义相同，式（VII）中的X^2为选自卤原子、碳原子数是1～20的烷基（-SR;R为烷基）、氨基（-C≡N）及三氰金属磺酰基（-OSO_2CF_3）中的1种，优选为卤原子，作为该卤原子，可以举出氯原子、溴原子等，其中，优选氯原子。另外，作为式（VII）表示的甲硅烷基化合物，具体地优选三甲基氯硅烷、三乙基氯硅烷、甲基二乙基氯硅烷、二甲基乙基氯硅烷、三乙基氯硅烷、二甲基乙基氯硅烷、叔丁基二甲基氯甲硅烷等烷基氯硅烷及1，2-（氨二甲基甲硅烷基）乙烷、三苯基氯硅烷、叔丁基二苯基氯甲硅烷，其中，特别优选三甲基氯硅烷。

另外，有机碱金属化合物及有机碱土类金属化合物为上述碱金属及碱土类金属的有机金属化合物，其中优选有机锂化合物。作为该有
机锂化合物，优选为乙基锂、正丙基锂、异丙基锂、正丁基锂、仲丁基锂、叔辛基锂、正癸基锂、苯基锂、2 - 苯基锂、2 - 丁基苯基锂、4 - 苯基丁基锂、环己基锂、环戊基锂等，其中，优选乙基锂、正丙基锂、异丙基锂、正丁基锂、仲丁基锂、叔辛基锂、正癸基锂等烷基锂，特别优选为正丁基锂。

上述聚合引发剂的制备方法的第 1 步骤为通过向上述式 (VI) 表示的二胺化合物中加入上述式 (VII) 表示的甲硅烷基化二胺化合物，生成式 (VIII) 表示的甲硅烷基化二胺化合物。式 (VIII) 中的 R¹、R² 及 R³ 与式 (I) 中的定义相同，另外，式 (VIII) 中的 Y² 与式 (V) 的 Y² 定义相同，上述 R¹、R²、R³ 及 Y² 的一部分可以相互键合形成环状结构。

此处，相对于 1mol 式 (VI) 表示的二胺化合物中含有的活性氨基质子优选使用 1.0mol 以上式 (VII) 表示的甲硅烷基化物。另外，第 1 步骤中，为了促进式 (VI) 表示的二胺化合物的甲硅烷基化反应，可以在上述有机碱金属化合物或有机碱土类金属化合物的存在下进行，该情况下，相对于 1mol 式 (VI) 表示的二胺化合物中含有的活性氨基质子优选使用 1.0mol 以上有机碱金属化合物或有机碱土类金属化合物。

接下来，第 2 步骤为向上述式 (VIII) 表示的甲硅烷基化二胺化合物中加入上述有机碱金属化合物或有机碱土类金属化合物，生成用上述式 (V) 表示的本发明的聚合引发剂。另外，在第 1 步骤中使用有机碱金属化合物或有机碱土类金属化合物时，在第 2 步骤中使用的有机碱金属化合物及有机碱土类金属化合物可以与在第 1 步骤中使用的化合物相同，也可以不同。此处，第 2 步骤中，相对于 1mol 式 (VIII) 表示的甲硅烷基化二胺化合物，优选使用 1.0mol 以上有机碱金属化合物或有机碱土类金属化合物。

上述聚合引发剂的配制优选在氮或氩等惰性气体气氛中、在 -20 ~ 80°C 下进行，更优选在室温下实施。另外，上述聚合引发剂的配制优选在溶剂中进行，作为该溶剂，可以举出正己烷、环己烷、苯、甲苯等烃类溶剂；二乙醚、四氢呋喃等醚类溶剂。
＜改性共轭二烯类聚合物的制备方法＞

作为本发明的改性共轭二烯类聚合物的制备方法，可以举出预先调制上述聚合引发剂进行使用的第 1 制备方法、向预先调制的上述聚合引发剂中加入少量共轭二烯化合物单体聚合后进行使用的第 2 制备方法、在聚合体系（原位，in situ）中调制聚合引发剂进行使用的第 3 制备方法。需要说明的是，对于上述聚合引发剂的使用量，优选每 100g 单体使用 0.2～20mmol 范围内的聚合引发剂。

第 2 制备方法中，将如上所述调制得到的聚合引发剂加入至含有共轭二烯化合物的溶液中，生成低分子量聚合物，所述低分子量聚合物用上述式（IX）表示，一个末端为来源于聚合引发剂的二胺化合物的残基，另一末端为聚合活性末端，将该低分子量聚合物加入至含有共轭二烯化合物的溶液或含有共轭二烯化合物与芳香族乙烯类化合物的溶液中，得到改性共轭二烯类聚合物。此处，向含有共轭二烯化合物的溶液中加入聚合引发剂，生成式（IX）表示的低分子量聚合物，使用该低分子量聚合物作为聚合引发剂时，可以提高聚合引发剂对聚合溶剂的溶解性。另外，式（IX）中的 R¹、R² 及 R³ 与式（I）中的定义相同，式（IX）中的 Y² 与式（V）的 Y² 定义相同，上述 R¹、R²、R³ 及 Y² 的一部分可以相互键合形成环状结构。式（IX）中的 M¹ 与式（V）的 M¹ 定义相同。式（IX）中的 OLi 为 3～300 个共轭二烯化合物聚合形成的低聚物或聚合物部分，与式（I）中的 Poly 相比，分子量小，发挥提高引发剂对聚合溶剂的溶解性的功能。

第 3 制备方法中，将如上所述制备得到的式（VIII）表示的甲硅烷基化二胺化合物加入至含有共轭二烯化合物的溶液或含有共轭二烯化合物与芳香族乙烯类化合物的溶液中，进一步在该溶液中添加有机碱金属化合物或有机碱土类金属化合物，得到本发明的改性共轭二烯类聚合物。需要说明的是，在甲硅烷基化二胺化合物的配制中使用有机碱金属化合物或有机碱土类金属化合物时，在聚合反应体系中添加的有机碱金属化合物及有机碱土类金属化合物可以与用于配制甲硅烷基化二胺化合物的有机碱金属化合物及有机碱土类金属化合物相
同，也可以不同。

另外，用于制备上述改性共轭二烯类聚合物的式 (VI) 表示的二胺化合物，式 (VII) 表示的甲硅烷基化合物、式 (VIII) 的甲硅烷基化二胺化合物、有机碱金属化合物及有机碱土类金属化合物与在聚合引发剂的制备中描述的化合物相同。

由于上述改性共轭二烯类聚合物为共轭二烯化合物的均聚物或共轭二烯化合物与芳香族乙烯类化合物的共聚物，所以作为用于本发明的改性共轭二烯类聚合物的制备方法的单体，可以举出共轭二烯化合物及芳香族乙烯类化合物。此处，作为单体的共轭二烯化合物，可以举出 1, 3-丁二烯、异戊二烯、1, 3-戊二烯、2, 3-二甲基丁二烯、2-苯基-1, 3-丁二烯、1, 3-己二烯等，其中，优选 1, 3-丁二烯及异戊二烯，特别优选 1, 3-丁二烯。上述共轭二烯化合物可以单独使用，也可以组合使用两种以上。另一方面，作为单体的上述芳香族乙烯类化合物，可以举出苯乙烯、α-甲基苯乙烯、1-乙烯基苯、3-乙烯基甲苯、乙基乙烯基苯、二乙烯基苯、4-环己基苯乙烯及 2, 4, 6-三甲基苯乙烯等，其中，优选为苯乙烯。上述芳香族乙烯类化合物可以单独使用，也可以组合使用两种以上。另外，上述本发明的改性共轭二烯类聚合物，优选共轭二烯化合物与芳香族乙烯类化合物的共聚物，更优选苯乙烯-丁二烯共聚物。

上述改性共轭二烯类聚合物可以通过溶液聚合、气相聚合、本体 (bulk) 聚合中的任一种制备，但是优选通过溶液聚合制备。用溶液聚合制备改性共轭二烯类聚合物时，例如，可以在对聚合反应显示惰性的烃类溶剂中，单独聚合共轭二烯化合物或聚合共轭二烯化合物与乙烯基芳香族化合物的混合物，得到改性共轭二烯类聚合物。此处，作为对聚合反应显示惰性的烃类溶剂，可以举出丙烷、正丁烷、异丁烷、正戊烷、异戊烷、正己烷、环己烷、丙烯、1-丁烯、异丁烯、反-2-丁烯、顺-2-丁烯、1-戊烯、2-戊烯、1-己烯、2-己烯、苯、甲苯、二甲苯、乙苯等，其中，优选环己烷。上述溶剂可以单独使用，也可以混合使用两种以上。
本发明的改性共轭二烯类聚合物的制备可以在无规化剂（randomizer）的存在下实施。该无规化剂可以控制生成的聚合物的微观结构，例如，具有下述作用：控制使用丁二烯作为单体得到的聚合物的丁二烯单元的1,2-键含量，或将使用苯乙烯与丁二烯作为单体的共聚物的丁二烯单元与苯乙烯单元无规化等。上述无规化剂可以在任何阶段添加。作为该无规化剂，可以举出二甲氧基苯、四氢呋喃、二甲氧基乙烷、二甘醇二丁醚、二甘醇二甲醚、二四氢呋喃基丙烷、三乙基胺、吡啶、N-甲基吗啉、N,N,N’,N’-四甲基乙二胺、1,2-二哌啶基乙烷、戊酸钾、叔丁醇钾、叔胺基钠等。上述无规化剂的使用量相对于1mol聚合引发剂优选在0.01～100mol的范围内。

通过溶液聚合制备上述改性共轭二烯类聚合物时，溶液中的上述单体的浓度优选在5～50质量％的范围内，更优选在10～30质量％的范围内。需要说明的是，并用共轭二烯化合物与芳香族乙烯类化合物作为单体时，单体混合物中的芳香族乙烯类化合物的含有率优选在3～50质量％的范围内，更优选在4～45质量％的范围内。另外，聚合形式没有特别限定，可以采用间歇式，也可以采用连续式。

本发明的改性共轭二烯类聚合物的制备方法的聚合温度优选在0～150℃的范围内，更优选在20～130℃的范围内。聚合可以在发生压力（generating pressure）下实施，但是通常优选在足以将使用的单体在实质上保存为液相的压力下进行。此处，在高于发生压力的压力下实施聚合反应时，优选用惰性气体对反应体系加压。聚合中使用的单体、聚合引发剂、溶剂等原材料优选使用预先除去水、氧气、二氧化碳、质子性化合物等抑制反应的物质的原材料。

（利用改性剂的改性）

通过使用上述聚合引发剂，共聚共轭二烯化合物或共聚共轭二烯化合物与芳香族乙烯类化合物，得到下述聚合物，所述聚合物为在聚合起始末端具有来源于二胺化合物的官能团，另一末端作为聚合活性末端的活性聚合物，即式（I）中的 Z¹ 为碱金属或碱土类金属的聚合物。此处，可以用聚合抑制剂使该聚合活性末端失活，但是用改
性剂改性可得到两末端改性共轭二烯类聚合物。作为改性剂，可使用负碳离子反应性化合物，该情况下，可以得到式（I）中 Z 表为与负碳离子反应性化合物反应生成的残基的聚合物。

作为用于上述聚合活性末端改性的负碳离子反应性化合物，可以举出含有 C－X 及环环氧基中的至少一种作为负碳离子反应部位与含氮官能团的化合物、及含有硅原子的化合物与含有锡原子的化合物等。此处，作为含有上述 C－X 及环环氧基中的至少一种与含氮官能团的化合物，可以举出 4－二甲基氨基二苯酮、4－二乙基氨基二苯酮、4，4’－二（二甲基氨基）二苯酮、4，4’－二（二乙基氨基）二苯酮、4－二甲基氨基苯甲醛、4－二乙基氨基苯甲醛、1，1－二（4－二甲基氨基苯基）乙烯、1，1－二（4－二乙基氨基苯基）乙烯、1，1－二甲基氨基三甲胺、4－二甲基氨基亚苄基苯胺、N，N－二甲基甲酰胺、N，N－二乙基甲酰胺、N，N－二甲基乙酰胺、N，N－二乙基乙酰胺、N，N－二甲基丙烯酰胺、N，N－二甲基乙酰胺、N，N－二甲基乙烯基胺等。其中，优选 4，4’－二（二甲基氨基）二苯酮、4－乙烯基咔唑及 1，3－二甲基－2－咔唑啉酮。另外，作为改性剂的上述含有硅原子的化合物及含有锡原子的化合物，优选上述式（II）表示的偶联剂。用式（II）表示的偶联剂改性后的共轭二烯类聚合物至少具有一种锡－碳键或硅－碳键。式（II）中，R 表示独立地为碳原子数是 1～20 的烷基、碳原子数是 3～20 的环烷基、碳原子数是 6～20 的芳基或碳原子数是 7～20 的芳烷基，作为该 R，具体地可以举出甲基、乙基、正丁基、新戊基、环己基、正辛基、2－乙基己基等。另外，Z 为锡或硅，X 表示独立地为氯或溴，a 为 0～3 的整数，b 为 1～4 的整数，但是 a + b = 4。作为式（II）表示的偶联剂，优选四氯化锡、R^4SnCl_3、R^4SnCl_2、R^4SnCl 等，特别优选四氯化锡。

另外，作为改性剂的上述含有硅原子的化合物，优选上述式
（Ⅲ）表示的烃氧基硅烷化合物，上述式（Ⅳ）表示的烃氧基硅烷化合物及其上述化合物的部分缩合物。

式（Ⅲ）中，\(A^1 \)的官能团中，亚胺包含酰亚胺、酰胺、键，（硫代）羧酸酯包含丙烯酸酯、或基丙烯酸酯等不饱和羧酸酯，非环状叔胺包含\(N \)，\(N- \)二取代苯胺等\(N \)，\(N- \)二取代芳香族胺，另外，环状叔胺可以含有（硫）醚作为环的一部分。作为（硫代）羧酸的金属盐的金属，可以举出碱金属、碱土类金属、\(Al \)、\(Sn \)、\(Zn \)等。\(A^1 \)的官能团可以为胺的碱金属化物、胺的碱土类金属化物、硅氮烷及二硅氮烷等。

作为\(R^5 \)中的二价惰性烃基，优选碳原子数为1～20的烷烃基。

该烷烃基可以为直链状、支链状、环状中的任一种，特别优选直链状的烷烃基。作为该直链状烷烃基，可以举出亚甲基、亚乙基、三亚甲基、四亚甲基、五亚甲基、六亚甲基、八亚甲基、十亚甲基、十二亚甲基等。

作为\(R^6 \)及\(R^7 \)，可以举出碳原子数是1～20的烷基、碳原子数是2～18的链烯基、碳原子数是6～18的芳基、碳原子数是7～18的芳烃基等。此处，上述烷烃基链烯基可以为直链状、支链状、环状中的任一种，例如，可以举出甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基、己基、庚基、辛基、癸基、十二烷基、环戊基、环己基、乙烯基、丙烯基、烯丙基、乙烯基、环烯基、环己烯基等。上述芳烃基可以在芳香环上具有低级烷烃等取代基，例如，可以举出苯基、甲苯基、二甲苯基、萘基等。另外，上述芳烃基可以在芳香环上含有低级烷烃等取代基，例如，可以举出苯甲基、苯乙基、萘甲基等。

式（Ⅲ）中，\(n \)为0～2的整数，但是优选为0，该分子中必须不具有活性性质子及铵盐。

作为式（Ⅲ）表示的烃氧基硅烷化合物，例如，作为含有（硫代）环氧基的烃氧基硅烷化合物，可以举出2－环氧丙氧基乙基三甲氧基硅烷、2－环氧丙氧基乙基三乙氧基硅烷、（2－环氧丙氧基乙基）甲
基二甲氧基硅烷、3－环氧丙氧基丙基二甲氧基硅烷、3－环氧丙氧基丙基三乙氧基硅烷、（3－环氧丙氧基丙基）甲基二甲氧基硅烷、2－（3，4－环氧基环己基）乙基三甲氧基硅烷、2－（3，4－环氧基环己基）乙基三乙氧基硅烷、2－（3，4－环氧基环己基）乙基（甲基）二甲氧基硅烷及上述化合物中的环氧基取代为硫代环氧基得到的化合物，其中，特别优选 3－环氧丙氧基丙基三甲氧基硅烷及 3－环氧丙氧基丙基三乙氧基硅烷。

另外，作为含有亚氨基的烃氧基硅烷化合物，可以举出 N－（1，3－二甲基丁基）－3－（三乙氧基甲硅烷基）－1－丙胺、N－（1－甲基亚甲基）－3－（三乙氧基甲硅烷基）－1－丙胺、N－亚乙基－3－（三乙氧基甲硅烷基）－1－丙胺、N－（1－甲基丙基）－3－（三乙氧基甲硅烷基）－1－丙胺、N－（4－N，N－二甲基氨基亚苄基）－3－（三乙氧基甲硅烷基）－1－丙胺、N－（亚环己基）－3－（三乙氧基甲硅烷基）－1－丙胺及与上述三乙氧基甲硅烷基化合物相对应的三甲氧基甲硅烷基化合物、甲基二乙氧基甲硅烷基化合物、乙基二乙氧基甲硅烷基化合物、甲基二甲氧基甲硅烷基化合物、乙基二甲氧基甲硅烷基化合物等，其中，特别优选 N－（1－甲基亚丙基）－3－（三乙氧基甲硅烷基）－1－丙胺及 N－（1，3－二甲基丁基）－3－（三乙氧基甲硅烷基）－1－丙胺。

作为含有亚氨基的化合物，可以举出 1－[3－（三乙氧基甲硅烷基）丙基]－4，5－二氢咪唑、1－[3－（三甲氧基甲硅烷基）丙基]－4，5－二氢咪唑、N－（3－三乙氧基甲硅烷基丙基）－4，5－二氢咪唑、N－（3－异丙氧基甲硅烷基丙基）－4，5－二氢咪唑、N－（3－甲基二乙氧基甲硅烷基丙基）－4，5－二氢咪唑等，其中，优选 N－（3－三乙氧基甲硅烷基丙基）－4，5－二氢咪唑。

另外，作为含有羧酸酯基的化合物，可以举出 3－甲基丙烯酰氧基丙基三乙氧基硅烷、3－甲基丙烯酰氧基丙基三甲氧基硅烷、3－甲基丙烯酰氧基丙基甲基二乙氧基硅烷、3－甲基丙烯酰氧基丙基三异丙氧基硅烷等，其中，优选 3－甲基丙烯酰氧基丙基三甲氧基硅烷。
作为含有异氰酸酯基的化合物，可以举出 3-异氰酸酯基丙基三甲氧基硅烷、3-异氰酸酯基丙基三乙氧基硅烷、3-异氰酸酯基丙基甲基二乙氧基硅烷、3-异氰酸酯基丙基三丙氧基硅烷等，其中，优选 3-异氰酸酯基丙基三乙氧基硅烷。

作为含有羧酸酐的化合物，可以举出 3-三乙氧基甲硅烷基丙基琥珀酸酐、3-三甲氧基甲硅烷基丙基琥珀酸酐、3-甲基二乙氧基甲硅烷基丙基琥珀酸酐等，其中，优选 3-三乙氧基甲硅烷基丙基琥珀酸酐。

作为含有环状叔胺基的烃氧基硅烷化合物，可以举出 3-（1-六亚甲基亚氨基）丙基（三乙氧基）硅烷、3-（1-六亚甲基亚氨基）丙基（三甲氧基）硅烷、（1-六亚甲基亚氨基）甲基（三乙氧基）硅烷、（1-六亚甲基亚氨基）甲基（三甲氧基）硅烷、2-（1-六亚甲基亚氨基）乙基（三乙氧基）硅烷、2-（1-六亚甲基亚氨基）乙基（三甲氧基）硅烷、3-（1-吡咯烷基）丙基（三乙氧基）硅烷、3-（1-吡咯烷基）丙基（三甲氧基）硅烷、3-（1-七亚甲基亚氨基）丙基（三乙氧基）硅烷、3-（1-十二亚甲基亚氨基）丙基（三乙氧基）硅烷、3-（1-六亚甲基亚氨基）丙基（二乙氧基）甲基硅烷、3-（1-六亚甲基亚氨基）丙基（二乙氧基）乙基硅烷、3-[10-（三乙氧基甲硅烷基）癸基]-4-噻唑啉等，其中，优选 3-（1-六亚甲基亚氨基）丙基（三乙氧基）硅烷及（1-六亚甲基亚氨基）甲基（三甲氧基）硅烷。

作为含有非环状叔胺基的烃氧基硅烷化合物，可以举出 3-二甲基氨基丙基（三乙氧基）硅烷、3-二甲基氨基丙基（三甲氧基）硅烷、3-二乙基氨基丙基（三乙氧基）硅烷、3-二乙基氨基丙基（三甲氧基）硅烷、2-二甲基氨基乙基（三乙氧基）硅烷、2-二甲基氨基乙基（三甲氧基）硅烷、3-二甲基氨基丙基（二乙氧基）甲基硅烷、3-二丁基氨基丙基（三乙氧基）硅烷等，其中，优选 3-二乙基氨基丙基（三乙氧基）硅烷及 3-二甲基氨基丙基（三乙氧基）硅烷。

作为其他的烃氧基硅烷化合物，可以举出 2-（三甲氧基甲硅烷
基乙基）吡啶、2-（三乙氧基甲硅烷基乙基）吡啶、2-氯基乙基三乙氧基硅烷等。

上述式（III）表示的烃氧基硅烷化合物可以单独使用一种，也可以组合使用二种以上。还可以使用上述烃氧基硅烷化合物的部分缩合物。

式（IV）中，R^8及R^9分别与对上述式（III）中的R^6及R^7进行的说明相同。

作为式（IV）表示的烃氧基硅烷化合物，例如，可以举出四甲氧基硅烷、四乙氧基硅烷、四正丙氧基硅烷、四异丙氧基硅烷、四正丁氧基硅烷、四异丁氧基硅烷、四仲丁氧基硅烷、四叔丁氧基硅烷、甲基三甲氧基硅烷、甲基三乙氧基硅烷、甲基三丙氧基硅烷、甲基三异丙氧基硅烷、乙基三甲氧基硅烷、乙基三乙氧基硅烷、丙基三乙氧基硅烷、丁基三甲氧基硅烷、苯基三甲氧基硅烷、苯基三乙氧基硅烷、二甲基二甲氧基硅烷、甲基苯基二甲氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基二甲氧基硅烷、乙烯基二乙氧基硅烷等，其中，特别优选四乙氧基硅烷。

式（IV）表示的烃氧基硅烷化合物可以单独使用一种，也可以组合使用二种以上。还可以使用上述烃氧基硅烷化合物的部分缩合物。

由上述改性剂引起的聚合反应活性末端的改性反应优选采用溶液反应进行，该溶液中可以含有聚合时使用的单体。另外，改性反应的反应形式没有特别限定，可以为间歇式，也可以为连续式。改性反应的反应温度，只要能使反应进行即可，没有特别限定，可以直接采用聚合反应的反应温度。

本发明的改性共轭二烯类聚合物，可以使用聚合起始侧的活性氨基，进一步用选自具有异氰酸酯基的化合物及其缩合物中的至少一种异氰酸酯化合物进行改性。由该异氰酸酯化合物引起的聚合起始末端的改性反应，优选采用溶液反应进行，该溶液中可以含有聚合时使用的单体。需要说明的是，反应溶液中优选除具有上述活性氨基的聚合物之外，不混入具有活性基质的化合物。另外，由于优选聚合活性未
端侧对异氰酸酯基为惰性，故 Z1 优选为与聚合抑制剂或改性剂等负碳离子反应性化合物反应生成的残基。聚合起始段的改性反应的反应形式没有特别限定，可以采用间歇式或连续式。改性反应的反应温度只要能使反应进行即可，没有特别限定，可以直接采用聚合反应的反应温度。

（橡胶组合物）

本发明的橡胶组合物含有上述改性共轭二烯类聚合物作为橡胶成分。此处，橡胶成分中的改性共轭二烯类聚合物的含有率优选为 10 质量％以上。橡胶成分中的改性共轭二烯类聚合物的含有率小于 10 质量％时，改良填充剂的分散性的效果小，改良橡胶组合物的低发热性的效果小。另外，本发明的橡胶组合物中，作为上述改性共轭二烯类聚合物以外的橡胶成分，除天然橡胶（NR）之外，还可以使用未改性的苯乙烯-丁二烯共聚物（SBS）、聚丁二烯橡胶（BR）、聚异戊二烯橡胶（IR）、丁基橡胶（IIR）、乙烯-丙烯共聚物等，其中，优选天然橡胶。上述橡胶成分可以单独使用 1 种，也可以使用 2 种以上的掺合橡胶。

本发明的橡胶组合物，优选含有硫作为交联剂，该情况下，该橡胶组合物呈现硫交联性。通过用硫交联橡胶组合物，可以赋予橡胶组合物适合用于轮胎或带等橡胶制品的强度。

本发明的橡胶组合物优选相对于 100 质量份上述橡胶成分，配合总计 10～100 质量份的炭黑及/或无机填充剂作为填充剂而形成。炭黑及无机填充剂的配合量相对于 100 质量份橡胶成分总计小于 10 质量份时，橡胶组合物的破化特性及耐磨性下降，如果超过 100 质量份，则橡胶组合物的操作性变差。此处，作为炭黑，优选 FEF、SRF、HAF、ISAF、SAF 等级的炭黑，更优选 HAF、ISAF、SAF 等级的炭黑。

作为上述无机填充剂，可以举出二氧化硅及下述式（X）表示的无机化合物，需要说明的是，式（X）中，x、z 均为 0 时，该无机化合物为选自铝、镁、钛、钙及锗中的至少 1 种金属、金属氧化物或金属氢氧化物，
\[wM^2 \cdot xSiO_2 \cdot yH_2O \cdots (X) \]

（式中，\(M^2 \) 为选自铝、镁、钛、钙及锆的金属、上述金属的氧化物或氢氧化物、及上述化合物的水合物或选自上述金属的碳酸盐中的至少一种；\(w, x, y \) 及 \(z \) 分别为 1～5 的整数、0～10 的整数、2～5 的整数及 0～10 的整数）。

作为上述式（X）表示的无机化合物，可以举出\(\gamma \) - 氧化铝、\(\alpha \) - 氧化铝等氧化铝（\(Al_2O_3 \）；软水铝石、硬水铝石等氧化铝一水合物（\(Al_2O_3 \cdot H_2O \）；三水铝矿、三羟铝石等氧化铝\([Al(OH)_3] \)；碳酸铝\([Al_2(CO_3)_3] \)、氢氧化镁\([Mg(OH)_2]\)、氧化镁（\(MgO \）、碳酸镁（\(MgCO_3 \））；滑石（\(3MgO \cdot 4SiO_2 \cdot H_2O \）；绿沸石（\(5MgO \cdot 8SiO_2 \cdot 9H_2O \）；钛白（\(TiO_2 \）、钛黑（\(TiO_{2n-1} \）；氧化钙（\(CaO \）、氢氧化钙\([Ca(OH)_2] \)、氧化铝镁（\(MgO \cdot Al_2O_3 \））、粘土（\(Al_2O_3 \cdot 2SiO_2 \）；高岭石（\(Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O \）；叶蜡石（\(Al_2O_3 \cdot 4SiO_2 \cdot H_2O \）；膨润土（\(Al_2O_3 \cdot 4SiO_2 \cdot 2H_2O \）；硅酸铝（\(Al_2SiO_5 \）、\(Al_4 \cdot 3SiO_4 \cdot 5H_2O \）等）、硅酸镁（\(Mg_2SiO_4 \）、\(MgSiO_3 \）等）、硅酸钙（\(Ca_2SiO_4 \）等）、硅酸铝钙（\(Al_2O_3 \cdot CaO \cdot 2SiO_2 \）等）、硅酸镁钙（\(CaMgSiO_4 \））、碳酸钙（\(CaCO_3 \））、氧化锆（\(ZrO_2 \））、氢氧化锆\([ZrO(OH)_2 \cdot nH_2O] \）、碳酸锆\([Zr(CO_3)_2] \）、各种沸石之类补充电荷的含有氢、碱金属或碱土类金属的结晶性铝硅酸盐等。

上述无机填充剂中特别优选二氧化硅。通过配合二氧化硅作为填充剂可以提高橡胶组合物在润湿路面上的性能。此外，作为二氧化硅，优选湿二氧化硅及干二氧化硅等，更优选湿二氧化硅。该二氧化硅的配合量相当于 100 质量份上述橡胶成分，优选在 10～100 质量份的范围内。二氧化硅的配合量相当于 100 质量份橡胶成分小于 10 质量份时，橡胶组合物的破坏特性及耐磨性下降，如果超过 100 质量份，则橡胶组合物的操作性变差。

本发明的橡胶组合物中除上述橡胶成分、硫等交联剂、炭黑及二氧化硅等填充剂之外，可以在不破坏本发明目的的范围内适当地选择配合橡胶工业领域常用的配合剂，例如抗老化剂、软化剂、硅烷偶联

30
剂、硫化促进剂、硫化促进助剂等。上述配合剂可以适当使用市售品。本发明的橡胶组合物在至少含有改性共轭二烯类聚合物的橡胶成分中，配合根据需要适当选择的各种配合剂，通过混炼、加热、挤出等而制得。

本发明的橡胶组合物可以用于轮胎、带等橡胶制品。其中，本发明的橡胶组合物适用于轮胎的各种橡胶部件，特别适合用作轮胎的胎面。

〈实施例〉

下面举出实施例更加详细地说明本发明，但是本发明并不限于下述实施例。

〈制备实施例 1〉

（聚合引发剂溶液 A 的制备）

在惰性气体气流下，向装有特氟龙（TEFLON，注册商标）搅拌器的充分干燥后的 100ml 茄形烧瓶，加入 5.75mmol N，N’-二甲基-1, 6-二氨基己烷，使其溶解于 10ml 四氢呋喃中。然后，边用磁力搅拌器剧烈搅拌该溶液，边滴入 5.75mmol 正丁基锂。向该溶液中加入 5.75mmol 三甲基氯硅烷后，在室温下搅拌 30 分钟。将生成的固体用 PTFE 过滤器滤出后，将 15ml 滤液投入充分干燥的 150ml 耐压玻璃瓶中，用带有橡皮塞的金属瓶盖密封。向该溶液中依次加入 4.23mmol 四甲基乙二胺、4.23mmol 正丁基锂，充分搅拌，得到聚合引发剂溶液 A。

（聚合物 A 的合成）

向干燥、用氮气置换后的 800ml 耐压玻璃容器中加入丁二烯的环己烷溶液及苯乙烯的环己烷溶液达到含有 60g 丁二烯单体、15g 苯乙烯单体，加入 11.7ml 上述聚合引发剂溶液 A 后，在 50℃下聚合反应 2.5 小时。此时的聚合转化率大约为 100%。其后，向聚合反应体系中加入 0.5ml 2, 6-二-叔丁基-对甲酚（BHT）的异丙醇溶液（BHT 浓度 5 质量%），使聚合反应停止，进一步在含有微量盐酸及 BHT 的异丙醇溶液中再沉淀后，根据常用方法干燥，得到聚合物 A。得到
的聚合物 A 的数均分子量 (Mn) 及分子量分布 (Mw/Mn)，及门尼粘度 ML_{1+4}(100℃) 采用下述方法测定。结果如表 1 所示。
（1）数均分子量 (Mn) 及分子量分布 (Mw/Mn)
采用凝胶渗透色谱法 [GPC; 东曹制 HLC-8020, 柱: 东曹制 GMH-XL (2 根串联)], 检测器: 示差折光计 (RI)] 以单分散聚苯乙烯为基准，求出聚合物的换算成聚苯乙烯的数均分子量 (Mn) 及重均分子量 (Mw)，计算分子量分布 (Mw/Mn)。
（2）门尼粘度 ML_{1+4}(100℃)
使用东洋精机社制 RLM-01 型测试器，在 100℃下测定聚合物的门尼粘度 ML_{1+4}(100℃)。
〈制备比较例 1〉
（聚合物 B 的合成）
依次加入 0.75mmol 六亚甲基亚胺、0.75mmol 正丁基锂 (n-BuLi) 及 0.75mmol 二（四氢呋喃基）丙烷代替加入 11.7ml 聚合引发剂溶液 A，除此之外，与上述聚合物 A 的合成相同地操作，制备聚合物 B。得到的聚合物 B 的分析结果如表 1 所示。
〈制备比较例 2〉
（聚合物 C 的合成）
向干燥、用氮气置换后的 800ml 耐压玻璃容器中加入丁二烯的环己烷溶液及苯乙烯的环己烷溶液达到含有 60g 丁二烯单体、15g 苯乙烯单体，向该溶液中加入 0.75mmol 二（四氢呋喃基）丙烷，并加入 0.75mmol 正丁基锂 (n-BuLi) 后，在 50℃下聚合反应 1.5 小时。此时的聚合转化率大约为 100%。然后，向聚合反应体系中加入 0.19mmol 四氯化锡后，在 50℃下进一步进行 30 分钟改性反应。然后，向聚合反应体系中加入 0.5ml 2, 6-二-叔丁基-对甲酚 (BHT) 的异丙醇溶液 (BHT 浓度: 5 质量 %)，使聚合反应停止，再根据常用的方法干燥，得到聚合物 C。得到的聚合物 C 的分析结果如表 1 所示。
〈制备比较例 3〉
（聚合物 D 的合成）
向干燥、用氮气置换后的 800ml 耐压玻璃容器中加入丁二烯的环
己烷溶液及苯乙烯的环己烷溶液达到含有 60g 丁二烯单体、15g 苯乙
烯单体，向该溶液中加入 0.75mmol 二（四氢呋喃基）丙烷，并加入
0.75mmol 正丁基锂（n-BuLi），在 50℃下聚合反应 1.5 小时。此时
的聚合转化率大约为 100%。然后，向聚合反应体系中加入 0.5ml 2，
6-二-叔丁基-对甲酚（BHT）的异丙醇溶液（BHT 浓度：5 质量
%），使聚合反应停止，再根据常用的方法干燥，得到聚合物 D。得
到的聚合物 D 的分析结果如表 1 所示。

〈制备实施例 2〉

（聚合物 E 的合成）

加入 0.19mmol 四氯化锡代替加入 BHT 的异丙醇溶液，进一步在
50℃下进行 30 分钟改性反应，其后，加入 BHT 的异丙醇溶液，除此
之外，采用与上述聚合物 A 的合成相同的操作，合成聚合物 E。

〈制备比较例 4〉

（聚合物 F 的合成）

加入 0.19mmol 四氯化锡代替加入 BHT 的异丙醇溶液，进一步在
50℃下进行 30 分钟改性反应，其后，加入 BHT 的异丙醇溶液，除此
之外，采用与上述聚合物 B 的合成相同的操作，合成聚合物 F。

<table>
<thead>
<tr>
<th>聚合物</th>
<th>Mn</th>
<th>Mw/Mn</th>
<th>ML_{1+4}(100℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>174×10^{3}</td>
<td>1.20</td>
<td>22</td>
</tr>
<tr>
<td>B</td>
<td>195×10^{3}</td>
<td>1.08</td>
<td>28</td>
</tr>
<tr>
<td>C</td>
<td>382×10^{3}</td>
<td>1.68</td>
<td>80</td>
</tr>
<tr>
<td>D</td>
<td>211×10^{3}</td>
<td>1.04</td>
<td>24</td>
</tr>
<tr>
<td>E</td>
<td>319×10^{3}</td>
<td>1.87</td>
<td>76</td>
</tr>
<tr>
<td>F</td>
<td>357×10^{3}</td>
<td>1.71</td>
<td>74</td>
</tr>
</tbody>
</table>

然后，使用上述聚合物 A～F，配制表 2 所示的配合处方的橡胶
组合物，采用下述方法测定将该橡胶组合物在 160℃下硫化 15 分钟得
到的硫化橡胶的低损耗因数。对应于配合 1 的橡胶组合物的结果如表
3 所示，对应于配合 2 的橡胶组合物的结果如表 4 所示，对应于配合 3 的橡胶组合物的结果如表 5 所示。

（3）低损耗因数（低发热性）

使用 Rheometric 社制的粘弹性测定装置，在温度为 50°C、频率为 15Hz、形变为 3% 或 10% 的条件下测定 \(\tan \delta \)，基于比较例 3 的橡胶组合物的 \(\tan \delta \) 为 100，用指数表示配合 1 的橡胶组合物的 \(\tan \delta \)，基于比较例 7 的橡胶组合物的 \(\tan \delta \) 为 100，用指数表示配合 2 的橡胶组合物的 \(\tan \delta \)，基于比较例 11 的橡胶组合物的 \(\tan \delta \) 为 100，用指数表示配合 3 的橡胶组合物的 \(\tan \delta \)。指数值越小，低发热性越优良。

表 2

<table>
<thead>
<tr>
<th></th>
<th>配合 1</th>
<th>配合 2</th>
<th>配合 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBR*1</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>天然橡胶</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>炭黑 HAF</td>
<td>50</td>
<td>27</td>
<td>-</td>
</tr>
<tr>
<td>二氧化硅*2</td>
<td>-</td>
<td>27</td>
<td>55</td>
</tr>
<tr>
<td>芳香油</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>硬脂酸</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>抗老化剂 6C*3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>硅烷偶联剂*4</td>
<td>-</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>氧化锌</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>硫化促进剂 D-G*5</td>
<td>0.3</td>
<td>0.7</td>
<td>1.4</td>
</tr>
<tr>
<td>硫化促进剂 DM-P*6</td>
<td>0.5</td>
<td>1.2</td>
<td>2</td>
</tr>
<tr>
<td>硫化促进剂 NS-P*7</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>硫</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

*1 上述制备实施例 1～2 及制备比较例 1～4 中制得的聚合物 A～F，使用的聚合物的种类如表 3～5 所示。

*2 日本 SILICA 工业制 Nipsil AQ。

*3 N-(1, 3-二甲基丁基)-N’-苯基-对苯二胺，大内新兴化学（株）制，Nocrac 6C。
*4 二（3－三乙氧基甲硅烷基丙基）四硫醚，德固赛公司制，硅烷偶联剂 Si69。

*5 N, N’－二苯基胍，三新化学工业（株）制，Suncelar D－G。

*6 二苯并噻唑基二硫醚，大内新兴化学（株）制，Noccelar DM－P。

*7 N－叔丁基－2－苯并噻唑基次磺酰胺，大内新兴化学（株）制，Noccelar NS－P。

<table>
<thead>
<tr>
<th>表 3</th>
<th>实施例 1</th>
<th>比较例 1</th>
<th>比较例 2</th>
<th>比较例 3</th>
<th>实施例 2</th>
<th>比较例 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用的 SBR</td>
<td>聚合物 A</td>
<td>聚合物 B</td>
<td>聚合物 C</td>
<td>聚合物 D</td>
<td>聚合物 E</td>
<td>聚合物 F</td>
</tr>
<tr>
<td>tan δ（3％，50℃）（指数）</td>
<td>69</td>
<td>87</td>
<td>73</td>
<td>100</td>
<td>54</td>
<td>65</td>
</tr>
</tbody>
</table>

*橡胶组物的配合按照表 2 中的配合 1（含炭黑）。

<table>
<thead>
<tr>
<th>表 4</th>
<th>实施例 3</th>
<th>比较例 5</th>
<th>比较例 6</th>
<th>比较例 7</th>
<th>实施例 4</th>
<th>比较例 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用的 SBR</td>
<td>聚合物 A</td>
<td>聚合物 B</td>
<td>聚合物 C</td>
<td>聚合物 D</td>
<td>聚合物 E</td>
<td>聚合物 F</td>
</tr>
<tr>
<td>tan δ（10％，50℃）（指数）</td>
<td>76</td>
<td>89</td>
<td>81</td>
<td>100</td>
<td>62</td>
<td>74</td>
</tr>
</tbody>
</table>

*橡胶组物的配合按照表 2 中的配合 2（含炭黑和二氧化硅）。

<table>
<thead>
<tr>
<th>表 5</th>
<th>实施例 5</th>
<th>比较例 9</th>
<th>比较例 10</th>
<th>比较例 11</th>
<th>实施例 6</th>
<th>比较例 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用的 SBR</td>
<td>聚合物 A</td>
<td>聚合物 B</td>
<td>聚合物 C</td>
<td>聚合物 D</td>
<td>聚合物 E</td>
<td>聚合物 F</td>
</tr>
<tr>
<td>tan δ（10％，50℃）（指数）</td>
<td>81</td>
<td>97</td>
<td>95</td>
<td>100</td>
<td>78</td>
<td>95</td>
</tr>
</tbody>
</table>

*橡胶组物的配合按照表 2 中的配合 3（含二氧化硅）。

从以上结果可知，含有本发明的改性共轭二烯类聚合物的实施例的橡胶组物，使用炭黑作为填充剂的配合 1、使用炭黑及二氧化硅作为填充剂的配合 2、使用二氧化硅作为填充剂的配合 3 中的任一个配合均具有优良的低发热性。另一方面，使用聚合起始末端引入环状氨基的聚合物 B、经锡化合物偶联聚活性末端的聚合物 C 的情况与使用未改性的聚合物 D 的情况相比，虽然能改善低发热性，但是其改善幅度小。通过组合本发明的改性聚合引发剂与适当的末端改性剂能得到低发热性更优良的橡胶组物。