发明名称
含有甲硫氨酸的水性胰岛素制备物

摘要
本发明涉及具有胰岛素、胰岛素类似物或胰岛素衍生物，以及甲硫氨酸的含水药物制剂；还涉及其产生，其用于治疗糖尿病的用途，以及用于治疗糖尿病的药剂。
1. 一种含水药物制剂，其包含胰岛素、胰岛素类似物或胰岛素衍生物、或其药理学可容忍盐，以及甲硫氨酸。

2. 如权利要求 1 中所要求保护的药物制剂，所述胰岛素选自含有甘氨酸 (Gly) (A21)，丙氨酸 (Arg) (B31)、丙氨酸 (Arg) (B32) 人胰岛素、甘氨酸 (Glu) (B29) 人胰岛素、甘氨酸 (Asp) (B28) 人胰岛素、甘氨酸 (Lys) (B28) 人胰岛素、甘氨酸 (Pro) (B29) 人胰岛素、人胰岛素以及式 I 的胰岛素类似物的组。

3. 如权利要求 1 中所要求保护的药物制剂，所述肽类似物选自含有 Gly (A21)，Arg (B31)、Arg (B32) 人胰岛素、Lys (B3)、Glu (B29) 人胰岛素、Asp (B28) 人胰岛素、Lys (B28) 人胰岛素、Des (B30) 人胰岛素以及式 I 的肽类似物的组。

A0 为 Cys 或 Gly；
A5 为 Asp、Gln 或 Glu；
A15 为 Asp、Glu 或 Gln；
A(18) 为 Asp、Glu 或 Asn；
B-1 为 Asp、Glu 或氨基酸；
B0 为 Asp、Glu 或化学键；
B1 为 Asp、Glu 或 Phe；
B2 为 Asp、Glu 或 Val；
B3 为 Asp、Glu 或 Asn；
B4 为 Asp、Glu 或 Gln；
B29 为 Lys 或化学键；
B30 为 Thr 或化学键；
B31 为 Arg、Lys 或化学键；
B32 为 Arg-酰胺、Lys-酰胺或氨基。

其中，含有 A5、A15、A18、B-1、B0、B1、B2、B3 和 B4 的组中的两个氨基酸残基同时且彼此独立地为 Asp 或 Glu。

4. 如权利要求 3 中所要求保护的药物制剂，其中所述胰岛素类似物选自下组：
Arg (A0)、His (A8)、Glu (A5)、Asp (A18)、Gly (A21)、Arg (B31)、Arg (B32) -NH₂ 人胰岛素、Arg (A0)、His (A8)、Glu (A5)、Asp (A18)、Gly (A21)、Arg (B31)、Lys (B28) -NH₂ 人胰岛素、Arg (A0)、His (A8)、Glu (A5)、Asp (A18)、Gly (A21)、Arg (B31)、Arg (B32) -NH₂ 人胰岛素、Arg (A0)、His (A8)、Glu (A5)、Asp (A18)、Gly (A21)、Arg (B31)、Lys (B28) -NH₂ 人胰岛素、Arg (A0)、His (A8)、Glu (A5)、Asp (A18)、Gly (A21)、Arg (B31)、Arg (B32) -NH₂ 人胰岛素、
5. 如权利要求1中所要求保护的药物制剂，所述胰岛素类似物选自含有式I的胰岛素类似物的组，
其中，
A-1 是 Lys、Arg 或氨基；
A0 是 Lys、Arg 或化学键；
A1 是 Arg 或 Gly；
A5 是 Asp、Glu 或 Gln；
A15 是 Asp、Glu 或 Gln；
A18 是 Asp、Glu 或 Asn；
A21 是 Ala、Ser、Thr 或 Gly；
B-1 是 Asp、Glu 或氨基；
B0 是 Asp、Glu 或化学键；
B1 是 Asp、Glu、Phe 或化学键；
B3 是 Asp、Glu 或 Asn；
B4 是 Asp、Glu 或 Gln；
B29 是 Arg、Lys 或选自含有氨基酸 Phe、Ala、Thr、Ser、Val、Leu、Glu 或 Asp 的组的氨基酸、或化学键；
B30 是 Thr 或化学键；
B31 是 Arg、Lys 或化学键；
B32 是 Arg-酰胺或 Lys-酰胺。
其中，不多于一个选自含有 A5、A15、A18、B-1、B0、B1、B2、B3 和 B4 的组的氨基酸残基同时且彼此独立地为 Asp 或 Glu。

6. 如权利要求 5 中所要求保护的药物制剂，其中所述胰岛素类似物选自下组：
Arg(A-1)、Arg(A0)、Glu(A5)、His(A8)、Gly(A21)、Arg(B30)-NH2 人胰岛素、
Arg(A-1)、Arg(A0)、Glu(A5)、His(A8)、Gly(A21)、Lys(B30)-NH2 人胰岛素、
Arg(A-1)、Arg(A0)、Glu(A15)、His(A8)、Gly(A21)、Arg(B30)-NH2 人胰岛素、
Arg(A-1)、Arg(A0)、Glu(A15)、His(A8)、Gly(A21)、Lys(B30)-NH2 人胰岛素、
Arg(A-1)、Arg(A0)、Asp(A18)、His(A8)、Gly(A21)、Arg(B30)-NH2 人胰岛素、
Arg(A-1)、Arg(A0)、Asp(A18)、His(A8)、Gly(A21)、Arg(B30)-NH2 人胰岛素、
Arg(A-1)、Arg(A0)、His(A8)、Gly(A21)、Glu(B0)、Arg(B30)-NH2 人胰岛素、
Arg(A-1)、Arg(A0)、His(A8)、Gly(A21)、Glu(B0)、Lys(B30)-NH2 人胰岛素、
Arg(A-1)、Arg(A0)、His(A8)、Gly(A21)、Asp(B3)、Arg(B30)-NH2 人胰岛素、

4
Arg(A-1), Arg(A0), His(A8), Gly(A21), Asp(B3), Lys(B30)－NH₂ 人胰岛素、
Arg(A-1), Arg(A0), His(A8), Gly(A21), Glu(B4), Arg(B30)－NH₂ 人胰岛素、
Arg(A-1), Arg(A0), His(A8), Gly(A21), Glu(B4), Lys(B30)－NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Arg(B31), Arg(B32)－NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Arg(B31), Lys(B32)－NH₂ 人胰岛素、
Arg(A0), Glu(A5), His(A8), Gly(A21), Arg(B31), Arg(B32)－NH₂ 人胰岛素、
Arg(A0), Glu(A5), His(A8), Gly(A21), Arg(B31), Lys(B32)－NH₂ 人胰岛素、
Arg(A0), Asp(A18), His(A8), Gly(A21), Arg(B31), Arg(B32)－NH₂ 人胰岛素、
Arg(A0), Asp(A18), His(A8), Gly(A21), Arg(B31), Lys(B32)－NH₂ 人胰岛素、
Arg(A0), Glu(A15), His(A8), Gly(A21), Arg(B31), Arg(B32)－NH₂ 人胰岛素、
Arg(A0), Glu(A15), His(A8), Gly(A21), Arg(B31), Lys(B32)－NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Arg(B31), Lys(B32)－NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Asp(B3), Arg(B31), Arg(B32)－NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Asp(B3), Arg(B31), Lys(B32)－NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Lys(B32)－NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Glu(B4), Arg(B31), Arg(B32)－NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Glu(B4), Arg(B31), Lys(B32)－NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Glu(B4), Arg(B31), Lys(B32)－NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Glu(B0), Arg(B31), Arg(B32)－NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Glu(B0), Arg(B31), Lys(B32)－NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Arg(B30)－NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Lys(B30)－NH₂ 人胰岛素、
Arg(A-1), Arg(A0), His(A8), Gly(A21), Arg(B30)－NH₂ 人胰岛素、
Arg(A-1), Arg(A0), His(A8), Gly(A21), Lys(B30)－NH₂ 人胰岛素、
Arg(A0), Arg(A1), His(A8), Gly(A21), Arg(B30)－NH₂ 人胰岛素、
Arg(A0), Arg(A1), His(A8), Gly(A21), Lys(B30)－NH₂ 人胰岛素、
His(A8), Gly(A21), Arg(B31), Arg(B32)－NH₂ 人胰岛素。

7. 如权利要求 1 中所要求保护的药物制剂，所述胰岛素衍生物选自下组：B29-N- 肉豆蔻酰基-lys(B30) 人胰岛素、B29-N- 棕榈酰基-lys(B30) 人胰岛素、B29-N- 肉豆蔻酰基人胰岛素、B29-N- 棕榈酰基人胰岛素、B28-N- 肉豆蔻酰基 lys(B30)prolys(B30) 人胰岛素、B28-N- 棕榈酰基 lys(B30)prolys(B30) 人胰岛素、B30-N- 肉豆蔻酰基 thrlys(B30) 人胰岛素、B30-N- 棕榈酰基 thrlys(B30) 人胰岛素、B29-N-NN-双氨态 lys(B30)-谷氨酰基-lys(B30) 人胰岛素、B29-N-(w-羟基十七烷酰基)-lys(B30) 人胰岛素、B29-N-(w-羟基十七烷酰基)-lys(B30) 人胰岛素，以及 B29-N-(w-羟基十七烷酰基) 人胰岛素。

8. 如权利要求 1 ～ 7 中一项或多项所要求保护的药物制剂，其包含：
0.001 ～ 0.2mg/ml 的锌，
0.1 ～ 5.0mg/ml 的防腐剂，以及
5.0 ～ 100mg/ml 的等渗剂，以及
具有 5 或更小的 pH。

9. 如权利要求 1 ～ 8 中一项或多项所要求保护的药物制剂，其包含选自含有酚、间甲酚、氯甲酚、苯甲酚和对羟基苯甲酸酯类的组的防腐剂。

10. 如权利要求 1 ～ 9 中任一项所要求保护的药物制剂，其包含选自含有甘露醇、山梨
醇、乳糖、右旋糖、海藻糖、氯化钠和甘油的组的等渗剂。

11. 如权利要求 1 ～ 10 中任一项所要求保护的药物制剂，其具有在 pH2.5 ～ 4.5 的范围内的 pH。

12. 如权利要求 1 ～ 11 中任一项所要求保护的药物制剂，其具有在 pH3.0 ～ 4.0 的范围内的 pH。

13. 如权利要求 1 ～ 12 中任一项所要求保护的药物制剂，其具有在 pH3.75 的区域的 pH。

14. 如权利要求 1 ～ 13 中任一项所要求保护的药物制剂，所述胰岛素、胰岛素类似物和 / 或胰岛素衍生物以 240 ～ 3000 nmol/ml 的浓度存在。

15. 如权利要求 1 ～ 14 中任一项所要求保护的药物制剂，其包含浓度为 20 ～ 30 mg/ml 的甘油。

16. 如权利要求 1 ～ 15 中一项或多项所要求保护的药物制剂，其包含浓度为 25 mg/ml 的甘油。

17. 如权利要求 1 ～ 16 中一项或多项所要求保护的药物制剂，其包含浓度为 1 ～ 3 mg/ml 的间甲酚。

18. 如权利要求 1 ～ 17 中一项或多项所要求保护的药物制剂，其包含浓度为 2 mg/ml 的间甲酚。

19. 如权利要求 1 ～ 18 中一项或多项所要求保护的药物制剂，其包含浓度为 0.01 或 0.03 或 0.08 mg/ml 的锌。

20. 如权利要求 1 ～ 19 中一项或多项所要求保护的药物制剂，其还包含肽高血糖素样肽 1 (GLP1) 或其类似物或衍生物，或 Exendin-3 和 / 或 Exendin-4 或其类似物或衍生物。

21. 如权利要求 20 所要求保护的药物制剂，其还包含 Exendin-4。

22. 如权利要求 20 所要求保护的药物制剂，其中 Exendin-4 的类似物选自下组：

H-desPro^{36}-Exendin-4-Lys_{6}-NH_{2}、
H-des(Pro^{36,37})-Exendin-4-Lys_{6}-NH_{2} 以及
H-des(Pro^{36,37})-Exendin-4-Lys_{6}-NH_{2}。

或其药理学可容忍盐。

23. 如权利要求 20 所要求保护的药物制剂，其中 Exendin-4 的类似物选自下组：

desPro^{36}[Asp^{28}]Exendin-4(1-39)、
desPro^{36}[IsoAsp^{28}]Exendin-4(1-39)、
desPro^{36}[Met(0)^{14}, Asp^{28}]Exendin-4(1-39)、
desPro^{36}[Met(0)^{14}, IsoAsp^{28}]Exendin-4(1-39)、
desPro^{36}[Trp(0)^{25}, Asp^{28}]Exendin-2(1-39)、
desPro^{36}[Trp(0)^{25}, IsoAsp^{28}]Exendin-2(1-39)、
desPro^{36}[Met(0)^{14}Trp(0)^{25}, Asp^{28}]Exendin-4(1-39) 以及
desPro^{36}[Met(0)^{14}Trp(0)^{25}, IsoAsp^{28}]Exendin-4(1-39)。

或其药理学可容忍盐。

24. 如权利要求 23 所要求保护的药物制剂，其中所述肽 Lys_{6}-NH_{2} 附接于 Exendin-4 的类似物的 C-末端。
25. 如权利要求20所要求保护的药物制剂，其中Exendin-4的类似物选自下组：
H-(Lys)_6-des Pro^{35}[Asp^{38}]Exendin-4(1-39)-Lys_g-NH_2，
des Asp^{38}Pro^{36}, Pro^{37}, Pro^{38}Exendin-4(1-39)-NH_2，
H-(Lys)_6-des Pro^{35}, Pro^{37}, Pro^{38}[Asp^{38}]Exendin-4(1-39)-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Asp^{38}]Exendin-4(1-39)-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_g-des Pro^{36}, Pro^{37}, Pro^{38}[Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Trp(0_2)]^{25}, Asp^{38}]Exendin-4(1-39)-Lys_g-NH_2，
H-des Asp^{38}Pro^{36}, Pro^{37}, Pro^{38}[Trp(0_2)]^{25}Exendin-4(1-39)-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Trp(0_2)]^{25}, Asp^{38}]Exendin-4(1-39)-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Trp(0_2)]^{25}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Trp(0_2)]^{25}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Trp(0_2)]^{25}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-Lys_g-NH_2，
des Met(0)]^{14}Asp^{38}Pro^{36}, Pro^{37}, Pro^{38}Exendin-4(1-39)-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Trp(0_2)]^{25}, Asp^{38}]Exendin-4(1-39)-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Trp(0_2)]^{25}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Trp(0_2)]^{25}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Trp(0_2)]^{25}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-Lys_g-NH_2，
des Asp^{38}Pro^{36}, Pro^{37}, Pro^{38}Exendin-4(1-39)-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Trp(0_2)]^{25}, Asp^{38}]Exendin-4(1-39)-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Trp(0_2)]^{25}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-Lys_g-NH_2，
des Asp^{38}Pro^{36}, Pro^{37}, Pro^{38}Exendin-4(1-39)-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-Lys_g-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-Lys_g-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-Lys_g-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-Lys_g-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-Lys_g-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-Lys_g-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-Lys_g-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-Lys_g-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-Lys_g-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-Lys_g-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-Lys_g-NH_2，
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-(Lys)_g-NH_2，
H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(0)]^{14}, Asp^{38}]Exendin-4(1-39)-Lys_g-NH_2，
(b) 调节 pH。

30. 如权利要求 1 ～ 26 中一项或多项所要求保护的制剂用于治疗糖尿病的用途。

31. 一种用于治疗糖尿病的药剂，其包含如权利要求 1 ～ 26 中一项或多项所要求保护的制剂。
含有甲硫氨酸的水性胰岛素制备物

[0001] 本发明涉及具有胰岛素、胰岛素类似物或胰岛素衍生物、以及甲硫氨酸的含水药物制剂，并且还涉及其制备，用于治疗糖尿病的途径，还涉及用于治疗糖尿病的药剂。

[0002] 全世界患糖尿病的人的数量逐渐增长。他们中有很多被称为Ⅰ型糖尿病患者，对于这些人对缺乏的内分泌胰岛素分泌的替代是目前唯一有可能的疗法。那些受累者依赖于胰岛素注射维持生命，通常一天数次。Ⅱ型糖尿病与Ⅰ型糖尿病形成对比，其在于不总是有胰岛素的缺乏，但是在大量病例中，特别是在晚期，认为用胰岛素（在适当的情况下与口服抗糖尿病药物组合）治疗是最有利的治疗形式。

[0003] 在健康个体中，胰的胰岛素释放与血糖浓度严格同联。血糖水平升高（如在餐后发生的）被胰岛素分泌的相应升高快速补偿。在禁食状态下，血糖水平下降至基线值，其足以确保向胰岛素敏感性器官和组织持续供应葡萄糖，并在夜间保持低的肝葡萄糖生成。用外源的，通常皮下施用的胰岛素代替内源胰岛素分泌一般不能接近上述所指的血糖生理学调节质量。经常有血糖向上或向下偏离轨道（throw off-track）的例子，并且在其最严重形式中，这些情况可能是危及生命的。然而，另外，没有初始症状的在数年里升高的血糖水平构成相当大的健康风险。在美国的多大规模DCCT研究（糖尿病控制和并发症试验研究组（The Diabetes Control and Complications Trial Research Group）（1993）N. Engl. J. Med. 329, 977-986）明确显示了，慢性升高的血糖水平造成晚期并发症的形成。晚期糖尿病并发症是微血管和大血管损害，其在某些情况下显示为视网膜病变、肾病、或神经病，而且导致盲、肾衰竭，和肢体损伤（loss of extremities），而且另外还与心血管病症的风险升高有关。从这点看，可以推断糖尿病疗法的改善必须主要瞄准于尽可能紧密地保持血糖在生理学范围内。依照强化胰岛素疗法的概念，这要依靠一天数次注射快速作用性和缓慢作用性胰岛素制备物来实现。在进餐时给予快速作用性药剂，以补偿餐后的血糖升高。缓慢作用性基础胰岛素旨在确保胰岛素基础供应（特别是在夜间），而不导致低血糖症。

[0004] 胰岛素是一种由51个氨基酸构成的多肽，这些氨基酸分成两条氨基酸链：A链（具有21个氨基酸）和B链（具有30个氨基酸）。所述链通过两个二硫键连接在一起。已经采用二肽赖制备物进行了多年的糖尿病治疗。此类制备物不仅使用天然存在的胰岛素，而且新近还使用胰岛素衍生物和胰岛素类似物。

[0005] 胰岛素类似物是天然存在的胰岛素，即人胰岛素或动物胰岛素的类似物，其通过用其它氨基酸替换至少一个天然存在的氨基酸残基和/or从相应的、在其它方面相同的天然存在的胰岛素添加/or删除至少一个氨基酸残基而有所不同。所讨论的氨基酸也可以是氨基酸衍生物。

[0006] 胰岛素衍生物是通过化学修饰获得的天然存在的胰岛素或胰岛素类似物的衍生物。例如，化学修饰在于将一个或多个限定的化学基团添加至一个或多个氨基酸。一般而言，与人胰岛素相比，胰岛素衍生物和胰岛素类似物的活性有某种程度的改变。

有不同氨基酸，优选脯氨酸，但非谷氨酸的胰岛素类似物。EP 0 375 437 涵盖在 B28 处具有赖氨酸或精氨酸的胰岛素类似物，其任选地也可以在 B3 和 / 或 A21 处修饰。

【0008】EP 0 419 504 描述了通过修饰 B3 中的天冬酰胺和位置 A5、A15、A18 或 A21 中的至少一个别的氨基酸来保护胰岛素类似物免于化学修饰。

【0009】一般而言，与人胰岛素相比，胰岛素衍生物和胰岛素类似物具有在某种程度上改变的作用。

【0012】已经发现当胰岛素类似物具有以下特征时，这类胰岛素类似物导致上述期望的基础时间 / 活性概：

【0013】- 所述 B 链末端包括 (composed of) 酰胺化的碱性氨基酸残基例如赖氨酸或精氨酸酰胺，即在 B 链末端的酰胺化的碱性氨基酸残基中，所述末端氨基酸的羧基基团为其酰胺化的形式，以及

【0014】- 胰岛素 A 链的 N- 末端氨基酸残基是赖氨酸或精氨酸残基，以及

【0015】- 位置 A8 的氨基酸被组氨酸残基占据，以及
[0016] 位置 A21 的氨基酸被甘氨酸残基占据，以及
[0017] 在位置 A5、A15、A18、B-1、B0、B1、B2、B3 和 B4 中的每一个中，存在两个中性氨基酸
被酸性氨基酸替代，添加两个带负电的氨基酸残基，或者一个这样的替代以及一个这样的
添加。
[0018] 对于所有胰岛素、胰岛素类似物和胰岛素衍生物的含水制剂来说共同的是上述蛋
白质不是完全化学稳定的，而是作为时间、储存温度、以及制剂经历的运动、等等的函数，存
在一系列可能出现的分子过程，其影响所述胰岛素、胰岛素类似物和胰岛素衍生物，这对于
制剂的质量来说是有害的。损害胰岛素、胰岛素类似物以及胰岛素衍生物的化学稳定性
的一种物质是氧，由于氧存在与空气中，其与所讨论的制剂的接触是不可避免的，尤其是包装
中的制剂用于多次给药的情况下。假设氧的氧化能力等给化学稳定性带来损害。
[0019] 令人惊奇的是，已经发现向胰岛素、胰岛素类似物和胰岛素衍生物的制剂添加氨
基酸甲硫氨酸致使这些蛋白质的一部分的稳定性改善。
[0020] 据此，本发明提供一种含水药物制剂，其包含胰岛素、胰岛素类似物或胰岛素衍生
物，或其药理学可容忍盐，以及甲硫氨酸。
[0021] 本发明还提供如上所述的药物制剂，所述胰岛素选自含有人胰岛素、猪胰岛素、和
牛胰岛素的组。
[0022] 本发明还提供如上所述的药物制剂，所述胰岛素类似物选自含有 Gly (A21)，
Arg (B31)，Arg (B32) 人胰岛素、Lys (B3)，Glu (B29) 人胰岛素、Asp (B28) 人胰岛素、Lys (B28)
Pro (B29) 人胰岛素、Des (B30) 人胰岛素以及式 I 的胰岛素类似物的组。
[0023]
[0024] 其中，
[0025] A0 是 Lys 或 Arg；
[0026] A5 是 Asp、Gln 或 Glu；
[0027] A15 是 Asp、Glu 或 Gln；
[0028] A18 是 Asp、Glu 或 Asn；
[0029] B-1 是 Asp、Glu 或氨基；
[0030] B0 是 Asp、Glu 或化学键；
[0031] B1 是 Asp、Glu 或 Phe；
[0032] B2 是 Asp、Glu 或 Val；
[0033] B3 是 Asp、Glu 或 Asn；
B4 是 Asp、Glu 或 Gln；
B29 是 Lys 或化学键；
B30 是 Thr 或化学键；
B31 是 Arg、Lys 或化学键；
B32 是 Arg-酰胺、Lys-酰胺或氨基。
其中，含有 A5、A15、A18、B-1、B0、B1、B2、B3 和 B4 的组中的两个氨基酸残基同时
且彼此分别为 Asp 或 Glu，尤其是其中所述胰岛素类似物选自下组：
Arg(A0)，His(A8)，Asp(A18)，Gly(A21)，Arg(B31)，Arg(B32)-NH₂ 人胰岛素、
Arg(A0)，His(A8)，Glu(A5)，Asp(A18)，Gly(A21)，Arg(B31)，Lys(B32)-NH₂ 人胰岛素、
Arg(A0)，His(A8)，Glu(A15)，Asp(A18)，Gly(A21)，Arg(B31)，Arg(B32)-NH₂ 人胰岛素、
Arg(A0)，His(A8)，Glu(A15)，Asp(A18)，Gly(A21)，Arg(B31)，Arg(B32)-NH₂ 人胰岛素、
Arg(A0)，His(A8)，Glu(A5)，Glu(A15)，Gly(A21)，Arg(B31)，Arg(B32)-NH₂ 人胰岛素、
Arg(A0)，His(A8)，Glu(A5)，Glu(A15)，Gly(A21)，Arg(B31)，Lys(B32)-NH₂ 人胰岛素、
Arg(A0)，His(A8)，Glu(A5)，Gly(A21)，Asp(B3)，Arg(B31)，Arg(B32)-NH₂ 人胰岛素、
Arg(A0)，His(A8)，Glu(A5)，Gly(A21)，Asp(B3)，Arg(B31)，Arg(B32)-NH₂ 人胰岛素、
Arg(A0)，His(A8)，Glu(A15)，Gly(A21)，Asp(B3)，Arg(B31)，Arg(B32)-NH₂ 人胰岛素、
Arg(A0)，His(A8)，Glu(A15)，Gly(A21)，Asp(B3)，Arg(B31)，Lys(B32)-NH₂ 人胰岛素、
Arg(A0)，His(A8)，Asp(A18)，Gly(A21)，Asp(B3)，Arg(B31)，Arg(B32)-NH₂ 人胰岛素、
Arg(A0)，His(A8)，Asp(A18)，Gly(A21)，Asp(B3)，Arg(B31)，Lys(B32)-NH₂ 人胰岛素、
Arg(A0)，His(A8)，Gly(A21)，Asp(B3)，Glu(B4)，Arg(B31)，Arg(B32)-NH₂ 人胰岛素、
Arg(A0)，His(A8)，Gly(A21)，Asp(B3)，Glu(B4)，Arg(B31)，Lys(B32)-NH₂ 人胰岛素、
Arg(A0)，His(A8)，Glu(A5)，Gly(A21)，Glu(B4)，Arg(B31)，Arg(B32)-NH₂ 人胰岛素、
Arg(A0)，His(A8)，Glu(A5)，Gly(A21)，Glu(B4)，Arg(B31)，Lys(B32)-NH₂ 人胰岛素、
Arg(A0), His(A8), Glu(A15), Gly(A21), Glu(B4), Arg(B31), Arg(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Glu(A15), Gly(A21), Glu(B4), Arg(B31), Lys(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Asp(A18), Gly(A21), Glu(B4), Arg(B31), Arg(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Asp(A18), Gly(A21), Glu(B4), Arg(B31), Lys(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Glu(A5), Gly(A21), Glu(B0), Arg(B31), Arg(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Glu(A5), Gly(A21), Glu(B0), Arg(B31), Lys(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Glu(A15), Gly(A21), Glu(B0), Arg(B31), Arg(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Glu(A15), Gly(A21), Glu(B0), Arg(B31), Lys(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Asp(A18), Gly(A21), Glu(B0), Arg(B31), Arg(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Asp(A18), Gly(A21), Glu(B0), Arg(B31), Lys(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Glu(A5), Gly(A21), Asp(B1), Arg(B31), Arg(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Glu(A5), Gly(A21), Asp(B1), Arg(B31), Lys(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Glu(A15), Gly(A21), Asp(B1), Arg(B31), Arg(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Glu(A15), Gly(A21), Asp(B1), Arg(B31), Lys(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Asp(A18), Gly(A21), Asp(B1), Arg(B31), Arg(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Asp(A18), Gly(A21), Asp(B1), Arg(B31), Lys(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Glu(B0), Asp(B1), Arg(B31), Arg(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Glu(B0), Asp(B1), Arg(B31), Lys(B32) -NH₂ 人胰岛素、
Arg(A0), His(A8), Asp(A18), Gly(A21), Asp(B3), Arg(B30), Arg(B31) -NH₂ 人胰岛素、
Arg(A0), His(A8), Asp(A18), Gly(A21), Asp(B3), Arg(B30), Lys(B31) -NH₂ 人胰
说明 书

[0076] 本发明还提供如上所述的药物制剂，所述胰岛素类似物选自含有式II的胰岛素类似物的组，

[0077]

```
A-1 A0  A1 IVE A5 CCH SICSLY A15 LE A18 YC A21
  1  5 10 15
  S  (SEQ ID NO: 3) S

B-1 B0  B1 V B3 B4 HLG SHELVEALYLVCGERGFY
  1  5 10 15 20
  S  (SEQ ID NO: 4) S

TP B29 B30 B31 B32
  1  5 10 15
  B-链
```

[0078] 其中，

[0079] A-1 是 Lys、Arg 或氨基酸；
[0080] A0 是 Lys、Arg 或化学键；
[0081] A1 是 Arg 或 Gly；
[0082] A5 是 Asp、Glu 或 Glc；
[0083] A15 是 Asp、Glu 或 Glc；
[0084] A18 是 Asp、Glu 或 Asn；
[0085] A21 是 Ala、Ser、Thr 或 Gly；
[0086] B-1 是 Asp、Glu 或氨基酸；
[0087] B0 是 Asp、Glu 或化学键；
[0088] B1 是 Asp、Glu、Phe 或化学键；
[0089] B3 是 Asp、Glu 或 Asn；
[0090] B4 是 Asp、Glu 或 Glc；
[0091] B29 是 Arg、Lys 或选自含有氨基酸 Phe、Ala、Thr、Ser、Val、Leu、Glu 或 Asp 的组的氨基酸、或化学键；
[0092] B30 是 Thr 或化学键；
[0093] B31 是 Arg、Lys 或化学键；
[0094] B32 是 Arg-酰胺或 Lys-酰胺，
[0095] 其中，选自含有 A5、A15、A18、B-1、B0、B1、B2、B3 和 B4 的组的组的不多于一个氨基酸或氨基酸残基同时且彼此分别为 Asp 或 Glc，尤其是其中所述胰岛素类似物选自下组：
[0096] Arg(A-1), Arg(A0), Glu(A5), His(A8), Gly(A21), Arg(B30)-NH2 人胰岛素、
[0097] Arg(A-1), Arg(A0), Glu(A5), His(A8), Gly(A21), Lys(B30)-NH2 人胰岛素、
[0098] Arg(A-1), Arg(A0), Glu(A15), His(A8), Gly(A21), Arg(B30)-NH2 人胰岛素、
[0099] Arg(A-1), Arg(A0), Glu(A15), His(A8), Gly(A21), Lys(B30)-NH2 人胰岛素、
[0100] Arg(A-1), Arg(A0), Asp(A18), His(A8), Gly(A21), Arg(B30)-NH2 人胰岛素、
[0101] Arg(A-1), Arg(A0), Asp(A18), His(A8), Gly(A21), Arg(B30)-NH2 人胰岛素、

14
Arg(A-1), Arg(A0), His(A8), Gly(A21), Glu(B0), Arg(B30)-NH₂ 人胰岛素、
Arg(A-1), Arg(A0), His(A8), Gly(A21), Glu(B0), Lys(B30)-NH₂ 人胰岛素、
Arg(A-1), Arg(A0), His(A8), Gly(A21), Asp(B3), Arg(B30)-NH₂ 人胰岛素、
Arg(A-1), Arg(A0), His(A8), Gly(A21), Asp(B3), Lys(B30)-NH₂ 人胰岛素、
Arg(A-1), Arg(A0), His(A8), Gly(A21), Glu(B4), Arg(B30)-NH₂ 人胰岛素、
Arg(A-1), Arg(A0), His(A8), Gly(A21), Glu(B4), Lys(B30)-NH₂ 人胰岛素、
Arg(A-1), Arg(A0), His(A8), Gly(A21), Arg(B31), Arg(B32)-NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Arg(B31), Lys(B32)-NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Arg(B31), Lys(B32)-NH₂ 人胰岛素、
Arg(A0), Glu(A5), His(A8), Gly(A21), Arg(B31), Arg(B32)-NH₂ 人胰岛素、
Arg(A0), Glu(A5), His(A8), Gly(A21), Arg(B31), Lys(B32)-NH₂ 人胰岛素、
Arg(A0), Asp(A18), His(A8), Gly(A21), Arg(B31), Arg(B32)-NH₂ 人胰岛素、
Arg(A0), Asp(A18), His(A8), Gly(A21), Arg(B31), Lys(B32)-NH₂ 人胰岛素、
Arg(A0), Glu(A15), His(A8), Gly(A21), Arg(B31), Arg(B32)-NH₂ 人胰岛素、
Arg(A0), Glu(A15), His(A8), Gly(A21), Arg(B31), Lys(B32)-NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Asp(B3), Arg(B31), Arg(B32)-NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Asp(B3), Arg(B31), Lys(B32)-NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Glu(B4), Arg(B31), Arg(B32)-NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Glu(B4), Arg(B31), Lys(B32)-NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Glu(B0), Arg(B31), Arg(B32)-NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Glu(B0), Arg(B31), Lys(B32)-NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Arg(B30)-NH₂ 人胰岛素、
Arg(A0), His(A8), Gly(A21), Lys(B30)-NH₂ 人胰岛素、
Arg(A-1), Arg(A0), His(A8), Gly(A21), Arg(B30)-NH₂ 人胰岛素、
Arg(A-1), Arg(A0), His(A8), Gly(A21), Lys(B30)-NH₂ 人胰岛素、
Arg(A0), Arg(A1), His(A8), Gly(A21), Arg(B30)-NH₂ 人胰岛素、
Arg(A0), Arg(A1), His(A8), Gly(A21), Lys(B30)-NH₂ 人胰岛素、
His(A8), Gly(A21), Arg(B31), Arg(B32)-NH₂ 人胰岛素、

本发明还提供如上所述的药物制剂，所述胰岛素衍生物选自下组：

本发明还提供如上所述的药物制剂，其包含：

0.001 ~ 0.2mg/ml 的锌，

0.1 ~ 5.0mg/ml 的防腐剂，以及

5.0 ~ 100mg/ml 的等渗剂，以及

具有 5 或更小的 pH。
说明书

【0136】本发明还提供如上所述的药物制剂，其包含选自含有酚、间甲酚、氯甲酚、苯甲醇和对羟基苯甲酸酯类（parabens）的组的防腐剂。

【0137】本发明还提供如上所述的药物制剂，其包含选自含有甘露醇、山梨醇、乳糖、右旋糖、海藻糖、氯化钠和甘油的组的等渗剂。

【0138】本发明还提供如上所述的药物制剂，其具有的pH值在pH 2.5～4.5的范围内，优选在pH 3.0～4.0，更优选为pH 3.75。

【0139】本发明还提供如上所述的药物制剂，所述胰岛素、胰岛素类似物和/或胰岛素衍生物以240～3000nmol/ml的浓度存在。

【0140】本发明还提供如上所述的药物制剂，其包含浓度为20～30mg/ml的甘油。

【0141】本发明还提供如上所述的药物制剂，其包含浓度为25mg/ml的甘油。

【0142】本发明还提供如上所述的药物制剂，其包含浓度为1～3mg/ml，优选为2mg/ml的间甲酚。

【0143】本发明还提供如上所述的药物制剂，其包含浓度为0.01或0.03或0.08mg/ml的锌。

【0144】本发明还提供如上所述的药物制剂，其还包含胰高血糖素样肽1（GLP1）或其类似物或衍生物，或Exendin-3和/或Exendin-4或其类似物或衍生物，优选Exendin-4。

【0145】本发明还提供如上所述的药物制剂，其中Exendin-4的类似物选自下组：

【0146】H-desPro^{36}-Exendin-4-Lys_{6}-NH_{2}。

【0147】H-des(Pro^{36,37})-Exendin-4-Lys_{7}-NH_{2}，以及

【0148】H-des(Pro^{36,37})-Exendin-4-Lys_{8}-NH_{2}。

【0149】或其药理学上可容忍盐，或其中Exendin-4的类似物选自下组：

【0150】desPro^{36}[Asp^{28}]-Exendin-4(1-39)。

【0151】desPro^{36}[IsoAsp^{28}]-Exendin-4(1-39)。

【0152】desPro^{36}[Met(0)^{14}, Asp^{28}]-Exendin-4(1-39)。

【0153】desPro^{36}[Met(0)^{14}, IsoAsp^{28}]-Exendin-4(1-39)。

【0154】desPro^{36}[Trp(0)^{25}, Asp^{28}]-Exendin-2(1-39)。

【0155】desPro^{36}[Trp(0)^{25}, IsoAsp^{28}]-Exendin-2(1-39)。

【0156】desPro^{36}[Met(0)^{14} Trp(0)^{25}, Asp^{28}]-Exendin-4(1-39)以及

【0157】desPro^{36}[Met(0)^{14} Trp(0)^{25}, IsoAsp^{28}]-Exendin-4(1-39)。

【0158】或其药理学上可容忍盐。

【0159】本发明还提供如上所述的药物制剂，其中所述肽Lys_{6}-NH_{2}附接于Exendin-4的类似物的C-末端。

【0160】本发明还提供如上所述的药物制剂，其中Exendin-4的类似物选自下组：

【0161】H-(Lys)^{6}-des Pro^{36}[Asp^{28}]-Exendin-4(1-39)-Lys_{6}-NH_{2}。

【0162】des Asp^{29}Pro^{36}, Pro^{37}, Pro^{38}Exendin-4(1-39)-NH_{2}。

【0163】H-(Lys)^{6}-des Pro^{36}, Pro^{37}, Pro^{38}[Asp^{28}]-Exendin-4(1-39)-NH_{2}。

【0164】H-Asn-(Glu)^{5} des Pro^{36}, Pro^{37}, Pro^{38}[Asp^{28}]-Exendin-4(1-39)-NH_{2}。

【0165】des Pro^{36}, Pro^{37}, Pro^{38}[Asp^{28}]-Exendin-4(1-39)-(Lys)^{6}-NH_{2}。

【0166】H-(Lys)^{6}-des Pro^{36}, Pro^{37}, Pro^{38}[Asp^{28}]-Exendin-4(1-39)-(Lys)^{6}-NH_{2}。

16
H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Asp^{28}]Exendin-4(1-39)-(Lys)_6-NH₂,
[0168] H-(Lys)_6-des Pro^{36}[Trp(O₂)_{25}, Asp^{28}]Exendin-4(1-39)-(Lys)_6-NH₂,
[0169] H-des Asp^{28}Pro^{36}, Pro^{37}, Pro^{38}[Trp(O₂)_{25}]Exendin-4(1-39)-NH₂,
[0170] H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Trp(O₂)_{25}, Asp^{28}]Exendin-4(1-39)-NH₂,
[0171] H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Trp(O₂)_{25}, Asp^{28}]Exendin-4(1-39)-NH₂,
[0172] des Pro^{36}, Pro^{37}, Pro^{38}[Trp(O₂)_{25}, Asp^{28}]Exendin-4(1-39)-(Lys)_6-NH₂,
[0173] H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Trp(O₂)_{25}, Asp^{28}]Exendin-4(1-39)-(Lys)_6-NH₂,
[0174] H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Trp(O₂)_{25}, Asp^{28}]Exendin-4(1-39)-(Lys)_6-NH₂,
[0175] H-(Lys)_6-des Pro^{36}[Met(O)_{14}, Asp^{28}]Exendin-4(1-39)-(Lys)_6-NH₂,
[0176] des Met(O)_{14}Asp^{28}Pro^{36}, Pro^{37}, Pro^{38}Exendin-4(1-39)-NH₂,
[0177] H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(O)_{14}, Asp^{28}]Exendin-4(1-39)-NH₂,
[0178] H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Met(O)_{14}, Asp^{28}]Exendin-4(1-39)-NH₂,
[0179] des Pro^{36}, Pro^{37}, Pro^{38}[Met(O)_{14}, Asp^{28}]Exendin-4(1-39)-(Lys)_6-NH₂,
[0180] H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(O)_{14}, Asp^{28}]Exendin-4(1-39)-(Lys)_6-NH₂,
[0181] H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Met(O)_{14}, Asp^{28}]Exendin-4(1-39)-(Lys)_6-NH₂,
[0182] H-(Lys)_6-des Pro^{36}[Met(O)_{14}, Trp(O₂)_{25}, Asp^{28}]Exendin-4(1-39)-(Lys)_6-NH₂,
[0183] des Asp^{28}Pro^{36}, Pro^{37}, Pro^{38}[Met(O)_{14}, Trp(O₂)_{25}]Exendin-4(1-39)-NH₂,
[0184] H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(O)_{14}, Trp(O₂)_{25}, Asp^{28}]Exendin-4(1-39)-NH₂,
[0185] H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Met(O)_{14}, Asp^{28}]Exendin-4(1-39)-NH₂,
[0186] des Pro^{36}, Pro^{37}, Pro^{38}[Met(O)_{14}, Trp(O₂)_{25}, Asp^{28}]Exendin-4(1-39)-(Lys)_6-NH₂,
[0187] H-(Lys)_6-des Pro^{36}, Pro^{37}, Pro^{38}[Met(O)_{14}, Trp(O₂)_{25}, Asp^{28}]Exendin-4(1-39)-(Lys)_6-NH₂,
[0188] H-Asn-(Glu)_5-des Pro^{36}, Pro^{37}, Pro^{38}[Met(O)_{14}, Trp(O₂)_{25}, Asp^{28}]Exendin-4(1-39)-(Lys)_6-NH₂,
[0189] 其或药理学可容忍盐。
[0190] 本发明还提供如上所述的药物制剤，其还包含Arg^{36}, Lys^{36}(N°-一谷氨酰基
(\text{N°-十六烷酰基 }))GLP-1(7-37) [利拉鲁肽 (liraglutide)] 或其药理学可容忍盐。
[0191] 本发明还提供如上所述的药物制剤，其包含浓度高至 10mg/ml，优选高至 3mg/ml
的范围的甲硫氨酸。
附图说明
[0198] 图 1: 大鼠中试 I 的新型胰岛素类似物的血糖降低效果。
[0199] 图 2: 大鼠中试 I 的新型胰岛素类似物的血糖降低效果。
[0200] 图 3: 大鼠 YKL205 的血糖降低效果。
[0201] 图 4: 大鼠 YKL205 的降血糖效果的锌依赖性。
[0202] 图 5: 大鼠中试 II 的本发明的胰岛素类似物的血糖降低效果。
[0203] 图 6: 大鼠中甘精胰岛素的血糖降低效果。

实施例：
[0204] 下述实施例意在说明本发明的概念，不具有任何限制作用。
[0205] 实施例 1: 研究利用氮、氧分散溶液，以及在标准条件下分散
[0206] 通过引入约 25% 的 0.1M HCl 和加入 0.2% 的聚山梨酯 20 储备溶液以制备溶液。接下来，添加了 SAR161271 和氯化钾储备溶液并搅拌。在 pH2 的 pH 增加 1M HCl 溶解 SAR161271。搅拌该溶液，然后添加 1M NaOH 以调节 pH 至 pH4.0。使用注射级水以补足至分批体积的 90%。接下来，搅拌搅拌向该溶液中添加甘油 85% 和间甲酚。使用注射级水以补足所需的最终重量。利用注射器上的过滤器附注过滤该溶液。将该批溶液分成三份，未用气体处理的（ungassed）作为参照），用氮气气体处理的以及用氧气气体处理的（作为阳性对照）。气体处理（gassing）通过覆盖（blanketing）正在讨论的气体来实现。
[0207] 未处理的
[0208] SAR161271 的量
[0209] 1M+5℃: 3.67mg/ml
[0210] 1M+25℃: 3.46mg/ml
[0211] 1M+37℃: 3.41mg/ml
[0212] 杂质
[0213] 1M+5℃: 3.0%
[0214] 1M+25℃: 3.6%
[0215] 1M+37℃: 5.6%
[0216] 高分子量蛋白质
[0217] 1M+5℃: 0.2%
[0218] 1M+25℃: 0.3%
[0219] 1M+37℃: 1.4%
[0220] 用氮处理的
[0221] SAR161271 的量
[0222] 1M+5℃: 3.73mg/ml
[0223] 1M+25℃: 3.50mg/ml
[0224] 1M+37℃: 3.35mg/ml
[0225] 杂质
[0226] 1M+5℃: 3.1%
[0227] 1M+25℃: 3.5%
[0228] 1M+37℃ : 5.2%
[0229] 高分子量蛋白质
[0230] 1M+5℃ : 0.2%
[0231] 1M+25℃ : 0.3%
[0232] 1M+37℃ : 1.2%
[0233] 用氧处理的
[0234] SAR161271 的量
[0235] 1M+5℃ : 3.54mg/ml
[0236] 1M+25℃ : 3.34mg/ml
[0237] 1M+37℃ : 3.26mg/ml
[0238] 杂质
[0239] 1M+5℃ : 3.2%
[0240] 1M+25℃ : 3.9%
[0241] 1M+37℃ : 7.2%
[0242] 高分子量蛋白质
[0243] 1M+5℃ : 0.2%
[0244] 1M+25℃ : 0.5%
[0245] 1M+37℃ : 2.9%
[0246] 在利用氨分散的情况下，与未处理的样品相比，在1个月之后杂质无明显减少。在利用氧分散的情况下，出现了稍更多的杂质和高分子量蛋白质。基于这些结果，选择了在标准条件下进行分散。
[0247] 实施例 2 : 研究三种不同的抗氧化剂的稳定性
[0248] 按照实施例 1 所述制备了溶液。此外，在加入甘油 85% 和间甲酚之间，向所述制剂中添加抗氧化剂 - 甲硫氨酸或谷胱甘肽或抗坏血酸以降低氧化副产物的水平。在储存刚刚 3 个月后，含有谷胱甘肽 (0.183mg/ml) 或抗坏血酸 (0.105mg/ml) 的制剂显示出明显的变色。含有甲硫氨酸 (0.089mg/ml) 的制剂完全未显示出变色，并且在 5℃ 储存 1 个月后是稳定的。
[0249] SAR161271 的量
[0250] 1M+5℃ : 3.43mg/ml
[0251] 1M+25℃ : 3.43mg/ml
[0252] 1M+37℃ : 3.53mg/ml
[0253] 杂质
[0254] 1M+5℃ : 2.9%
[0255] 1M+25℃ : 3.4%
[0256] 1M+37℃ : 5.7%
[0257] 高分子量蛋白质
[0258] 1M+5℃ : 0.2%
[0259] 1M+25℃ : 0.3%
[0260] 1M+37℃ : 1.1%
实施例3:酰胺化胰岛素衍生物的制备

实施例3～7仅用于确定式1的胰岛素类似物的生物、药理学和物理化学性质，涉及首先提供它们的制备(实施例3)，然后进行相应的检测(实施例4～7)。如下配制具有上述化合物的溶液:在具有80μg/ml锌(作为氯化锌)的1mM盐酸中以目标浓度240±5μM溶解本发明的胰岛素类似物。

用作溶解介质的组合物如下:

a)1mM盐酸

b)1mM盐酸，5μg/ml锌(作为氯化锌或盐酸添加)

c)1mM盐酸，10μg/ml锌(作为氯化锌或盐酸添加)

d)1mM盐酸，15μg/ml锌(作为氯化锌或盐酸添加)

e)1mM盐酸，30μg/ml锌(作为氯化锌或盐酸添加)

f)1mM盐酸，80μg/ml锌(作为氯化锌或盐酸添加)

g)1mM盐酸，120μg/ml锌(作为氯化锌或盐酸添加)

为了此目的，首先称量出高于基于分子量和目标浓度所需的量约30%的冻干物质的量。然后，通过分析HPLC测定现有的浓度，并之后利用具有80μg/ml锌的5mM盐酸补充溶液至所需的体积，以获得目标浓度。如果需要，将pH重新调节至3.5±0.1。随后利用HPLC进行最终分析以确保目标浓度为240±5μM，然后使用具有0.2μm过滤器附件的注射器转移完成的溶液到利用隔膜和螺纹盖(crimped cap)密闭的无菌瓶中。针对本发明的胰岛素衍生物的短期的、单次检测，没有涉及例如添加等渗剂、防腐剂或缓和物质的制剂的优化。

实施例4:评估大鼠中新型胰岛素类似物的血糖降低作用

在健康的雄性血糖正常的Wistar大鼠中检测选定的新型胰岛素类似物的血糖降低效果。雄性大鼠接受皮下注射的9nmol/kg胰岛素类似物的剂量。在即将注射所述胰岛素类似物之前，以及在注射之后最长8小时中以规则的间隔，从动物中取样血液样品，并且测定它们的血糖含量。该实验清楚地显示出(参见图1)本发明的胰岛素类似物导致了显著延迟的作用的开始，并且导致了更长的、均衡持续的作用。

实施例5:评估犬中新型胰岛素类似物的血糖降低作用

在健康的雄性血糖正常的小猎犬中检测选定的新型胰岛素类似物的血糖降低效果。雄性动物接受皮下注射的6nmol/kg和12nmol/kg的胰岛素类似物的剂量。在即将注射所述胰岛素类似物之前，以及在注射之后最长48小时中以规则的间隔，从动物中取样血液样品，并且测定它们的血糖含量。该实验清楚地显示出(参见图2)本发明的胰岛素类似物导致了显著延迟的作用的开始，并且导致了更长的、均衡持续的作用。

实施例6:评估犬中利用两倍增加的剂量时的血糖降低作用

在健康的雄性血糖正常的小猎犬中检测选定的新型胰岛素类似物的血糖降低效果。雄性动物接受皮下注射的66nmol/kg和12nmol/kg的胰岛素类似物的剂量。在即将注射所述胰岛素类似物之前，以及在注射之后最长48小时中以规则的间隔，从动物中取样血液样品，并且测定它们的血糖含量。该实验清楚地显示出(参见图3)所使用的本发明的胰岛素类似物具有剂量依赖性效果，但是尽管采用两倍增加的剂量，效果概况仍是平坦的，即没有观察到存在显著的低点(最低值)。由此可以推测与已知的延迟类胰岛素相比，本发明
的胰岛素引起显著更少的低血糖事件。

0278 实施例 7：评估犬中利用制剂中具有不同浓度锌时的血糖降低效果

0279 按照上述实施例 5 所述进行实验。如图 4 显示结果。相应地，在具有相同胰岛素浓度时，本发明胰岛素类似物，其活性曲线可以被制剂中锌离子的量所影响，其影响的方式如下：在低或较高锌含量时观察到作用的开始，且作用持续超过 24 小时。相比之下，在较弱的锌含量时，观察到作用的开始，并且胰岛素效果持续远远超过 24 小时。

0280 实施例 8：酰胺化的胰岛素衍生物的制剂

0281 实施例 8 ～ 10 仅用于确定式 11 的胰岛素类似物的生物、药理学和物理化学性质，涉及首先提供它们的制剂（实施例 8），以及然后进行检测的实施例 9 和 10）。在具有 80 μg/ml 锌（作为氯锌）的 1mM 盐酸中以目标浓度 240 ± 5 μM 溶解本发明的胰岛素类似物。为了此目的，首先称量出高于基于分子量和目标浓度所需的量，约为 30% 的冻干物质的量，然后，通过分析 HPLC 测定现有的浓度，并之后利用具有 80 μg/ml 锌的 5mM 盐酸补充溶液至所需的体积，以获得目标浓度。如果需要，将 pH 重新调节至 3.5 ± 0.1。随后利用 HPLC 进行最终分析，以确保目标浓度为 240 ± 5 μM。然后使用具有 0.2 μm 过滤器附件的注射器转移完成的溶液到利用隔膜和螺纹盖密闭的无菌瓶中。针对本发明的胰岛素衍生物的短期的、单次检测，没有涉及例如添加等渗剂、防腐剂或缓冲物质的制剂的优化。

0282 实施例 9：评估大鼠中新型胰岛素类似物的血糖降低作用

0283 在健康的雄性血糖正常的 Wistar 大鼠中检测选定的新型胰岛素类似物的血糖降低效果。雄性大鼠接受皮下注射的 9nmol/kg 的胰岛素类似物的剂量。在即将注射所述胰岛素类似物之前，以及在注射之后最短 8 小时中以规则的间隔，从动物中取样血液样品，并且测定它们的血糖含量。该实验清楚地显示出（参见图 5）本发明的胰岛素类似物导致了显著延迟的活性的开始，并且导致了更长的、均衡持续的作用。

0284 实施例 10：评估犬中新型胰岛素类似物的血糖降低作用

0285 在健康的雄性血糖正常的小猎犬中检测选定的新型胰岛素类似物的血糖降低效果。雌性动物接受皮下注射的 6nmol/kg 的胰岛素类似物的剂量。在即将注射胰岛素类似物之前，以及在注射之后最短 48 小时中以规则的间隔，从动物中取样血液样品，并且测定它们的血糖含量。该实验清楚地显示出本发明的胰岛素类似物导致了显著延迟的活性的开始，并且导致了更长的、均衡持续的作用。
图 1
新型胰岛素类似物在大鼠中的降血糖作用

（剂量 = 6 μmol/kg s.c.; n = 6）

注射后的时间（小时）

注射后的时间（小时）

图 2
YKL205在犬中的降血糖作用的锌依赖性

(剂量 = 6 nmol/kg s.c.; n = 5-6)

图 4
图6