Abstract: The present invention provides for an improved network bus terminator (4), and related bus networks and bus network segments/trunk (1), and comprising a bus network terminator (4) including bus network termination functionality and a diagnostic analyser (2) and wherein the degree of diagnostic functionality provided within the terminator (4) can then, as with the terminator itself, be provided as an inherent feature of the segment/trunk (1), and thus also the bus network, and can comprise limited, simple but suitably effective diagnostic functionality, and which can be inherently suited to bus analysis during a commissioning, and/or initial deployment, phase and be provided in a cost-effective manner.
The present invention relates to a terminator for use in providing termination within a bus network and in particular, but not exclusively, to a Fieldbus H1 or Profibus PA terminator.

Problems such as communication errors can arise from signal reflections in bus networks unless the ends of such networks are properly terminated. Appropriate termination involves employment of a terminator device at each end of the bus network and which serves to absorb signals appearing in the network so as to prevent reflections.

In Fieldbus/Profibus networks for example, each bus segment/trunk requires two terminators, one located at each end, and which are generally equivalent to a 1μF capacitor and 100 Ω resistor connected in series. Each terminator serves to both shunt the bus current so as to keep the current signals on the segment/trunk within the specified levels and to protect against signal reflections through appropriate matching with the line impedance of the segment/trunk.

Within a Fieldbus/Profibus network, the terminator can comprise a stand-alone device, or can be incorporated into the device couplers that serve to connect fieldbus devices to the segment/trunk via spurs. If incorporated into a device coupler, a switching arrangement is also often associated with the terminator to allow for selective enablement of the terminator. It is only the device coupler connected at the end of the segment/trunk that should provide the required termination, and so the terminator can be enabled/disabled as required depending upon the position of the device coupler on the segment/trunk.

A terminator can be viewed as an essential, and therefore ever-present, element at the end of a Fieldbus/Profibus segment/trunk. However, currently its functionality is limited to one of merely offering the required termination.

Bus networks such as Fieldbus/Profibus networks often exhibit complex/specialised configurations for the operation/monitoring of complex, performance critical, and often potentially costly and hazardous industrial systems/processes. Correspondingly complex/specialised diagnostic analysis is also then required.
Diagnostic requirements arise both during commissioning, and subsequent operation, of the network and a variety of sophisticated network analyser devices are available for providing detailed diagnostic functionality and taking into account the variety of potentially problematic situations that can arise. Separate sophisticated diagnostic devices are currently employed in relation to bus networks such as Fieldbus/Profibus networks.

This can prove disadvantageous insofar as separate steps for obtaining, preparing and using known diagnostic analysers are required and the level of diagnostic capability is often not matched, often being overly complex and highly functional, as compared with the level of diagnostic activity required. Inefficiencies can therefore be introduced into the diagnostic process and potential cost effectiveness can also be impaired, particularly since known diagnostic devices such as known bus analysers are expensive. Known bus analysers also tend to require specialist trained staff for their implementation and use, and which further limits their cost-effectiveness and can limit the ease and speed by which they can be deployed if such personnel are not readily available.

The present invention seeks to provide for a network bus terminator having advantages over known such terminators and which, further, can provide for bus networks and bus network segments/trunks having advantages over known such networks/segments/trunks.

According to one aspect of the present invention there is provided a bus network terminator including bus network termination functionality and a diagnostic analyser.

The invention can prove advantageous in so far as the degree of diagnostic functionality provided within the terminator is then, as with the terminator itself, provided as an inherent feature of the segment/trunk, and thus also the bus network.

Advantageously, the diagnostic bus analyser is arranged to provide basic information concerning the segment/trunk.

Such basic information can comprise, but is not limited to, one or more of segment voltage, segment traffic and segment integrity.

The invention advantageously therefore allows for quick-glance diagnostic functionality without the need for a sophisticated analyser and so as to determine
whether any initial problems might arise. If further investigation is required, this can then readily be conducted by way of a separate more sophisticated analyser.

The invention can prove particularly useful during the commissioning phase of a segment/trunk and bus network particularly since the basic diagnostic functionality is inherent within each terminator which, again, form essential inherent elements of the segment/trunk. Immediate basic diagnosis is therefore readily possible from even the earliest stages in the bus network formation, in particular for basic simple analysis particularly suited to the network commissioning phase.

The diagnostic bus analyser of the present invention can comprise a basic, low-power, microprocessor, with minimal required electronics, to provide the required basic level of bus analysis.

As non-exhaustive examples, the bus analyser can be arranged to analyse trunk voltage, whether high, low, noisy or lacking in stability.

Further, the bus analyser can be arranged to identify whether data is present on the segment/trunk and, if so, the degree of data activity and/or direction of transmission.

As further examples, the bus analyser can be arranged to determine data signal amplitude and also data signal width and/or jitter.

As a yet further feature, an additional short-to-shield indication can be provided. The terminator can also incorporate a user interface that can comprise any appropriate audio and/or visual output, such as simple LED output device or array.

Additionally, or alternatively, the terminator can be arranged with a bus to shield low-impedance condition indicator, and which can be responsive to, for example, detection of loss of isolation exhibiting impedance from values of a few $100\,\text{k}\Omega$, down to a short circuit condition.

The terminator of the invention can also comprise a bus device which can further be addressable from a host device, and/or be addressable from a separate system, by way of a wired, or wireless, connection, and if appropriate, from any required remote location.
The terminator of the present invention can be incorporated into any appropriate/required Fieldbus/Profibus segment/trunk, whether in explosive environments or otherwise.

As will be appreciated therefore, the terminator of the invention can comprise a line impedance terminator offering in-line diagnostic functionality.

In particular, the basic, simple, yet effective, functionality of the analyser of the present invention can advantageously remain in situ, without any impact on cost effectiveness, and potentially as a standard fitting. This aspect of the invention contrasts favourably with potentially expensive, and unnecessary complex, analysers, often fitted in a one-off manner, with only specific complex trouble-shooting scenarios in mind.

The invention is described further hereinafter, by way of example only, with reference to the accompanying drawings in which:

Fig. 1 is a schematic diagram of a terminator device according to an embodiment of the present invention;

Fig. 2 is a schematic diagram similar to that of Fig. 1 of a terminator device of the present invention and arranged on a bus with a bus shield; and

Fig. 3 is a schematic diagram of a typical fieldbus segment/trunk employing terminator devices such as that of Figs. 1 and 2.

Turning first to Fig. 1 there is illustrated a section of a network bus 1, such as a trunk/segment of a Fieldbus or Profibus system and within which a terminator 4 according to an embodiment of the present invention, and so, in this example, including diagnostic functionality, is integrally provided.

The illustrated example of the terminator 4 includes a termination resistor 10 in series with a termination capacitor 11, both of which are likewise in series with an optional disconnection switch 12 which, if present, can be selectively opened (to the configuration as illustrated in Fig. 1) so as to disconnect the terminator 4 functionality from the bus 4.

A shunt resistance 13 is provided for use in sensing bus current and is discussed in further detail in relation to Fig. 2 below.
As an important feature of the present invention, the terminator 4 includes a bus analyser 20 which receives its power by way of a supply 21. As will be appreciated, the bus analyser is arranged to provide for relatively simple bus analysis which can be quickly and efficiently deployed, without requiring specialist staff/personnel. The terminator 4 can then provide for basic analysis, at any time as required, for example, during the commissioning of the bus 1, during initial use or as part of a "trouble-shooting" procedure, or even during periods of regular/irregular control signalling on the bus.

The result of such analysis can then be presented by way of any appropriate form of user interface. Various examples are illustrated with reference to Fig. 1 but it should be appreciated that the interface devices can be provided in any required number and combination. In the illustration provided by Fig. 1, examples of such devices are, an optical indicator 22, and audio indicator 23, a display screen 24, a radio transmitter 25, an alternative wireless interface 26, and connector socket 28.

As will therefore be appreciated, the terminator 4 embodying the present invention can advantageously comprise part of the bus 1 and can be remotely accessible as required. Such remote accessibility can be arranged to allow for activation/deactivation of the bus analyser 20 and/or terminator functionality and/or selection of the specific diagnostic check to be conducted by the analyser 20. The terminator 4 therefore has the inherent ability to offer at least some degree of diagnostic analysis useful, in particular, during commissioning of a network bus 1 such as a Fieldbus or Profibus trunk/segment.

Fig. 2 is a schematic diagram similar to that of Fig. 1, but in which a field side 2 of the bus 1 is further indicated and which of course has relevance when current is to be sensed by the shunt resistor 13. The configuration of the shunt resistor 13 in relation to the bus 1 within Fig. 2 is illustrated in accordance with bus-current sensing characteristic and this further example of the present mention is also illustrated in relation to a bus 1 employing a bus shield 3. In this manner, one of shield isolation sensing or current measuring can be provided as required.

Figure 3 is a schematic representation of a complete network segment/trunk 1 employing terminator devices such as those 4 of Figs. 1 and 2. The complete segment/trunk 1 is illustrated with the respective terminator devices 4 located at
each end to offer the required termination for the segment/trunk. Schematic representations of further devices typically employed with, for example, a Fieldbus segment/trunk. That is, in the illustrated example, there is provided a Distributed Control System (DCS), or indeed some other form of controller 30, a Fieldbus power supply 31 for the segment/trunk 1, a power conditioner 32 arranged to superimpose data onto the segment/trunk supply and prevent crosstalk between adjacent, and an terminal device such as a field unit 33, and/or barrier 34 and/or bus isolator 35.

Of course, the present invention is not restricted to the details of the foregoing examples and embodiments. For example, any appropriate further termination and bus analysis functionality can be provided as required. With regard to the segment/trunk 1 configuration of Fig. 3, the segment/trunk can of course form part of any appropriate signalling network and any required number of terminator/analysis devices 4 of the present invention can be provided. As noted above, the termination functionality of such devices 4 can be selectively initiated responsive to the location of the device 4 on the segment/spur 1.
Claims

1. A bus network terminator having bus network termination functionality and including a diagnostic analyser.

2. A terminator as claimed in Claim 1, and arranged to provide for analysis of a segment/trunk/line on which it is located.

3. A terminator as claimed in Claim 2, wherein the said basic information comprises one or more of segment voltage, segment traffic and/or segment integrity.

4. A terminator as claimed in any one or more of Claims 1 - 3, wherein the diagnostic analyser comprises a basic, low-power microprocessor.

5. A terminator as claimed in Claim 4, wherein the microprocessor exhibits basic required electronics, to provide the required basic level of bus analysis.

6. A terminator as claimed in any one or more of Claims 1 - 5, wherein the diagnostic analyser is arranged to analyse a trunk voltage condition.

7. A terminator as claimed in Claim 6, wherein the said diagnostic analyser is arranged to diagnose one or more of a high voltage condition, low voltage condition, a current condition, noise condition and/or unstable condition.

8. A terminator as claimed in any one or more of Claims 1 - 7, wherein the diagnostic analyser is arranged to identify whether data is present on the segment/trunk.
9. A terminator as claimed in Claim 8, wherein the diagnostic analyser is arranged to identify the degree of data activity and/or direction of transmission.

10. A terminator as claimed in any one or more of Claims 1-9, wherein the diagnostic analyser is arranged to determine any one or more of data signal amplitude; data signal width; and signal stability/jitter.

11. A terminator as claimed in any one or more of the preceding claims and including an additional short-to-shield indication.

12. A terminator as claimed in any one or more of Claims 1 to 10, and arranged for indication of loss of isolation.

13. A terminator as claimed in Claim 12, and arranged for indication of an impedance within a range from a few 100KΩ to a short circuit condition.

14. A terminator as claimed in any one or more of the preceding claims and including a user interface comprising an audio and/or visual output.

15. A terminator as claimed in any one or more of the preceding claims and comprising an integral bus device.

16. A terminator as claimed in any one or more of the preceding claims and arranged for remote accessibility.

17. A terminator as claimed in any one or more of the preceding claims and including a temperature indicator arranged to indicate terminator temperature and/or local or ambient temperature.

18. A terminator as claimed in any one or more of the preceding claims and comprising a line impedance terminator offering in-line diagnostic functionality.
19. A terminator as claimed in any one or more of the preceding claims, wherein
the diagnostic analyser is arranged to prove diagnostic analysis during commissioning of the bus network.

20. A bus network segment/trunk terminated by way of a terminator as claimed in
any one or more of the preceding claims.

21. A bus network segment/trunk as claimed in Claim 20, and for operation in a
hazardous environment.

22. A bus network segment/trunk as claimed in Claim 20 or 21, and arranged for
intrinsically safe operation.

23. A bus network including a segment/trunk as claimed in Claim 20, 21 or 22.

24. A bus network terminator substantially as hereinbefore described with
reference to, and as illustrated in, Fig. 1 and Fig. 2 of the accompanying
drawings.

25. A bus network segment/trunk substantially as hereinbefore described with
reference to Fig. 3 of the accompanying drawings.
INTERNATIONAL SEARCH REPORT

International application No
PCT/GB2016/051191

A. CLASSIFICATION OF SUBJECT MATTER

INV. H04L 12/24 H04B3/46 G06F13/40

ADD.

According to International Patent Classification (IPC) or both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04L G01R H04B G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. If a continuation exists, it is clearly indicated.

Date of the actual completion of the international search: 25 July 2016

Date of mailing of the international search report: 01/08/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Hani gk, Sebastian

* Special categories of cited documents:

- **"A"** document defining the general state of the art which is not considered to be of particular relevance
- **"E"** earlier application or patent but published on or after the international filing date
- **"L"** document which may throw doubts on priority claim(s) or which may affect the establishment of the publication date of another citation or other special reason (as specified)
- **"O"** document referring to an oral disclosure, use, exhibition or other means
- **"P"** document published prior to the international filing date but later than the priority date claimed

- **"T"** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **"X"** document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **"Y"** document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **"F"** document member of the same patent family

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 10107100 A1</td>
<td>05-12-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2322843 T3</td>
<td>30-06-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004093183 A1</td>
<td>13-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 02065593 A1</td>
<td>22-08-2002</td>
</tr>
<tr>
<td>JP 2008123084 A</td>
<td>29-05-2008</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>