PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © :

HO4L 9/00, GO6F 12/14 Al

(11) International Publication Number:

(43) International Publication Date:

WO 95/18496

6 July 1995 (06.07.95)

(21) International Application Number: PCT/US94/14486

(22) International Filing Date: 15 December 1994 (15.12.94)

(30) Priority Data:

175,192 27 December 1993 (27.12.93) US

(71)(72) Applicant and Inventor: HSU, Mike, Sheng, Con [-/US];
1518 Ambergrove Drive, San Jose, CA 95131 (US).

(74) Agent: ROSENBERG, Gerald, B.; Fliesler, Dubb, Meyer
& Lovejoy, Four Embarcadero Center - Suite 400, San
Francisco, CA 94111-4156 (US).

(81) Designated States: AU, CA, JP, European patent (AT, BE,
CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: COMPUTER SYSTEM INCLUDING A TRANSPARENT AND SECURE FILE TRANSFORM MECHANISM

20 10
\ 27 /
PERIPHERAL
DEVICES cPu
, <
2 =a DISK ' == DISK
CONTROL SPACE
KERNEL \
USER | sPACE 18 &
SPACE | [uFFeR ﬂﬁﬂﬁkv
POOL

16/

(57) Abstract

A computer system (10) including a file transform mechanism, such as encryption, compression, encoding, translation and conversion,

a file storage subsystem (18, 22), a data storage subsystem (16) for

storing blocks of data in first and second logical data areas, and a

processor (12) for executing instructions implementing an operating system in the first logical data area and an application program in the
second logical data area. The processor includes a transform mechanism (56) for transforming a predetermined block of data in the first
logical data area separately from any other block of data a request mechanism for selecting the predetermined block of data to be operated
on, and an interface that controls the transfer of the predetermined block of data between the file storage subsystem and the data storage
subsystem and between the first and second logical data areas, transforming the data as required.

applications under the PCT.

AT
AU
BB
BE
BF
BG

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark

Spain

Finland

France

Gabon

GB
GE
GN
GR
HU

IT
Jp
KE
KG
KP

KR
KZ
LI
LK
LU
LV
MC
MD
MG
ML
MN

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

MR
MW
NE
NL
NO
NZ
PL

RO
RU
SD
SE
St

SN

TG
T

UA
us
uzZ

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

WO 95/18496 PCT/US94/14486

Computer System Including A Transparent and Secure File Transform Mechanism

10

15

20

25

30

35

Background of the Invention
1. Field of the Invention:

The present invention is generally related to
computer based file service extension systems and, in
particular, to an extension system for at least multi-
tasking computer systems where a secure, block oriented
file service mechanism is employed transparently within
the function of the operating system.

2. Description of the Related Art:

As communal access to and use of computer
systems increases, there is an increased demand for
control over access rights to and transformation of
computer data on an individualized basis. Computer
systems are continuing to evolve toward and in the
nature of multi-user systems, both directly and
indirectly through a heterogeneous architecture of
single-user, single-user multi-tasking and multi-user
inter-networked systems possessing a remote file sharing
capability. Thus, there is increased access capability
to computer data maintained in a common logical file
system. Furthermore, the file state and transformation
requirements of varying data formats increases with the

WO 95/18496 PCT/US94/14486

10

15

20

25

30

potentially gréater number of users and application
programs that may access the computer data files.
Conventional operating system based file access and
protection mechanisms typically depend on file attribute
and access 1list controls. These mechanisms are,
however, inadequate to provide a sufficient level and
transparency of security and control. In brief,
attribute based controls are typically used to define
read, write and execute permissions exercisable by the
user, or file owner, a user group, or other, meaning
all. Access list controls rely on the existence and
maintenance of a predefined list of users that have been
granted access rights to a file. Unfortunately, at
least the system administrator, or super user, and the
access list administrator are not preclusively bound by
these permission restrictions. Therefore, access to the
data content of a file is not secure against the super
user or others who may inappropriately have or gain
super user status. An error in the use or function of
an application program that modifies the file attributes
or control list also results in a security failure.
Conventional file protection mechanisms,
incorporated within broader functioning application
programs, dgenerally provide for the encryption of the
entire data file. These dedicated protection mechanisms
are completely independent of file attribute and access
list controls. There are, however, a number of
drawbacks to the use of such application based
protection mechanisms. Each such application program
must entirely implement a proprietary protection
methodology, such as encryption to ensure the security
of the data files specifically associated with the
program. Consequently, there is a nearly universal data
incompatibility between such programs thereby precluding

WO 95/18496 PCT/US94/14486

10

15

20

25

30

use or even simple access to common data by different
applications.

Use of a dedicated encryption program otherwise
independent of any suite of broad function application
programs, i.e., an encryption utility program, solves
the data file incompatibility problem. However, such
encryption programs must generally be executed
separately from and prior to the execution of other
application programs. Execution also typically results
in the restoration of a complete unencrypted data file
within the 1logical file system. Aside from the
practical difficulties of dealing with encrypted and
decrypted versions of the same data file presumably
closely co-resident within the logical file system, the
unencrypted data file is no more secure than potentially
obtained by conventional reliance on the file attribute
and access control mechanisms previously described.
Typically, the management of file attribute and access
controls is sufficiéntly tedious, particularly when
considered in combination with the separate need to
execute and manage the encryption/decryption steps
separate from the execution of other application
programs, that these additional controls are not
implemented. Consequently, the decrypted data file
obtained by use of an encryption utility program
represents a potentially greater security exposure.

Automatic or transparent file security systems have
been proposed, such as the one disclosed in U.S. Patent
No. 5,007,082, issued to Cummins, on April 9, 1991.
There, an encryption mechanism is implemented through
the addition of a hardware specific software based
control routine at the basic I/O system (BIOS) level of

.an operating system. This routine provides for the

simple selective re-vectoring of the lowest level file

WO 95/18496 PCT/US94/14486

10

15

20

25

30

transfer BIOS functions, specifically the floppy
diskette access operations, through a file encryption
routine. The entire file is automatically encrypted or
decrypted when written or read from the diskette. In
addition, a global "decryption flag," is stored uniquely
in the computer memory and not with the diskette files.
This flag is utilized to specify whether a specific
diskette is to be treated as an encrypted or ordinary
data file store quite independent of the specific files
stored on the diskette. Where data is to be transferred
to or from an encrypted diskette store, the data is
encrypted within the memory of the computer system at
the lowest level of the operating system and then only
for the duration of the actual data transfer. Cummins
specifically teaches that all in memory data buffers
need to store the data file in an unencrypted state in
order to ensure operational compatibility with all
potentially executing application programs.

A number of obvious vulnerabilities to the secure
function of the Cummins mechanism exist. The re-
vectoring approach is vulnerable to simple restoration
of the original vectors, thereby bypassing the
encryption control routine. Unencrypted diskette data
files can then be freely prepared.

The use of a global flag signifying continuing use
of the encryption control routine also provides a
single, simple point for disabling the function of the
encryption routine. Reliance on this flag is not
specific to any specific user or file but rather to an
entire computer system. Once modified, the security of
the entire system is breached irrespective of any
specific user or file.

Further, the maintenance of all data buffers within
the computer system in an unencrypted state, except

WO 95/18496 PCT/US94/14486

10

15

20

25

30

briefly in performing a physical data transfer, results
in the computer memory image being inherently insecure.

Finally, the Cummins system is described solely
with respect to diskette based data file protection.
The data protection mechanism provides protection for
data files only if removed from a computer system on
transportable media. The disclosed mechanism is
therefore clearly not applicable to freely inter-
networked systems, but rather only for physically
separate, and physically secured single user systems.

Conventionally, file state and transformation
requirements for data files are preserved as an integral
part of the data files. As such, the relevant state
defining information is largely usable ohly by the
application that created the data file. Other
applications must be specifically compatible with
another application’s file format or provide, typically
through execution of a separate program, a conversion
between file formats. All of the disadvantages
discussed relate to encryption and multiple instances of
a given file attach here as well.

Summary of the Invention

Accordingly, a general purpose of the present
invention is therefore to provide a file extension
system, such as a secure file encryption system,
transparently within an environment of multi-user and
inter-networked computer operating systems.

This is achieved in the present invention by a
computer system including a file extension mechanism, a
file storage subsystem for storing a file composed of
one or more blocks of data, a data storage subsystem for

. §toring blocks of data in first and second logical data

areas and a processor for executing instructions

WO 95/18496 PCT/US94/14486

10

15

20

25

30

implementing a computer operating system in the first
logical data area and an application program in the
second logical data area. The processor is coupled to
the file storage subsystem and the data storage
subsystem for transferring a predetermined block of data
between the file storage subsystem and the data storage
subsystem. The processor includes (1) a file extension
capability, defined within the operating system, for
transforming the predetermined block of data in the
first logical data area and separately from any other
block of data; (2) a request capability, defined by the
application program, for selecting the predetermined
block of data to be operated on; and (3) an operating
systenlhinterface that controls the transfer of the
predetermined block of data between said file storage
subsystem and the data storage subsystem and between the
first and second logical data areas. The interface can
determine whether the predetermined block of data is
transformed. The interface controls the transfer of the
predetermined block of data from the file storage
subsystem to the data storage subsystem and between the
first and second logical data areas transforming the
data as required.

Thus, an advantage of the present invention is that
a file extension mechanism, providing a secure file
encryption mechanism, for example, is established within
the function of a computer operating system.

Another advantage of the present invention is that
the function of the mechanism can be securely and
transparently embedded in the operating system and
specifically at the highest control 1level while
maintaining full compatibility with conventional multi-

-tasking and/or multi-user operating system process

inheritance mechanisms.

WO 95/18496

10

15

20

25

30

PCT/US94/14486

A further advantage of the present invention is
that the mechanism, in implementing the encryption
algorithm is fast, provides an inherently substantial
degree of file security, is easily maintained by an
authorized user for their encrypted files, imposes
little additional processing overhead for accessing both
encrypted and unencrypted files, and may be flexibly
tailored to selectively permit additional ordinary users
access to the encrypted files of another.

Yet another advantage of the present invention is
that the transformation mechanism operates on block
level portions of a file, thereby inherently limiting
the existence of untransformed portions of a file within
the computer system to the minimum portion of the file
required by a user application.

Still another advantage of the present invention is
that, while block portions of a transformed file may be
temporarily maintained in an operating system buffer
pool for operating system and hardware efficiency
reasons, such blocks are preserved there in a
transformed state, thereby globally precluding a
security exposure due to snooping of a memory image for
untransformed blocks.

A still further advantage of the present invention
is that file system maintenance where both transformed
and untransformed files exist is essentially unaltered.
A transparent method of identifying transformed files
fully consistent with existing conventional multi-
tasking and multi-user file privilege attribute
mechanisms is used.

Yet still another advantage of the present
invention is that the transformation mechanism is
generally consistent with conventional file security and
operating system implementation paradigms, thereby being

WO 95/18496 PCT/US94/14486

10

15

20

25

30

generally portable to a wide variety of multi-tasking
and multi-user computer operating systems.

A yet still further advantage of the present
invention is that the transformation system,
implementing encryption, provides a secure cost-
effective file protection mechanism that is specifically
independent of any particular computer system hardware.

Brief Description of the Drawings

These and other advantages and features of the
present invention will become better understood upon
consideration of the following detailed description of
the invention when considered in connection of the
accompanying drawings, in which like reference numerals
designate like parts throughout the figures thereof, and
wherein:

Figure 1 is a representative drawing of a computer
system capable of implementing the present invention;

Figure 2 is a schematic diagram of the logical data
space and control structures utilized in a preferred
implementation of the present invention;

Figure 3 is a schematic diagram representing the
interception of select system calls in accordance with
a preferred embodiment of the present invention;

Figure 4a is a representative depiction of the
generation of an encryption control table entry;

Figure 4b is a representative depiction of the
relation between a user procedure control table, kernel
process control table and encryption control table in
accordance with a preferred embodiment of the present
invention; =

Figure 4c is a representative depiction of the
encryption process in accordance with a preferred
embodiment of the present invention;

WO 95/18496

10

15

20

25

30

PCT/US94/14486

Figure 4d is a representative depiction of the
decryption process in accordance with a preferred
embodiment of the present invention;

Figure 5a is a schematic diagram illustrating the
control flow in support of a modified read operation in
accordance with a preferred embodiment of the present
invention; and

Figure 5b is a schematic diagram illustrating the
control flow in support of a modified chmod operation in
accordance with a preferred embodiment of the present
invention.

Detailed Description of the Invention

The present invention provides for a system of file
transformations particularly suited for use in advanced
computer operating systems. While the preferred
embodiment of the present invention, and the following
description thereof, are specific in detail to an
encryption transform performed using the Unix operating
system, persons of average skill in the art will readily
appreciate the ready extension of the principles of the
present invention to other transforms, including code
set conversion, compression, and transition, as well as
encryption, and to other operating systems, including
Windows-3.1 and Windows-NT by Microsoft, Inc., System 7
by Apple Computer, Inc., VMS by Digital Equipment
Corporation, 0S/2 by International Business Machines,
Inc., and the many specific variants of the Unix
Operating System such as provided by the Santa Cruz
Operation, Inc. (SCO Unix), International Business
Machines, Inc. (AIX), and Novell, Inc. (UnixWare).

Accordingly, the detailed description of the
preferred embodiments provided here is not to be taken
as limiting the applicability of the present invention

WO 95/18496 v PCT/US94/14486

10

15

20

25

30

to any specific transform, operating system or computer
system architecture, but rather the present invention is
intended to be applicable to all transform and operating
systems, as executed on corresponding computer systems,
within the scope of the appended claims.

The Unix operating system is widely known and
understood in terms of the operating principles and
related control structures of the operating system. An
excellent treatment of these concepts is provided in
"The Design of Unix Operating System," by Maurice J.
Bach, Prentice-Hall, Inc., 1986, and is expressly
incorporated herein by reference. A significant design
feature of the Unix operating systéms is the ability to
extend the operating system to accommodate selected sets
of new and existing peripheral devices through the
addition of corresponding kernel resident device
drivers. A Standard device driver interface generally
as supported by the Unix operating system is described
in "Device Driver Writer’s Guide," available from the
Santa Cruz Operation, Inc., 400 Encinal Street, Santa
Cruz, California 95061, and is also expressly
incorporated herein by reference.

Referring now to Figure 1, there is shown a
computer system 10 suitable for implementation of the
present invention through the execution of an operating
system and application programs. In the preferred
embodiments of the present invention, the operating
system is an implementation of the Unix operating
system. A central processing unit ("CPU") 12 executes
the operating system and any number of application
programs. The CPU 12 is connected via a bus 14 to a
main memory unit 16, a disk controller unit 18, and
other peripheral devices generally indicated by the
reference numeral 20.

WO 95/18496 PCT/US94/14486

10

15

20

25

30

- 11 -

The main memory 16 provides an addressable memory
space to the CPU 12 for the storage of application
programs and data and of the operating system and
related data. As generally depicted in Figure 1, the
main memory 16 is logically managed as a combination of
user space and kernel space. When the CPU 12 is
executing program code in user space, the process within
which such execution is occurring then exists in user
mode. Where the process is executing in kernel space,
then execution is in kernel mode.

Within the kernel space, a buffer pool, or buffer
cache, is maintained by the operating system. This
buffer pool represents a temporary buffer cache for data
transferred via the disk controller 18 from a secondary
memory such as a disk drive 22.

Referring now to Figure 2, a schematic diagram of
the logical user and kernel mode spaces is shown. The
application program 26 executes in user mode. Operating
system calls 30 are issued by the application program to
gain access to operating system resources. These calls
are directed through a system call interface
substantially existing within the kernel data space,
though presenting an application program interface (API)
accessible from user space. Typically this interface is
implemented through a system call trap mechanism 32 that
permits the user mode system call to initiate a mode
switch to a kernel mode of operation within the same
processes context. This mode switch may be delayed
subject to the operation of the process scheduler of the
operating system. When the mode switch completes, the
process, now in kernel mode, is processed through the
trap handler routine 32 that may be part of the system
call interface. As a consequence, a call is placed
against a system call, or sysent, table 34. The

WO 95/18496

10

15

20

25

30

35

40

PCT/US94/14486

structure of the system entry table is provided in
Table I.

TABLE I
Structure of the System-Entry Table

From <gys/systm.h>

extern struct sysent {

char sy _narg; /* total number of arguments */
char sy_setjmp; /* 1 if systrap() should
not setjmp() */
int (*sy_call) (); /* handler */
} sysentl];
extern int nsysent; /* number of valid entries

in sysent */

The sysent table 34 functions as a dispatch table
with each entry in the table corresponding to a
different function supported by the operating system.
Of particular relevance to the encryption transform
embodiment of the present invention, the sysent table 34
includes entries for the open, create, read, write,
chmod, fork, statf, seek, exit and ioctl system call
procedures generally represented as procedures 36. As
is evident from each entry in the sysent table, the
system call address of each the system call procedures
is maintained in a respective entry ((*sy_call) ())
within the sysent table 34.

The Unix operating system utilizes a file oriented
paradigm in providing operating system services.
Consequently, the open, create, read, write, seek, stat
and close system call procedures permit logical
operation relative to a wide variety of logical data
entities, including directories, files, and pipes, for
example, that are treated as files referenceable via
directories. In turn, directories are maintained on
disk as standard files containing specifically
structured data. This directory file data includes a

WO 95/18496 PCT/US94/14486

10

15

20

25

30

35

40

pointer to a disk based structure of disk inode entries.
Each inode entry stores specifically relevant
information describing, among other things, the
protection mode, owner, user group and size of a
particular data file. A summary of an inode entry, as
stored on disk, is provided in Table II. '

TABLE II
Structure of a Disk Inode
From <sys/ino.h>

struct dinode

ushort di_mode; /* protection mode, file type */
short di_nlink; /* number links to file */
ushort di_uid; /* owner’s user id */

ushort di_gid; /* owner’s group id */

off t di_size; /* number bytes in file */

The open and create system call procedures cause
the creation of "in-core" inodes in an inode table for
each file opened or created. The in-core inode of a
file contains much of information held in the disk inode
structure. The statf system call procedure can be used
to return a structure containing the disk inode mode
information.

The chmod system call procedure is provided
specifically to change the protection mode of disk
files. The inode structure maintains a binary coded
entry (di_mode) defining the file type and protection
mode of the disk file. The three least significant
octal digits of the mode specify the existent read,
write, and execute permissions of the file for the file
owner (0x00), the owner’s group (00x0), and other
(000x), where x represents any octal digit. Another
octal digit of the mode entry (x000) is utilized to
store additional permissionsbrelated information. The

WO 95/18496 PCT/US94/14486

10

15

20

25

30

- 14 -

remaining bits of the mode are used to define the file
type or are reserved. The chmod system call procedure
takes, as an argument, a binary representation of the
file protection mode (xxxx) and appropriately modifies
the mode value stored by the disk inode corresponding to
the referenced file.

In accordance with the present invention, a
transformed file is identified by the presence of a
enode data structure appended to a corresponding regular
file. As will be discussed in greater detail below,
this trailing enode structure includes data defining the
transform applied to the file.

A specific pre-existing file mode may also be used
to indicate the transformed state of a corresponding

regular file. In an alternate embodiment of the present

invention the selected mode is octal xx0x, where x is
any octal digit. This represents an otherwise unlikely
file mode since the group permission is defined as
without conventional read, write or execute access to
the file. Any other mode bit or bit pattern could be
used where the same can be seen to have no other
significant use. Any logically permitted mode bit or
pattern can be used to define, for example, the
encryption state of the corresponding regular file
consistent with the present invention. Consequently,
incompatibilities that might arise either from a
redefinition of the mode bits with existing programs
that rely on the existing exclusive definition of the
mode bits is avoided. Further, as a logically permitted
mode, the existing chmod utility program will readily
accept and apply the mode value to the corresponding
file inode.

The seek system call procedure is provided to
position the file access pointer within, typically, a

WO 95/18496 PCT/US94/14486

10

15

20

25

30

35

40

45

file. Subsequent read and write file accesses are
performed relative to this pointer. The create and open
system call procedures initialize the file access
pointer to zero. '

The fork system call procedure is utilized to
Create a new process within the control of the operating
system. This child process is a logical copy of the
parent process. All pfocesses are managed by the
operating system through the use of a process table
within the kernel space of the operating system. A
summary of a process table entry, stored as an element
of -a process table linked 1list, is provided in
Table III.

TABLE IITI
Structure of the Process Table

From <sys/proc.h>

typedef struct proc {

char p_stat; /* status of process */
ushort p_uid; /* real user id */
ushort p_suid; /* saved uid from exec */
int p_sid; /* POSIX session id num */
short P_P9rp; /* proc grp leader name */
short p_pid; /* unique process id*/
short p_ppid; /* process id of parent*/
ushort p_sgid; /* saved gid from exec */
sigset_t p_sig; /* signals pending */
struct proc *p_flink; /* forward link */
struct proc *p_blink; /* backward link */
struct proc *p parent; /* ptr to parent proc */
struct proc *p_child; /* ptr 1st child proc */
struct proc *p_sibling; /* next sibling proc */

} proc_t;

Thus, each entry in the process table represents a
structure containing information defining the relevant
attributes of the process. Each process has a unique
process ID (p_pid) and is managed via a separate
physical entry within the procedure table. Each entry
in the procedure table also includes linking information

WO 95/18496 PCT/US94/14486

10

15

20

25

30

- 16 -

identifying the parent process (p_ppid), if any, of the
current process. In completion of a fork system call
procedure, the parent process is also provided with, as
a return value, the process ID of the newly created or
spawned child process. Thus, both the resulting parent
and child processes may uniquely identify themselves and
their related process.

Multi-tasking operating systems, in general,
implement multiple procedures as a way of managing the
multiple tasks. The newer and more sophisticated
operating systems often also implement mechanisms known
as threads and lightweight processes as a convenient
manner of augmenting the functionality of multiple
processes, though without the additional complexity and
overhead a full process context management. However,
relevant to the ©present invention, threads and
lightweight processes may be treated equivalently to the
creation of processes via the fork system call
procedure.

The exit system call procedure is provided to
permit an application program, or the operating system
itself, to terminate a process. Termination of a
process results in closing of all of the file
descriptors associated with the process, including
release of the related in-core inodes, and the removal
of the corresponding entry from the process table. In
closing any existing file descriptors, any corresponding
data is first flushed from the kernel buffers associated
with the process to the buffer pool and subsequently to
disk as appropriate. The disk inode is then also
updated. A

Finally, the ioctl system call procedure is
provided for peripheral device specific operation
control. In order to accommodate the variety of

WO 95/18496 ‘ ‘ PCT/US94/14486

10

15

20

25

30

- 17 -

specific hardware, representing peripheral devices, that
can be attached to a computer system 10, the Unix
operating system permits device driver control modules
to be integrated with the operating system kernel.
Typically, each peripheral device is required to have a
supporting device driver within the kernel to
accommodate the specifics of the hardware implementing
the peripheral device. Device drivers will include
character device and buffered block mode device system
call procedures. Character oriented devices will be
typically supported with open, read, write, close and
ioctl system call procedures. Where a peripheral device
is susceptible to operating with block oriented system
call procedures, the device driver .will support open,
close and strategy system call procedures. The strategy
system call procedure is a common entry point for low-
level data transfers via the buffer pool as a
consequence Of read and write buffer system calls
subject to the file caching algorithm implemented by the
operating system.

In order to support the file oriented paradigm of
the Unix operating system, a device driver is logically
represented within the file system of the operating
system by device files. These device files provide
defining information specifying that the inode
corresponds to either a character or block oriented
device of a device driver and, further, the major and
minor numbers utilized to identify the specific device
driver (major number), and a particular variant of the
device driver system call procedures (minor number) used
to accommodate minor wvariations in the hardware or
operation of the peripheralv device. As with all files,
file access permissions are also maintained in the

WO 95/18496 PCT/US94/14486

10

15

20

25

30

- 18 -

device files,lthereby permitting access restrictions to
be enforced. ‘

In accordance with the preferred embodiment of the
present invention, providing for the encryption of data

~files, a device driver is provided within the kernel of

the operating system to support the selective encryption
of disk based data files. As shown in Figure 3, the
device driver 38 of the present invention is not
specifically related to any particular peripheral device
20. Rather, the capability of including a device driver
in the kernel of the operating system is utilized
advantageously to permit system call wrapper procedures
40 to be installed functionally between the sysent table
34 of the system call interface and corresponding
selected system call procedures 36. This allows the
existent system call procedures 36 of the operating
system to be transparently modified by encapsulating
each of the system call procedures 36 as atomic
operations within the corresponding system call wrapper
procedures 40.

Also included in the device driver 38 of the
present invention is an initialization routine 42 that
installs the system call wrapper procedures 40 in the
functional call path between the sysent system call
entries 34 and the corresponding system call procedures
36. During the initialization of the operating system
as a whole, a standard initialization call 44 is made by
the operating system kernel to each device driver
present within the kernel. When the initialization
routine 42 of the device driver 38 of the present
invention is so called, the installation routine 42
scans the sysent table 34 and determines whether the
table contains proper entries for each of the system
call procedures required by the device driver. Where

WO 95/18496 PCT/US94/14486

10

15

20

25

30

all of these system call procedures validly exist, the
initialization routine 42 substitutes the addresses of
the system call wrapper procedures 40 into the
corresponding locations within the sysent table 34. The
addresses of the original system call procedures are
retained for subsequent reference by the device driver
38. Any subsequent system call will be effectively
intercepted by the device driver of the present
invention.

An alpha table is also allocated during the
initialization of the device driver. This table is
formed as an array of pointers, preferably three
pointers per table slot, to alpha table structures.
Each table slot is defined, in accordance with the
present invention, to uniquely correspond to a slot in
the process table of the operating system. All alpha
table pointers are initialized to zero. .

An enode table is then allocated. This table is
formed as a pointer array with each pointed to structure
including an "in use" entryland an enode structure.
Each table slot is defined, in accordance with the
present invention, to uniquely correspond to a slot in
the "in core" inode table of the operating system. All
enode table pointers are initialized to zero.

A device driver flag is then appropriately set to
indicate whether the initialization routine completed
correctly and that subsequent operation of the device
driver in accordance with the present invention is
possibie. ‘

The ioctl system call specific to the device driver
of present invention is issued by a simple application
program also specific to the present invention. The
application program provides a simple user interface to
obtain a password key for validating the encryption and

WO 95/18496 PCT/US94/14486

10

15

20

25

30

- 20 -

decryption of data files protected by the present
invention. This get_key application program obtains a
user entered password key, opens the character device
file of the device driver of the present invention, and
then issues a SETKEY ioctl command with the user entered
password key as an argument. The ioctl system call
procedure of the device driver of the present invention
preferably provides for the generation of an alpha table
structure and for storing a pointer to that structure in
the alpha table. The pointer storage location is chosen
as one of the pointer locations within the alpha table
slot that logically corresponds to the process table
slot of the process that executed the get key
application. The slot relationship between the alpha
table and process table is such that neither directly
references or is referenced by the other. That is, in
accordance with the present invention, the control
table, alpha, is not linked by pointers in any traceable
way from the process table or any other conventional
control structure within the kernel of the operating
system.

Consequently, a substantial degree of security is
inherently obtained by the absence of any traceable
connection between the process table and the alpha table
of the present invention. Further, by establishing the
alpha table as a structure defined only within the
device driver of the present invention, there are no
external symbol references to the location of the alpha
table. A further degree of security may be obtained by
dynamically allocating the table and table entries upon
initialization of the device driver. Consequently, each
instantiation of the table as well as the table entries
will likely be at different locations within the data
space of the kernel.

WO 95/18496

10

15

20

25

30

35

40

PCT/US94/14486

- 21 -

Table IV provides a description of the preferred
definition of the alpha table (alpha_t) and of each
alpha structure (alpha). ’

TABLE IV
Structure of an Alpha Table Entry
From "alpha_.h'

struct alpha_t { /* the alpha table*/
struct alpha *primary key;
struct alpha *alternate_key;
struct alpha *working key;

struct alpha { /* the alpha structure */
unsigned char encryptab [256] ; /* encrypt. tab */
unsigned char decryptab[256] ; /* decrypt. tab */
int refent; /* reference cnt */
struct key cyptkey; /* encrypt. password */

}i

struct key {
) unsigned char str[i12]; /* password key */

The alpha table is an array of pointers to alpha
structures. The length of the alpha table, and
therefore the number of available alpha slots, is equal
to the defined number of process table slots or entries
(typically nproc). In many multi-tasking operating
systems, the procedure table has a predefined static
size. However, should the process table permit dynamic
allocation of process table entries upon initiation of
the operating system, then the device driver of the
present invention may scan the process table or
otherwise determine the number of process table entries
in order to permit dynamic allocation of a corresponding
number of alpha table slots. In either case, an equal
number of available slots are preferably maintained in
both the alpha table and the process table.
Consequently, entries in the alpha table may be
logically correlated against entries within the process

WO 95/18496 PCT/US94/14486

10

15

20

25

30

- 22 -

table by reference to slot index offsets and without any
direct linking between the two structures. That is, the
table index of a slot in the process table will have a
corresponding slot in the alpha table at the same index
offset. Furthermore, by establishing the alpha table as
an array of pointers to structures constituting the
structures for each index slot location of the alpha
table, an alpha structure may be multiply referenced
from the alpha table. This capability permits multiple
processes to logically share common encryption access
permissions. As will be seen subsequently, this
capability facilitates inheritance of the encryption
access permissions.

Referring now to Figure 4a, the process of

’ generating an alpha structure is shown diagrammatically.

In response to the SETKEY ioctl system call, the ioctl
system call procedure of the preferred device driver of
the present invention obtains the entered password key
48 from the user mode space. Assuming that this
reference is the first reference to an alpha table slot
in response to the SETKEY ioctl system call, an alpha
structure will be assigned to the primary key entry of
the slot. The alpha structure will also be
duplicatively assigned to the working key entry by
virtue of being the last alpha structure used relative
to this slot. Assuming further that no other process
has initialized an alpha structure with the same
password obtained by the get_key application for the
present process, an alpha structure 50 is permanently
allocated within the kernel data space. The structure
50 is initialized and pointer assigned to the primary
key entry of the current alpha table slot. The
reference count (refcnt) of the alpha structure 50 is
set to onme.

WO 95/18496 PCT/US94/14486

‘10

15

20

25

30

35

40

45

S,

The wuser provided password key is wused in
conjunction with a predefined seed table to create, by
index value substitution, an encryption table 56 that is
stored in the alpha structure 50. The seed table,
preferably included as a predefined element of the
device driver of the present invention, preferably
consists of 256 randomly ordered unique byte values. In
the preferred embodiment of the present invention a
shuffle function 54 is implemented to generate the
process specific encryption table 56. The preferred
shuffle function provides for a modula four progressive
recalculation of values based on the byte values of the

‘ password key and the seed table.

TABLE V
Pseudo Code of the Preferred Shuffle Function

shuffle (key [12] ,buf [256]) {

int x, y, idx, encrypted_x;
extern seed table[256],

for x = 0 to 255; do
Yy = X;
for idx = each position in the key string; do
switch(idx % 4)

case 0: y = y + key[idx]; break;
case 1: y = y * key[idx]; break;
case 2: y = y / keylidx]; break;
?ase 3: vy =y - keylidx]; break;
done
loop
loop
= y modula 256;
encrypted x = seed_tablely];
Y=y +1;
until encrypted x != previous encrypted x
until encrypted x != X or no other x available

buf [x] = encrypted x
done

Each entry in the encryption table generated by the
shuffle function is checked for uniqueness against prior
existing values in the encryption table. If a newly

WO 95/18496 PCT/US94/14486

10

15

20

25

30

35

- 24 -

generated value is not unique, another iteration of the
shuffle function is performed to generate a new entry.
Consequently, the encryption table will yield a set of
256 values that are unique and substantially random,
though arithmetically related to the password. key.
Other specific methods of generating the encryption
table may be readily utilized so long as the foregoing
two requirements are met.

A decryption table 58 is generated based on the
encryption table 56 and stored in the alpha structure
50. Preferably a reverse table generation algorithm is
applied to the encryption table to generate the
decryption table. That is, the decryption table is
generated by storing index values at locations within
the decryption table selected by the data value stored
within the encryption table at the index offset
location. 1In the preferred embodiment of the present
invention the algorithm is implemented as shown in
Table VI.

v TABLE VI
Pseudo Code for the Decryption Table Generation

for (i=0; i < 256; i++) {
decryptab[encryptabl[i]] = i ;

However, any relationship between the encryption
and decryption tables may be used so long as there is an
arithmetic identity in the transformation of a data
value applied to the encryption table and the resultant
value when applied to the decryption table.

Finally, the password key is encrypted using the
encryption table 56 through a process of index
substitution. That is, bytes from the encryption table

WO 95/18496 PCT/US94/14486

10

15

20

25

30

- 25 -

are selected using respective bytes of the key as
indices into the encryption table.

Alpha structures, in accordance with the present
invention, may both pre-exist when an alpha structure 50
is needed for a new process and may be shared. As
before, alpha structures 50 are permanently allocated
and maintained in a pool structure within the kernel
data space. When a new alpha structure 50 is needed,
the alpha structures in the pool are first examined to
determine if one has already been initialized with the
same password key. That is, a comparison is performed
between the entered password key, once encrypted and the
encrypted password keys stored by the alpha structures

in the pool. If a match is found, then the reference

count of the structure is incremented and the structure
is assigned to the alpha table slot. If no match is
found, then any available alpha structure 50 (reference
count zero) from the pool is initialized, as discussed
above, for the entered password key. The resultant
sStructure 50 is then asSigned to the primary and working
key entries of the alpha table slot or, if another alpha
structure has already been assigned to the primary key
entry, then to the alternate and working key entries.
If there is no available alpha structure 50 in the pool,
then a new structure is dynamically allocated and placed
in the pool.

The relationship between process table 62, alpha
table 64 and multiple references to alpha structures
66,68 is shown diagrammatically in Figure 4b. By
reference to the process 70 in which the get key
application program is executed, the index offset of the
process slot 70’ in the process table 62 may be known.
The same offset value is used to reference a slot 70"

‘WO 95/18496 PCT/US94/14486

10

15

20

25

30

- 26 -

within the alpha table 64. An entry within the slot 70"
then references an alpha structure 66.

Where a new process slot 76’ is initialized as a
result of a fork system call, as indicated by the arrow
74, corresponding slot 76" is initialized in the alpha
table. The alpha structure pointer entries in the slot
76" duplicate the entries in the slot 72". The
reference counts of the resulting shared alpha
structures 68 are incremented. This sharing of
structures 68 results in an effective inheritance of the
password keys corresponding to the slot 72".

The sharing of alpha structures will also occur
when the same password key is entered in independent
processes. The alpha structure pool is scanned in
initialization of a slot 78". If a matching encrypted
password key is found, in structure 68 as shown, then
the reference count of the structure 68 is incremented
and a pointer to the structure 68 is assigned to an
entry in the slot 78". Distinct from the case of
inheritance of structures, this sharing of alpha
structures is limited to the specific structure that is
matched, and not all of the structures associated with
another process slot.

Referring now to Figure 4c, the process of

encrypting data will be described. In accordance with

the preferred embodiment of the present invention, data
is encrypted in individual blocks correspondiﬁg to the
smallest buffered block size supported by the operating
system. 1In the preferred embodiment, as is typical of
standard Unix operating system variants, the minimum
buffered block size is 256 bytes. Consequently, as
shown in Figure 4c, even an individual data value (byte)
80 being written ultimately out via a buffered write
system call procedure will implicitly have an offset

WO 95/18496 PCT/US94/14486

10

15

20

25

30

- 27 -

corresponding to the beginning of a data block 82. The
actual data value being written is utilized, in the
preferred embodiment of the present invention, as an
index value against the encryption table 56 stored as
part of the alpha structure 50. The resultant value and
the block offset of the data being written are combined
by a modula 256 adder 84. The resultant byte value 86
is stored in the same block offset location in an
encrypted data block 88. In accordance with the
preferred embodiment of the present invention the
unencrypted and encrypted blocks 82 and 88 are one and
the same. |
The reverse procedure for converting an encrypted
data block 88 to an unencrypted data block 82 is shown
in Figure 4d. An encrypted data value 86 is combined
with the corresponding block offset value by a modula
256 subtractor 90 and the resultant value is utilized as
an index into the alpha structure decryption table 58.
The value thus identified in the decryption table is the
unencrypted original data value 80. This data value may
then be stored in the buffered block offset location 80

- from whence the encrypted data byte was obtained.

Consequently, buffered random reads and writes of
an encrypted data file at a block level are permitted by
operation of the present invention. The entire data
file need not even be read into memory or otherwise
copied for decryption. Rather, only the specific block
containing the file portion requested by an application
program, unaware and uninformed of the operation of the
present invention, need be decrypted for use by the
application program and subsequently re-encrypted in
writing back the data. Only the minimum portion of a
file required by the application program is at any one
time decrypted within the entire memory space of the

WO 95/18496

10

15

20

25

30

35

40

PCT/US94/14486

computer system 10. Furthermore, data pending either a
read or write operation to disk 22 or other storage
All data

subject to encryption by operation of the present

medium persists only in an encrypted state.

invention is maintained in an encrypted state in the
buffer pool.

Figure 5a provides a schematic diagram of the
control flow involved in execution of a modified read
system call procedure. The read system call wrapper
procedure 96 is called from the read entry of the sysent
table 34.

invention 1is

If the encryption facility of the present
enabled and an alpha structure is
referenced by the working key entry, the read referenced
file is checked for an in-core inode corresponding enode

table structure. The enode structure is provided in

Table VII.
TABLE VII
Structure of the "enode' Table
struct enode { /* the enode */
unsigned magicl; /* delimiter fixed value */
char magic_text; /* encrypted text */
struct key shadow_key; /* writing key */
short flags; /* transform type & status */
unsigned magic2; /* delimiter fixed value */

}

struct inCoreEnode {
char
struct enode

inUse;
enode;

struct enode_t {

struct inCoreEnode

/* the in-core enode */

/* the enode table */

*inCorek;

The enode table is populated with enode structures

corresponding to all opened

files. That is, an enode

structure is effectively allocated each time a file is

opened or created so as to parallel the existence of

WO 95/18496 PCT/US94/14486

10

15

20

25

30

- 29 -

corresponding in-core inode structures. When a fiie is
opened, any existing enode structure appended to the
file is read in to the corresponding enode table
structure. Otherwise, the enode table structure is left
in a null pointer default state.

As with the alpha table relationship to the process
table, the enode table can be inferentially referenced
by an offset value determinable from a reference to the
in-core inode table. From the in-core inode
identification of a file to be read, thus presuming the
existence of both an open in-core inode and a
corresponding enode structure, the contents of the
identified enode structure can be used to authenticate
the encrypted data against the specific encrypted
password key held by the read requesting process.

Authentication requires first that an enode
structure validly existed at the end of the file when
the file was opened. Second, one of the encrypted keys
associated with the current process must be capable of
validly decrypting the code in the magic_text character
space of the enode structure. That is, the magic_text
must decrypt into a known data string. If a correct
decryption of the magic_text is performed using the
user’s primary key, then the encrypted data can be
accessed directly. If the user’s alternate key is found
to properly decrypt the magic_text, the encrypted key
stored in the enode structure is obtained and a working
key alpha structure is created distinct from the alpha
structures identified by the primary and alternate key
entries. Thus, transparently to the user, access to the
contents of an encrypted file created with a different
password key than held by the current user is securely
obtained.

WO 95/18496 PCT/US94/14486

10

15

20

25

30

- 30 -

The read system call 98, is then called to obtain
the requested block of data. In the preferred
embodiment, this call is preferably integrated at the
Unix "readi" file system switch call level, which is one
layer below the system call interface layer, to permit
file system switch independent operation. The read
system call procedure returns the requested data to a
buffer typically located in the user data space pre-
allocated by the requesting‘ application program.
However, the read system call wrapper procedure 96 may
access this buffer location while continuing to execute
in kernel mode. That is, conventional kernel sub-
routine calls permit the read system call wrapper
procedure to obtain the location of the user space
buffer filled as a consequence of the read system call
procedure. If the file was authenticated as an
encrypted file capable of decryption, the read system
call wrapper procedure 96 decrypts the data in the user
space read buffer. The decryption of the buffer data is
performed by reading bytes of data from the user space
read buffer, decrypting the byte of data in accordance
with the process described in connection with Figure 4d,
and then writing out the resultant byte of data to the
user space read buffer. Once the entire buffer of data
has been decrypted, the read system call wrapper
procedure returns, permitting a switch out of kernel
mode as appropriate to enable the application program to
execute and process the unencrypted data present in the
user space read buffer.

If, however, the current process has entered no
password key, or the password key entered is not
authenticated, then the decryption of data in the user
space read buffer is not performed. Therefore, the user
application program only receives encrypted data in

WO 95/18496 PCT/US94/14486

10

15

20

25

30

- 31 -

accordance with the intended operation of the present
invention.

Conversely, regardless of the password key entered
for a present process, if the file does not have a
corresponding enode structure (inCoreEnode is null or
not in use) or the data is not from a regular file, and
therefore not subject to encryption, the data provided
by the read system call procedure 98 ié again left
unmodified in the user data space read buffer. This
unmodified read data is assumed to be unencrypted data
in accordance with the intended mode of operation of the
present invention.

In similar fashion, the write system call wrapper
procedure is invoked to implement the functions of the
present invention in connection with the writing of data
to a regular file. Thus, when a user program invokes a
write, specifically integrated as a call to the Unix
"writei" file system switch call layer, a the file enode
structure and type are examined to determine whether the
referenced file may be encrypted. If encryption is
possible, then the enode structure data is
authenticated, if possible.

If authentication succeeds, the write data buffer,
again existing in the user data space, is located .and
the contents of the buffer are encrypted. The
encryption procedure wused is that discussed in
connection Figure 4a. Once the write buffer has been
encrypted, the ordinary write system call procedure is
called to write out the contents of the user daté space
write buffer. If the write of the buffer would alter
the proper existence of the appended enode structure,
the enode structure is rewritten to the end of the file.

Since the application program still has access to
the write data buffer, the user data space data must'

WO 95/18496 PCT/US94/14486

10

15

20

25

30

- 32 -

then be restored to an unencrypted state. Accordingly,
the write system call wrapper procedure then decrypts
the data in the write buffer utilizing the process
described in connection with Figure 4b. This decryption
is performed only if the data was encrypted prior to the
execution of the write system call procedure.

If the write data file is not identified as being
encrypted by the enode structure data or if file is not
a regular file, thereby precluding encryption, the write
system call wrapper procedure simply calls the write
system call procedure. Unencrypted data is therefore
written out to an unencrypted file. The write system
call wrapper procedure then returns.

When the fork system call wrapper procedure is
called, the fork system call procedure is first
executed. As expected, this results in a duplication of
the parent process and kernel mode execution continuing
separately for both the parent and child processes.
Each returns to a respective copy of the fork system
call wrapper procedure. If the encryption capability of
the present invention is enabled. These two kernel mode
processes, due to their initial identity, must then test
for parent or child status. In the preferred embodiment
of the present invention this can be accomplished by
each determining if the process has an existing alpha
structure assigned. The parent process is the only one
of the two processes that may have an allocated alpha
structure associated with the process. Therefore, if
one or more valid alpha structure entries exist, as may
be dete:mined from a non-zero reference count at least,
the corresponding process must be the parent process.
The parent process need do nothing and preferably then

. returns from the fork system call wrapper procedure.

Conversely, the child process will copy the entries of

WO 95/18496 PCT/US94/14486

10

15

20

25

30

- 33 -

the parent alpha table slot to the alpha table slot
corresponding to the child process. The child process
then increments the reference count in each of the newly
referenced alpha structures and, finally, returns from
the fork system call wrapper procedure.

The exit system call wrapper procedure, when
called, determines whether one or more alpha structure
are referenced by the alpha table slot of this process.
If any referenced structures exist, the reference count
of each structure is decremented. The corresponding
pointer entry in the alpha table is then set to null.
The exit system call procedure is then called. As
expected, this system call procedure results in the
calling process being terminated in both user and kernel
mode and the corresponding slots in the process table
being marked as unused. Generally, the return from the
exit system call procedure is internal to the kernel.

Figure 5b provides a schematic diagram illustrating
the control flow resuiting from a chmod system call as
modified in accordance with an alternate embodiment of
the present invention; specifically, an embodiment that
utilizes the mode bits to signify the transform state of
a file. When the chmod system call wrapper procedure
100 is called, the disk inode is obtained for the file
which is the target of the chmod call. The existing
mode the file is stored for later reference. A
determination is then made as to whether the encryption
signifying bits of the mode are being changed and, if
so, whether the file is a regular file and the process
user ID and inode user ID match. If these encryption
conditions are met, the encryption state of the file may -
be permitted to change. Otherwise, the requested change

to the mode is modified to exclude a change of the

encryption bit state.

WO 95/18496

10

15

20

25

30

- 34 -

The chmod system call procedure 102 is then called.
Upon return, the chmod system call wrapper 100 procedure
will also simply return either if no change in the
encryption state was detected or if the prerequisites
for encryption of the file were not met.

However, if a change to the encryption state of the
file is proper, a determination is made as to whether
the file is to be encrypted or decrypted. If a group
mode bit was on originally and now all have been set to
off, meaning to encrypt, the data blocks of the file are
successively read in to a kernel space buffer, encrypted
per the process of Figure 4c, and then written back out
to the file. A copy of the enode structure is then
appended to the file using the current working key as
the basis for the encryption of the source text stored
as the magic_text field of the enode structure.

If the file was identified as encrypted originally
and a group mode bit has been set on, then each block of
file data is read into a kernel buffer, decrypted in
accordance with the process of Figure 4d, and then
written back out to the file. The entde structure is
stripped and discarded. In either case, once the file
has been converted in its entirety consistent with the
new state of the group encryption mode, the chmod
wrapper system call procedure returns.

The preferred embodiment of the present invention,
however, does not rely on the mode bits, but rather on
the presence of the enode structure appended to a
regular file. A regular file is initially transformed
by operation of an application program (set_transform)
specific to the present invention. This program, when
executed, obtains the name of an explicitly identified

file to be transformed. This file name is provided by

way of a set_mode ioctl call to the device driver of the

PCT/US94/14486

WO 95/18496

10

15

20

25

30

PCT/US94/14486

- 35 -

present invention. The identified file is then
transformed using the encryption process described above
in relation to the chmod wrapper procedure, though
without the necessity of testing the state of the mode
bits. Conversely, an explicitly identified file can be
untransformed by making a reset_mode ioctl call with the
name of the file. The identified file is then decrypted
using the decryption process described above in relation
to the chmod wrapper procedure, though again without the
necessity of testing the state of the mode bits.

Finally, a number of related system call wrapper
procedures are provided to further support the
transparency of the encryption mechanism. The open and
Create system call procedures must be intercepted by
wrapper procedures to prevent the truncation of the
referenced file, in addition to the allocation of enode
structures. A parameter to the open system call
procedure can specify that the file is to be opened and
immediately truncated to a zero file length. The open
system call wrapper procedure, however, upon determining
that the referenced file is encrypted and tie open call
requests truncation, requires authentication of the
password keys held by the calling process. Likewise,
the create system call wrapper procedure, on determining
that the referenced file preexists and is encrypted,
first requires authentication before the create system
call procedure is called. A failure of authentication
in either case returns an access error to the calling
procedure.

Seek and status (statf) system calls wrapper
procedures are provided to effectively hide the
existence of the enode structure data. Where a
referenced file is determined to be encrypted and
authentication of a password key of the calling

WO 95/18496 PCT/US94/14486

10

15

20

- 36 -

procedure succeeds, the seek system call procedure will
artificially reduce the size of the referenced file by
the size of the enode structure. This allows seek
operations relative to the end of file or that extend
beyond the end of £file to be properly handled.
Similarly, the file size returned by the status system
call procedure is artificially reduced by the size of
the enode structure.

As can be seen from the forgoing, a flexible
filesystem extension mechanism, particularly capable of
implementing a transparent transform capability
including a highly secure file encryption system, has
been described broadly in connection with inter-
networked and multi-tasking operating systems and
specifically in regard to a Unix operating systemn.

Based on the foregoing discussion of the preferred
embodiments of the present invention, persons of average
skill in the art will readily appreciate that further
modifications, adaptations and extensions can be applied
to the invention disclosed herein. Accordingly, the
present invention may be practiced, within the scope of
the appended claims, other than as specifically
described above.

WO 95/18496 . PCT/US94/14486

10

15

20

25

30

Claims

1. A computer system including a file transform
mechanlsm, said system comprising:

a) file storage means for storing a file composed
of one or more blocks of data;

b) data storage means for storing blocks of data in
first and second logical data areas;

c) processor means for executing instructions
implementing a computer operating system in said first
logical data area and an application program in said
second logical data area, said processor means being
coupled to said file storage means and said data storage
means for transferring a predetermined block of data
between said file storage means and said data storage
means, said processor means including

i) transform means, defined by the execution
of instructions of said computer operating system, for
translating said predetermined block of data between
first and second representations in said first logical
data area and separately from any other block of data;

ii) request means, defined by the execution of
instructions of said application program, for selecting
said predetermined block of data to be operated on by
the execution of instructions of said application
program in said second logical data area; and

iii) interface means, defined by the execution
of instructions of said computer operating system and
coupled to said transform means and said request means,
for controlling the transfer of said predetermined block
of data between said file storage means and said data
storage means and between said first and second logical
data areas of said data storage means, said interface

WO 95/18496 PCT/US94/14486

10

15

20

25

30

means including means for determining whether said
predetermined block of data is in said first or second
representations;

wherein said interface means, responsive to said
request means and said determining means, controls the
transfer of said predetermined block of data from said
file storage means to said data storage means and from
said first logical data area to said second logical data
area selectively via said transform means.

2. The computer system of claim 1 wherein said file
storage means further stores authentication data with
said file, said authentication data defining said first
or second transform representation of said data blocks
of said file.

3. The computer system of c¢laim 2 wherein said
authentication data is accessible by said interface
means and wherein said authentication data defining the
said first or second transform representation is
accessible by said determining means.

4. The computer system of claim 1, 2 or 3 wherein said
transform means includes means for performing at least
one transform from a set of transforms including
encryption, compression, encoding, translation and
conversion.

5. A computer system including a file encryption
mechanism, said system comprising:

a) file storage means for storing a file composed
of one or more blocks of data;

b) data storage means for storing blocks of data in
first and second logical data areas;

WO 95/18496

10

15

20

25

30

c) processor means for executing instructions
implementing a computer operating system in said first
logical data area and an application program in said
second logical data area, said processor means being
coupled to said file storage means and said data storage
means for transferring a predetermined block of data
between said file storage means and said data storage
means, said processor means including

i) encryption means, defined by the execution
of instructions of said computer operating system, for
encrypting and decrypting said predetermined block of
data in said first logical data area and separately from
any other block of data;

ii) request means, defined by the execution of
instructions of said application program, for selecting
said predetermined block of data to be operated on by
the execution of instructions of said application
program in said second logical data area;

iii) interface means, defined by the execution
of instructions of said computer operating system and
coupled to said encryption means and said request means,
for controlling the transfer of said predetermined block
of data between said file storage means and said data
storage means and between said first and second logical
data areas of said data storage means, said interface
means including means for determining whether said
predetermined block of data is encrypted;

wherein said interface means, responsive to said
request means and said determining means, controls the
transfer of said predetermined block of data from said
file storage means to said data storage means and from

 said first logical data area to said second logical data

area selectively via said encryption means.

PCT/US94/14486

WO 95/18496 i PCT/US94/14486

10

- 40 -

6. The computer system of claim 5 wherein said file
storage means further stores file attribute data
defining predetermined attributes of a corresponding
file stored by said file storage means, said filé
attribute data including a file encryption attribute.

7. The computer system of claim 6 wherein said file
attribute data is accessible by said interface means and
wherein said file encryption attribute is accessible by
said determining means.

WO 95/18496

PCT/US94/14486

1/5

20 10
A 21\ /
PERIPHERAL cPU
DEVICES
— A DISK |
CONTROL
KERNEL \ \
USER | SPACE 18 ée
SPACE MAIN
BUFFER
o0 |MEMORY £7p
16/
26
USER
PROGRAM
' 28
USER SYSTEM CALL TRAP \
KERNEL 30

TRAP HANDLEEI}_

SYSENT 2
/‘34 / 36
READ (rREAD SYSTEM CALL PROCEDURE
WRITE {T&RITE SYSTEM CALL PROCEDURE
CHMOD (EHMOD SYSTEM CALL PROCEDURE
FORK _______.(’FORK SYSTEM CALL PROCEDURE
EXTT EXIT SYSTEM CALL PROCEDURE
,,_.\\\\\\5-—-- OTHER SYSTEM CALLS

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 95/18496

2/5

PCT/US94/14486

USER
KERNEL 38
Vi (’éPECIAL DRIVER \
INIT (INTT ROUTIN%:)
L‘¥ 42
Y\ sysent — w0 %
- /
READ READ
WRITE WRITE
CHMOD CHMOD
FORK [FORK /
EXIT XIT) EXIT
WRAPPER | SYSTEM CALL
”"‘__ PROCEDURE PROCEDURE
FIG. 3
50‘\
ALPKEY
48 54
A | 4 N
_USER ENTERED KEY REFCNT = 0
52
| SHUFFLE ENCRYPTED KEY
PREDEFINE 256 FUNCTION
BYTES, 1 TO 1 ENCRYPTION TABLE
RANDOM MAP-
PING TABLE
d// DECRYPTION TABLE
55
_ / Y,
FIG. 44 |

SUBSTITUTE SHEET (RULE 26)

58/

WO 95/18496 PCT/US94/14486

3/5
u
/-70
66
PROC ALPKEY "\ ALPKEY
70// (\
70 L REFCNT = 1
72/ T\
72" REFCNT = 3 KEY
TABLE
Y ENCRYPTED KEY
~75"
ENCRYPTION TABLE
7) Y L TABLE
\-78 g y
68
DECRYPTION TABLE __
L | N~ 7
62
64 FIG. 48
RAW DATA
54\ EW“\ENCRYPTED
OFFSET (300)
- 80
A » OxB4| +
A ENCRYPTION TABLE 0xB8
A 256 BYTES: 1 TO 1 55‘//
RANDOM MAPPING
TABLE 55
\ g
FIG. 40

SUBSTITUTE SHEET (RULE 26)

WO 95/18496

4/5

ENCRYPTED
DATA
OFF
SET—
86~ oxB8 I
™\ g5
(
SYSENT
READ
WRITE
CHMOD
FORK
EXIT

READ WRAPPER

PCT/US94/14486

CALL THE READ SYSTEM CALL
PROCEDURE TO MOVE DATA
FROM DISK TO READ BUFFER IN

USER PROGRAM

DECRYPTED
DATA
/'-90 e g2
Cat /'80
DECRYPTION _J' A
TABLE
55
FIG. 40

FILE IN ENCRYPTION
MODE AND PROCESS
HAS KEY

DECRYPT DATA IN USER PRO-

GRAM'S READ BUFFER

96

\—

(DONE)

J

FIG. 54

SUBSTITUTE SHEET (RULE 26)

READ
SYSTEM CALL
PROCEDURE

g8

WO 95/18496 PCT/US94/14486

5/5
CHMOD WRAPPER
CALL THE CHMOD SYSTEM 1 ~
CALL PROCEDURE .
SYSENT
ENCRYPTION MODE
READ CHANGED?
WRITE CHIOD
CHMOD SYSTEM CALL
ENCRYPTION
FORK
Y ODE 017 N PROCEDURE
EXIT
//_‘ ENCRYPT DECRYPT
THE WHOLE THE WHOLE
FILE FILE \!00

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US94/14486

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :HO4L 9/00; GO6F 12/14
US CL : 380/ 4; 395/425, 600, 650
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. @ 380/3, 4, 23, 25; 395/425, 600, 650, 725

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Piease See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US, A, 5,007,082 (CUMMINS) 09 April 1991, see abstract:| 1-7
col. 1, lines 12-24; col. 1, line 48 to col. 3, line 28; col. 4,
lines 22-48; col. 7, line 34 to col. 9, line 12; and Figs. 1, 6,
7, 12. '

Y US, A, 5,052,040 (PRESTON et al.) 24 September 1991, | 1-7
see abstract; col. 1, lines 24-33; col. 1, line 54; col. 2, line :
58; col. 4, line 58; col. 5, line 25; col. 5, line 52; col. 7, line
26; and Figs. 7, 8a, 8b.

Y US, A, 5,175,852 (JOHNSON et al.) 29 December 1992, see| 1-7
Figs. 13, 15; col. 20, line 60 to col. 29, line 46.

Further documents are listed in the continuation of Box C. D Seec patent family annex.

. Special ies of cited d T later document published after the international filing date or priority

. i date and not in conflict with the application but cited to understand the
A d defining the g i state of the art which is not considered principle or theory underlying the invention
to be part of pnmhr relevance
R . . . X d of particul b ; the ciaimed inveation cannot be
E carlier document published on or after the intemational filing date considered novel or cannot be idered to involve an i ivestep
L document which) may throw doubts on prlomy claim(s) or which is whea the document is taken alone
cited to establish the date of or other oy . of o the ciaimed fnv be
special reason (as specificd) id ive an inventi step when the document is
‘0 document referring to an oral disclosure, use, exhibition or other combined wnh one or more other such documents, such combination
means being obvious to & person skilled in the art
P d blished prior to the & ional filing date but later than document member of the same patent family
the ;monly date claimed
Date of the actual completion of the international search Date oé Mﬁ? tingtgcgnatmnal search report
30 APRIL 1995

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks

Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230 - Telephone No. (703) 305-3820

Form PCT/ISA/210 (second sheet)(July 1992)

INTERNATIONAL SEARCH REPORT International application No.

PCT/US94/14486

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US, A, 5,113,442 (MOIR) 12 May, 1992, see col. 3, lines 19-66; |1-7

col. 4, line 55 to col. 5, line 3; Figs. 2, 3.
A US, A, 4,780,905 (CRUTS et al.) 25 October 1988, see entire 1-7

document.
A US, A, 4,588,991 (ATILLA) 13 May 1986, see entire document. |1-7

Form PCT/ISA/210 (continuation of second sheet)(July 1992)»

INTERNATIONAL SEARCH REPORT International application No.
PCT/US94/14486

B. FIELDS SEARCHED
Electronic data bases consulted (Name of data base and where practicable terms used):

USPTO APS (Automated Patent System), file USPAT. Search terms: attribute, file, extension, transform, hidden,
transparent, encryption, multiuser, multitask, operating system, file service, inode, enode, chmod, alpha structure,
alpha table, kernel, Unix, system call

Form PCT/ISA/210 (extra sheet)(July 1992)»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

