发明名称
保护和再生性组合物

摘要
本发明涉及一种保护和再生性组合物。该组合物包括含有干葡萄糖提取物的第一美容活性成分和含有四氢嘧啶类物质组分的第二美容活性成分的组合。该组合物能够起到抗衰老美容护理作用和皮肤再生的功效。
1. 一种组合物, 包括含有干葡萄蔓提取物的第一美容活性成分和
含有四氢喹啶类物质成分的第二美容活性成分的组合。

2. 根据权利要求 1 所述的组合物, 其中所述四氢喹啶类物质成分
是 (S) -1,4,5,6-四氢喹啶-4-羧酸及其类似可接受的盐和酯,
其为未取代或由至少一个 C1-C6 低级烷基自由基取代, 尤其
是 2-位取代, 和/或由至少一个羟基或甲氧基取代, 尤其是 5-
位取代。

3. 根据权利要求 1 所述的组合物, 其中所述第二成分选自四氢喹
啶和羟基四氢喹啶及其类似可接受的盐或酯。

4. 根据权利要求 1 所述的组合物, 其中所述第二成分是基本上等
重量比的四氢喹啶类物质和羟基四氢喹啶类物质的混合物。

5. 根据权利要求 1 所述的组合物, 其含有 0.1wt%至 20wt%的所
述第一成分; 和 0.1wt%至 20wt%的所述第二成分。

6. 根据权利要求 1 所述的组合物, 其含有 0.1wt%至 10wt%的所
述第一成分; 和 0.1wt%至 10wt%的所述第二成分。

7. 根据权利要求 1 所述的组合物, 其中第一成分和第二成分的总
量小于或等于 20wt%。

8. 根据权利要求 1 所述的组合物, 其中所述第一成分和所述第二
成分各自重量比在 1/10~10/1 之间, 特别是约 1/1。
9. 一种局部施用于皮肤的美容组合物, 其包括含有干葡萄糖提取物的第一美容活性成分和含有四氢噻啶类物质成分的第二美容活性成分与美容上可接受赋形剂的组合。

10. 根据权利要求 9 所述的组合物, 其中所述四氢噻啶类物质成分是 (S)-1,4,5,6-四氢噻啶-4-羧酸及其美容上可接受的盐和酯, 其为未取代或由至少一个 C1~C6 低级烷基自由基取代, 尤其是 2-位取代, 和/或由至少一个羟基或甲氧基取代, 尤其是 5-位取代。

11. 根据权利要求所述 9 的组合物, 其中所述第二成分选自四氢噻啶类物质和羟基四氢噻啶类物质及其美容上可接受的盐或酯。

12. 根据权利要求 9 所述的组合物, 其含有 0.1wt%至 20wt%的所述第一成分; 和 0.1wt%至 20wt%的所述第二成分。

13. 根据权利要求 9 所述的组合物, 含有至少一种其他的美容活性成分, 其选自由具有抗衰老活性的美容活性成分; 具有皮肤再生功效的美容活性成分; 具有保湿功效的美容活性成分; 和防晒辐射的美容活性成分构成的组。

14. 根据权利要求 13 所述的组合物, 其中所述具有抗衰老活性的美容活性成分选自维生素 A、维生素 E 和维生素 C; 所述具有皮肤再生功效的美容活性成分是羟基积雪草; 所述具有保湿功效的美容活性成分选自蜕皮素和含有蜕皮素的植物提取物和土耳其斯坦筋骨草提取物; 所述防晒辐射的美容活性成分选自美容上可接受的物理防晒剂和美容上可接受的化学防晒剂。
15. 根据权利要求 14 所述的组合物，其中所述美容上可接受的化学防晒剂是甲氧基肉桂酸酯（盐）。

16. 一种美容护理的方法，包括给期望得到美容护理效果的人的皮肤局部施用一种用于局部涂抹的美容组合物，所述组合物包括含有甘草提取物的第一美容活性成分和含有四氢嘧啶类物质成分的第二美容活性成分与美容上可接受的赋形剂的组合。

17. 根据权利要求 16 所述的方法，其中所述四氢嘧啶类物质成分是（S）-1,4,5,6-四氢嘧啶-4-羧酸及其美容上可接受的盐和酯，其为未取代或由至少一个选自 C1-C6 低级烷基自由基、羟基或甲氧基的取代基取代。

18. 根据权利要求 16 所述的方法，其中所述第二成分选自四氢嘧啶类物质和羟基四氢嘧啶类物质及其美容上可接受的盐或酯。

19. 根据权利要求 16 所述的方法，其含有 0.1wt%至 20wt%的所述第一成分；和 0.1wt%至 20wt%的所述第二成分。

20. 根据权利要求 16 所述的方法，其中所述美容组合物含有至少一种其他美容活性成分，其选自由具有抗衰老活性的美容活性成分、具有皮肤再生功效的美容活性成分、具有保湿功效的美容活性成分以及具有防晒化辐射的美容活性成分构成的组。

21. 根据权利要求 20 所述的方法，其中所述具有抗衰老活性的美容活性成分选自维生素 A、维生素 E 和维生素 C；所述具有皮肤再生功效的美容活性成分是羟基拉腊草；所述具有保湿功效的美容活性成分选自蜕皮类固醇、含有蜕皮类固醇的植物提取物和土耳其斯坦筋骨草提取物；所述防晒化辐射的美容活性成分
成分选自美容上可接受的物理防晒剂和美容上可接受的化学防晒剂。

22. 根据权利要求 16 所述的方法，其中所述美容护理选自由抗衰老护理和皮肤再生护理构成的组。
保护和再生性组合物

技术领域

本发明涉及保护和再生性组合物。

具体而言，本发明涉及一种组合物，其包括含有葡萄藻（枝）提取物的第一美容活性成分和含有四氢噻啶类衍生物质成分（即四氢噻啶组分）的第二美容活性成分的组合。更具体而言，所述第二成分选自四氢噻啶类、羟基四氢噻啶类及其混合物。

本发明更具体地涉及含有这种组合物的用于局部施用至皮肤的美容组合物。

本发明另外涉及美容护理的方法，包括将该组合物局部涂抹到期望得到美容护理之人的皮肤。

背景技术

文献 WO 01/03713 公开了一种方法，用于从干的葡萄藻中提取白藜芦醇和/或 viniferine。其指出，viniferine 是白藜芦醇的二聚体。该文献也指出，白藜芦醇一般是单体形式，但是也存在含有高达 4 单体的低聚物（第 1 页，第 11～17 行）。

由于干芽获得白藜芦醇和 viniferine 的产率比用鲜芽获得白藜芦醇和 viniferine 的产率高得多，因此强调使用干芽的价值。（第 2 页第 31 行至第 3 页第 2 行）
该文献预见了获得葡萄藤提取物的可能性，这种葡萄藤的提取物对于白藜芦醇要优于从葡萄藤获得的商业化提取物浓一千倍，能够制成具有高白藜芦醇含量的液体、粉末或片剂，适宜于这类产品的传统工业用途。该文献还广泛地提及了在制药、饮食和美容领域的应用（第 5 页 25~32 行和权利要求 18）。

而且，应该可以看到，在所述现有技术文献中描述的葡萄藤的干燥是在露天下进行的，但是所用时间段不超过 4 个月（实施例 1：干燥 4 个月；实施例 2：干燥 3 个月；实施例 3：干燥最长的时间是 3 个月）。

发明内容

本发明的一个主要目的是提供一种包括活性成分的协同性组合的新组合物，更具体而言是一种局部施用于皮肤的美容组合物。

本发明的另一主要目的是提供来自美容上可接受的活性成分的组合物，即对皮肤细胞不具有可检测毒性的活性成分，其可以以合理的价格大量获得，以用于美容工业规模化的美容组合物生产。

本发明还有另一个主要目的是提供一种具有限制含量的白藜芦醇（其低聚物更为有利）的组合物

本发明同时以在美容工业规模上易于实施的简单方式实现上述目的。

因此，根据一方面，本发明提供一种包括含有干葡萄藤提取物的第一美容活性成分和含有四氢嘧啶类物质成分的第二美容活性成分的组合的组合物。
在本发明的范围内，“四氢噻啶类物质的成分”的表达应理解为是指（S）-1,4,5,6-四氢噻啶-4-羧酸及其美容上可接受的盐和酯，其为未取代或由至少一个C1-C6 低级烷基自由基(radical)取代，尤其是2-位取代，和/或由至少一个羟基或甲氧基取代，尤其是5-位取代。

优选地，所述第二成分选自四氢噻啶类物质，或（S）-1,4,5,6-四氢-2-甲基噻啶-4-羧酸，和羟基四氢噻啶类物质，或（S,S）-1,4,5,6-四氢-5-羟基-2-甲基噻啶-4-羧酸，及其美容上可接受的盐或酯。

在本发明另一个特定的具体实施方式中，该组合物含有0.1wt%至20wt%，优选0.1wt%至10wt%的第一成分；和0.1wt%至20wt%，优选0.1wt%至10wt%的第二成分，但是这两种成分的总量基于该组合物总重量，最好小于或等于20wt%，优选低于10wt%。

在本发明又一个特定的具体实施方式中，第一成分和第二成分各自的重量比在1/10至10/1之间，特别是约1/1。

在本发明的一个特定的具体实施方式中，所述第二成分是重量比基本相等的四氢噻啶和羟基四氢噻啶的混合物。

根据第二方面，本发明还涉及一种用于局部施用至皮肤的美容组合物，其含有如上限定的或由以下描述获得的组合物，并与美容上可接受的赋形剂组合。

在另一种变化形式中，该组合物含有至少一种其他的美容活性成分，特别是具有抗衰老活性，特别是防止、修正或延缓皮肤衰老影响的另一种美容活性成分，例如维生素A、维生素E或维生素C；或一种实现皮肤再生护理的美容活性成分，例如羟基积雪草甙；或一种具有保湿功效的美容活性成分，例如蜕皮类固醇，含有蜕皮类
固醇的植物提取物诸如土耳其斯坦药草(Ajuga turkestanica)提取物；或一种防光化辐射的美容活性成分，例如美容上可接受的物理或化学防晒剂，如甲氧基肉桂酸酯(盐)。

根据第三方面，本发明还涉及一种美容护理方法，包括给期望得到美容护理效果之人的皮肤局部施用如上所定义的组合物或如上所定义的或由以下描述获得的美容组合物。

在该方法的一个特定的变化形式中，所述美容护理选自抗衰老护理，尤其是防止、修正或延缓皮肤衰老的影响，和皮肤再生护理。其对抗皮肤衰老的效果主要包括阻止皮肤随年龄而发生的衰老或光化学引起的衰老。

在本发明的范围内，已经能够证明由含有葡萄藤提取物的第一美容活性成分和含有四氢嘧啶类物质组分的第二美容活性成分因组合而产生的协同效应。

在本发明的范围内，葡萄藤提取物是葡萄园收获的葡萄藤(嫩枝)的任何提取物。各种葡萄藤的芽都能够使用，具体的品种是梅鹿辄、品丽珠、加美、西拉、赛美容和苏维翁(农)。根据本发明的优选葡萄藤是赛美容和/或苏维翁(农)品种的藤嫩芽。

在一个特定的具体实施方式中，使用的是干葡萄藤。干葡萄藤应理解为是指实施过干燥步骤使其水分含量最好低于 20wt%，优选低于 5wt%的藤嫩芽。

在一个具体的变化形式中，所述藤嫩芽或者在露天进行，在干燥之处或在适宜温度例如不超过约 40℃的干燥炉中干燥，在上述每一种情况下都是直至使水分含量低于 20wt%，优选低于 5wt%。
例如，所述干燥步骤能够在露天的干燥之处，根据上述文献 WO 01/03713 推荐的干燥方法进行天然干燥，具体而言，其包括至少 2 个月优选至少 4 个月的干燥期间。

这种在露天的天然干燥有利于随后进行的活性成分提取，特别是有利于白藜芦醇低聚物的生成。

用于本发明范围的葡萄藤提取物最好通过最终提供富含多酚分子特别是白藜芦醇低聚物的提取物的方法获得，这是在本发明范围内为获得美容效果所追求的。

在本发明目前优选的具体实施方式中，提取工序主要包括以下步骤：

a）从葡萄园收获葡萄藤;

b）进行至少为期 4 个月的干燥;

c）用极性有机溶剂例如 C_1~C_6 低级醇诸如甲醇、乙醇、丙醇、异丙醇、丁醇、戊醇或己醇（要么使用纯的，要么与水混合，要么是含水溶液）或酮特别是丙酮（或酮和水的混合物）进行提取的至少一个提取步骤，以得到第一极性溶剂提取物;

d）用非极性有机溶剂如己烷对所述第一极性溶剂提取物的至少一个洗涤步骤，以得到第二提取物，其能如此使用;

e）可选地，为获得更高纯度的提取物，可以在层析柱，特别是硅胶柱中进行纯化，借此所需的活性物质主要是多酚物质特别是白藜芦醇低聚物被固定，然后用合适的洗脱混合物如乙酸乙酯/己烷（特别是相对比例为 80/20 (v/v)）选择性地洗脱，以获得高纯化的第三提取物，其也能够如此使用; 和

f）可选地，特别是通过蒸发能够除去洗脱溶剂，以获得米色粉末，其构成了根据本发明的优选的最终纯化葡萄藤提取物。
在本发明一个具体的变化形式中，所述最终粉末能够再溶解于例如 80/20（v/v）相对比例的醇/水混合物，特别是 80/20（v/v）的丁二醇/水混合物。

在该最终溶液中，该再溶解于 80/20（v/v）醇/水混合物中的粉末提供至少约 1%，有利地至少 10% 的 viniferine（白藜芦醇的二聚体）。

关于含有四氢喹啶类物质成分的第二美容活性成分，是可以商购获得。例如，可以使用 MERCK 销售的例如商标名为 RONACARE® hydroine 的产品。由 MERCK 商购的该产品是特别有价值的，因为四氢喹啶和羟基四氢喹啶的相对比例基本上相等（50wt%至 60wt%四氢喹啶，40wt%至 50wt%的羟基四氢喹啶）。该产品也具有很好的稳定性，而勿需加入抗氧剂或防腐剂，且属于美容级。

由以下解释性说明并参照本发明的实施例，本发明的其他目的、特征和优点会显得清楚明了，其只是通过举例说明的方式给出，因此并不能以任何方式限制本发明的范围。

在实施例中，除非另外指出，所有的百分比都是重量比，温度为摄氏度，而压力为大气压。

附图说明

图 1 显示了实施例 3 中描述的细胞生长实验的结果，该实验借助 BOEHRINGER 的称为“细胞增殖试剂盒 II”的商业化 XTT 测试用品而进行，其分别显示了对于未经处理的对照品、单独的葡萄糖提取物 I3、“hydroine”产品（Merck 的 RONACARE®）以及提取物 I3 和 hydroine 组合的细胞生长动力学。所述动力学是由 6h、9h、15h
和 18h 的细胞生长测定建立起来的，以这些时间为横坐标，细胞数为纵坐标作图，其中细胞数计为相对 6h 时的细胞数（计为 100%）的百分数。

图 2 是由图 1 衍生的曲线图，其以条状形式分别显示了经 18h 细胞处理时间的、对于未经处理的对照品、提取物 I3、“hydroine”产品（Merck 的 RONACARE®）和最后的根据本发明的组合以百分数表示的细胞数，其中根据本发明的组合使用了提取物 I3 和“hydroine”产品的组合，表现出了所述组合的协同效应。

图 3 显示了实施例 4 中实施的抗自由基保护测试的结果，以保护百分数为纵坐标，对使用提取物 I3、“hydroine”产品（Merck 的 RONACARE®）和这两种活性组分的组合分别获得的以条状形式的结果作为横坐标作图，显示了与单一采用每一种产品相比较通过这种组合所产生保护作用的意外优势。

具体实施方式

实施例 1

根据本发明制备葡萄藤提取物（称为 I3）的方法

根据本发明，提取工序主要包括以下步骤:

a）在 3 至 4 月份从波尔多(Bordeaux)东南部葡萄园收获 1kg 苏维翁(农)（Sauvignon）品种的葡萄藤；

b）在露天的干燥之处对收集的葡萄藤进行最低 4 个月的干燥，直至水分含量低于 5wt%；
c）进行提取，把干燥的葡萄球菌磨成平均粒度小于 4mm 的颗粒。用极性有机溶剂（在这种情况下为丙酮）进行至少一个提取步骤，其中磨碎的藤嫩芽与溶剂的各自重量比至少为 1/10，时间至少为 20h，温度为室温或 30℃左右的温度；所述固体残渣通过过滤除去。

从含有溶解提取物的丙酮溶液中蒸发掉丙酮获得基本上干燥的第一粗提取物，其被再溶解于 50/50（v/v）的乙醇/水混合物，该粗提取物称重约 30g，需要约 225ml 所述溶剂。含有所溶解的提取物的水/乙醇溶液在室温或 25 至 30℃维持 1h，搅拌，并通过过滤分离出上清液。

呈固体状的纯化提取物要么通过蒸发完全除去乙醇获得，要么通过蒸发部分除去乙醇使纯化提取物沉淀，其通过传统方式干燥获得粉末形式的纯化提取物。

d）然后，通过把所获得的粉末再溶解于相对比例为 80/20（v/v）的丙酮/水混合物中而将上述纯化提取物再次纯化。

加入乙醇直至获得两相溶液，有机相基本上是乙醇，水相基本上包括丙酮/水混合物。这样，通过在室温下强烈搅拌几分钟如约 10min 进行提取操作。

混合物经过静置，通过倾析实现相分离。

回收含有期望的纯化藤嫩芽提取物的水相。

e）蒸发掉溶液，获得所需的第一纯化藤嫩芽提取物，其同样能够使用，并称为本发明的产物 II。
f）所述产品最好在硅胶柱上纯化，由此所需活性物质、主要是多酚物质尤其是白藜芦醇低聚物被固定。在本实施例中使用的硅胶柱是用 Merck 的 60-型硅胶填充的柱子。固定于所述硅胶上的多酚物质然后用洗脱溶剂选择性地洗脱，该洗脱溶剂包括相对比例为 80/20(v/v)的乙酸乙酯/己烷混合物, 其以 1L 溶剂/千克提取物的比率引入所述柱；

g）除去洗脱溶剂，特别是通过蒸发除去，以获得米色粉末，其构成了根据本发明的最终纯化的第二葡萄蔓提取物，称为 12; 和

h）为了促进其在组合物特别是美容组合物中的应用，有利地，可以将该最终粉末 12 再溶解于醇/水混合物中，在该情况下为 80/20（v/v）的丁二醇/水。

根据本发明的该再溶解的粉末（称为产品或提取物 I3）的分析表明，其含有约 68%的白藜芦醇低聚物，其中约 24%是 viniferine。

实施例 2

根据本发明的组合物

制备一组合物，其含有 50wt%的实施例 1 获得的提取物 I3（含有约 68%的白藜芦醇低聚物），和约 50%商购获得的四氢嘧啶类成分，即 MERCK 的 hydroine 产品 RONACARE®。

该组合物能够以各种比例进行稀释，以便进行实验形成以下实施例的目标物。

实施例 3

细胞生长实验
A-细胞生长模型

测试实施例 2 的组合物，以测定其对细胞生长的影响，其中使用可商业获得的 XTT，其来自 BOEHRINGER，称为 "Cell proliferation kit II"（细胞增殖试剂盒 II）测试。

在该模型中，通过在线粒体呼吸链中存在的脱氢酶把四唑盐转化成甲臜(formazan)——一种橙色化合物，其由可商购的如商标 TECAN 分光光度计于 450nm 处检测。因此，仅仅活细胞能够生成甲臜。

反应如下：

线粒体脱氢酶 + e-

四唑 ——> 甲臜盐

用根据本发明实施例 2 的组合物，但是组合物中对两种活性组分中每一种都稀释至 1.56μg/ml 的浓度 (即 1.56μg/ml 实施例 2 的组合物和 1.56μg/ml 来自 MERCK 的 RONACARE®)，处理该细胞 24 小时的时间，或者，以比较的方式，仅仅采用实施例 2 组合物的溶液或 hydride 产品 RONACARE®但是浓度为 3.52μg/ml 以使之具有相同的总浓度。

用 XTT 试剂每 3h 进行测定，以便跟踪细胞生长动力学。

应该注意的是，所考虑的第一时间，即实验开始之后的 6h，被设定对应于 100%的细胞。取 T0 或 T3 是不可能的，因为标准偏差太大，可能是由于介质变化相关的扰动所致。

B-处理策略
D0 天

在 D0 天把 HaCaT 型的无限增殖化转化的人角朊细胞 (对本领域的一些技术员是已知的，参见 http://cat.inist.fr/?aModele
每孔 10000 细胞的比率接种到 96 孔微孔板。

D24 天

在 D24 天用上面所提及的预定产品以指定浓度开始处理，接着
进行细胞培养。

C——在 3h=T3、6h=T6、9h=T9、15h=T15 和 18h=T18 处理效果的观
察

在上述标题中指定的每一步处理步骤，都除去培养介质（从 Gibco 补足的 KSF M）。

这些细胞要么用根据本发明实施例 2 的组合物处理，要么单独
用提取物 13 处理，或用由 Merck 商购的 hydroine 产品 RONACARE®，
处理。

为了完成这项工作，在无菌条件下，由 DMSO（二甲基亚砜）
中的 5%原液首先制备 1/16 和 1/32 的稀释液，以在单一产品存在的
情况下获得 3.12mg/ml 的浓度，在混合物的情况下对于每一种产品
获得 1.56mg/ml 的浓度。

然后在罩子（通风柜，hood）下下制备培养介质中 1/1000 的稀
释液，以获得对于混合物 3.12μg/ml 的最终浓度、对于每一种成分
1.56μg/ml 的最终浓度。
因此，对于所执行的测试，该处理为：

—对于实施例 1 的提取物 I3 为 3.12μg/ml；

—对于 MERCK 的 hydroine 产品 RONACARE® 为 3.12μg/ml；

—在本发明实施例 2 含有混合物的组合物的情况下，对于实施例 1 的 I3 为 1.56μg/ml，对于 MERCK 的 hydroine 产品 RONACARE® 为 1.56μg/ml。

D—所述测试的继续

为了继续所述测试，通过翻转微孔板除去培养介质。

漂洗细胞一次：用 200μL/孔，在 37℃用 PBS 漂洗所述细胞。

以 100μL/孔的比率加入制备在补足的(complemented)KSFM 介质中用于立即使用的浓度为 0.2mg/ml（1mg/ml 原液的 1/5 稀释液）的 XTT 溶液。

制备无细胞的空白样。

把微孔板包裹于铝箔纸中，并在 37℃于含有 5% 的 CO₂ 的炉中培养 3h。

在 3h 的培养结束时，在商购的 Tecan 分光光度计上于 450nm 处读出光密度（OD）。

所获得的结果表示如下：

E-结果的表示
6h=T6 的处理时间被设为对应于孔中 100%的细胞。

通过以下公式给出活力百分比:

\[
\% \text{活力} = \frac{\text{OD} \times 100}{\text{OD 对照}-100}
\]

结果

所述结果表示如下表:

表 I

<table>
<thead>
<tr>
<th>在D24的处理时间</th>
<th>未经处理的%活力</th>
<th>使用实施例 1 113 的%活力</th>
<th>使用 RONACARE® hydroine 的%活力</th>
<th>使用本发明实施例 2 组合物的%活力</th>
</tr>
</thead>
<tbody>
<tr>
<td>6h</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>9h</td>
<td>106</td>
<td>108</td>
<td>108</td>
<td>113</td>
</tr>
<tr>
<td>15h</td>
<td>110</td>
<td>112</td>
<td>111</td>
<td>127</td>
</tr>
<tr>
<td>18h</td>
<td>126</td>
<td>130</td>
<td>133</td>
<td>142</td>
</tr>
</tbody>
</table>

所获得的结果在图 1 中以曲线形式给出。

从这些结果可以看出，对于用根据本发明实施例 2 的组合物处理的细胞，由于该组合物含有本发明产品 I3(主要含有白藜芦醇低聚物) 和 hydroine 类物质的组合，因而与未经处理的细胞或仅仅用实施例 1 的产品 I3 或 MERCK 的 hydroine-类产品 RONACARE® 处理的细胞相比，获得了更持续的生长。

然而，应该注意，单独的实施例 1 的产品 I3 和 hydroine-类产品表现出低活性。

而且，由于使用根据本发明的组合物，细胞生长动学在相同的 18-小时结束点要好很多。
图 2 表示经过 18h 的处理时间的结果的对照，并清楚地表明根据本发明的组合具有协同作用，这对于本领域的那些技术员而言完全是出乎意料的。

实施例 4

抗自由基保护测试

模型：3D 测试（ASE 实验室）

该测试能够证实分子的对于由过氧化氢产生的羟基自由基的 DNA-保护作用。

为了表征具有抗氧或抗自由基性能的分子或混合物，和因此保护人细胞不受到起因于反应性氧化物种（ROS）的氧化损伤，必须考虑由 Barry Halliwell 建立的 3 个标准：

—必须证明分子在细胞中是具有活性的；纯化学测试会给出启示但无法证实；

—分子必须有效对抗生物氧化剂，即存在于细胞中的氧化剂。某些氧化剂对某些氧化剂具有特异性的保护活性；和

—所用氧化剂的浓度必须与活体内能够使用的那些相容。

这些 Barry Halliwell，一个氧化剂专家的观点摘自 1995 年发表在 Journal Biochemical Pharmacology（Vol.49，1341 至 1348）的题名为“Antioxidant characterization—Methodology and Mechanism”论文。
因此，该 3D 测试可能证实分子对由过氧化氢在 FeCl₂ 存在下产生的羟基自由基的 DNA-保护作用。

另外，在细胞上进行的该 D 测试 极好地满足了 Barry Halliwell 的标准。

原理：

把 DNA 吸附到敏化的孔上，然后用氧化剂（过氧化氢 + 铁）培养。所产生的损伤被识别，然后用存在于纯人源细胞提取物中的特异性蛋白络合物进行修复。这种损伤的修复涉及损伤切除阶段，然后才是 DNA 片段或所切除碱基的再合成。

在修复性合成步骤期间，把经修饰的核苷酸（生物素-偶联的 dUTP）引入 DNA。然后通过过氧化酶偶联的抗生物素蛋白分子识别这些生物素化的核苷酸。然后加入化学发光过氧化物酶底物，所发出的信号用光度计（Spectrafluorplus, Tecan）测定。所测信号的强度（此后用 RLU 标示）是 DNA 上修复损伤数的函数。对于大多数损伤，在每 6 个碱基 1 至 15 个损伤的限度内，观察到剂量效应。

该系统能够修复所有类型的损伤，因为存在不同的 DNA 损伤修复路径（NER 和 BER），并且在该研究中所制备和使用的细胞提取物中具有活性。因此，在该系统中能够识别这种氧化性损伤。

原料和方法

1. 原料
所使用的试剂描述于 Analytical Biochemistry, 1995, 232, 37-42 的论文。

化学发光信号用 Spectrafluorplus 光度计（Tecan）检测。

2. 活体外 3D 测试方法

2.1 测试样品的稀释

嫩芽提取物 I3 和 hydroine 的样品以 50mg/ml 的原始浓度溶解于甲醇中。

所研究的浓度通过在超纯水中连续稀释原液而得到。所有的稀释液以 2 倍浓度制备，以致在加入 1 体积的过氧化氢+FeCl₂氧化溶液之后获得所需的浓度。

为了证实修复信号降低的特异性，在相同的条件下在由过氧化氢+FeCl₂损伤的 DNA 上培养相同的稀释液 (1X)。如果观察到在氧化剂存在下修复信号的下降，以及观察到在先前损伤的 DNA 没有显著的信号改变，则稀释液仅仅表示出了保护作用。在损伤的 DNA 上修复信号的抑制作用能够通过例如样品与 DNA 的直接相互作用来解释，这种直接相互作用具有阻滞蛋白修复络合物接近该损伤的作用。

2.2 在微孔板孔中 DNA 靶的吸附

通过轻轻混涡，让超纯质粒 DNA (PBS) (主要是超螺旋形式) 在 30℃与敏化的孔接触 30min，在这些条件下，DNA 的吸附是定量进行的。

加入正修复对照，其包括先前用 H₂O₂+FeCl₂损伤的质粒 DNA。
2.3 搜索样品抗反应性氧物种的保护作用

羟基自由基 OH·是由芬顿反应（过氧化氢+FeCl₂）产生。

芬顿反应：通过加入 H₂O₂+FeCl₂ 混合物进行

\[
H_2O_2 + Fe^{2+} \rightarrow Fe^{3+} + OH^- + OH^-
\]

这些是强亲电体的自由基的寿命很短（10⁻⁹ s 级）。因此其与 DNA 碱基反应非常迅速，而产生不同类型的损伤，诸如碱基的修改或缺失。这些非常有遗传毒性的损伤通过修复系统进行识别。

过氧化氢在超纯水（来自 Millipore 的 MilliQ 级）中以 4mM 的浓度制备。FeCl₂ 在超纯水中以 2μM 的浓度制备。两种溶液在使用之前立即以等体积进行稀释。

该溶液在使用之前立即与测试样品等体积的不同稀释液混合。把 50μL 混合物加入吸附了质粒 DNA 的孔中。然后整个在 30℃ 进行培养 30min，并轻微振荡。

然后进行漂洗步骤，以仅仅保留被氧化剂或多或少损伤的 DNA。

随后用特异性修复络合物进行损伤修复步骤。在切除的 DNA 链再合成阶段，生物素标记的核苷酸被引入 DNA 中（在 30℃ 培养 3h，勿需振荡）。

再进行漂洗步骤，以除去没有结合到 DNA 中的生物素。
接下来是通过与过氧化酶分子偶联的抗生物素蛋白分子（在轻微振荡下，于 30℃ 培养 15min）进行生物素识别的步骤。

然后进一步进行漂洗步骤，以除去与未固定至生物素的过氧化酶分子偶联的抗生物素蛋白。

最后，通过加入化学发光过氧酶底物进行修复反应的步骤（在轻微振荡下，于 30℃ 培养 5min），然后读出发光度。

结果的解释

通过把这些结果表示成在 DNA 上形成氧化损伤的保护百分数或抑制百分数而改进了结果的可视化。值 0%对应于单独被氧化剂损伤 DNA 的修复信号。

在 ROS 存在下的保护百分数被计算为由于 OH·或 O2 自由基所产生损伤作用的相对降，即:

\[
\frac{[\text{RLU单独氧化剂}] - [\text{RLU（氧化剂+样品）}]}{[\text{RLU单独氧化剂}]} \times 100
\]

修复信号的非特异性抑制（不存在 ROS 的情况下）有时也能观察到。这或许是由于化合物与 DNA 直接相互作用（DNA 从孔上解吸，与 DNA 非特异性缔合，其会将损伤屏蔽于修复蛋白，等）所致。因此，加入由用先前损伤的 DNA 培养的检测试剂构成的对照样品。在该条件下的信号衰减，反映了化合物不依赖于其可能的抗自由基性能的非特异性抑制作用。

在 ROS 存在的情况下对修复的抑制作用可能是以下作用的结果:
—真实的保护

—由于测试分子与 DNA 或处理过的微孔板的直接相互作用导致的损伤 DNA 修复的效能降低；或

—该 2 种现象同时发生。

因此，对非特异性抑制作用评价，从对样品获得的结果进行计算，其中该样品是在先前损伤的 DNA 上培养的。

特异性抑制作用或特异性保护作用与存在 ROS 时的抑制作用与非特异性抑制作用之间的差值。这反映了单独由分子产生的抗自由基活性。

表 II

抗自由基保护测试

<table>
<thead>
<tr>
<th>样品</th>
<th>%保护</th>
</tr>
</thead>
<tbody>
<tr>
<td>溶剂对照</td>
<td>—</td>
</tr>
<tr>
<td>I3</td>
<td>43</td>
</tr>
<tr>
<td>RONACARE®hydroine</td>
<td>47</td>
</tr>
<tr>
<td>I3+ RONACARE®hydroine（本发明）</td>
<td>62</td>
</tr>
</tbody>
</table>

藤嫩芽提取物 I3 和 hydroine 的样品表现出抗自由基的保护活性。在用本发明组合物的处理中保护效能增加了约 40%。

因此，确实存在两分子之间的协同作用。

推荐的剂量为 0.1%至 10%的 1/1 藤嫩芽提取物/hydroine 组分混合物至。
从表 II 和所附的图 3 明显看出，产品 I3 和 hydroine 产品的每一个样品都表现出了抗自由基保护性活性。

通过对照，根据本发明的组合物，由于组合使用了产品 I3 和 hydroine，在保护效能上增加了接近 40%，这证实了两种分子之间的协同效应，这对于本领域那些技术人员是完全出乎意料的。

实施例 5

根据本发明的组合产生抗自由基活性的证明

由于不同侵蚀性因素如 UV 射线、应激反应和炎性反应，在皮肤内产生了氧自由基物质。

这些氧化性分子进攻皮肤组分，特别是脂质、蛋白质、多糖和细胞 DNA，扰乱了生物功能。

该测试的原理是基于存在于皮肤表面的氧自由基与由 DCF(H) -DA（2',7'-二氯二氢荧光素二乙酸酯）的反应，其能够生成荧光产物，记录为 DCF*，其发出的荧光用荧光计测定。该荧光的测定能够定量出自由基的存在，继而测定保护产物的活性度。

选择出 30 个是白种人并且是女性的健康自愿者。
把待检测的产品通过涂抹以 2μL/cm² 的量施加于前臂的内侧区域。每间隔 2h 涂施一次，进行四次涂施。

测试的人此后准许使用其通常所用的清洗产品但不得使用任何皮肤护理产品。

在所述测试产品的第一次施涂之后 24h，借助于标准透明的粘着盘（以商标名 D-Squames®销售）进行剥离。

由此除掉的角化细胞数量通过用商购获得的名为 Squameter 的仪器测定透射过所述 D-Squames®的红外光来评价。以讨论在测定结果统计分析中的 squamae 数目。

然后不同的 D-squames®盘在 37°C、pH 值为 7.4、浓度为 66mM 并且含有 DCF*磷酸盐缓冲溶液中培养 32h,。在每一种情况下所述溶液的荧光在培养之后用商标名为 Fluroskan Ascent（Labsystems）的荧光计定量测定。

已经检测的以下产品:

—产品 1: (本发明的): 乳剂 (面霜) 含有 1wt%的提取物 I3 和 1wt% 的 MERCK 公司的 hydroine RONACARE®, 其后称为“hydroine”;

—产品 2: (本发明的): 含有 1wt%提取物 I3 和 1.5wt%hydroine 的洗液，

—产品 3: 含有葡萄籽多酚的乳剂，

—产品 4: 含有 0.5%艾地苯醌(已知的抗氧剂)的乳剂，

—产品 5: 含有 1%的艾地苯醌的乳剂。
荧光测定结果报告于此处的下表 III:

表 III

<table>
<thead>
<tr>
<th></th>
<th>荧光度</th>
<th>与 TNT 的比较（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>产品 1（本发明的）</td>
<td>106.6</td>
<td>-19%</td>
</tr>
<tr>
<td>产品 2（本发明的）</td>
<td>101.0</td>
<td>-23%</td>
</tr>
<tr>
<td>产品</td>
<td>121.1</td>
<td>NS</td>
</tr>
<tr>
<td>产品</td>
<td>126.5</td>
<td>NS</td>
</tr>
<tr>
<td>产品</td>
<td>114.7</td>
<td>-13%</td>
</tr>
<tr>
<td>对照（未经处理的对象） (“TNT”）</td>
<td>131.7</td>
<td></td>
</tr>
</tbody>
</table>

s (<0.01)

这样，荧光度直接与存在的自由基数相关，根据上述结果很清楚地表明自由基数由于本发明产品的存在发生了非常显著地降低。因此，本发明产品在活体内提供了非常好的抗自由基作用。

下面给出根据本发明组合物的美容配方的不同实施例，这些不同的成分可以由本领域技术人员以传统方式进行配制。

实施例 6

根据本发明以面霜形式的美容组合物

硬脂醇酰-21（steareth-21）（Brij 721） 2.5%

硬脂酸甘油酯（Tegin） 1.1

硬脂醇 5
甘油三癸酸酯/辛酸酯 11.5
丁二醇 3
甘油 2
防腐剂 0.5
芳香剂浓缩物 0.5
水 62.4
实施例 2 的组合物 5
甲氧基肉桂酸辛酯 7.5

实施例 7

以凝胶形式的美容组合物
甘油 3%
AMPS 聚合物（Sepigel 305） 3
氢化蓖麻油（Cremophor CO-60） 2
聚乙二醇 1.5
防腐剂 0.5
芳香剂浓缩物 0.3
水 85.7
实施例 2 的组合物 3
二苯甲酮 4 1

实施例 8

以洗剂形式的美容组合物
丁二醇 3
EDTA 0.1
<table>
<thead>
<tr>
<th>成分</th>
<th>比例</th>
</tr>
</thead>
<tbody>
<tr>
<td>增溶剂</td>
<td>1</td>
</tr>
<tr>
<td>芳香剂浓缩物</td>
<td>0.3</td>
</tr>
<tr>
<td>醇</td>
<td>5</td>
</tr>
<tr>
<td>水</td>
<td>80.47</td>
</tr>
<tr>
<td>实施例 2 的组合物</td>
<td>10</td>
</tr>
<tr>
<td>二苯甲酮 4</td>
<td>0.13</td>
</tr>
</tbody>
</table>