WO 2004/092969 A1 || 000 00 0 000 O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
28 October 2004 (28.10.2004)

—
I\

A A
L)
LWIPO>

(10) International Publication Number

WO 2004/092969 A1l

GO6F 15/173

(51) International Patent Classification’:

(21) International Application Number:

PCT/US2004/010646
(22) International Filing Date: 7 April 2004 (07.04.2004)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/461,221 7 April 2003 (07.04.2003) US

(71) Applicant (for all designated States except US): SYNE-
MATICS, INC. [US/US]; 185 Claremont Avenue, Suite
1C, New York, NY 10027 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): LIM, Koom-Seng
[SG/US]; 19 Lamplight Street, Beacon, NY 12508 (US).

(74) Agents: SIROTA, Neil, P. et al.; Baker Botts L.L.P.,, 30
Rockefeller Plaza, New York, NY 10112-4498 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR PROVIDING SCALABLE MANAGEMENT ON COMMODITY ROUTERS

240
218
240 240

Aclive

(57) Abstract: An apparatus, method
and software arrangement for providing
pattern-based decentralized network
management. The apparatus is a network
node (Fig. 2, #208) including a router

216
214 Node

(Fig. 2, #208) connected to at least one

Active
Node

Active

other network node (Fig. 2, #216) of a
Node

plurality of network nodes and a processor.

2i4

Router

=

The processor is configured to receive a
network management program and mobile
state information, determine whether to
send the network management program

. 208
220 \
210
<
<
26 w i '
212
Active
Node
Active
202 Node
204
Network Management
Station
Ao Cade
Server
200

to the at least one other network node of
the plurality of network nodes, transmit
the mobile state information to the at least
one other network node of the plurality of
network nodes, and selectively transmit the
network management program based upon
the determination to the at least one other
network node of the plurality of network
nodes.

230

WO 2004/092969 A1 II}I110 Y N0VYH0 AT 00000 OO0 00 AR

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, For two-letter codes and other abbreviations, refer to the "Guid-
ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-
Published: ning of each regular issue of the PCT Gagzette.

— with international search report

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

10

15

20

25

30

WO 2004/092969 PCT/US2004/010646

SYSTEM AND METHOD FOR PROVIDING
SCALABLE MANAGEMENT ON COMMODITY ROUTERS

SPECIFICATION

CROSS REFERENCE TO RELATED APPLICATIONS
The present application claims priority from U.S. Provisional Patent
Application Serial No. 60/461,221 filed April 7, 2003, the entire disclosure of which

is incorporated herein by reference.

BACKGROUND OF THE INVENTION
1. Field Of The Invention

The present invention relates to a system, method and software
arrangement for providing distributed network management and, more particularly to
a system, method and software arrangement for providing pattern-based distributed
network management wherein lightweight mobile agents are distributed throughout a

network based upon a pre-defined pattern to perform network management functions.

2. Background Art

With the increase in the amount of data exchanged over
communication networks, managing the flow of data to avoid bottlenecks in networks
and to ensure that a high throughput of data is achieved has become necessary in
many situations. Centralized network management schemes have evolved to optimize
the performance of networks. Over the last decade, certain drawbacks of existing
centralized management schemes have been recognized and several approaches to
realizing distributed network management have been developed. Most of the
distributed network management schemes have focused on distributing the
computations associated with the management task while keeping the overall control
of the network management tasks centralized.

Initially, high-performance active network platforms were developed
to implement network management applications that process management traffic at
speeds nearing wire-speed. Systems implemented with this philosophy typically have
low-level, assembly-style instruction sets, optimized for space and speed.

Unfortunately, developing management programs on such systems is difficult, due to

10

15

20

25

30

WO 2004/092969 PCT/US2004/010646

their low-level nature, and thus the use of these management programs is limited to
simple network management functions, such as programmable traffic probes.
Furthermore, these platforms are built on customized or special network nodes that
require features not available in off-the-shelf routers, referred to as commodity
routers.

In order to apply some of the techniques used in high-performance
active network platforms to the management of traditional internet protocol (“IP”)
networks, software routers have been used. In these environments, the operating
system intercepts packets for processing in a management execution environment,
usually through an IP option called Router Alert. Many of the systems developed |
along this line emphasize flexibility over performance and generally require the
support of a heavyweight infrastructure, such as those built on Java.

A significant step towards decentralized network management has
been made with the introduction of mobile agents for management tasks. Mobile
agents can be characterized as self-contained programs that move through the network
and act on behalf of a user (i.e., a human operator) or another entity. Mobile agents
are generally complex, since they often need a degree of intelligent behavior for
autonomous decision-making. The mobile agents execute various network
management tasks in a distributed manner. A major drawback of the mobile agents
approach to distributed network management lies in the structure of the mobile agents
themselves. The mobile agents are fairly complex, requiring more processing power
than is typically present in standard routers or switches and require significant
bandwidth in order to propagate throughout the network.

For mobile agents to effectively propagate through the network,
various graph traversal algorithms are utilized to control and coordinate the
processing and aggregation of management information inside the network. From the
perspective of a network manager, the algorithms provide the means to ‘diffuse’ or
spread the computational process over a large set of nodes. A key feature of the
approach is its ability to separate this mechanism of diffusion and aggregation from
the semantics of the management operation. The paradigm achieves this through the
development of two important concepts: the navigation pattern and the aggregator.

The navigation pattern represents the generic graph traversal algorithms that

10

15

20

25

30

WO 2004/092969 PCT/US2004/010646

implement distributed control while the aggregator implements the computations
required to realize the task.
Figs. 1A — 1D represent the simplest examples of navigation patterns.

A basic pattern 100 is illustrated in Fig. 1A, where control moves (represented by
arrow 106) from one node 102 to another node 104 and returns (represented by arrow
108) after triggering an operation in the node 104. A manager-agent interaction is an
example of this pattern. Another pattern 120 represents the scenario where control
begins at an originator node 122 moves along a number of nodes 124 in a path in the
network, triggers operations on the nodes 124 of this path, and returns to the
originator node 122 along the same path. A possible application of this pattern is
resource reservation for a virtual path or a multi-protocol label switching (“MPLS”)
tunnel. Still another pattern 140 is illustrated in Fig. 1C, where control begins at an
originator node 142 migrates to a node 144, then in parallel to neighboring nodes 146,
148, triggers operations on these nodes, and returns with result variables to the
originator node 142. The pattern 140 can be understood as a parallel version of the

" pattern 100. Finally, in a further pattern 160, shown in Fig. 1D control moves along a
circular path in the network. It is important to note that navigation patterns can be
defined independently of the management tasks performed in an operation. A

drawback of these propagation schemes is their non-determinative nature.

SUMMARY OF THE INVENTION

It is therefore one of the objects of the present invention to provide an
apparatus, method and software arrangement that allows management information to
be collected and processed quickly from a large network of commercial routers
without the need for proprietary access to internal software or hardware of the
commercial routers and without requiring any modifications to be made to internal
software or hardware of the commercial routers.

It is another object of the present invention to provide an apparatus,
method and software arrangement including management programs configured to

exploit the speed and power associated with the parallel processing capabilities of a

10

15

20

25

30

WO 2004/092969 PCT/US2004/010646

network without incurring the usual complexities associated with parallel
programming.

It is still another object of the present invention to provide an
apparatus, method and software arrangement for extending the functionality of the
management system, the system does not have to be brought down in order to
introduce new code into it. (i.e. the code can be transported by the mobile agents).

It is yet another object of the present invention to provide an apparatus,
method and software arrangement for dramatically lowering the cost of developing
parallel management programs because a single pattern program can be reused for
many applications by plugging it with different aggregators.

It is a further object of the present invention to provide an apparatus,
method and software arrangement for collecting and processing information using the
Echo pattern in an efficient manner both in terms of speed and bandwidth consumed
for networks with a tree or scale-free topology.

These and other objects can be achieved with the exemplary
embodiment of the apparatus, method and software arrangement for providing
pattern-based decentralized network management according to the present invention.
The exemplary apparatus is an network node including a router connected to at least
one other network node of a plurality of network nodes and a processor. The
processor is configured to receive a network management program and mobile state
information, determine whether to send the network management program to the at
least one other network node of the plurality of network nodes, transmit the mobile
state information to the at least one other network node of the plurality of network
nodes, and selectively transmit the network management program based upon the

determination to the at least one other network node of the plurality of network nodes.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention and its
advantages, reference is now made to the following description, taken in conjunction
with the accompanying drawings, in which:

Figs. 1A — 1D show examples of prior art network navigation patterns;

10

15

20

25

30

WO 2004/092969 PCT/US2004/010646

Fig. 2 illustrates an exemplary embodiment of a pattern-based network
management system according to the present invention;

Fig. 3 illustrates an exemplary embodiment of an Echo pattern of
network management program dissemination according to the present invention;

Fig. 4 illustrates an exemplary embodiment of a software architecture
of an active node of the pattern-based network management system according to the
present invention;

Figs. 5A — 5D shows an exemplary embodiment of a process for
distributing a new network management program throughout the pattern-based
network management system of Fig. 2 according to the present invention;

Fig. 6 illustrates an exemplary embodiment of a process for
distributing a new network management program from active node to active node
throughout the pattern-based network management system of Fig. 2 according to the
present invention; and

Fig. 7 shows a graph comparing the scalability of the pattern-based
network management system against a centralized network management system.

Throughout the drawings, the same reference numerals and characters,
unless otherwise stated, are used to denote like features, elements, components, or
portions of the illustrated embodiments. Moreover, while the present invention will
now be described in detail with reference to the Figs., it is done so in connection with

the illustrative embodiments.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In an exemplary embodiment of the present invention, a pattern-based
network management system 200 is provided for managing a network in a
decentralized manner using a pattern-based paradigm. The system 200 realizes a
pattern-based network management paradigm using a network of low-cost, single-
board computers that are attached to commercial off-the-shelf routers, referred to as
commodity routers. This system 200 utilizes the coordinated actions of lightweight
mobile agents that can be deployed oﬁ existing networks. These lightweight mobile

agents execute network management operations in a fast and scalable manner. The

10

15

20

25

30

WO 2004/092969 PCT/US2004/010646

lightweight mobile agents exploit the parallel processing capability of the network.
These agents always carry state information with them, but carry a network
management program only when absolutely necessary, rendering the lightweight
mobile agents quite small when transmitted from node to node in the network. The
lightweight mobile agents are configured to be distributed on a network of commodity
routers and are designed such that no modifications to the routers are required.

The lightweight mobile agents manage the network in a distributed
manner using pattern-based management. Pattern-based management centers around
the concept of the navigation pattern, used for controlling and coordinating the actions
of the lightweight mobile agents. Navigation patterns realize graph traversal
algorithms that determine the dissemination of local management operations
throughout the network and the aggregation of the results of these local operations.

The system 200 utilizes an efficient implementation of 'a pattern-based
management system, whereby the network management programs disseminated by
the lightweight mobile agents complete execution quickly, even in large networks.
Also, the network management programs are designed to execute on virtually all
commodity routers.

Pattern-based management systems have several advantages over other
network management approaches. Firét, management programs can be formally
analyzed with respect to performance and scalability. This analysis is based on the
analysis of the graph traversal algorithm and its underlying pattern. Second,
navigation patterns allow the separation of the semantics of management operation
and the distributed programming aspects of the operation. From a software
engineering perspective, this separation allows application and/or network developers
to design generic patterns that can be combined with specific semantics to implement
a particular management operation in a straight forward manner. A pattern, once
designed, can be reused in the implementation of many management tasks.
Conversely, a specific management task can potentially be built from a choice of
patterns, which enables application and/or network developers to build management
operations with different performance profiles. Ultimately, this approach frees an

application programmer from developing distribution algorithms, allowing him/her to

10

15

20

25

30

WO 2004/092
969 PCT/US2004/010646

focus on the management task at hand, by selecting a navigation pattern from a
catalogue that captures the requirements for that task.

Third, the response to network faults, which can be complex to
understand and handle, can be programmed into a pattern, thereby eliminating the
need for the application programmer to deal with faults. Finally, the degree of code
mobility can be controlled in a fine-grained manner, since the execution of a
management operation in a network involves distributing only those parts of the
program which are not already resident in the network nodes. In other words, for a
management program that is frequently executed, only the states of the distributed
computation need to be exchanged between network nodes, not the code, which is
locally available.

Various management operations can be realized in the system 200
through the network management programs of the lightweight agents. The
lightweight agents are distributed throughout the system 200 based on an Echo
pattern 300 (shown in Fig. 3). These various management operations are useful in
managing a network having a very large number of nodes, a dynamic topology and no
centralized topology database. All management computations are performed on
logical network nodes, i.e., inside the network. The management operations include
statistical abstractions of the topology, statistical abstractions of local performance
data, correlation of performance data with topological data, and software
configuration management. Statistical abstractions of the topology allows the
network management station 202 to discover various data about the network
including;: the current local network topology about a given node, the number of leaf
nodes in the network topology, the diameter of the network, the connectivity
distribution of the network topology, and the like. Statistical abstractions of local
performance data allows the network management station 202 to determine the most
congested links in the network, and/or the distribution of the link load, queue lengths,
and the like in the network. Correlation of performance data with topological data
allows the network management station 202 to identify sub-topologies where all links
are highly loaded, compute the routes and the traffic volume that flows between two

sub-regions of the network within a certain time period, and the like. Software

10

15

20

25

30

WO 2004/092969 PCT/US2004/010646

configuration management allows the network management station 202 to install a
software patch on all routers running a particular version of an op erating system.

A concern relating to the network management system 200 is code
mobility. Specifically, determining whether code should be transferred from logical
network node to logical network node in its binary or source code form, and whether
code is to be transported by patterns or downloaded from code servers. The decisions
made in addressing these questions have implications on the performance of the
system 200 and its vulnerability to attacks.

If a program is to be transferred in source form, then a time-consuming
compilation process must be invoked prior to its execution on each active node. In
addition, every node must be equipped with sufficient disk space to store the
compiler, the linker, and the header files. The advantage of transferring source code
is that source programs are significantly smaller than compiled programs. The system
200 transfers the network management programs in binary form from lo gical network
node to logical network node throughout the network using patterns.

In an exemplary embodiment of the present invention, code servers
may be used disseminate the network management program. As the network becomes
Jarger, however these code servers become bottlenecks. Increasing the number of
code servers to overcome this issue introduces other problems, because keeping
copies of the network management program on all code servers throughout the
network up-to-date and consistent can be expensive and time consuming.

In an exemplary embodiment of the present invention, the system 200
transfers the network management program in its source code form. In another
exemplary embodiment of the present invention, the system 200 transfers the network
management program in its source code form to a first 1ogica1 network node only,
which compiles the network management program into its executable code form,
which is then transmitted throughout the network.

As with any system that includes mobile code, there is always a danger
of unsafe or malicious programs being introduced. The system 200 attempts to
address this issue in several ways. First, all communication between a network
management station 202 and a logical network node occurs through an secure socket

layer enabled (“SSL-enabled”) web interface. This reduces the risk of unauthorized

10

15

20

25

30

WO 2004/092969
PCT/US2004/010646

access and protects against masquerade attacks. Second, the compiled code or the
executable of a management program is only executed within the context of a separate
process with restricted rights and resource quotas. This prevents management
programs from interfering with one another or from crashing the daemon, should a
fatal error occur. Finally, the communication channel between each of the logical
network nodes 220, 230, 240 are implemented using a simple protocol, similar fo
transport layer security (“TLS”) protocol or the like, thereby preventing a third party
from altering the program code or state while the data is in transit. In addition, all
services that come with the operating system running on the 1ogice£1 network nodes
220, 230, 240 and are not used by the system 200 are disabled.

Fig. 2 illustrates a network architecture of the pattern-based network
management system 200 according to an exemplary embodiment of the present
invention. The system 200 includes the network management station 202, a code
server 204 and a plurality of logical network nodes 220, 230, 240. Each of the
plurality of network nodes 220, 230, 240 include a physical router 208,210,214 in
communication with an active node 206, 212, 216, respectively. Copies of a patfem—
based network management progrém run in the active nodes 206, 212, 216 of the
network nodes 220, 230, 240. The pattern-based management program can be
realized in a number of ways, for example, using a general purpose framework, such
as Java, or an active networking toolkit, such as ANTS, which is described in more
detail by http://tns-www.lcs.mit.edu/publications/ openarch98.html, incorporated
herein in its entirety by reference. Execution of the pattern-based network
management program begins when a lightweight mobile agent containing the network
management system is transmitted from the network management station 202 to the
active node 206 of the first network node 220 (sometimes called the start node or
originator node). When the program has completed its execution cycle on the first
node 220, a pattern component of the program determines the appropriate subsequent
node or nodes on which the program must execute next. If the subsequent node
already contains a copy of the pattern-based network management program, the
lightweight mobile agent is transmitted containing only the program’s state

information to the subsequent node. Otherwise, the lightweight mobile agent is sent

10

15

20

25

30

W
0 2004/092969 PCT/US2004/010646

containing the network management program in its executable form and mobile state
variables.

Each router 208, 210, 214 is managed by a dedicated active node 206,
212, 216 that hosts the execution environment needed for running the pattern-based
network management program. Each active node 208, 210, 214 includes an internet-
enabled, single-board computer including a network interface and a storage device.
The hardware of the active node 206, 212, 216 is commercially available in the form
of an aluminum cube of 3 inches per side. Each active node 206, 212, 216 runs a
modified distribution of the Unix operating system having limited functionality.

In an exemplary embodiment, the internet-enabled, single-board
computer is equipped with an Intel StrongARM 1110 microprocessor, 32MB of
SDRAM, and a 10Mbps Ethernet interface. In another exemplary embodiment, the
storage device is a 1 GB drive connected to the onboard compact flash slot of the
single-board computer. In a further exemplary embodiment, each of the active nodes
206, 212, 216 runs a Linux kernel, as well as, an Apache web server, which is used to
implement the wide area network’s management interface.

Tn an exemplary embodiment of the present invention, the active nodes
206, 212, 216 of the network nodes 220, 230, 240 may be included within the routers
208, 210, 214, respectively. Realizing such a system at low cost on commodity
routers considerably restricts the design space and poses a significant challenge to
network and/or application designers. In another exemplary embodiment of the
present invention, the network management station 202 executes the actions of the
code server 204, thereby simplifying the hardware used in the system 200.

From the perspective of scalability, a pattern-based management
system can eliminate bottlenecks associated with centralized processing of
management data, by distributing load to network nodes via an appropriate navigation
pattern. By using an Echo pattern 300, shown in Fig. 3, as a way to distribute
computation to network nodes, highly scalable management programs can be
implemented in compact form.

Several navigation patterns are described above in connection with
Figs. 1A — 1D. The Echo pattern 300 is an extension of the basic pattern 140 and is
particularly efficient at distributing and aggregating data over large networks. The

10

10

15

20

25

30

WO 2004/092969 PCT/US2004/010646

Echo pattern 300 is based on a class of distributed graph traversal algorithms known
as wave algorithms. The Echo pattern 300 represents an efficient and elegant scheme
for enabling global management operations in complex and large networks. The Echo
pattern 300 dynamically adapts to changes in the network topology, does not require
up to date network information, and scales well in very large networks. The time
complexity of the Echo pattern 300 increases linearly with the network diameter,
which results in fast execution times in networks with a connectivity distribution that
follows the power law. The traffic complexity of the Echo pattern 300 grows linearly
with the number of network edges, and the management traffic produced by executing
this pattern is distributed evenly across all links, without causing hot spots, where
congestion can occur.

The behavior of the Echo pattern 300 can be described as follows. The
pattern 300 starts out from an originator node 302, migrating to each of its neighbors
304, 306 for further execution during an expansion phase of the Echo pattern 300.
During the expansion phase, a lightweight mobile agent propagates (represented by
arrows 312, 314, 316, 318) from one node to each neighbor node. A lightweight
mobile agent, arriving on a node for the first time, marks the node as ‘visited’ (for
example, node 304) and transmits a lightweight mobile agent to each neighbor (here
nodes 308, 310), except for the one from which it arrived, which is called its parent
(here node 302). Lightweight mobile agents arriving on a node that has been marked
as ‘visited’, terminate at that node (i.e., they do create more explorers). If the node
has no neighbors other than its parent (for example, nodes 306, 308, 310), the
lightweight mobile agent returns to its parent node. This return of the pattern from a
node to its parent is called an echo. When a node has received an echo from each of
its neighbors, it returns an echo to its parent. The Echo pattern terminates when the
originator node 302 has received an echo from each of its neighbors.

Fig. 4 illustrates a software architecture 400 of the active nodes 206,
212, 216 of the network management system 200. The software architecture 400 of
each of the active nodes 206, 212, 216 are essentially the same and for the sake of
simplicity, the software architecture 400 will be described in terms of the active node
206. The software architecture 400 includes an active node manager 402, a compiler

416, an active node engine 404 and a group of data repositories 414, 418, 420, 422,

11

10

15

20

25

30

WO 2004/092969 PCT/US2004/010646

424, The active node manager 402 offers a web interface to the network management
station 202 for configuring and operating the active node 206. The active node engine
404 includes a preprocessor 406, an execution environment 408, a transport access
point 410 and a device manager 412. The active node engine 404 runs as a
background process. It implements the execution environment 408, which runs the
pattern-based network management program on the active node 206. The node state
repository 414 stores the operational state of the active node 206 including the
numbers and parameters of executing management programs. The source repository
416 stores source code associated with a number of programs. The binaries repository
418 stores a cache of ready-to-run patterns and aggregators. The local program state
repository 422 stores local state variables when a lightweight mobile agent migrates to
another node. The management operation result repository 420 provides for persistent
storage of results returned from a management operation.

In an exemplary embbdiment, the active node manager 402 includes an
Apaché SSL-enabled web server and a set of server-side scripts, such as hyper text
preprecessor (“PHP”) scripts.

Figs. 5A — 5D illustrate a process 500 for distributing a new network
management program on the system 100. The process 500 begins at step 502 when
the active node manager 402 of the start node, here the active node 206, receives a
lightweight mobile agent containing a network management program in its source
code from the network management station 202. The start node (sometimes referred
to as the originator node) is simply the first active node to receive the new source
code. Once the active node manager 402 receives the complete transmission, the
active node manager 402 stores the new source code in the source repository 414 and
relays the source file names and the parameters to the preprocessor 406 at step 504.

At step 506, the preprocessor module 406 invokes the compiler 416 to
process the source code of the new portion of the new network program and computes
a digital fingerprint, such as, an MD5 checksum of the resulting binary, to verify the
integrity of the data. At step 508, the compiler determines whether an error occurred
during compilation. If the compiler 416 encountered an error while processing, the
compilation is aborted and the process 500 advances to step 509. Otherwise, the

process 500 advances to step 510 and the preprocessor 406 invokes the execution

12

10

15

20

25

30

WO 2004/092969 PCT/US2004/010646

environment 408 to run the new network management program. At step 512, the
process 500 dynamically loads the program and instantiates the pattern and aggregator
objects. At step 509, the execution environment 408 returns an error code to the
network management station 202 via the active node manager 402.

At step 514, the process 500 determines whether program binaries are
in the binary repository 418. If the program binaries are already in the binary
repository 418, the preprocessor 406 invokes the execution environment 408 directly
at step 516, passing to it the filenames and paths of the compiled binaries. Otherwise,
the process 500 advances to step 517, where the execution environment 408 returns an
error code to the network management stations 202 via the active node manager 402
and the process 500 exits.

At step 518, the execution environment 408 dynamically loads the new
network management program, the pattern object and the aggregator object and
begins execution of the new network management program. The execution
environment 408 also generates a system-wide unique cookie at step 520, which
associates the distributed state of the program with its current execution. The
execution environment 408 relinquishes control to the device manager 412 at step
520, passing the arguments as specified by the network management station 202 to the
device manager 412 for further processing.

At step 524, the network management prograim accesses the
management interface of the attached router through the device manager 412 in order
to acquire a list of active node addresses. In addition to the specific access protocol,
the device manager 412 implements low-level monitoring procedures, such as
heartbeats, to detect failures in attached devices. The active node 206 includes a
single device manager 412 for a simple network management protocol (“SNMP”)
protocol. When the network management program has completed its execution on the
active node 206, it returns control and a list of active node addresses to the execution
environment 408 at step 526. The list of active node addresses are the active nodes
the lightweight mobile agent will migrate to next.

In an exemplary embodiment of the present invention, the active node
206 includes multiple device managers, one for each access protocol supported by the

router 208.

13

10

15

20

25

30

WO 2004/092969 PCT/US2004/010646

At step 528, the execution environment 408 concludes its active
execution cycle. The execution environment 408 stores the local program variables in
the local state repository and serializes the mobile state variables. Once the mobile
state variables are serialized, they are passed to the transport access point 410, along
with the list of node addresses, a request to transmit data to those addresses and the
cookie.

The main function of the transport access point 410 is to securely
transfer program code and states between adjacent nodes. Whenever an active node is
initialized, it connects to its neighboring active nodes by establishing secure channels.
When a transport access point 410 receives a request to send a lightweight mobile
agent to a list of active node addresses, the transport access point 410 determines
whether any additional addresses exist in the list of active node address‘es at step 530.
If no additional addresses exist, the process 500 exits.

Otherwise at step 532, the transport access point 410 determines
whether the active node indicated by the current address of the list of addresses has a
copy of the current executable. The transport access point 410 makes this
determination by reading records of an executable transmission table. Each record of
the executable transmission table contains an active node address and the digital
fingerprint, such as, an MD5 program checksum, for each executable sent or received
by the transport access point 410. Ifno record exists wherein an active node address
of a particular record matches the current address and the digital fingerprint of the
particular record matches the digital fingerprint associated with the current
executable, the executable is sent to the node associated with the current address,
despite the chance that the neighbor might actually have a copy of the executable.
While this scheme incurs a slight overhead, it is simple and requires no handshake
between the active node 206 and neighboring active nodes. If an active node has the
executable, the process 500 advances to step 536 and the transfer access point 410
transmits the mobile state variables and the cookie to the active node at the current
active node address. Otherwise at step 538, the transfer access point 410 transmits the
mobile state variables, the cookie and the executable code to the active node at the

current active node address. The transfer access point 410 also updates its records

14

10

15

20

25

30

WO 2004/092969 PCT/US2004/010646

reflecting the transmission of the executable having a particular digital fingerprint to
the current address.

In order to distribute the new network management program
throughout the system 100, various active nodes will send the new network
management program in its executable form to other active nodes. Fig. 6 illustrates a
process 600 for distributing the new network management program from active node
to active node throughout the system 100. The process 600 begins when a lightweight
mobile agent containing the executable is received by the transport access point 410 at
step 602. At step 604, the transport access point 410 stores a record in the executable
transmission table reflecting the active node address from which the lightweight
mobile agent came and the digital fingerprint of the executable form of the new
network management program. Once the record is written, the transport access point
410 stores the executable in the binary repository 418 at step 606. At step 608, the
transport access point 410 invokes the execution environment 408 to run the new
network management program.

Once the execution environment 408 is running, the process 600 must
determine whether the executable has run on the current active node. Using the
system-wide cookie, the execution environment of the current active node determines
whether the node has participated in the current execution of the program. When the
program is first executed on a node, the system-wide cookie is stored on the node by
the execution environment. If the program returns to the node at some later time, the
execution environment can check to see if it has already stored the cookie. If the
system-wide cookie associated with the program is already stored on the node, the
node has already participated in the current execution of the program. Otherwise, it is
the first time the node is executing the program. When the program completes its
final execution on the node, its associated cookie is deleted by the execution
environment. If the executable has executed on the current node, there is no need to
instantiate the pattern and aggregator objects again, so the process 600 advances to
step 614. Otherwise at step 612, the process 600 dynamically loads the executable
and instantiates the pattern and aggregator objects.

At step 614, the process 600 reads the local state variables of the new

network program from the local program states repository 422. The execution

15

10

15

20

25

30

WO 2004/092969 PCT/US2004/010646

environment 408 dynamically loads the pattern and aggregator objects and executes
the new network management program at step 616. After the execution of the new
network management program begins at step 616, the process 600 passes control to
the process 500 at step 522 for the remainder of its execution.

In order to test the efficacy of the pattern-based network management
system 200 and develop pattern-based management programs, a discrete-event
simulator was developed. The discrete-event simulator is capable of simulating a
large pattern-based management system of up to 60,000 nodes. Pattern-based
management programs are loaded into the simulator on the fly for simulation. The
simulator’s interactive features allow the dynamics of a pattern to be visualized and
recorded when its associated management program is executed. Performance data,
such as completion time and volume of management traffic generated, can be
collected and analyzed in order to determine the efficacy of management programs
and improve thereon.

In an exemplary embodiment, the discrete-event simulator is a C++
application executing on a personal computer running a Microsoft Windows operating
system.

In order to evaluate the performance of the system 200, the execution
time of a management operation is measured and calculated. Execution time is
defined as the time period from when a network management program is launched,
i.e. downloaded for execution, on a start node to when the results are returned to the
network management station 202. Two series of experiments have been conducted to
obtain a delay profile for the network management programs used on the system 200.
The first series of experiments focus on measuring the delay incurred by a
management program based on the pattern 100 (shown in Fig. 1A). The pattern 100
essentially models a simple polling operation, where control passes from a node to its
neighbor before returning. The patterns 120, 140 can be expressed as serial
compositions of patterns 100. In a similar manner, the pattern 130 is the basic
building block of a class of patterns in which control is passed to neighboring nodes
in parallel. Thus, the measurements obtained from benchmarking the pattern 130 will
allow estimation of the performance of management programs that are based on

patterns derived from the pattern 130 (one of which is the Echo pattern 300).

16

10

15

20

25

30

WO 2004/092969 PCT/US2004/010646

For accurate measurements, the experiments have been carried out on
an isolated test bed of four Cisco 2621 routers, which are interconnected via a Cisco
Catalyst 2900 fast Ethernet switch. Each router is equipped with 2 fast Ethernet ports,
one of which is connected directly to an access node 206. A 1.13 GHz DELL
Inspiron 8100 notebook serves as the network management station 202. Static routes
have been setup from each router to the fast Ethernet switch, so that all nodes are able
to communicate with each other.

In order to understand the delay profile of a network management
program using a pattern 100, the execution of the network management program is
decomposed into a series of phases, as shown in Table 1.

To measure delay from the point of view of the network management
program, the first phase begins when control is passed to the network management
program (T1). This is called the execution phase. When the network management
program completes its execution, the serialization phase (T2) is invoked to serialize

the program’s mobile state variables into a buffer, which is then transmitted to the

" remote active node in the dispatch phase (T3). The receiving phase (T4) begins, when

the mobile state variables have been received on the remote active node. The network
management program code (if sent) is also saved during this phase. Depending on
whether the management program has been executed on the node before, the next
phase can be either the loading phase (T5) or the instantiation phase (T6).

The loading phase (T5) occurs the first time a new network
management program is executed on an active node. Typical tasks performed include
invoking the dynamic linker to load the program code as a shared library and
instantiating the pattern and aggregator objects. If the network management program
has already been loaded, due to a previous execution, the instantiation phase (T6) is
performed. During the instantiation phase the pattern and aggregator objects are
instantiated. There is no need to invoke the dynamic linker during the instantiation
phase (T6) as is required during the loading phase (T5)

If the network management program is still active on a node (meaning
that the pattern is certain to traverse the node again after management information is
collected by downstream nodes), the pattern and aggregator objects are not destroyed

when the program migrates to another node. In such cases, the only task performed is

17

10

15

20

WO 2004/092969

PCT/US2004/010646

a lookup to return their object references. This is called the resolving phase (T8).

Finally the de-serialization phase (T7) recreates the mobile state variables in the

program addresses space prior to execution. The network management program

requires the mobile state variables to complete execution on a particular active node.

Table 1. Overhead incurred by each phase of execution of the Type 1 pattern

Phase Duration in ms Performed by Module
Execution (T1) 1.57 (6 =0.48) Execution Environment
Serialization (T2) 3.46 (c=0.71) Execution Environment
Dispatch (T3) 1.67 (c = 0.49) Transport Access Point
Receiving (T4) 0.62 (o =0.30) Transport Access Point
Loading (T5) 23.42 (6 =0.70) Execution Environment
Instantiation (T6) 0.77 (c = 0.015) Execution Environment
De-serialization (T7) 2.04 (c = 0.49) Execution Environment
Resolving (T8) 0.15 (6 = 0.001) Execution Environment
Communications Delay 4.04 (c=0.10) -

(To)

Table 1 gives the mean and standard deviation of the delay for each of
the phases (T1 through T8 and Tc), as measured over 40 runs. The communication
delay on the last row of the table includes transmission delay, propagation delay and
operating system overhead. The size of the mobile state variables communicated
between active nodes is 207 bytes. The pattern program contains the minimal code
necessary to implement the pattern 100 and does not perform any other computations.
The aggregator program contains only empty fuﬁctions.

The (average) completion time of a pattern 100 is derived as:

Tpatem100=3TL +2(T2+ T3+ T4+ T7) + T6 + T8 + T,

For a more detailed explanation of the above formula, see K.S. Lim et. al, “Weaver:
Realizing a Scalable Management Paradigm on Commodity Routers,”
KTH/IMIT/LCD Technical Report Nr. 02-5021, August 2002, incorporated herein by
reference in its entirety. When the pattern 100 is executed for the first time, an
additional delay of TS - T6 incurs, because the execution environment 408 needs to
invoke the dynamic linker. Also, the estimate given by the above equation does not
take into account the situation when the node daemon is swapped out by the operating

system.

18

10

15

20

25

WO 2004/092969 PCT/US2004/010646

Following the above approach, it is possible to derive similar
expressions for the average completion times of management programs based on the
patterns 120, 130, 140. Table 2 compares the estimated completion time (based on
the above formula and table 1) with the actual measurements on the test bed for all the
basic patterns 100, 120, 130, 140. As can be seen, the estimations lie below the
measured delays in all cases, with a margin of error between 8.3% and 10%.

Table 2. Comparison of estimated vs. actual measurements for the four basic patterns

Average completion time | Average completion time
Pattern Type estimated) (measured on test bed)
Pattern 100 25.2 ms 27.6 ms
Pattern 120 72.6 ms 78.4 ms
Pattern 130 44.3 ms 47.6 ms
Pattern 140 49.5 ms 55.0 ms

In order to evaluate the scalability of the system 200 when the network
to be managed becomes large, the completion times of a network management
operation are measured and calculated. Specifically, the completion times of pattern-

‘based management programs on large networks are estimated using a software
program capable of simulating the execution of pattern programs and aggregators on a
single computer, such as SIMPSON, which is described in more detail by K.S. Lim
and R. Stadler, "Developing pattern-based management programs,” Proceedings of
IFIP/IEEE International Conference on Management of Multimedia Networks and
Services (MMNS 2001), Chicago, IL, Oct. 29 2001, pp. 345-358, and encorporated
herein in its entirety by reference, and the delay profiles shown above. For
comparison purposes, the time of the same operation executed on a centrally
management network polling nodes serially or in parallel are also estimated.

For the sake of simplicity, the network topology of the system 200 is
assumed to be a full binary tree with height h. Each node in the network is a router
with b+1 ports, one of which is connected to an active node. This way, each active
node manages exactly one router. The latency between two adjacent routers is
assumed to be 2.022ms, i.e. Te1 = Tea = 0.5Tc= 2.022ms. Routes taken by packets
are also assumed to be symmetrical; that is, protocol data units (“PDUs”) of an SNMP
request take the same path, from the manager to the managed device and vice versa.

The management station is assumed to be attached to the root of the tree of the system

19

10

15

20

25

WO 2004/092969 PCT/US2004/010646

100 and that all management program executions use the root as the start node.
Finally, the management task is selected to be an operation that computes the average
value of a specific management information base (“MIB™) variable across all nodes in
the network.

Given the above topology, the total number of nodes in the network, N,

is therefore given by

Ilh+1 _1

n-1

N =

The most scalable manner to implement a task in a centralized management network
solution is to compute the network-wide average value of the desired variable
incrementally from the values obtained from each node that is polled via an SNMP
GET. Ifpolling is performed serially on N nodes (i.e., each GET operation must
complete before the next GET is initiated), and if the time needed for the simple

averaging computation is negligible, the total completion time is given by:

T ntralized _S = (TC + TS)+ (ZTC +TS)l'l +o.t ((h + I)TC +TS)bh

ce

which evaluates to:

T (b+1)+T o™ —(To(h +2)+ T o™ + T, +T5(1-b
T - 8 C 8
centralized _S j (b _ 1)2

where T is the time required by the SNMP agent on a node to process a request.
Measurements on the Cisco 2621 routers shows this to be approximately 1.9 ms. On
the other hand, if the polling is performed in parallel, i.e., the system does not wait for
the completion of a GET before polling the next node, and nodes farther away are

polled first before nearer nodes, the total completion time is given by:

T = 24T, +(b" 1T,

centralize _P

where Tp is the polling interval between nodes. Measurements on the active nodes of
the system 200 indicate that Tp is approximately 1.5 ms.

In the case of a pattern-based distributed network management
solution, the Echo pattern 300 is used to accomplish the same task as accomplished

above using the centralized network management solution. The performance of the

20

10

15

20

WO 2004/092969

PCT/US2004/010646

system 100 is measured against centralized management using the serial polling
scheme as a common task. Specifically, the scalability measure S is defined to be the
ratio between the average completion time of a management task using the serial
polling scheme and the scheme underlying the specific management task (such as
parallel polling or the Echo pattern 300). Fig. 7 illustrates a chart 700 plotting the
scalability measure S on the vertical axis against height of the network tree h on the
horizontal axis. In each estimation the number of children of each node b is set. Line
702 shows the scalability for the Echo pattern 300 when b is set at 2. Line 704 shows
the scalability for the Echo pattern 300 when b is set at 6. Line 706 shows the
scalability for the parallel polling approach when b is set at 2. Line 708 shows the
scalability for the parallel polling approach when b is set at 6.

From the chart 700 it is evident that parallel polling approach (using
the Echo pattern 300) outperforms serial polling, since its scalability measure S never
falls below 1. Furthermore, for networks of small to modérate size (i.e., b=2, h<land
also b=6, h<3), it also outperforms the Echo pattern 300 because of its lower
overhead. However, for large networks, i.e., (b=6, i>4) the Echo pattern 300 yields
completion times that are several orders of magnitude lower than the other schemes.

'The foregoing merely illustrates the principles of the invention.
Various modifications and alterations to the described embodiments will be apparent
to those skilled in the art in view of the teachings herein. It will thus be appreciated
that those skilled in the art will be able to devise numerous techniques which,
although not explicitly described herein, embody the principles of the invention and

are thus within the spirit and scope of the invention.

21

10

15

20

25

30

WO 2004/092969 PCT/US2004/010646

10.

WHAT IS CLAIMED IS:

An network node for providing pattern-based decentralized network
management, comprising:

a router connected to at least one other network node of a plurality of network
nodes, and

a processor configured to receive a first data set describing a network
management program and mobile state information, determine whether to send
a second data set describing the network management program to the at least
one other network node of the plurality of network nodes, transmit the mobile
state information to the at least one other network node of the plurality of
network nodes, and selectively transmit the second data set based upon the
determination to the at least one other network node of the plurality of
network nodes.

The system of claim 1, wherein the processor executes the network
management program, which is configured to perform computation and data
aggregation.

The system of claim 1, wherein the first data set and the second data set are
one of the same and different.

The system of claim 1, wherein the processor receives a checksum associated
with the network management program.

The system of claim 4, wherein the processor compiles the first data set
creating the second data set.

The system of claim 5, wherein the processor compares the second data set
with the checksum.

The system of claim 1, wherein the first data set is a source code file
describing the network management program.

The system of claim 1, wherein the processor utilizes a Unix operating system.
The system of claim 1, wherein the processor creates a record in a database
recording an address of the at least one other network node and the checksum.
The system of claim 1, wherein the processor determines whether to send the

second data set to the at least one other network node of the plurality of

22

10

15

20

25

30

WO 2004/092969 PCT/US2004/010646

11.

12.

13.

14.

15.

16.

17.

18.

19.

network nodes if a search of a database finds no record containing both an
address of the at least one other network node and the checksum.

A method for providing pattern-based decentralized network management,
comprising the steps of:

receiving a first data set describing a network management program and
mobile state information at a first network node of a plurality of network
nodes;

determining whether to send a second data set describing the network
management program to a second network node of the plurality of network
nodes, wherein the second network node is connected to the first network
node;

transmitting the mobile state information to the second network node; and
selectively transmitting the second data set based upon the determination to
the second network node.

The method of claim 11, further comprising the step of executing the network
management program, which is configured to perform computation and data
aggregation.

The method of claim 11, wherein the first data set and the second data set are
one of the same and different.

The method of claim 11, further comprising the step of receiving a checksum
associated with the network management program.

The method of claim 14, further comprising the step of compiling the first data
set creating the second data set.

The method of claim 15, further comprising the step of comparing the second
data set with the checksum.

The method of claim 11, wherein the first data set is a source code file
describing the network management program.

The method of claim 11, further comprising the step of creating a record in a
database recording an address of the second network node and the checksum.
The method of claim 11, further comprising the step of determining whether to

send the second data set to the second network node of the plurality of

23

10

15

20

25

30

WO 2004/092969

20.

21.

22.

23.

24.

25.

26.

27.

PCT/US2004/010646

network nodes if a search of a database finds no record containing both an
address of the second network node and the checksum.

A software arrangement for providing pattern-based decentralized network
management, wherein the software arrangement, when executed by a
processing arrangement, is configured to cause the processing arrangement to
execute the steps comprising of:

receiving a first data set describing a network management program and
mobile state information at a first network node of a plurality of network
nodes;

determining whether to send a second data set describing the network
management program to a second network node of the plurality of network
nodes, wherein the second network node is connected to the first network
node;

transmitting the mobile state information to the second network node; and
selectively transmitting the second data set based upon the determination to
the second network node.

The software arrangement of claim 20, further comprising the step of
executing the network management program, which is configured to perform
computation and data aggregation.

The software arrangement of claim 20, wherein the first data set and the
second data set are one of the same and different.

The software arrangement of claim 20, further comprising the step of
receiving a checksum associated with the network management program.
The software arrangement of claim 23, further comprising the step of
compiling the first data set creating the second data set.

The software arrangement of claim 24, further comprising the step of

" comparing the second data set with the checksum.

The software arrangement of claim 20, wherein the first data set is a source
code file describing the network management program.

The software arrangement of claim 20, further comprising the step of creating
a record in a database recording an address of the second network node and

the checksum.

24

WO 2004/092969 PCT/US2004/010646

28.

The software arrangement of claim 20, further comprising the step of
determining whether to send the second data set to the second network node of
the plurality of network nodes if a search of a database finds no record

containing both an address of the second network node and the checksum.

25

WO 2004/092969 PCT/US2004/010646

104

108

(Prior Art)
100

Fig. 1A

122 124 124 ‘ 124

(Prior Art)
120

Fig. 1B

1/11

WO 2004/092969

148
146

(PRIOR ART)
140

Fig. 1C

(PRIOR ART)
1860

Fig. 1D

2/11

PCT/US2004/010646

WO 20

240

04/092969

216

216 \

\

214 \

220

202 \\

240

240

SN

PCT/US2004/010646

AN 216
Active \
214\ Node \
Active Active
Node , 214 < Node
\ W
\m \
\ 210 \
Router
206 T 230
\ Router
212 :

Active \

Node \
Active

/ Node

/ 204 ‘
Network Management \
Station '

Code
Server

D
o

Fig. 2

3/11

WO 2004/092969 PCT/US2004/010646

306

308

4/11

WO 2004/092969

206 \

402 \

N

Network Management

Station

{

Management Program
Exscution Resuite

Secure Code,

PCT/US2004/010646

Active Node Management Commands

N

Fig. 4

511

\ | 24
v
Source Code »
Active Node Manager |
414 Execution Results Management Commands ﬁ04
; 406 /
416 —
Preprocessor |«
* / 408 410 \
418 |
] Execution Source, Statey, | Transport |g—{Soutce.State
Binaries Environment Accoss Source, State,,
P ailure Events Point
: 412
420
N Device /
Management Manager
Operation A
Results
Local
Program
States Active Node Engine
Active Node
' SNMP
/ ot SNMP Sets
422
208

WO 2004/092969

502

502
\

Downlozad data to
start node

;

504
AN

Store source code
and {ransmit to
preprocessor

!

506
\

Compile new source
code and verify data

508

PCT/US2004/010646

/ 509

Compiler
encounter an
error?

YES—»

Return error code to
Network Management
Station

NO

v

510
\

Invoke execution
environment

]

512
\

Dynamically load the
program and
instantiate the pattern
and aggregator
objects

6/11

WO 2004/092969 PCT/US2004/010646

514

517 \

NO Return error

code

Program binaries
in binary reposatory?

516 \

Preprocessor directly invokes
the execution environment

N

Execution environment
dynamically loads the program
and instantiates the pattern and
aggregator objects

520 \ l
Execution environment creates
a system wide cookie

N

Relinquish control to the
device manager

-
o
(o]

711

WO 2004/092969 PCT/US2004/010646

524 \

Device manager determines
information about routers
connected to the router
associated with the start node

526 \
Return control and
active node addresses

to the execution environment

528 \

‘Execution environment
concludes active execution
cycle, requests transmission
of data, and sends list of
active node addresses

8/11

WO 2004/092969 PCT/US2004/010646

530

Additional addresses NO
in list of active node
addresses?
532
Does active
node at current active NO

node address have copy of
executable?

538
\ v

Transmit executable state

536 \\

Transmit state information

{

and cookie to active node information and cookie to
at current active node active node at current
address active node address

A 4

Increment to next address
in list of addresses

o
o
o

9/11

WO 2004/092969

/ 602

. . Record information 604
Receive lightweight - v
mobile agent pe.rtal.mng to
originating node

PCT/US2004/010646

Begin

Store execuizable of
the new network
management program

606

L

608

Invoke execution
environment

610

Has active
node participated in

612
current execution of new NO

program? v
Dynamically load the

program and

instantiate the pattern
Read program's local and aggregator
state variables from objects

local program shares
repository

;

Dynamically load the
pattern and
aggregator objects
and execute

l

Begin execution of
step 522 of process
500 of F.Y. 5B

614

616

(@)
o
(@]

Fig. 6

10/11

WO 2004/092969 PCT/US2004/010646
112 224 72!?\\
10,000
], 00
j0b
7@ —]

o)

1111

INTERNATIONAL SEARCH REPORT

International appli‘cation No.

PCT/US04/10646

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GOSF 15/173
US CL 769/223

According to International Patent Classification (JPC) or to both national classification and JPC

B. FIELDS SEARCHED

U.S. : 709/223

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum decurnentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

“A” document defining the general state of the art which is not considered to be
of particular relevance

“B" earlier application or patent published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“O” document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than the
priority date claimed

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
XP US 6,611,864 B2 (PUTZOLU et al) 26 August 2003 (26.08.2003), column 1, lines 7-9, 1,2,7,10,11, 12,
- 33-38, 52-59; column 2, lines 59-67; column 3, lines 38-42, 61-67; column 4, lines 1-4, 17, 19-21, 26, and 28
Y.P 11-14, 41-45; column 5 lines 43-column 8, line 53. —mmamaee
4-6, 8, 9, 14-16, 18,
23-26, and 27
Y,P US 6,704,730 B2 (MOULTON et al) 09 March 2004 (09.03.2004), column 2, line 63- 4-6, 9, 14-16, 18, 23-
column 3, line 13, column 11, lines 9-11. 25, and 27
Y,P US 6,681,243 B1 (PUTZOLU et al) 20 Jammary 2004 (20.01.2004), column 15, lines 36- 8
39. |
D Further documents are listed in the continuation of Box C. D See patent family annex.
* Special categories of cited docments: “T” later document published after the international filing date or priority

date and not in conflict with the application but cited to understand the
principle or theory wnderlying the invention

“X» document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

«y» d

it of particular rel ; the cl d invention cannot be
idered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the ant

“&” document member of the same patent famity

Date of the actual completion of the international search
18 August 2004 (18.08.2004)

Date of mailing of the international search report

08 SEP 2004

Name and mailing address of the ISA/US
Mazil Stop PCT, Attn: ISA/US
Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No. (703) 305-3230

Hosain T Alam QMFO‘@
Telephone No. 703-305-3900

Authorized officer, % Wa’(
U

Form PCT/ISA/210 (second sheet) (July 1998)

fonal application No.
INTERNATIONAL SEARCH REPORT International application No

PCT/US04/10646

Box I Observations where certain claims were found unsearchable (Continuation of Ttem 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasens:

1. D Claim Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Xl ClaimNos.: 3,13 and 22
because they relate to parts of the international application that do not comply with the prescribed requirements to
such an extent that no meaningful international search can be carried out, specifically:
Please See Continuation Sheet

3. D Claim Nos.: o
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule
6.4(a).

BoxII Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found muitiple inventions in this international application, as follows:

1. D As all required additional search fees were timely paid by the applicant, this international search report covers all
searchable claims.
2. [_—I As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite
D payment of any additional fee.

As only some of the required additional search fees were timely paid by the applicant, this international search
report covers only those claims for which fees were paid, specifically claims Nos.:

4. I:l No required additional search fees were timely paid by the applicant. Consequently, this international search report
is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest l___—_l The additional search fees were accompanied by the applicant’s protest.
[:I No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (contimation of first sheet(1)) (July 1998)

PCT/US04/10646
INTERNATIONAL SEARCH REPORT

Continuation of Box I Reason 2:
Claims 3, 13, and 22 are objected to under PCT Rule 66.2(a)(v) as lacking clarity under PCT Article 6 because claim 3, 13, and 22
are indefinite for the following reason(s): two sets of data cannot be the “same” and also be “different”.

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

