(21) International Application Number: PCT/US2012/048354

(22) International Filing Date: 26 July 2012 (26.07.2012)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/5 11,900 26 July 2011 (26.07.2011) US
61/5 11,887 26 July 2011 (26.07.2011) US
61/5 11,880 26 July 2011 (26.07.2011) us
61/534,772 14 September 2011 (14.09.2011) us
61/534,753 14 September 2011 (14.09.2011) us
61/534,761 14 September 2011 (14.09.2011) us
61/557,170 8 November 2011 (08.11.2011) us
61/581,566 29 December 2011 (29.12.2011) us
61/601,404 21 February 2012 (21.02.2012) us
61/601,949 22 February 2012 (22.02.2012) us
61/601,953 22 February 2012 (22.02.2012) us
61/647,936 16 May 2012 (16.05.2012) us
61/647,941 16 May 2012 (16.05.2012) us

(31) Applicant (for all designated States except US): GOGORO, INC.; 2F., No. 276, Jianguo Road, Xindian Dist., 231 New Taipei City (TW).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHEN, Ching; 5F., No. 3, Aiy. 35, Ln. 175, Sec. 2, Heping E. Rd., Da’an Dist., 10664 Taipei City (TW). LUKEN, Hok-Sum, Horace [US/US]; 3763 77th Place Southeast, Mercer Island, WA 98040 (US). TAYLOR, Matthew, Whiting [US/US]; 15135 Uplands Way Southeast, North Bend, WA 98045 (US). WU, Yi-Tsong; 10F., No. 52, Ln. 447, Sec. 1, Wenhua 3rd Road, Linkou District, 244 New Taipei City (TW).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

(Continued on next page)

(54) Title: APPARATUS, METHOD AND ARTICLE FOR PROVIDING VEHICLE DIAGNOSTIC DATA

FIG. 3

(57) Abstract: A network of collection, charging and distribution machines collects, charges and distributes portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). Vehicle diagnostic data of a vehicle using the portable electrical energy storage device is stored on a diagnostic data storage system of the portable electrical energy storage device during use of a respective portable electrical energy storage device by a respective vehicle. Once the user places the portable electrical energy storage device in the collection, charging and distribution machine, or comes within wireless communications range of a collection, charging and distribution machine, a connection is established between the collection, charging and distribution machine and the portable electrical energy storage device. The collection, charging and distribution machine then reads vehicle diagnostic data stored on the diagnostic data storage system of the portable electrical energy storage device and provides information regarding the diagnostic data.
Published:

- without international search report and to be republished upon receipt of that report (Rule 48.2(g))
APPARATUS, METHOD AND ARTICLE FOR PROVIDING VEHICLE
DIAGNOSTIC DATA

CROSS REFERENCE TO RELATED APPLICATIONS

BACKGROUND

Technical Field

The present disclosure generally relates to providing vehicle diagnostic data and, more particularly, to providing vehicle diagnostic data using electrical power storage devices (e.g., secondary batteries, supercapacitors or
ultracapacitors), which may be suitable for use in a variety of fields or applications, for instance transportation and non-transportation uses.

Description of the Related Art

Personal transportation vehicles such as combustion engine powered scooters and/or motorbikes are ubiquitous in many places, for example in the many large cities of Asia. Such scooters and/or motorbikes tend to be relatively inexpensive, particularly compared to automobiles, cars or trucks. Cities with high numbers of combustion engine scooters and/or motorbikes also tend to be very densely populated and suffer from high levels of air pollution. When new, many combustion engine scooters and/or motorbikes are equipped with a relatively low polluting source of personal transportation. For instance, such scooters and/or motorbikes may have higher mileage ratings than larger vehicles. Some scooters and/or motorbikes may even be equipped with basic pollution control equipment (e.g., catalytic converter). Unfortunately, factory specified levels of emission are quickly exceeded as the scooters and/or motorbikes are used and either not maintained and/or as the scooters and/or motorbikes are modified, for example by intentional or unintentional removal of catalytic converters. Often owners or operators of scooters and/or motorbikes lack the financial resources or the motivation to maintain their vehicles.

It is known that air pollution has a negative effect on human health, being associated with causing or exacerbating a variety of diseases (e.g., various reports tie air pollution to emphysema, asthma, pneumonia, cystic fibrosis as well as various cardiovascular diseases). Such diseases take large numbers of lives and severely reduce the quality of life of countless others.

There are a wide variety of uses or applications for portable electrical energy storage devices. One such application is in the field of transportation. Hybrid and all electrical vehicles are becoming increasingly common. Such vehicles may achieve a number of advantages over traditional internal combustion
engine vehicles. For example, hybrid or electrical vehicles may achieve higher fuel economy and may have little or even zero tail pipe pollution. In particular, all electric vehicles may not only have zero tail pipe pollution, but may be associated with lower overall pollution. For example, electrical power may be generated from renewable sources (e.g., solar, hydro). Also for example, electrical power may be generated at generation plants that produce no air pollution (e.g., nuclear plants). Also for example, electrical power may be generated at generation plants that burn relatively "clean burning" fuels (e.g., natural gas), which have higher efficiency than internal combustion engines, and/or which employ pollution control or removal systems (e.g., industrial air scrubbers) which are too large, costly or expensive for use with individual vehicles.

As the popularity of hybrid and electric powered vehicles continues to increase, so will the need to maintain these vehicles in a convenient and cost effective manner.

BRIEF SUMMARY

A vehicle diagnostic data storage system may be summarized as including at least one controller; and at least one memory device configured to be coupled to the at least one controller, wherein the at least one memory device is attached to an electrical energy storage device configured to provide power to a vehicle, and wherein the controller is configured to: receive diagnostic data regarding the vehicle; and store at least some of the diagnostic data in the memory device.

The at least one memory device may be configured to be coupled to the at least one controller when the electrical energy storage device is operably placed in the vehicle. The at least one controller may be attached to the electrical energy storage device. The at least one memory device may be coupled to the at least one controller. The electrical energy storage device may be a portable electrical energy storage device. The at least one controller may be further
configured to receive the diagnostic data regarding the vehicle from a vehicle diagnostic system of the vehicle. The at least one controller may be further configured to wirelessly receive the diagnostic data regarding the vehicle from the vehicle diagnostic system. The at least one memory device may be configured to be wirelessly coupled to the at least one controller. The at least one controller may be further configured to enable the at least some diagnostic data stored on the at least one memory device to be provided to an external device. The at least one controller may be further configured to: receive information regarding authentication of an external device to which to provide the at least some diagnostic data stored on the at least one memory device; and make a determination regarding enabling the at least some diagnostic data stored on the at least one memory device to be provided to the external device, based on the information regarding authentication. The at least one controller may be configured to receive the information regarding authentication via a wireless signal transmitted from the external device. The external device may be a portable electrical energy storage device collection, charging and distribution machine.

The vehicle diagnostic data storage system may further include a wireless communications module coupled to the at least one memory device, and wherein the wireless communications module is configured to enable the at least some diagnostic data stored on the at least one memory device to be provided wirelessly to an external device. The diagnostic data may include at least some information regarding one or more of: status or condition of the vehicle, condition of an engine of the vehicle, one or more electrical systems of the vehicle, health of the vehicle, oil level of the vehicle, brake pad condition of the vehicle, status of one or more vehicle lights, engine temperature of the vehicle, mileage of the vehicle, one or more fluid levels of the vehicle, condition or status of the electrical energy storage device, and current odometer reading of the vehicle. The memory device may be removably attached to the electrical energy storage device.
A method of operating a portable electrical energy storage device
collection, charging and distribution machine may be summarized as including
detecting presence of a portable electrical energy storage device configured to
provide power to a vehicle; receiving vehicle diagnostic data regarding the vehicle
from the portable electrical energy storage device; and providing information from
the portable electrical energy storage device collection, charging and distribution
machine based on the received vehicle diagnostic data.

The detecting presence of a portable electrical energy storage device
may include detecting presence of the portable electrical energy storage device in
the portable electrical energy storage device collection, charging and distribution
machine. The detecting the presence of the portable electrical energy storage
device in the portable electrical energy storage device collection, charging and
distribution machine may include detecting an operable physical connection
between a diagnostic data storage system of the portable electrical energy storage
device and an input of the portable electrical energy storage device collection,
charging and distribution machine once the portable electrical energy storage
device is placed in the portable electrical energy storage device collection,
charging and distribution machine. The detecting presence of the portable
electrical energy storage device may include detecting presence of the portable
electrical energy storage device via a wireless signal received from the portable
electrical energy storage device. The receiving vehicle diagnostic data regarding
the vehicle from the portable electrical energy storage device may include
receiving the vehicle diagnostic data from a memory device attached to the
portable electrical energy storage device on which the vehicle diagnostic data is
stored. The providing information from the portable electrical energy storage
device collection, charging and distribution machine based on the received vehicle
diagnostic data may include displaying the information on a display of the portable
electrical energy storage device collection, charging and distribution machine. The
displaying the information on a display of the portable electrical energy storage
device collection, charging and distribution machine may include displaying the
information on the display during a transaction at the portable electrical energy
storage device collection, charging and distribution machine involving the portable
electrical energy storage device. The providing information from the portable
electrical energy storage device collection, charging and distribution machine
based on the received vehicle diagnostic data may include communicating the
information to a mobile device of a user associated with the vehicle. The providing
information from the portable electrical energy storage device collection, charging
and distribution machine based on the received vehicle diagnostic data may
include communicating the information to a server computing system. The
provided information from the portable electrical energy storage device collection,
charging and distribution machine may include notifications regarding potential
problems with the vehicle based on the diagnostic data. The provided information
from the portable electrical energy storage device collection, charging and
distribution machine may further include instructions for resolving the potential
problems with the vehicle.

The method of operating a portable electrical energy storage device
collection, charging and distribution machine may further include displaying
information regarding availability of particular vehicle parts at the portable electrical
energy storage device collection, charging and distribution machine based on the
received vehicle diagnostic data.

An electrical energy storage device may be summarized as including
a battery cell; a battery cell housing; and a diagnostic data storage system
attached to the battery cell housing configured to receive and store diagnostic data
of a vehicle that the electrical energy storage device is configured to power.

The electrical energy storage device may be a portable electrical
energy storage device. The diagnostic data storage system may be attached to an
inside of the battery cell housing. The diagnostic data storage system may be
attached to an outside of the battery cell housing. The diagnostic data storage
system may be configured to communicate the stored diagnostic data of the vehicle to an external device. The diagnostic data storage system may be configured to wirelessly communicate the stored diagnostic data of the vehicle to an external device. The external device may be a portable electrical energy storage device collection, charging and distribution machine. The diagnostic data storage system may include a controller coupled to a memory device, wherein the controller is configured to: receive diagnostic data regarding the vehicle; store at least some of the diagnostic data in the memory device; and enable the at least some diagnostic data stored in the memory device to be provided to an external device.

A non-transitory computer readable storage medium may be summarized as having computer executable instructions thereon that, when executed, cause a processor to perform: receiving data from a portable electrical energy storage device configured to power the vehicle; and providing information based on the received data to a user associated with the vehicle.

The computer executable instructions, when executed, may further cause the processor to perform detecting presence of the portable electrical energy storage device at a portable electrical energy storage device collection, charging and distribution machine. The data may include one or more of: vehicle diagnostic data regarding the vehicle, user profile information, vehicle profile information, security codes, credentials, security certificates, passwords, a subscription level of a user, demographic information of a user, information regarding user vehicle locations, telematic user vehicle information, telemetric user vehicle information, information regarding portable electrical energy storage device charge capacity, information regarding route information of users, and historic data. The data may include vehicle diagnostic data regarding the vehicle and the receiving the data from the portable electrical energy storage device may include receiving the data from a memory device attached to the portable electrical energy storage device on which the vehicle diagnostic data is stored. The providing
information based on the received data may include displaying the information on
a display of a portable electrical energy storage device collection, charging and
distribution machine in which the portable electrical energy storage device has
been placed and in response to the portable electrical energy storage device
having been placed in the collection, charging and distribution machine.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

In the drawings, identical reference numbers identify similar elements
or acts. The sizes and relative positions of elements in the drawings are not
necessarily drawn to scale. For example, the shapes of various elements and
angles are not drawn to scale, and some of these elements are arbitrarily enlarged
and positioned to improve drawing legibility. Further, the particular shapes of the
elements as drawn, are not intended to convey any information regarding the
actual shape of the particular elements, and have been solely selected for ease of
recognition in the drawings.

Figure 1 is a schematic view of a collection, charging and distribution
machine along with a number of electrical power storage devices according to one
non-limiting illustrated embodiment, along with an electric scooter or motorbike,
and an electrical service provided via an electrical grid.

Figure 2 is a block diagram of the collection, charging and distribution
machine of Figure 1, according to one non-limiting illustrated embodiment.

Figure 3 is a block diagram of the portable electrical energy storage
device of Figure 1, according to one non-limiting illustrated embodiment.

Figure 4A is a schematic view of the diagnostic data storage system
of Figure 3 coupled to a vehicle diagnostic system, according to one non-limiting
illustrated embodiment.

Figure 4B is an illustration of example information displayed on a
user interface screen regarding vehicle diagnostic data received from the
diagnostic data storage system of Figure 3 and Figure 4A, according to one non-limiting illustrated embodiment.

Figure 5 is a flow diagram showing a high level method of operating the diagnostic data storage system of Figures 3 and 4A, according to one non-limiting illustrated embodiment.

Figure 6 is a flow diagram showing a low level method of operating the diagnostic data storage system of Figures 3 and 4A, according to one non-limiting illustrated embodiment, including enabling data to be provided to an external device, useful in the method of Figure 5.

Figure 7 is a flow diagram showing a high level method of operating a portable electrical energy storage device collection, charging and distribution machine of Figures 1 and 2, according to one non-limiting illustrated embodiment. Figure 8 is a flow diagram showing a low level method of operating the portable electrical energy storage device collection, charging and distribution machine of Figures 1 and 2, according to one non-limiting illustrated embodiment, including receiving the vehicle diagnostic data from a memory device, useful in the method of Figure 7.

Figure 9 is a flow diagram showing a low level method of operating the portable electrical energy storage device collection, charging and distribution machine of Figures 1 and 2, according to one non-limiting illustrated embodiment, including displaying the provided information, useful in the method of Figure 7.

Figure 10 is a flow diagram showing a high level method of operating a portable electrical energy storage device collection, charging and distribution machine of Figures 1 and 2, according to another non-limiting illustrated embodiment.

DETAILED DESCRIPTION

In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments.
However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with vending apparatus, batteries, supercapacitors or ultracapacitors, power converters including but not limited to transformers, rectifiers, DC/DC power converters, switch mode power converters, controllers, and communications systems and structures and networks have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.

Unless the context requires otherwise, throughout the specification and claims which follow, the word "comprise" and variations thereof, such as, "comprises" and "comprising" are to be construed in an open, inclusive sense that is as "including, but not limited to."

Reference throughout this specification to "one embodiment" or "an embodiment" means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases "in one embodiment" or "in an embodiment" in various places throughout this specification are not necessarily all referring to the same embodiment.

The use of ordinals such as first, second and third does not necessarily imply a ranked sense of order, but rather may only distinguish between multiple instances of an act or structure.

Reference to portable electrical power storage device means any device capable of storing electrical power and releasing stored electrical power including but not limited to batteries, supercapacitors or ultracapacitors. Reference to batteries means chemical storage cell or cells, for instance rechargeable or secondary battery cells including but not limited to gel lead-acid, absorbed glass mat lead acid, nickel cadmium alloy, nickel-zinc, nickel metal hydride or lithium ion battery cells.
The headings and Abstract of the Disclosure provided herein are for convenience only and do not interpret the scope or meaning of the embodiments.

Figure 1 shows an environment 100 including a collection, charging and distribution machine 102, according to one illustrated embodiment. The collection, charging and distribution machine 102 may take the form of a vending machine or kiosk. The collection, charging and distribution machine 102 has a plurality of receivers, compartments or receptacles 104a, 104b-104n (only three called out in Figure 1, collectively 104) to removably receive portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors) 106a-106n (collectively 106) for collection, charging and distribution. As illustrated in Figure 1, some of the receivers 104 are empty, while other receivers 104 hold portable electrical energy storage devices 106. While Figure 1 shows a single portable electrical energy storage device 106 per receiver 104, in some embodiments each receiver 104 may hold two or even more portable electrical energy storage devices 106. For example, each of the receivers 104 may be sufficiently deep to receive three portable electrical energy storage devices 106. Thus, for example, the collection, charging and distribution machine 102 illustrated in Figure 1 may have a capacity capable of simultaneously holding 40, 80 or 120 portable electrical energy storage devices 106.

The portable electrical energy storage devices 106 may take a variety of forms, for example batteries (e.g., array of battery cells), supercapacitors or ultracapacitors (e.g., array of ultracapacitor cells). For example, the portable electrical energy storage devices 106z may take the form of rechargeable batteries (i.e., secondary cells or batteries). The portable electrical energy storage devices 106z may, for instance, be sized to physically fit, and electrically power, personal transportation vehicles, such as all-electric scooters or motorbikes 108. As previously noted, combustion engine scooters and motorbikes are common in many large cities, for example in Asia, Europe and the Middle East. The ability to conveniently access charged batteries throughout a city or region may allow the
use of all-electric scooters and motorbikes 108 in place of combustion engine scooters and motorbikes, thereby alleviating air pollution, as well as reducing noise.

The portable electrical energy storage devices 106 (only visible for portable electrical energy storage device 106z) may include a number of electrical terminals 110a, 110b (two illustrated, collectively 110), accessible from an exterior of the portable electrical energy storage device 106z. The electrical terminals 110 allow charge to be delivered from the portable electrical energy storage device 106z, as well as allow charge to be delivered to the portable electrical energy storage device 106z for charging or recharging the same. While illustrated in Figure 1 as posts, the electrical terminals 110 may take any other form which is accessible from an exterior of the portable electrical energy storage device 106z, including electrical terminals positioned within slots in a battery housing. As the portable electrical energy storage devices 106 may be lent, leased, and/or rented out to the public, it is desirable to provide vehicle diagnostic data to the user of the vehicle in which portable electrical energy storage device 106z is currently being used, for example, when the user exchanges or drops off portable electrical energy storage device 106z at a collection, charging and distribution machine 102. Systems and methods for providing vehicle diagnostic data using memory devices removably or fixedly attached to power storage devices, are described in more detail below with reference to Figures 2-7, and are useful in the overall system for collection, charging and distribution of portable electrical energy storage devices 106 described herein.

The collection, charging and distribution machine 102 is positioned at some location 112 at which the collection, charging and distribution machine 102 is conveniently and easily accessible by various end users. The location may take any of a large variety of forms, for example, a retail environment such as a convenience store, supermarket, gas or petrol station, or service shop. Alternatively, the collection, charging and distribution machine 102 may stand
alone at a location 112 not associated with an existing retail or other business, for example in public parks or other public places. Thus, for example, collection, charging and distribution machines 102 may be located at each store of a chain of convenience stores throughout a city or region. Such may advantageously rely on the fact that convenience stores are often sited or distributed based on convenience to the target population or demographic. Such may advantageously rely on pre-existing leases on storefronts or other retail locations to allow an extensive network of collection, charging and distribution machines 102 to be quickly developed in a city or region. Quickly achieving a large network which is geographically well distributed to serve a target population enhances the ability to depend on such a system and likely commercial success of such an effort.

The location 112 may include an electrical service 114 to receive electrical power from a generating station (not shown) for example via a grid 116. The electrical service 114 may, for example, include one or more of an electrical service meter 114a, a circuit panel (e.g., circuit breaker panel or fuse box) 114b, wiring 114c, and electrical outlet 114d. Where the location 112 is an existing retail or convenience store, the electrical service 114 may be an existing electrical service, so may be somewhat limited in rating (e.g., 120 volts, 240 volts, 220 volts, 230 volts, 15 amps).

Neither the operator of the retail location 112, nor the owner, distributor or operator of the collection, charging and distribution machine 102 may wish to bear the costs of upgrading the electrical service 114. Yet, quick charging is desired in order to maintain an adequate supply of portable electrical energy storage devices 106 available for use by end users. The ability to quickly charge while maintaining existing or otherwise limited rated electrical service is addressed in U.S. provisional patent application Serial No. 61/51 1,900, entitled "APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES" and filed July 26, 2011.
Optionally, the collection, charging and distribution machine 102 may include or be coupled to a source of renewable electrical power. For example, where installed in an outside location the collection, charging and distribution machine 102 may include an array of photovoltaic (PV) cells 118 to produce electrical power from solar insolation. Alternatively, the collection, charging and distribution machine 102 may be electrically coupled to a microturbine (e.g., wind turbine) or PV array positioned elsewhere at the location 112, for instance on a roof top or pole mounted at a top of a pole (not shown).

The collection, charging and distribution machine 102 may be communicatively coupled to one or more remotely located computer systems, such as back end or back office systems (only one shown) 120. The back end or back office systems 120 may collect data from and/or control a plurality of collection, charging and distribution machine 102 distributed about an area, such as a city. The communications may occur over one or more communications channels including one or more networks 122, or non-networked communications channels. Communications may be over one or more wired communications channels (e.g., twisted pair wiring, optical fiber), wireless communications channels (e.g., radio, microwave, satellite, 802.11 compliant). Networked communications channels may include one or more local area networks (LANs), wide area networks (WANs), extranets, intranets, or the Internet including the Worldwide Web portion of the Internet.

The collection, charging and distribution machine 102 may include a user interface 124. The user interface may include a variety of input/output (I/O) devices to allow an end user to interact with the collection, charging and distribution machine 102. Various I/O devices are called out and described in reference to Figure 2, which follows.

Figure 2 shows the collection, charging and distribution machine 102 of Figure 1, according to one illustrated embodiment.
The collection, charging and distribution machine 102 includes a control subsystem 202, a charging subsystem 204, a communications subsystem 206, and a user interface subsystem 208.

The control subsystem 202 includes a controller 210, for example a microprocessor, microcontroller, programmable logic controller (PLC), programmable gate array (PGA), application specific integrated circuit (ASIC) or another controller capable of receiving signals from various sensors, performing logical operations, and sending signals to various components. Typically, the controller 210 may take the form of a microprocessor (e.g., INTEL, AMD, ATOM).

The control subsystem 202 may also include one or more non-transitory processor- or computer-readable storage media, for example read only memory (ROM) 212, random access memory (RAM) 214, and data store 216 (e.g., solid-state storage media such as flash memory or EEPROM, spinning storage media such as hard disk). The non-transitory processor- or computer-readable storage media 212, 214, 216 may be in addition to any non-transitory storage medium (e.g., registers) which is part of the controller 210. The control subsystem 202 may include one or more buses 218 (only one illustrated) coupling various components together, for example one or more power buses, instruction buses, data buses, etc.

As illustrated, the ROM 212, or some other one of the non-transitory processor- or computer-readable storage media 212, 214, 216, stores instructions and/or data or values for variables or parameters. The sets of data may take a variety of forms, for example a lookup table, a set of records in a database, etc. The instructions and sets of data or values are executable by the controller 110.

Execution of the instructions and sets of data or values causes the controller 110 to perform specific acts to cause the collection, charging and distribution machine 102 to collect, charge, and distribute portable energy storage devices. Specific operation of the collection, charging and distribution machine 102 is described herein and also below with reference to various flow diagrams (Figures 7-10) in the
context of being an external device to charge the portable electrical energy storage devices 106 and provide information based on vehicle diagnostic data received from the portable electrical energy storage devices 106.

The controller 210 may use RAM 214 in a conventional fashion, for volatile storage of instructions, data, etc. The controller 210 may use data store 216 to log or retain information, for example, vehicle diagnostic data received from the portable electrical energy storage devices 106 and telemetric information related to collection, charging and/or distribution or collection of the portable electric power storage devices 106 and/or operation of the collection, charging and distribution machine 102 itself. The instructions are executable by the controller 210 to control operation of the collection, charging and distribution machine 102 in response to end user or operator input, and using data or values for the variables or parameters.

The control subsystem 202 receives signals from various sensors and/or other components of the collection, charging and distribution machine 102 which include information that characterizes or is indicative of operation, status, or condition of such other components. Sensors are represented in Figure 2 by the letter S appearing in a circle along with appropriate subscript letters.

For example, one or more position sensors SPI-SPN may detect the presence or absence of portable electrical power storage device 106 at each of the receivers 104. The position sensors SPI-SPN may take a variety of forms. For example, the position sensors S_{P1}^{SPN} may take the form of mechanical switches that are closed, or alternatively opened, in response to contact with a portion of a respective portable electrical power storage device 106 when the portable electrical power storage device 106 is inserted into the receiver 104, or contact with a memory device of the portable electrical power storage device 106. Also for example, the position sensors SPI-SPN may take the form of optical switches (i.e., optical source and receiver) that are closed, or alternatively opened, in response to contact with a portion of a respective portable electrical power storage device 106.
when the portable electrical power storage device 106 is inserted into the receiver 104. Also for example, the position sensors SPI-SPN may take the form of electrical sensors or switches that are closed, or alternatively opened, in response to detecting a closed circuit condition created by contact with the terminals 110 of a respective portable electrical power storage device 106 when the portable electrical power storage device 106 is inserted into the receiver 104, or an open circuit condition that results from the lack of a respective portable electrical power storage device 106 in the receiver 104. These examples are intended to be non-limiting, and it is noted that any other structures and devices for detecting the presence/absence or even the insertion of the portable electrical power storage devices 106 into receivers may be employed.

For example, one or more charge sensors SCI-SCN may detect charge of the portable electrical power storage devices 106 at each of the receivers 104. Charge sensors SCI-SCN may detect the amount of charge stored by the portable electrical power storage devices 106. Charge sensors SCI-SCN may additionally detect an amount of charge and/or rate of charging being supplied to ones of the portable electrical power storage devices 106 at each of the receivers 104. Such may allow assessment of current (i.e., temporal) charge condition or status of each portable electrical power storage device 106, as well as allow feedback control over charging of same, including control over rate of charging. Charge sensors SCI-SCN may include any variety of current and/or voltage sensors.

For example, one or more charge sensors S_{yi} (only one shown) may detect or sense a temperature at the receivers 104 or in the ambient environment.

The control subsystem 202 provides signals to various actuators and/or other components responsive to control signals, which signals include information that characterizes or is indicative of an operation the component is to perform or a state or condition in which the components should enter. Control signals, actuators or other components responsive to control signals are
represented in Figure 2 by the letter C appearing in a circle along with appropriate subscript letters.

For example, one or more engine control signals CAI-CAN may affect the operation of one or more actuators 220 (only one illustrated). For instance, a control signal CAI may cause movement of an actuator 220 between a first and a second position or change a magnetic field produced by the actuator 220. The actuator 220 may take any of a variety of forms, including but not limited to a solenoid, an electric motor such as a stepper motor, or an electromagnet. The actuator 220 may be coupled to operate a latch, lock or other retainer mechanism 222. The latch, lock or other retainer mechanism 222 may selectively secure or retain one or more portable electrical power storage devices 106 (Figure 1) in the receiver 104 (Figure 1). For instance, the latch, lock or other retainer mechanism 222 may physically couple to a complimentary structure that is part of a housing of the portable electrical power storage devices 106 (Figure 1). Alternatively, the latch, lock or other retainer mechanism 222 may magnetically couple to a complimentary structure that is part of a housing of the portable electrical power storage devices 106 (Figure 1). Also for instance, the latch, lock or other mechanism may open a receiver 104 (Figure 1), or may allow a receiver 104 to be opened, to receive a partially or fully discharged portable electrical power storage device 106 for charging. For example, the actuator may open and/or close a door to the receiver 104 (Figure 1), to selectively provide access to a portable electrical power storage device 106 (Figure 1) received therein. Also, for example, the actuator may open and/or close a latch or lock, allowing an end user to open and/or close a door to the receiver 104 (Figure 1), to selectively provide access to a portable electrical power storage device 106 (Figure 1) received therein.

The control subsystem 202 may include one or more ports 224a to provide control signals to one or more ports 224b of the charging subsystem 206. The ports 224a, 224b may provide bi-directional communications. The control subsystem 202 may include one or more ports 226a to provide control signals to
one or more ports 226b of the user interface subsystem 208. The ports 226a, 226b may provide bi-directional communications.

The charging subsystem 204 includes various electrical and electronic components to charge portable electrical power storage devices 106 when positioned or received in the receivers 104. For example, the charging subsystem 204 may include one or more power buses or power bus bars, relays, contactors or other switches (e.g., insulated gate bipolar transistors or IGBTs, metal oxide semiconductor transistors or MOSFETs), rectifier bridge(s), current sensors, ground fault circuitry, etc. The electrical power is supplied via contacts that can take any of a variety of forms, for instance terminals, leads, posts, etc. The contacts allow electrical coupling of various components. Some possible implementations are illustrated in Figure 2. Such is not intended to be exhaustive. Additional components may be employed while other components may be omitted.

The illustrated charging subsystem 204 includes a first power converter 230 that receives electrical power from the electrical service 114 (Figure 1) via a line or cord 232. The power will typically be in the form of single, two or three phase AC electrical power. As such, the first power converter 230 may need to convert and otherwise condition the electrical power received via the electrical services 114 (Figure 1), for example for rectifying an AC waveform to DC, transforming voltage, current, phase, as well as reducing transients and noise. Thus, the first power converter 230 may include a transformer 234, rectifier 236, DC/DC power converter 238, and filter(s) 240.

The transformer 234 may take the form of any variety of commercially available transformers with suitable ratings for handling the power received via the electrical service 114 (Figure 1). Some embodiments may employ multiple transformers. The transformer 234 may advantageously provide galvanic isolation between the components of the collection, charging and distribution machine 102 and the grid 116 (Figure 1). The rectifier 236 may take any of variety of forms, for example a full bridge diode rectifier or a switch mode rectifier. The
rectifier 236 may be operated to transform AC electrical power to DC electrical power. The DC/DC power converter 238 may be any of a large variety of forms. For example, DC/DC power converter 238 may take the form a switch mode DC/DC power converter, for instance employing IGBTs or MOSFETs in a half or full bridge configuration, and may include one or more inductors. The DC/DC power converter 238 may have any number of topologies including a boost converter, buck converter, synchronous buck converter, buck-boost converter or fly-back converter. The filter(s) 240 may include one or more capacitors, resistors, Zener diodes or other elements to suppress voltage spikes, or to remove or reduce transients and/or noise.

The illustrated charging subsystem 204 may also receive electrical power from a renewable power source, for example the PV array 118 (Figure 1). Such may be converted or conditioned by the first power converter 230, for example being supplied directly to the DC/DC power converter 238, bypassing the transformer 236 and/or rectifier 236. Alternatively, the illustrated charging subsystem 204 may include a dedicated power converter to convert or otherwise condition such electrical power.

The illustrated charging subsystem 204 may optionally include second power converter 242 that receives electrical power from one or more portable electrical power storage devices 106 (Figure 1) via one or more lines 244, for charging other ones of the portable electrical power storage devices 106. As such, the second power converter 242 may need to convert and/or otherwise condition the electrical power received from portable electrical power storage devices 106, for example optionally transforming voltage or current, as well as reducing transients and noise. Thus, the second power converter 242 may optionally include a DC/DC power converter 246 and/or filter(s) 248. Various types of DC/DC power converters and filters are discussed above.

The illustrated charging subsystem 204 includes a plurality of switches 250 responsive to the control signals delivered via ports 224a, 224b from
the control subsystem 202. The switches may be operable to selectively couple a first number or set of portable electrical power storage devices 106 to be charged from electrical power supplied by both the electrical service via the first power converter 230 and from electrical power supplied by a second number or set of portable electrical power storage devices 106. The first number or set of portable electrical power storage devices 106 may include a single portable electrical power storage device 106, two, or even more portable electrical power storage devices 106. The second number or set of portable electrical power storage devices 106 may include a single portable electrical power storage device 106, two, or even more portable electrical power storage devices 106. The portable electrical power storage devices 106 are represented in Figure 2 as loads \(L_i, L_2, L_N \).

The communications subsystem 206 may additionally include one or more communications modules or components which facilitate communications with the various components of a back end or back office system 120 (Figure 1) and/or various components of the portable electrical power storage devices 106. The communications subsystem 206 may, for example, include one or more modems 252 or one or more Ethernet or other types of communications cards or components 254. A port 256a of the control subsystem 202 may communicatively couple the control subsystem 202 with a port 256b of the communications subsystem 206. The communications subsystem 206 may provide wired and/or wireless communications. For example, the communications subsystem 206 may provide components enabling short range (e.g., via Bluetooth, near field communication (NFC), radio frequency identification (RFID) components and protocols) or longer range wireless communications (e.g., over a wireless LAN, satellite, or cellular network) with various other devices external to the collection, charging and distribution machine 102, including the portable electrical energy storage devices 106. The communications subsystem 206 may include one or more ports, wireless receivers, wireless transmitters or wireless transceivers to provide wireless signal paths to the various remote components or systems. The
remote communications subsystem 206 may include one or more bridges or routers suitable to handle network traffic including switched packet type communications protocols (TCP/IP), Ethernet or other networking protocols.

The user interface system 208 includes one or more user input/output (I/O) components. For example, user interface system 208 may include a touch screen display 208a, operable to present information and a graphical user interface (GUI) to an end user and to receive indications of user selections. The user interface system 208 may include a keyboard or keypad 208b, and/or a cursor controller (e.g., mouse, trackball, trackpad) (not illustrated) to allow an end user to enter information and/or select user selectable icons in a GUI. The user interface system 208 may include a speaker 208c to provide aural messages to an end user and/or a microphone 208d to receive spoken user input such as spoken commands.

The user interface system 208 may include a card reader 208e to read information from card type media 209. The card reader 208e may take a variety of forms. For instance, the card reader 208e may take the form of, or include, a magnetic stripe reader for reading information encoded in a magnetic stripe carried by a card 209. For instance, the card reader 208e may take the form of, or include, a machine-readable symbol (e.g., barcode, matrix code) card reader for reading information encoded in a machine-readable symbol carried by a card 209. For instance, the card reader 208e may take the form of, or include, a smart card reader for reading information encoded in a non-transitory medium carried by a card 209. Such may, for instance, include media employing radio frequency identification (RFID) transponders or electronic payment chips (e.g., near filed communications (NFC) chips). Thus, the card reader 208e may be able to read information from a variety of card media 209, for instance credit cards, debit cards, gift cards, prepaid cards, as well as identification media such as drivers licenses. The card reader 208e may also be able to read information encoded in a non-transitory medium carried by the portable electrical energy storage devices 106,
and may also include RFID transponders, transceivers, NFC chips and/or other communication devices to communicate information to the portable electrical energy storage devices 106 (e.g., for authentication of the portable electrical energy storage devices 106 and/or authentication of the collection, charging and distribution machine 102 to the portable electrical energy storage devices 106).

The user interface system 208 may include a bill acceptor 208f and a validator and/or coin acceptor 208g to accept and validate cash payments. Such may be highly useful in servicing populations who lack access to credit. Bill acceptor and validator 208f and/or coin acceptor 208g may take any variety of forms, for example those that are currently commercially available and used in various vending machines and kiosks.

Figure 3 is a block diagram of the portable electrical energy storage device 106z of Figure 1, according to one non-limiting illustrated embodiment.

Shown is a portable electrical energy storage device housing 302, electrical terminals 110a, 110b, a battery cell 304, diagnostic data storage system 306, a secure access panel 314 and a diagnostic data storage system connection port 318. The battery cell 304 is any rechargeable type of electrochemical cell that converts stored chemical energy into electrical energy. As described above, the electrical terminals 110a, 110b are accessible from an exterior of the portable electrical energy storage device 106z. The electrical terminals 110 allow charge to be delivered from the portable electrical energy storage device 106z, as well as allow charge to be delivered to the portable electrical energy storage device 106z for charging or recharging the same through conductive terminal connections 312a and 312b to the battery cell 304. While illustrated in Figure 3 as posts, the electrical terminals 110a and 110b may take any other form which is accessible from an exterior of the portable electrical energy storage device 106z, including electrical terminals positioned within slots in the battery housing 302.

The diagnostic data storage system 306 is attached (fixedly or removably) directly or indirectly to an interior of the housing 302 and is operably
coupled to the diagnostic data storage system connection port 318 via communications line 316 which travels through the housing 302 to the system connection port 318 that is accessible from the exterior of the portable electrical energy storage device 106z. The communications line 316 is configured to receive vehicle diagnostic data from external sources (e.g., a vehicle diagnostic system) through the diagnostic data storage system connection port 318 and communicate such data to the diagnostic data storage system 306 for storage in the diagnostic data storage system 306. For example, the communications line 316 is configured to receive vehicle diagnostic data from a vehicle while the portable electrical energy storage device 106z is operably installed in the vehicle. In other embodiments, the communications line 316 is configured to receive vehicle diagnostic data from a vehicle while the portable electrical energy storage device 106z is not operably installed in the vehicle. For example, the portable electrical energy storage device 106z may be connected the communications line 316 to a diagnostic system of the vehicle and be able to receive diagnostic data from the vehicle, while the electrical terminals 110 of the portable electrical energy storage device 106z are not operably connected to the vehicle (such as when the portable electrical energy storage device 106z is in the process of being installed or uninstalled, or is placed in the vehicle temporarily for the purpose of downloading vehicle diagnostic data, but not for powering the vehicle).

Such diagnostic data includes, but is not limited to, information regarding one or more of: status or condition of the vehicle or engine systems, such as data available through on-board diagnostics interfaces such as ALDL, OBD-1, OBD-1.5, OBD-II, EOBD, EOBD2, JOBD, and ADR. Specific examples of diagnostic data includes information regarding the status or condition of a vehicle systems or subsystems, engine systems or subsystems, one or more electrical systems of the vehicle, health of the vehicle, oil level of the vehicle, brake pad condition of the vehicle, one or more vehicle lights, engine temperature of the
vehicle, mileage of the vehicle, one or more fluid levels of the vehicle, the electrical energy storage device, and current odometer reading of the vehicle.

The diagnostic data storage system connection port 318 may be operably connected to a vehicle diagnostic system or may be configured to be operably connected to any number of vehicle subsystems configured to output diagnostic data regarding the particular corresponding vehicle subsystem. The diagnostic data storage system connection port 318 is configured to be compatible with one or more output ports of the respective vehicle diagnostic system or vehicle subsystem to which it is connected. In some embodiments, the diagnostic data storage system connection port 318 is operably coupled to a vehicle diagnostic system (e.g., the vehicle diagnostic system 418 shown in Figure 4) as the portable electrical energy storage device 106z is operably placed or installed in the vehicle. For example, the diagnostic data storage system connection port 318 may be positioned on the exterior of the portable electrical energy storage device 106z housing 302 such that it aligns and connects with a corresponding output port of the vehicle diagnostic system 418 (shown in Figure 4) when the portable electrical energy storage device 106z is properly placed or installed in the vehicle. The communications line 316 is also configured to send vehicle diagnostic data to external sources (e.g., a portable electrical energy storage device collection, charging and distribution machine 102, a mobile device, a server, etc.) from the diagnostic data storage system 306 through the diagnostic data storage system connection port 318.

The diagnostic data storage system 306 is operably coupled to the battery cell 304 via one or more power lines 308 in a manner such that the diagnostic data storage system 306 may receive power for operation of the diagnostic data storage system 306 to store vehicle diagnostic data. In other embodiments, the diagnostic data storage system 306 may receive power from other external sources or may be a system which does not require its own power to store the diagnostic data.
The access panel 314 is located on the housing 302 and is configured to provide access to the diagnostic data storage system 306 for inspection, diagnosis, replacement, and/or repair of the diagnostic data storage system 306 and/or any components of the diagnostic data storage system 306. The access panel 314 may also include a lock, be tamper resistant or include other security elements to limit access to the diagnostic data storage system 306. The access panel 314 may also include weather proofing components such as a seal or other protective components to protect the diagnostic data storage system 306 from external elements. In other embodiments, the diagnostic data storage system 306 may instead be fixedly or removably attached to an exterior of the housing 302. In such instances, the communications line would not travel through the housing 302. However, in such embodiments, the power line 308 to the battery cell 304, if present, would travel through the housing 302.

In some embodiments, the diagnostic data storage system 306 is configured to receive and/or send vehicle diagnostic data wirelessly to or from an external device. For example, the diagnostic data storage system 306 may be configured to receive vehicle diagnostic data wirelessly from the vehicle or external diagnostics system and/or send stored vehicle diagnostic data wirelessly to the portable electrical energy storage device collection, charging and distribution machine 102 or other remote device, such as a portable computer or smartphone. In such embodiments, the communications line 316 and the diagnostic data storage system connection port 318 may or may not be present as the diagnostic data storage system 306 may be configured to send and/or receive vehicle diagnostic data wirelessly instead of, or in addition to, being configured to send and/or receive vehicle diagnostic data via the communications line 316 and the diagnostic data storage system connection port 318.

The housing 302 is constructed of a polymer or other durable material of sufficient thickness to protect the battery cell 304 and diagnostic data storage system 306 from outside elements and tampering. For example the walls
of the housing may be at least approximately .25 inch thick and completely
surround the battery cell 304 and diagnostic data storage system 306 (except for,
in some embodiments, a small vent hole in the housing) such that the battery cell
304 and diagnostic data storage system 306 cannot be accessed without a key or
other specialized tool to open the locked access panel 314.

The housing 302 may provide a protection to prevent or deter
tampering, and may be formed of suitably strong and resilient materials (e.g., ABS
plastic). Such may not only prevent or deter tampering, but may leave a visible
indication of any tampering attempts. For example, the housing 302 may include a
strong outer layer of a first color (e.g., black) within an inner layer of a second color
(e.g., fluorescent orange) there beneath. Such will render attempts to cut through
the housing 302 visibly apparent.

Figure 4A is a schematic view of the diagnostic data storage system
306 of Figure 3 coupled to a vehicle diagnostic system 418, according to one non-
limiting illustrated embodiment.

The diagnostic data storage system 306 includes a controller 410, a
communications subsystem 406, read only memory (ROM) 412, random access
memory (RAM) 414 and other storage 416.

The controller 410, for example is a microprocessor, microcontroller,
programmable logic controller (PLC), programmable gate array (PGA), application
specific integrated circuit (ASIC) or another controller capable of receiving signals
from various sensors, performing logical operations, and sending signals to various
components. Typically, the controller 410 may take the form of a microprocessor
(e.g., INTEL, AMD, ATOM). The diagnostic data storage system 306 may also
include one or more non-transitory processor- or computer-readable storage
media, for example read only memory (ROM) 412, random access memory (RAM)
414, and other storage 416 (e.g., solid-state storage media such as flash memory
or EEPROM, spinning storage media such as hard disk). The non-transitory
processor- or computer-readable storage media 412, 414, 416 may be in addition
to any non-transitory storage medium (e.g., registers) which is part of the controller 410. The diagnostic data storage system 306 may include one or more buses 418 (only one illustrated) coupling various components together, for example one or more power buses, instruction buses, data buses, etc.

As illustrated, the ROM 412, or some other one of the non-transitory processor- or computer-readable storage media 412, 414, 416, stores instructions and/or data or values for variables or parameters. The sets of data may take a variety of forms, for example a lookup table, a set of records in a database, etc. The instructions and sets of data or values are executable by the controller 410. Execution of the instructions and sets of data or values causes the controller 410 to perform specific acts to cause the diagnostic data storage system 306 to receive, store and send vehicle diagnostic data, such as data received from the vehicle diagnostic system. The diagnostic data may be stored in one or more of the ROM 412, RAM 414 and other storage 416 in a variety of forms and formats including, but not limited to a lookup table, a set of records in a database, etc. The diagnostic data may be stored in a format, or converted to and then stored in a format in compliance with a standard format for vehicle diagnostic data or other format compatible or readable by various external devices. Also, various metadata related to the diagnostic data may also be stored in one or more of the ROM 412 and other storage 416, including but not limited to: associations or indications of associations of the diagnostic data with a particular vehicle and/or user; date and time information associated with particular diagnostic data, vehicle information associated with the diagnostic data, categories or types of the diagnostic data, vehicle part information associated with parts needing replaced based on the diagnostic data, etc. Specific operation of the diagnostic data storage system 306 is described herein and also below with reference to various flow diagrams (Figures 5-10).

The controller 410 may use RAM 414 in a conventional fashion, for volatile storage of instructions, data, etc. The controller 410 may use data store
416 to log or retain information, for example, information regarding user profile information, vehicle profile information, security codes, credentials, security certificates, passwords, the subscription level of users, demographic information of users such as (income level, gender, age, net worth, marital status, etc.),

information regarding user vehicle locations and telematic and/or telemetric user vehicle information, vehicle diagnostic data, information regarding portable electrical energy storage device charge capacity, information regarding route information of users, historic data, etc. The instructions are executable by the controller 410 to control operation of the diagnostic data storage system 306 in response to input from remote and/or external systems such as those of external devices including but not limited to: the vehicle diagnostic system 418; charging devices; vehicles; user identification devices (cards, electronic keys, etc.); portable electrical energy device collection, charging and distribution machines; collection, charging and distribution machine service systems; user mobile devices; user vehicles; and end user or operator input.

The controller 410 may also receive signals from various sensors and/or components of an external device via the communications subsystem 206 of collection, charging and distribution machine 102. This information may include information that characterizes or is indicative of the authenticity, authorization level, operation, status, or condition of such components.

The communications subsystem 406 may include one or more communications modules or components which facilitates communications with the various components of external devices (e.g., such as to receive vehicle diagnostic data from the vehicle diagnostic system 418) and also the various components of the collection, charging and distribution machine 102 of Figure 1 (e.g., such as to send vehicle diagnostic data, profile and/or vehicle profile information, and/or historic data stored by the diagnostic data storage system 306, receive software updates or data updates of user profile and/or vehicle profile information) and one or more user mobile communication devices, such that data may be exchanged
between the devices for authentication purposes. Such diagnostic data and software updates, and data updates of user profile and/or vehicle profile information may include information received from or originating from (either directly or indirectly) an external device or system (e.g., a user's mobile device) or from other external systems such as via web sites configured to prompt for and/or accept such data from a user, web servers, collection charging and distribution machines, collection charging and distribution machine managements systems, other network nodes or locations, etc. These instructions and/or other data may include information that may be used to automatically adjust settings of the vehicle or make other modifications to the vehicle by the vehicle diagnostic system or other vehicle system when the corresponding electrical energy storage device is placed in or is in (or at which point it becomes in) communication with the vehicle via the communications subsystem 406. These settings of the vehicle or other modifications to the vehicle may include settings regarding, but not limited to, one or more of: user preference settings, user profile preference settings, engine settings, electrical system settings, seat settings, steering settings, braking system settings, turn signal settings, navigation system settings, electrical energy storage device usage preference settings, electrical energy storage device usage level settings, electrical energy storage device usage limit settings, driving preferences, limits or preferences on vehicle electrical energy use, electrical energy storage device type preference settings, vehicle security settings, electrical energy storage device security settings, vehicle user interface settings, vehicle maintenance settings, vehicle maintenance reminder settings, vehicle usage authorization settings, electrical energy storage device usage authorization settings, vehicle communication system preference settings, reminder settings, collection, charging and distribution machine location preferences, route settings, vehicle warning or alarm settings, vehicle range or distance settings, vehicle option settings, etc.

The communications subsystem 406 may provide wired and/or wireless communications. The communications subsystem 406 may include one
or more ports, wireless receivers, wireless transmitters or wireless transceivers to provide wireless signal paths to the various remote components or systems. The communications subsystem 406 may, for example, include components enabling short range (e.g., via Bluetooth, near field communication (NFC), radio frequency identification (RFID) components and protocols) or longer range wireless communications (e.g., over a wireless LAN, satellite, or cellular network) and may include one or more modems or one or more Ethernet or other types of communications cards or components for doing so. The remote communications subsystem 406 may include one or more bridges or routers suitable to handle network traffic including switched packet type communications protocols (TCP/IP), Ethernet or other networking protocols.

The controller 410 may be also configured to receive information regarding the vehicle and/or user with which the vehicle diagnostic system 418 is associated and store the received diagnostic data accordingly. For example, diagnostic data for a variety of particular vehicles may be stored in ROM 412 by the processor and associated with the corresponding vehicle in metadata stored in ROM 412. The controller 410 may be configured to receive requests for the diagnostic data from various external devices, and in response, provide such requested data, or indicate that such data is not available. In some embodiments, the controller 410 may be configured to perform search, edit, sort, delete and other database functionalities to manage the stored vehicle diagnostic data and identify and retrieve particular requested vehicle diagnostic data. The controller 410 may be configured to identify or authenticate various external devices before providing such vehicle diagnostic data by verifying codes, credentials or other information received from external devices with stored information. In some embodiments, the controller and/or communications subsystem 406 is configured to encrypt and/or decrypt information communicated between the diagnostic data storage system 306 and external devices (e.g., between the diagnostic data storage system 306...
and the portable electrical energy storage device collection, charging and
distribution machine 102 or user mobile device).

In some embodiments, some of the components of the diagnostic
data storage system 306 shown in Figure 4A may not be present or may be
located outside the diagnostic data storage system 306. For example, in some
embodiments, the diagnostic data storage system 306 may comprise a memory
device such as the ROM 412 configured to store vehicle diagnostic data while the
other components shown in Figure 4A (e.g., the controller 410 and
communications subsystem 406) are not present or are located outside the
diagnostic data storage system 306 (e.g., are instead part of the vehicle diagnostic
system 418).

The vehicle diagnostic system 418 may be one or more diagnostic
systems of a vehicle and is configured to track and/or store and communicate
vehicle diagnostic data. Such diagnostic data includes, but is not limited to,
information regarding one or more of: status or condition of the vehicle, condition
of an engine of the vehicle, one or more electrical systems of the vehicle, health of
the vehicle, oil level of the vehicle, brake pad condition of the vehicle, status of one
or more vehicle lights, engine temperature of the vehicle, mileage of the vehicle,
one or more fluid levels of the vehicle, condition or status of the electrical energy
storage device, and current odometer reading of the vehicle.

The power line 308 is configured to provide power for operation of
one or more of the various components of the diagnostic data storage system
including the controller 410, a communications subsystem 406, read only memory
(ROM) 412, random access memory (RAM) 414 and other storage 416. For
example, the power line 308 may be operably coupled to a power source such as
the battery cell 304 of the portable electrical energy storage device 106z (as
shown in Figure 3) and/or another power source located in the vehicle.

Figure 4B is an illustration of example information displayed on a
user interface screen 420 regarding vehicle diagnostic data received from the
diagnostic data storage system 306 of Figure 3 and Figure 4A, according to one non-limiting illustrated embodiment.

For example, the information shown in figure 4B may be displayed on a user interface screen 420 of the portable electrical energy storage device collection, charging and distribution machine 102 after the user places the portable electrical energy storage device 106z in the portable electrical energy storage device collection, charging and distribution machine 102. In one embodiment, once the user places the portable electrical energy storage device 106z in the portable electrical energy storage device collection, charging and distribution machine 102, a connection is established between the portable electrical energy storage device collection, charging and distribution machine 102 and the portable electrical energy storage device 106z (wirelessly and/or via the via the diagnostic data storage system connection port 318). The portable electrical energy storage device collection, charging and distribution machine 102 then reads vehicle diagnostic data stored on the diagnostic data storage system 306 of the portable electrical energy storage device 106z and provides information regarding the diagnostic data to the user. Figure 4B shows one example of providing such information regarding the diagnostic data read from the diagnostic data storage system 306 of the portable electrical energy storage device 106z. For example, shown in Figure 4B is a vehicle diagnostic report displaying a suggestion 424 to consider replacing the vehicle tail light and a suggestion 426 to consider replacing the vehicle brake pads. This information is provided based on the diagnostic data read from the diagnostic data storage system 306 indicating excessive brake pad wear and a faulty tail light. Additional related information may be provided including, but not limited to: information regarding availability of particular vehicle parts at the portable electrical energy storage device collection, charging and distribution machine 102 that may be useful in resolving an identified potential problem, instructional information regarding resolving an identified problem, location information of where to locate replacement vehicle parts, time remaining
until a system check is recommended, etc. Also shown is a selectable button or icon 428 that the user may select to acknowledge the user has seen the information and to continue to a next screen or quit.

The information shown in Figure 4B may be displayed on a screen of the portable electrical energy storage device collection, charging and distribution machine 102 or otherwise communicated to a user as part of, or independently from, the process of exchanging or returning a portable electrical energy storage device 106z at the portable electrical energy storage device collection, charging and distribution machine 102 by the user. For example, a user may stop at the portable electrical energy storage device collection, charging and distribution machine 102 solely to check on the status or condition of the vehicle by obtaining information regarding the vehicle diagnostic data stored on the diagnostic data storage system 306 without needing to exchange, drop off or even remove the portable electrical energy storage device 106z from the vehicle in some embodiments (such as in embodiments where the vehicle diagnostic data is communicated wirelessly from the diagnostic data storage system 306 to the portable electrical energy storage device collection, charging and distribution machine 102).

In some embodiments, the information shown in Figure 4B may be displayed on a user interface screen 420 of a mobile device of a user associated with the vehicle currently using (or that had previously used) the portable electrical energy storage device 106z. For example, once within wireless communications range of the diagnostic data storage system 306, the diagnostic data storage system 306 may authenticate the wireless mobile device and automatically push the stored vehicle diagnostic data to the mobile device, or upon request from the mobile device for the vehicle diagnostic data. The diagnostic data storage system 306 may also authenticate the user associated with the mobile device as being a user associated with the vehicle and/or the diagnostic data storage system 306. For example, such authentication information regarding the association of the user.
with the vehicle and/or the diagnostic data storage system 306 may be communicated to the diagnostic data storage system 306 from the portable electrical energy storage device collection, charging and distribution machine 102 when the portable electrical energy storage device 106z having the diagnostic data storage system 306 is retrieved from the portable electrical energy storage device collection, charging and distribution machine 102 by the user who has been identified by the portable electrical energy storage device collection, charging and distribution machine 102.

Once the portable electrical energy storage device 106z is placed in the portable electrical energy storage device collection, charging and distribution machine 102 in the process of a user returning or exchanging the portable electrical energy storage device 106z at the portable electrical energy storage device collection, charging and distribution machine 102, and the information regarding the vehicle diagnostic data has been provided to the user or otherwise utilized, the portable electrical energy storage device collection, charging and distribution machine 102 may initiate a deletion of the vehicle diagnostic data from the diagnostic data storage system 306 or cause the stored vehicle identification data to be able to be overwritten (e.g., to make room for storage of vehicle diagnostic data of other vehicles in which the portable electrical energy storage device 106z will be used). In some embodiments, the currently stored vehicle diagnostic data may be deleted or caused to be able to be overwritten by the diagnostic data storage system 306 or vehicle diagnostic system 418 upon re-connection of the diagnostic data storage system 306 to the vehicle diagnostic system 418, or upon connection to a different vehicle than that which is associated with the currently stored vehicle diagnostic data on the diagnostic data storage system 306.

Figure 5 shows a high level method 500 of operating the diagnostic data storage system 306 of Figures 3 and 4A, according to one non-limiting illustrated embodiment.
At 502, the diagnostic data storage system 306 receives diagnostic data regarding a vehicle. At 504, the diagnostic data storage system 306 stores at least some of the diagnostic data in a memory device attached to an electrical energy storage device configured to provide power to a vehicle.

Figure 6 shows a low level method 600 of operating the diagnostic data storage system 306 of Figures 3 and 4A, according to one non-limiting illustrated embodiment, including enabling data to be provided to an external device, useful in the method of Figure 5.

At 602, the diagnostic data storage system 306 enables at least some diagnostic data stored on the at least one memory device (e.g., at least some of the diagnostic data stored on the at least one memory device in the method 500) to be provided to an external device

Figure 7 shows a high level method 700 of operating the portable electrical energy storage device collection, charging and distribution machine 102 of Figures 1 and 2, according to one non-limiting illustrated embodiment.

At 702, the portable electrical energy storage device collection, charging and distribution machine 102 detects presence of a portable electrical energy storage device configured to provide power to a vehicle.

At 704, the portable electrical energy storage device collection, charging and distribution machine 102 receives vehicle diagnostic data regarding the vehicle from the portable electrical energy storage device.

At 706, the portable electrical energy storage device collection, charging and distribution machine 102 provides information from the portable electrical energy storage device collection, charging and distribution machine 102 based on the received vehicle diagnostic data.

Figure 8 shows a low level method 800 of operating the portable electrical energy storage device collection, charging and distribution machine 102 of Figures 1 and 2, according to one non-limiting illustrated embodiment, including
receiving the vehicle diagnostic data from a memory device, useful in the method of Figure 7.

At 802, the portable electrical energy storage device collection, charging and distribution machine 102 receives the vehicle diagnostic data from a memory device attached to the portable electrical energy storage device on which the vehicle diagnostic data is stored.

Figure 9 shows a low level method 900 of operating the portable electrical energy storage device collection, charging and distribution machine 102 of Figures 1 and 2, according to one non-limiting illustrated embodiment, including displaying the provided information, useful in the method of Figure 7.

At 902, the portable electrical energy storage device collection, charging and distribution machine 102 displays the information on a display of the portable electrical energy storage device collection, charging and distribution machine 102.

Figure 10 shows a high level method 1000 of operating the portable electrical energy storage device collection, charging and distribution machine 102 of Figures 1 and 2, according to another non-limiting illustrated embodiment.

At 1002, the portable electrical energy storage device collection, charging and distribution machine 102 receives vehicle diagnostic data regarding a vehicle from a portable electrical energy storage device configured to power the vehicle.

At 1004, the portable electrical energy storage device collection, charging and distribution machine 102 provides information based on the received vehicle diagnostic data to a user associated with the vehicle (e.g., to a user's mobile device).

The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, it will be understood by those skilled in the art.
that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, the present subject matter may be implemented via one or more microcontrollers. However, those skilled in the art will recognize that the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits (e.g., Application Specific Integrated Circuits or ASICs), as one or more computer programs executed by one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs executed by one or more controllers (e.g., microcontrollers) as one or more programs executed by one or more processors (e.g., microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and/or firmware would be well within the skill of one of ordinary skill in the art in light of the teachings of this disclosure.

When logic is implemented as software and stored in memory, logic or information can be stored on any non-transitory computer-readable medium for use by or in connection with any processor-related system or method. In the context of this disclosure, a memory is a nontransitory computer- or processor-readable storage medium that is an electronic, magnetic, optical, or other physical device or means that non-transitorily contains or stores a computer and/or processor program. Logic and/or the information can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions associated with logic and/or information.

In the context of this specification, a "computer-readable medium" can be any physical element that can store the program associated with logic
and/or information for use by or in connection with the instruction execution system, apparatus, and/or device. The computer-readable medium can be, for example, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device. More specific examples (a non-exhaustive list) of the computer readable medium would include the following: a portable computer diskette (magnetic, compact flash card, secure digital, or the like), a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM, EEPROM, or Flash memory), a portable compact disc read-only memory (CDROM), and digital tape.

The various embodiments described above can be combined to provide further embodiments. To the extent that they are not inconsistent with the specific teachings and definitions herein, all of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, including but not limited to: U.S. provisional patent application Serial No. 61/511,900 entitled "APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES" and filed July 26, 2011 (Attorney Docket No. 170178.401 P1), U.S. provisional patent application Serial No. 61/647,936 entitled "APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES" and filed May 16, 2012 (Attorney Docket No. 170178.401 P2), U.S. provisional patent application Serial No. 61/534,753 entitled "APPARATUS, METHOD AND ARTICLE FOR REDISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES, BETWEEN COLLECTION, CHARGING AND DISTRIBUTION MACHINES" and filed September 14, 2011 (Atty. Docket No. 170178.402 P1), U.S. provisional patent application Serial No. 61/534,761 entitled "APPARATUS, METHOD AND ARTICLE FOR AUTHENTICATION, SECURITY AND CONTROL OF POWER STORAGE DEVICES SUCH AS BATTERIES" and
170178.419P1), U.S. Application Serial No. _______ filed on July 26, 2012, naming
Hok-Sum Horace Luke, Matthew Whiting Taylor and Huang-Cheng Hung as
inventors and entitled "APPARATUS, METHOD AND ARTICLE FOR
COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES,
SUCH AS BATTERIES" (Atty. Docket No. 170178.401), U.S. Application Serial
No. _______ filed on July 26, 2012, naming Hok-Sum Horace Luke and Matthew
Whiting Taylor as inventors and entitled "APPARATUS, METHOD AND ARTICLE
FOR AUTHENTICATION, SECURITY AND CONTROL OF POWER STORAGE
DEVICES SUCH AS BATTERIES" (Atty. Docket No. 170178.403) U.S. Application
Serial No. _______ filed on July 26, 2012 naming Hok-Sum Horace Luke and Matthew
Whiting Taylor as inventors and entitled "DYNAMICALLY LIMITING
VEHICLE OPERATION FOR BEST EFFORT ECONOMY" (Atty. Docket No.
170178.407), U.S. Application Serial No. _______ filed on July 26, 2012, naming
Matthew Whiting Taylor, Yi-Tsung Wu, Hok-Sum Horace Luke and Huang-Cheng
Hung as inventors and entitled "APPARATUS, METHOD, AND ARTICLE FOR
PHYSICAL SECURITY OF POWER STORAGE DEVICES IN VEHICLES" (Atty.
Docket No. 170178.408), U.S. Application Serial No. _______ filed on July 26,
2012, naming Yi-Tsung Wu, Matthew Whiting Taylor, Hok-Sum Horace Luke and
Jung-Hsiu Chen as inventors and entitled "APPARATUS, METHOD AND
ARTICLE FOR PROVIDING INFORMATION REGARDING AVAILABILITY OF
POWER STORAGE DEVICES AT A POWER STORAGE DEVICE COLLECTION,
CHARGING AND DISTRIBUTION MACHINE" (Atty. Docket No. 170178.419), and
U.S. Application Serial No. _______ filed on July 26, 2012, naming Hok-Sum
Horace Luke, Yi-Tsung Wu, Jung-Hsiu Chen, Yulin Wu, Chien Ming Huang,
TsungTing Chan, Shen-Chi Chen and Feng Kai Yang as inventors and entitled
"APPARATUS, METHOD AND ARTICLE FOR RESERVING POWER STORAGE
DEVICES AT RESERVING POWER STORAGE DEVICE COLLECTION,
CHARGING AND DISTRIBUTION MACHINES" (Atty. Docket No. 170178.423) are
incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary, to employ systems, circuits and concepts of the various patents, applications and publications to provide yet further embodiments.

While generally discussed in the environment and context of collection, charging and distribution of portable electrical energy storage devices for use with personal transportation vehicle such as all-electric scooters and/or motorbikes, the teachings herein can be applied in a wide variety of other environments, including other vehicular as well as non-vehicular environments.

The above description of illustrated embodiments, including what is described in the Abstract of the Disclosure, is not intended to be exhaustive or to limit the embodiments to the precise forms disclosed. Although specific embodiments and examples are described herein for illustrative purposes, various equivalent modifications can be made without departing from the spirit and scope of the disclosure, as will be recognized by those skilled in the relevant art.

These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
CLAIMS

I claim:

1. A vehicle diagnostic data storage system, comprising:
 at least one controller; and
 at least one memory device configured to be coupled to the at least one
 controller, wherein the at least one memory device is attached to an electrical energy
 storage device configured to provide power to a vehicle, and wherein the controller is
 configured to:
 receive diagnostic data regarding the vehicle; and
 store at least some of the diagnostic data in the memory device.

2. The vehicle diagnostic data storage system of claim 1 wherein the
 at least one memory device is configured to be coupled to the at least one controller
 when the electrical energy storage device is operably placed in the vehicle.

3. The vehicle diagnostic data storage system of claim 1 wherein the
 at least one controller is attached to the electrical energy storage device.

4. The vehicle diagnostic data storage system of claim 1 wherein the
 at least one memory device is coupled to the at least one controller.

5. The vehicle diagnostic data storage system of claim 1 wherein the
 electrical energy storage device is a portable electrical energy storage device.

6. The vehicle diagnostic data storage system of claim 1 wherein the
 at least one controller is further configured to receive the diagnostic data regarding the
 vehicle from a vehicle diagnostic system of the vehicle.
7. The vehicle diagnostic data storage system of claim 6 wherein the at least one controller is further configured to wirelessly receive the diagnostic data regarding the vehicle from the vehicle diagnostic system.

8. The vehicle diagnostic data storage system of claim 1 wherein the at least one memory device is configured to be wirelessly coupled to the at least one controller.

9. The vehicle diagnostic data storage system of claim 1 wherein the at least one controller is further configured to enable the at least some diagnostic data stored on the at least one memory device to be provided to an external device.

10. The vehicle diagnostic data storage system of claim 9 wherein the at least one controller is further configured to:

 receive information regarding authentication of an external device to which to provide the at least some diagnostic data stored on the at least one memory device;

 and

 make a determination regarding enabling the at least some diagnostic data stored on the at least one memory device to be provided to the external device, based on the information regarding authentication.

11. The vehicle diagnostic data storage system of claim 10 wherein the at least one controller is configured to receive the information regarding authentication via a wireless signal transmitted from the external device.

12. The vehicle diagnostic data storage system of claim 9 wherein the external device is a portable electrical energy storage device collection, charging and distribution machine.
13. The vehicle diagnostic data storage system of claim 1 further comprising:
 a wireless communications module coupled to the at least one memory device, and wherein the wireless communications module is configured to enable the at least some diagnostic data stored on the at least one memory device to be provided wirelessly to an external device.

14. The vehicle diagnostic data storage system of claim 1 wherein the diagnostic data includes at least some information regarding one or more of: status or condition of the vehicle, condition of an engine of the vehicle, one or more electrical systems of the vehicle, health of the vehicle, oil level of the vehicle, brake pad condition of the vehicle, status of one or more vehicle lights, engine temperature of the vehicle, mileage of the vehicle, one or more fluid levels of the vehicle, condition or status of the electrical energy storage device, and current odometer reading of the vehicle.

15. The vehicle diagnostic data storage system of claim 1 wherein the memory device is removably attached to the electrical energy storage device.

16. A method of operating a portable electrical energy storage device collection, charging and distribution machine comprising:
 detecting presence of a portable electrical energy storage device configured to provide power to a vehicle;
 receiving vehicle diagnostic data regarding the vehicle from the portable electrical energy storage device; and
 providing information from the portable electrical energy storage device collection, charging and distribution machine based on the received vehicle diagnostic data.
17. The method of claim 16 wherein the detecting presence of a portable electrical energy storage device includes detecting presence of the portable electrical energy storage device in the portable electrical energy storage device collection, charging and distribution machine.

18. The method of claim 17 wherein the detecting the presence of the portable electrical energy storage device in the portable electrical energy storage device collection, charging and distribution machine includes detecting an operable physical connection between a diagnostic data storage system of the portable electrical energy storage device and an input of the portable electrical energy storage device collection, charging and distribution machine once the portable electrical energy storage device is placed in the portable electrical energy storage device collection, charging and distribution machine.

19. The method of claim 16 wherein the detecting presence of the portable electrical energy storage device includes detecting presence of the portable electrical energy storage device via a wireless signal received from the portable electrical energy storage device.

20. The method of claim 16 wherein the receiving vehicle diagnostic data regarding the vehicle from the portable electrical energy storage device includes receiving the vehicle diagnostic data from a memory device attached to the portable electrical energy storage device on which the vehicle diagnostic data is stored.

21. The method of claim 16 wherein the providing information from the portable electrical energy storage device collection, charging and distribution machine based on the received vehicle diagnostic data includes displaying the information on a display of the portable electrical energy storage device collection, charging and distribution machine.
22. The method of claim 21 wherein the displaying the information on a display of the portable electrical energy storage device collection, charging and distribution machine includes displaying the information on the display during a transaction at the portable electrical energy storage device collection, charging and distribution machine involving the portable electrical energy storage device.

23. The method of claim 16 wherein the providing information from the portable electrical energy storage device collection, charging and distribution machine based on the received vehicle diagnostic data includes communicating the information to a mobile device of a user associated with the vehicle.

24. The method of claim 16 wherein the providing information from the portable electrical energy storage device collection, charging and distribution machine based on the received vehicle diagnostic data includes communicating the information to a server computing system.

25. The method of claim 16 wherein the provided information from the portable electrical energy storage device collection, charging and distribution machine includes notifications regarding potential problems with the vehicle based on the diagnostic data.

26. The method of claim 25 wherein the provided information from the portable electrical energy storage device collection, charging and distribution machine further includes instructions for resolving the potential problems with the vehicle.

27. The method of claim 25 further comprising displaying information regarding availability of particular vehicle parts at the portable electrical energy storage device collection, charging and distribution machine based on the received vehicle diagnostic data.
28. An electrical energy storage device comprising:
 a battery cell;
 a battery cell housing; and
 a diagnostic data storage system attached to the battery cell housing
 configured to receive and store diagnostic data of a vehicle that the electrical energy
 storage device is configured to power.

29. The electrical energy storage device of claim 28 wherein the
 electrical energy storage device is a portable electrical energy storage device.

30. The electrical energy storage device of claim 28 wherein the
 diagnostic data storage system is attached to an inside of the battery cell housing.

31. The electrical energy storage device of claim 28 wherein the
 diagnostic data storage system is attached to an outside of the battery cell housing.

32. The electrical energy storage device of claim 28 wherein the
 diagnostic data storage system is configured to communicate the stored diagnostic data
 of the vehicle to an external device.

33. The electrical energy storage device of claim 32 wherein the
 diagnostic data storage system is configured to wirelessly communicate the stored
 diagnostic data of the vehicle to an external device.

34. The electrical energy storage device of claim 32 wherein the
 external device is a portable electrical energy storage device collection, charging and
 distribution machine.
35. The electrical energy storage device of claim 28 wherein the diagnostic data storage system includes a controller coupled to a memory device, wherein the controller is configured to:

- receive diagnostic data regarding the vehicle;
- store at least some of the diagnostic data in the memory device; and
- enable the at least some diagnostic data stored in the memory device to be provided to an external device.

36. A non-transitory computer readable storage medium having computer executable instructions thereon that, when executed, cause a processor to perform:

- receiving data from a portable electrical energy storage device configured to power the vehicle; and
- providing information based on the received data to a user associated with the vehicle.

37. The non-transitory computer readable storage medium of claim 36 wherein the computer executable instructions, when executed, further cause the processor to perform detecting presence of the portable electrical energy storage device at a portable electrical energy storage device collection, charging and distribution machine.

38. The non-transitory computer readable storage medium of claim 36 wherein the data includes one or more of: vehicle diagnostic data regarding the vehicle, user profile information, vehicle profile information, security codes, credentials, security certificates, passwords, a subscription level of a user, demographic information of a user, information regarding user vehicle locations, telematic user vehicle information, telemetric user vehicle information, information regarding portable electrical energy.
storage device charge capacity, information regarding route information of users, and historic data.

39. The non-transitory computer readable storage medium of claim 38 wherein the data includes vehicle diagnostic data regarding the vehicle and the receiving the data from the portable electrical energy storage device includes receiving the data from a memory device attached to the portable electrical energy storage device on which the vehicle diagnostic data is stored.

40. The non-transitory computer readable storage medium of claim 36 wherein the providing information based on the received data includes displaying the information on a display of a portable electrical energy storage device collection, charging and distribution machine in which the portable electrical energy storage device has been placed and in response to the portable electrical energy storage device having been placed in the collection, charging and distribution machine.
FIG. 4A

Diagnostic Data Storage System

Other Storage

Microprocessor/Microcontroller

Communications Subsystem

RAM

ROM

Vehicle Diagnostic System
Based on the vehicle diagnostic information stored with your battery, you may want to consider:

1. Replacing your tail light
2. Replacing your break pads

Acknowledged
500

502

Receive diagnostic data regarding a vehicle

504

Store at least some of the diagnostic data in a memory device attached to an electrical energy storage device configured to provide power to a vehicle

FIG. 5

600

602

Enable at least some diagnostic data stored on the at least one memory device to be provided to an external device

FIG. 6
Detect presence of a portable electrical energy storage device configured to provide power to a vehicle

Receive vehicle diagnostic data regarding the vehicle from the portable electrical energy storage device

Provide information from the portable electrical energy storage device collection, charging and distribution machine based on the received vehicle diagnostic data

FIG. 7
Receive the vehicle diagnostic data from a memory device attached to the portable electrical energy storage device on which the vehicle diagnostic data is stored.

FIG. 8

Display the information on a display of the portable electrical energy storage device collection, charging and distribution machine.

FIG. 9
Receive vehicle diagnostic data regarding a vehicle from a portable electrical energy storage device configured to power the vehicle

Provide information based on the received vehicle diagnostic data to a user associated with the vehicle

FIG. 10