(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
5. Oktober 2006 (05.10.2006)

(51) Internationale Patentklassifikation:
C08G 77/46 (2006.01) C08G 77/388 (2006.01)
C08G 77/54 (2006.01) A61K 8/897 (2006.01)
C08L 83/12 (2006.01) D06M 15/643 (2006.01)
C08L 83/14 (2006.01) D06M 15/647 (2006.01)

(21) Internationales Aktenzeichen: PCT/EP2006/002910

(30) Angaben zur Priorität:
10 2005 014 311.3 30. März 2005 (30.03.2005) DE

(72) Erfinder; und

ROOS, Christopher [DE/DE]; Rybrikler Strasse 6, 51065 Köln (DE).
WAGNER, Roland [DE/DE]; Kaiserstrasse 63-65, 53721 Siegburg (DE).
SOCKEL, Karl-Heinz [DE/DE]; Elisenstrasse 13, 51375 Leverkusen (DE).
STACHULLA, Karl-Heinz [DE/DE]; Reuschenerberger Strasse 45, 51379 Leverkusen (DE).
WITOSSEK, Anita [DE/DE]; Niederstrasse 14D, 40764 Langenfeld (DE).

(51) Internationale Patentklassifikation:
C08G 77/46 (2006.01) C08G 77/388 (2006.01)
C08G 77/54 (2006.01) A61K 8/897 (2006.01)
C08L 83/12 (2006.01) D06M 15/643 (2006.01)
C08L 83/14 (2006.01) D06M 15/647 (2006.01)

(21) Internationales Aktenzeichen: PCT/EP2006/002910

(30) Angaben zur Priorität:
10 2005 014 311.3 30. März 2005 (30.03.2005) DE

(72) Erfinder; und

ROOS, Christopher [DE/DE]; Rybrikler Strasse 6, 51065 Köln (DE).
WAGNER, Roland [DE/DE]; Kaiserstrasse 63-65, 53721 Siegburg (DE).
SOCKEL, Karl-Heinz [DE/DE]; Elisenstrasse 13, 51375 Leverkusen (DE).
STACHULLA, Karl-Heinz [DE/DE]; Reuschenerberger Strasse 45, 51379 Leverkusen (DE).
WITOSSEK, Anita [DE/DE]; Niederstrasse 14D, 40764 Langenfeld (DE).

Veröffentlicht:
— mit internationalem Recherchenbericht
— vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweckstabs- Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Titel: POLYAMINO AND/OR POLYAMMONIUM/POLYSILOXANE COPOLYMER COMPOUNDS WITH POLYALKYLENE OXIDE UNITS IN COMB-SHAPED ARRANGEMENT

(54) Bezeichnung: POLYAMINO- UND/ODER POLYAMMONIUM-POLYSILOXAN-COPOLYMER-VERBINDUNGEN MIT KAMMARTIG ANGEORDNETEN POLYALKYLENOXIDEINHEITEN

(57) Abstract: The invention concerns polyamino and/or polyammonium/polsiloxane copolymer compounds with polyalkylene oxide units in comb-shaped arrangement, a method for producing said compounds and their use, in particular for treating textiles and other natural or synthetic textile materials.

POLYAMINO- UND/ODER POLYAMMONIUM-POLYSILOXAN-COPOLYMER-VERBINDUNGEN MIT KAMMARTIG ANGEORDNETEN POLYALKYLENOXIDEINHEITEN

BESCHREIBUNG:

Aminogruppen enthaltende Polysiloxane sind als textile Weichmacher bekannt (EP 441 530).

Durch Einführung von Alkylenoxidgruppen zusätzlich zu den Quatsstrukturen soll die Hydrophilie gesteigert werden.

In US 6,242,554 werden α,ω-difunktionelle Siloxanderivate beschrieben, die jeweils über eine separate quartäre Ammonium- und Alkylenoxideinheit verfügen. Diese monoquaternären Verbindungen sich allerdings nicht hinreichend substantiv.

Ausgehend von diesem Stand der Technik ist eine weitere Verbesserung der Hydrophilie der siliconbasierten Blockcopolymeren ohne Preisgabe der erreichbaren Weichheit der behandelten Fasern, insbesondere bei gleichbleibender oder verbesserter Substantivität (Haftung der Siloxansysteme auf der Faser), der Flexibilität bei der Formulierung der Siloxansysteme und der Darreichungsform insbesondere in Richtung auf eine Verringerung der notwendigen Einsatzmengen und der Materialkosten sehr wünschenswert.

Es ist somit eine Aufgabe der Erfindung, polyquaternierte Siloxanblockcopolymere zur Behandlung von Textilien und anderen natürlichen und synthetischen faserartigen Materialien wie z.B. Papierfasern, Wolle und Haare bereitzustellen, die derartigen Materialien bzw. Substraten, bevorzugt Textilmaterialien, eine silicontypische Weichheit, eine verbesserte Elastizität und verringerte Knitterneigung bei gesteigerter Hydrophilie verleihen.

Es ist eine weitere Aufgabe der Erfindung, die Verwendung der erfindungsgemäßen Substanzen als Bestandteil von Systemen zur textilen Erstausrüstung, als Weichmacher in auf anionischen und/oder nichtionischen Tensiden beruhenden

Es wurde überraschend gefunden, daß Polyamino- und/oder Polyammonium-Polysiloxan-Copolymer-Verbindungen, dadurch gekennzeichnet, dass sie Wiederholungseinheiten der Formel (I) aufweisen:

\[-[Q-V]-\] \hspace{1cm} (I)

worin Q aus der Gruppe ausgewählt wird, die besteht aus:

- \(-NR_2^{-}\),

- \(-N^+R_2^-\)

einem gesättigten oder ungesättigten diaminofunktionellen Heterocyclus der Formeln:

\[
\begin{array}{c}
\text{\OmitShape}
N \quad \text{\OmitShape} \\
\text{\OmitShape}
N \quad \text{\OmitShape}
\end{array}
\]

- und

\[
\begin{array}{c}
\text{\OmitShape}
N \quad \text{\OmitShape} \\
\text{\OmitShape}
N^+ \quad \text{\OmitShape} \\
\text{\OmitShape}
R \quad \text{\OmitShape} \\
\text{\OmitShape}
R \quad \text{\OmitShape}
\end{array}
\]

sowie
einem aromatischen diaminofunktionellen Heterocyclus der Formel:

\[
\begin{array}{c}
\text{N} \\
\vdots \\
\text{N}
\end{array}
\]

5

einem dreiwertigen Rest der Formel:

\[
\begin{array}{c}
\text{N} \\
\vdots \\
\text{N}
\end{array}
, \text{ oder}
\]

10

einem dreiwertigen Rest der Formel,

\[
\begin{array}{c}
\text{N}^+ \\
\text{R}
\end{array}
\]

15

worin R jeweils Wasserstoff oder einen einwertigen organischen Rest darstellt,

20

wobei Q nicht an ein Carbonylkohlenstoffatom bindet,

\[V\text{ aus der Gruppe ausgewählt wird, die aus } V^1, V^2 \text{ und } V^3 \text{ besteht, worin}\]
Ausgewählt wird aus zweiwertigen, geradkettigen, cyclischen oder verzweigten, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffresten mit bis zu 1000 Kohlenstoffatomen (wobei die Kohlenstoffatome des unten definierten Polysiloxanrestes Z² nicht mitgezählt werden), die gegebenenfalls eine oder mehrere Gruppen, ausgewählt aus

\[-O-, -CONH-,\]

\[-CONR²-,\] wobei R² Wasserstoff, einen einwertigen, geradkettigen, cyclischen oder verzweigten, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffrest mit bis zu 100 Kohlenstoffatomen darstellt, der eine oder mehrere Gruppen ausgewählt aus \[-O-, -NH-, -C(O)- und -C(S)- enthalten kann, und der gegebenenfalls durch eine oder mehrere Substituenten, ausgewählt aus der Gruppe, die besteht aus einer Hydroxylgruppe, einer gegebenenfalls substituierten, bevorzugt ein oder mehrere Stickstoffatome enthaltenden heterocyclischen Gruppe, Amino, Alkylamino, Dialkylamino, Ammonium, Polyetherresten und Polyetheresterresten substituiert sein kann, wobei wenn mehrere Gruppen -CONR² vorliegen, diese gleich oder verschieden sein können,

\[-C(O)- und -C(S)- enthalten kann,\]

der Rest V² gegebenenfalls durch eine oder mehrere Hydroxylgruppen und/oder durch

\[-Si(OR)₃-a(R')ₖₐ\]
worin a eine ganze Zahl von 0 bis 2 ist und R und R' gleich oder verschieden voneinander sein können und jeweils einen organischen Rest darstellen, substituiert sein kann, und
der Rest V^2 mindestens eine Gruppe $-Z^2$ der Formel

\[
\begin{array}{c}
R^1 \quad R^1 \\
\text{-Si-} \quad \text{O-} \quad \text{Si-} \\
R^1 \quad R^1 \\
n_1
\end{array}
\]

enthält, worin

R^1 gleich oder verschieden sein kann und aus der Gruppe ausgewählt wird, die besteht aus: C$_1$ bis C$_{22}$ Alkyl, Fluor(C$_1$-C$_{10}$)alkyl, C$_6$-C$_{10}$ Aryl und $-W-\text{Si(OR)}_3-a(R')_a$ besteht, worin R, R' und a wie oben definiert sind und W = O- oder einen zweiwertigen, geradkettigen, cyclischen oder verzweigten, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffrest mit bis zu 100 Kohlenstoffatomen darstellt, der eine oder mehrere Gruppen $-\text{C(O)}-$, $-\text{O-}$, $-\text{NH-}$, $-\text{S-}$ enthalten kann, und gegebenenfalls durch Hydroxygruppen substituiert sein kann, und

$n_1 = 20$ bis 1000 bedeutet,

V^1 ausgewählt wird aus zweiwertigen, geradkettigen, cyclischen oder verzweigten, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffresten mit bis zu 1000 Kohlenstoffatomen, die gegebenenfalls eine oder mehrere Gruppen, ausgewählt aus
-CONR²-, worin R² wie oben definiert ist, wobei die Gruppen R² in den Gruppen V¹ und V² gleich oder verschieden sein können,

-C(O)⁻, -C(S)⁻ und -Z¹⁻ enthalten kann, worin -Z¹⁻ eine Gruppe der Formel

\[
\begin{array}{c}
\text{R}^1
\end{array}
\]

ist, worin

R¹ wie oben definiert ist, wobei die Gruppen R¹ in den Gruppen V¹

und V² gleich oder verschieden sein können, und

n₂ = 0 bis 19 bedeutet,

und der Rest V¹ gegebenenfalls durch eine oder mehrere Hydroxylgruppen und/oder durch

-Si(OR)₃⁻ₐ(R')ₐ

worin a eine ganze Zahl von 0 bis 2 ist und R und R' gleich oder

verschieden voneinander sein können und jeweils einen organischen

Rest darstellen, substituiert sein kann, und

V³ einen drei- oder höherwertigen, geradkettigen, cyclischen oder

verzweigten, gesättigten, ungesättigten oder aromatischen
Kohlenwasserstoffrest mit bis zu 1000 Kohlenstoffatomen darstellt, der gegebenenfalls eine oder mehrere Gruppen, ausgewählt aus

\[-O,-CONH-,\]

\[-C(O)-, -C(S)-, -Z^1-,\]

\[-Z^2-,\]

worin R² wie oben definiert ist, -C(O)-, -C(S)-, -Z¹-, das wie oben definiert ist, -Z²- das wie oben definiert ist, und Z³, worin Z³ eine drei- oder höherwertige Organopolysiloxaneinheit ist, enthalten kann, und
der gegebenenfalls durch eine oder mehrere Hydroxylgruppen und/oder durch

\[-Si(OR)_{2-a}(R')_a\]

worin a eine ganze Zahl von 0 bis 2 ist und R und R' gleich oder verschieden voneinander sein können und jeweils einen organischen Rest darstellen, substituiert sein kann, substituiert sein kann,

mit der Maßgabe,

- dass die genannte Polysiloxan-Verbindung mindestens eine Gruppe -Z¹-, -Z²- oder Z³ enthalten,
- dass die drei- und vierwertigen Reste Q entweder der Verzweigung der aus Q und V gebildeten Hauptkette dienen, so dass die Valenzen, die nicht der Bindung in der Hauptkette dienen, weitere aus -[Q-V]-Einheiten gebildete Verzweigungen tragen, oder die drei- und vierwertigen Reste Q sättigen sich mit Resten V³ innerhalb einer linearen Hauptkette ohne Bildung einer Verzweigung ab, und
- dass in den Gruppen Q mindestens ein Rest R einen polyalkylenoxidhaltigen Rest R⁰ darstellt,

und worin die aus Ammoniumgruppen resultierenden positiven Ladungen durch organische oder anorganische Säureanionen neutralisiert sind,
die vorstehend beschriebenen Aufgabenstellungen lösen können.

In einer bevorzugten Ausführungsform sind die erfindungsgemäßen Polyamino- und/oder Polyammonium-Polysiloxan-Copolymer-Verbindungen dadurch gekennzeichnet, dass das molare Verhältnis \(R^O : Q \) von 0,001 bis 2, bevorzugt von 0,01 bis 1, bevorzugt 0,05 bis 0,8 beträgt. Wenn das molare Verhältnis weniger als 0,001 beträgt ist die Hydrophilie zu gering. Eine optimale Abstimmung von Weichheit und Hydrophilie gelingt im Bereich von 0,05 bis 0,8.

Der Rest \(R^O \) stellt bevorzugt eine Gruppe der Formel (III) dar:

\[-X-E-Y\]

(III),

worin \(X \) eine Einfachbindung oder einen zweiwertigen, geradkettigen, verzweigten oder cyclischen Kohlenwasserstoffrest mit bis zu 20 Kohlenstoffatomen darstellt, der gegebenenfalls Stickstoff und/oder Sauerstoff enthalten kann, und \(X \) über ein Kohlenstoffatom mit dem Stickstoffatom von \(Q \) verbunden ist,

\[-[(\text{C}_a\text{H}_{2a})_2\text{O}]_y^-\]

worin \(a = 2 \) bis 4 ist, und \(y = 2 \) bis 10000 ist,

der über ein Kohlenstoffatom mit der Gruppe \(X \) und über ein Sauerstoffatom mit der Gruppe \(Y \) verbunden ist,

\(Y \) Wasserstoff oder einen einwertigen, geradkettigen, verzweigten oder cyclischen, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffrest mit bis zu 24 Kohlenstoffatomen darstellt, der Sauerstoff und/oder Stickstoff und/oder Halogenen enthalten kann und über ein Kohlenstoffatom mit der Gruppe \(E \) verbunden ist.
Bevorzugt ist R^0 eine Gruppe der Formel (III), in der $-E-$ eine Gruppe der Formel (IV) darstellt:

\[
\text{CH}_3 \quad -(\text{CH}_2\text{CH}_2\text{O})_v(\text{CHCH}_2\text{O})_w-Y
\]

(IV),

wobei es sich um statistische und blockartige Sequenzen der Ethylen- und Propylenoxid-Einheiten handeln kann und die Bindung an E über eine Ethylen- oder Propylenoxid-Einheit erfolgen kann, die Darstellung der Gruppe (IV) mithin nur quantitativ ist,

mit

\[v = 0 \text{ bis } 200,\]
\[w = 0 \text{ bis } 200,\]
\[v+w \geq 1.\]

In der Gruppe der Formel (III) wird weiterhin Y bevorzugt aus H oder geradkettigen, cyclischen, verzweigten C_1 bis C_{22} Alkyl-, Alkenyl-, Alkinyln-, Fluor(C_1-C_{10})-alkyl- und C_6-C_{10} Arylresten ausgewählt.

Weitere bevorzugte Alkylenoxideinheiten R^0 weisen bevorzugt die Struktur

\[
\text{CH}_3 \quad -(\text{CH}CH_2\text{O})-(\text{CH}_2\text{CH}_2\text{O})_v(\text{CHCH}_2\text{O})_w-1-Y
\]

mit

\[v = 0 \text{ bis } 200,\]
\[w = 0 \text{ bis } 200,\]
\[v+w \geq 1,\]

$Y = H$ oder geradkettiger, cyclischer, verzweigter C_1- bis C_{22}-Alkyl-, Alkenyl-, Alkinyln-, Fluor-(C_1-C_{10})-alkyl- und C_6-C_{10}-Arylrest.
Bevorzugt sind in den obigen allgemeinen Polyalkylenoxidformeln:

v 0 bis 100, besonders bevorzugt 0 bis 70, speziell 0 bis 40, ganz speziell 0 bis 20,
w 0 bis 100, besonders bevorzugt 0 bis 70, speziell 0 bis 40, ganz speziell 0 bis 20,
Y ein geradkettiger, cyclischer, verzweigter C₁ bis C₁₂-Alkyl-, Alkenyl, Alkiny1-,
oder C₆-C₁₀-Arylest, speziell Methyl, Ethyl, Isopropyl, Butyl, Hexyl, Dodecy1,
Ally1, Oley1, Phenyl.

Eine weitere bevorzugte Alkylenoxideinheit RO weist die Struktur

\[-(\text{C₁₁-C₁₂})-\text{Alkylen-N}^+\text{R₂-EY}\]
auf, worin C₁₁-C₁₂-Alkylen eine geradkettige, cyclische oder verzweigte
Alkyleneinheit mit 1 bis 12 Kohlenstoffatomen ist, und R, E und Y wie oben
definiert sind.

Die Polysiloxan-Verbindungen, die im Mittel mindestens zwei, bevorzugt
mindestens drei, noch bevorzugter mindestens vier Einheiten der Formel (I)
enhalten, wobei bevorzugt im Mittel mindestens zwei, bevorzugter mindestens
drei, noch bevorzugter mindestens vier Einheiten RO, und im Mittel mindestens
eine Einheit V₁, V² und/oder V³ enthalten sind, werden bevorzugt durch
monofunktionelle Gruppen -Q-R und/oder -V-R, d.h. z.B. durch Aminogruppen
terminiert. Diese ergeben sich durch Absättigung einer der beiden Bindungsstellen
von Q oder V durch eine einwertige Gruppe R oder Wasserstoff, die wie oben
definiert ist, und werden nachfolgend auch Vₜ oder Qₜ genannt. An Stelle von Vₜ
können auch andere, nicht umgesetzte Reaktivgruppen, wie Epoxy- oder Halogen-
alkylgruppen stehen.

Bei den erfindungsgemäßen Polysiloxan-Verbindungen, die im Mittel
mindestens zwei Einheiten der Formel (I) enthalten, wobei im Mittel mindestens
zwei Einheiten RO und im Mittel mindestens eine Einheit V₁, V² und/oder V³
enhalten sind, handelt es sich zum Beispiel um lineare Polysiloxancopolymere der
allgemeinen Formel (I'):

\[-[\text{Q-V}]-(I')\]

worin Q wie oben definiert ist,
V und mindestens eine Gruppe V₁ oder Gruppe V² darstellt,
worin V^1 und V^2 wie oben definiert sind. Zusätzlich kann V auch drei- oder höherwertige, besonders dreiwertige Reste V^3 darstellen. In diesem Fall liegen bevorzugt auch drei- oder vierwertige Einheiten Q, wie oben definiert vor, und die Absättigung der drei- oder höherwertigen Reste V^3 und der drei- oder vierwertige Einheiten Q erfolgt bevorzugt ausschließlich untereinander innerhalb der linearen Hauptkette unter Ausbildung cyclischer Strukturen, wie weiter unten eingehender erläutert. Dieser Fall ist jedoch weniger bevorzugt.

In den allgemeinen Formeln (I) bzw. (I') kann das molare Verhältnis der Gruppen V^1 und V^2 in den Polysiloxan-Verbindungen V^2/V^1 an sich einen beliebigen Wert annehmen. Erfindungsgemäß ist somit auch der Fall eingeschlossen, bei dem die Polysiloxanverbindung der Formeln (I) oder (I') nur V^2-Einheiten enthält, die Polysiloxanverbindung also die Formel $-[Q-V^2]-$ aufweist. Auch der Fall, bei dem die Polysiloxanverbindung nur V^1-Einheiten enthält, ist erfindungsgemäß umfasst. In diesem Fall müssen die V^1-Einheiten jedoch Z^1-Siloxaneinheiten enthalten.

In einer bevorzugten Ausführung der Erfindung enthält die Polysiloxanverbindung der Formeln (I) oder (I') jedoch sowohl V^2 als auch V^1-Einheiten.

In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung beträgt das molare Verhältnis der Gruppen V^1 und V^2 in den Polysiloxan-Verbindungen der allgemeinen Formeln (I) bzw. (I'):

\[V^2/V^1 = 1. \]

In einer weiteren Ausführungsform der linearen Polysiloxanverbindungen der Formel (I) bzw. (I') ist V^2/V^1 ungleich 1, bevorzugt ist $V^2/V^1 < 1$, bevorzugter $< 0,9$, noch bevorzugter erfüllt V^2/V^1 die Beziehung

\[0,0005 < V^2/V^1 < 0,5, \]

noch bevorzugter

\[0,0005 < V^2/V^1 < 0,3. \]
Die Gruppe R wird bevorzugt ausgewählt aus den Gruppen R².
Bevorzugte Ausführungsformen von Q sind:

Für Reste der Formel

\[
\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet} \\
\end{array}
\]

eine quaternierte Imidazoleinheit der Struktur

\[
\begin{array}{c}
R^7 \\
\bigoplus \\
R^6 \\
\end{array}
\]

eine quaternierte Pyrazoleinheit der Struktur

\[
\begin{array}{c}
R^5 \\
\bigoplus \\
R^6 \\
\end{array}
\]

Für Reste der Formel

\[
\begin{array}{c}
R^* \\
\text{\textbullet} \\
\text{\textbullet} \\
\end{array}
\]

eine zweifach quaternierte Piperazineinheit der Struktur
Für Reste der Formel

\[-N^+R_2^- \]

eine zweifach quaternierte Einheit der Struktur
eine monoquaternierte Einheit der Struktur

5
eine zweifach quaternierte Einheit der Struktur

10 und eine monoquaternierte Einheit der Struktur
Für Reste der Formel

- NR -

5 eine monoquaternierte Einheit der Struktur

\[
\begin{array}{c}
\text{N} \\
\text{(CH}_2\text{)}_t \\
\text{R}_5 \\
\text{R}_6 \\
\text{N} \\
\text{R}_7 \\
\text{R}_8
\end{array}
\]

eine monoquaternierte Einheit der Struktur

10

\[
\begin{array}{c}
\text{N} \\
\text{(CH}_2\text{)}_t \\
\text{R}_2 \\
\text{N} \\
\text{R}_3 \\
\text{R}_8
\end{array}
\]

Worin:

15 t von 2 bis 10 ist,
R wie oben definiert, bevorzugt R\(^2\) ist, R\(^2\) wie oben definiert ist, und die Bedeutung von R\(^2\) von der Bedeutung der obigen Gruppe R\(^2\) gleich oder verschieden sein kann,
R\(^3\) die Bedeutung von R\(^2\) aufweist, wobei R\(^2\) und R\(^3\) gleich oder verschieden sein können, oder
R\(^2\) und R\(^3\) gemeinsam mit dem positiv geladenen Stickstoffatom einen fünf- bis siebengliedrigen Heterocyclus bilden, der gegebenenfalls zusätzlich ein oder mehrere Stickstoff-, Sauerstoff- und/oder Schwefelatome aufweisen kann,

R^8 die Bedeutung von R^2 aufweist, wobei R^8 und R^2 gleich oder verschieden sein können. Insbesondere kann R^8 ein polyoxyalkylen-haltiger Rest sein, was zur Bildung eines R^0-haltigen Restes Q führt.

Im Falle, dass Q einen dreiwertigen Rest der Formeln

\[
\begin{align*}
\text{-} \quad \text{N}^+ \\
\text{R} \\
\end{align*}
\]

oder eine vierwertigen Rest darstellt, dienen diese Reste bei den linearen Copolymeren der Formel (I') wie oben erwähnt bevorzugt nicht der Verzweigung der Polysiloxan-Copolymere sondern diese Reste sind ausschließlich mit insbesondere dreiwertigen Resten V^3 verbunden, wobei cyclische Strukturen ausgebildet werden, die Bestandteil der linearen Hauptkette sind, wie z.B. ein Strukturelement der Formel:

\[
\text{-} \quad \text{N} \\
\text{O} \\
\text{N} \\
\text{O} \\
\]

In einer bevorzugten Ausführungsform der Polysiloxanverbindungen der Formel (I) bzw. (I') stellt V^2 eine Gruppe der Formel

\[
\text{-} \quad \text{V}^2 \text{-} \quad \text{Z}^2 \text{-} \quad \text{V}^2 \text{-}
\]
dar, worin Z^2 wie oben definiert ist und V^{2*} einen zweiwertigen geradkettigen, cyclischen oder verzweigten, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffrest mit bis zu 40 Kohlenstoffatomen darstellt, der gegebenenfalls eine oder mehrere Gruppen, ausgewählt aus -O-, -CONH-, -CONR²-, worin R^2 wie oben definiert ist, -C(O)- und -C(S)- enthalten kann, und der Rest V^{2*} gegebenenfalls durch eine oder mehrere Hydroxylgruppen substituiert sein kann.

In der vorstehend erwähnten Ausführungsform kann das erfindungsgemäße lineare Polysiloxancopolymer die folgenden Wiederholungseinheiten aufweisen:

$$-[V^{2*}Z^2V^{2*}Q]-$$ bevorzugt zusammen mit $$-[V^1Q]-$$.

Das molare Verhältnis der Wiederholungseinheiten $$-[V^{2*}Z^2V^{2*}Q]-$$ zu $$-[V^1Q]-$$, also das Verhältnis V^2/V^1 kann, wie vorstehend erwähnt, etwa 1 betragen, ist in einer Ausführungsform jedoch bevorzugt ungleich 1, bevorzugter >1 noch bevorzugter >1 und kleiner 1,5. Die kammartige Einführung der hydrophilen Seitengruppen R^O ermöglicht es, den Anteil der die weichmachenden Eigenschaften beisteuernden Gruppe V^2 bei gleichbleibender Hydrophilie zu erhöhen. Umgekehrt ist es bei gegebenem Anteil von weichmachenden Gruppen V^2 möglich, die Hydrophilie durch Einführung der Gruppe R^O zu erhöhen.

Wie weiter unten im Zusammenhang mit dem Verfahren zur Herstellung der vorstehend beschriebenen linearen Polysiloxancopolymere noch ausführlich erläutert wird, können die blockartigen Sequenzen, die mehr als eine $$-[V^1Q]-$$ Einheit miteinander verknüpft aufweisen, je nach Herstellweise regelmäßig mit den V^2Q-Einheiten oder unregelmäßig mit den V^2Q-Einheiten verbunden werden. Dies meint folgendes:

Bei der regelmäßigen Verbindung, bei der beispielsweise ein der Gruppe $-Q-[V^1Q]_n$-entsprechendes Präpolymer mit V^2 entsprechenden Monomer-Einheiten im molaren Verhältnis 1:1 umgesetzt wird, lassen sich die linearen Polysiloxancopolymere wie folgt darstellen:

$$-(V^2Q-[V^1Q]_m)_y.$$
x kann dabei 2 bis 2000 sein und ist der Mittelwert der Verteilung und y ist ebenfalls ein Mittelwert und beträgt 2 bis 1000.

Allgemein weisen daher die erfindungsgemäßen Polysiloxanpolymere bevorzugt die Formel

\[-[Q-V]y^-,\]

worin \(y \) 2 bis 1000, bevorzugter 3 bis 500, noch bevorzugter 4 bis 200 beträgt.

Die durch die Formel \(-\{V^2-Q-[V^1-Q]_k\}_y^-\) dargestellten linearen Polysiloxancopolymere sind dadurch gekennzeichnet, dass sie im wesentlichen keine miteinander verknüpften \(-V^2-Q\)-Einheiten aufweisen, oder mit anderen Worten, sind zwei \(-V^2-Q\)-Einheiten stets durch mindestens eine \(-V^1-Q\)-Eeinheit unterbrochen.

Bei der unregelmäßigen Verbindung, bei der beispielsweise \(Q \)-Einheiten entsprechende Monomere mit \(V^1 \) entsprechenden Monomer-Einheiten und \(V^2 \) entsprechenden Monomer-Einheiten im Verhältnis \(Q/(V^1 + V^2) \), mit beispielsweise \(V^2/V^1 > 1 \) umgesetzt wird, lassen sich die linearen Polysiloxancopolymere wie folgt darstellen:

\[-Q-(V^1,V^2)-,\]

worin in V das Verhältnis \(V^2/V^1 \) dann > 1 ist. Dabei sind die Gruppen \(V^1 \) und \(V^2 \) statistisch über die Copolymerkette verteilt. Im Unterschied zu dem durch die reguläre Verbindung hergestellten linearen Polysiloxancopolymere kann dieses Copolymer auch benachbarte \(-Q-V^2\)-Einheiten aufweisen.

In einer bevorzugten Ausführungsform der erfindungsgemäß verwendeten Polysiloxanverbindung der Formel (I) bzw. (I') wird die Gruppe \(V^1 \) ausgewählt aus zweiwertigen, geradkettigen, cyclischen oder verzweigten, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffresten mit bis zu 600 bevorzugt bis zu 400 Kohlenstoffatomen, die gegebenenfalls eine oder mehrere Gruppen,
ausgewählt aus \(-\text{O}^-, \text{-CONH}^-, \text{-CONR}^2\), worin \(R^2\)
wie oben definiert ist, \(-\text{C(O)}^-, \text{-C(S)}^-\) und \(-Z^1\) enthalten kann, worin \(-Z^1\) eine
Gruppe der Formel

\[
\begin{align*}
\text{R}^1 & \quad \text{R}^1 \quad \text{R}^1 \\
\text{Si-O} & \quad \text{Si-O} \quad \text{Si-} \\
\text{R}^1 & \quad \text{R}^1 \quad \text{R}^1
\end{align*}
\]

ist, worin
\(\text{R}^1\) C\(_1\)-C\(_{18}\) Alkyl, das gegebenenfalls mit einem oder mehreren Fluoratomen
substituiert sein kann, oder Phenyl ist, und \(n_2\) wie oben definiert ist.

In einer weiteren bevorzugten Ausführungsform der Polysiloxan-Verbindungen der Formel (I) bzw. (I') wird die Gruppe \(Q\) ausgewählt aus:

\[
\begin{align*}
\text{R}^2 & \\
\text{N}^+ & \\
\text{R}^3 &
\end{align*}
\]

worin \(\text{R}^2\) bevorzugt H oder Alkyl, bevorzugt mit 1 bis 6 Kohlenstoffatomen, ist
und \(\text{R}^3\) bevorzugt H, Alkyl, bevorzugt mit 1 bis 6 Kohlenstoffatomen, oder \(\text{R}^0\) ist.

Bevorzugt sind in den Formeln (I) und (I'):

\(\text{R}^1\) = C\(_1\) bis C\(_{18}\) Alkyl, insbesondere Methyl, Ethyl, Trifluorpropyl und Phenyl,

\(n_1\) = 20 bis 400, besonders bevorzugt 20 bis 300, speziell 20 bis 200. In einer
weiteren bevorzugten Ausführungsform ist \(n_1\) zwischen 20 und 50 oder zwischen
80 und 200. Die Zahl \(n_1\) ist die mittlere Polymerisationsgrad aus \(M_n\) der
Diorganosiloxy-Einheiten in der Gruppe \(Z^2\).
n₂ = 0 bis 15, besonders bevorzugt 0 bis 10, speziell 0 bis 5, spezieller 0. Die Zahl n₂ ist die mittlere Polymerisationsgrad aus Mₙ der Diorganosiloxy-Einheiten in der Gruppe Z¹.

Besonders bevorzugt steht

\[\begin{align*}
R^2 & \\
-N^+ & \\
R^3 &
\end{align*} \]

für -NH₂⁺, -N(CH₃)₂⁺, -(NHR⁰⁺).

V₂⁰ für einen zweiwertigen geradkettigen, cyclischen oder verzweigten, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffrest mit bis zu 16 Kohlenstoffatomen, der eine oder mehrere Gruppen, ausgewählt aus -O-, -CONH-, -CONR²-, worin R² wie oben definiert ist, -C(O) -, -C(S)- enthalten kann und mit einer oder mehreren Hydroxylgruppen substituiert sein kann. Noch bevorzugter wird -V²⁻ ausgewählt aus Gruppen der Formeln:

\[\begin{align*}
-(\text{CH}_2)_3\text{OCH}_2\text{CH}_2\text{CH}_2\text{OH} & \\
-(\text{CH}_2)_3\text{OCH}_2\text{CH}\text{-} & \\
\text{CH}_2\text{OH} & \\
-(\text{CH}_2)_2\text{OH} & \\
-(\text{CH}_2)_2\text{OH} & \\
\text{CH}_3 & \\
\text{CH}_3 & \\
\text{OH} & \\
\text{CH}_3 & \\
\text{CH}_3 & \\
\text{OH} & \\
\end{align*} \]
- (CH₂)₂⁻, -(CH₂)₃⁻, -(CH₂)₄⁻, -(CH₂)₅⁻, -(CH₂)₆⁻,

- CH=CHCH₂⁻, -CH=CHCH₂CH₂⁻,
- CH₂CH₂CH₂OC(O)CH₂⁻, -CH₂CH₂CH₂OC(O)CH₂CH₂⁻,

- CH=CHCH₂OC(O)CH₂⁻, -CH=CHCH₂OC(O)CH₂CH₂⁻,

CH₃
- CH₂CH₂CH₂(OCH₂CH₂)ᵥ(OCH₂CH)ₙOC(O)CH₂⁻

CH₃
- CH₂CH₂CH₂(OCH₂CH₂)ᵥ(OCH₂CH)ₙOC(O)CH₂CH₂⁻

CH₃
- CH=CHCH₂(OCH₂CH₂)ᵥ(OCH₂CH)ₙOC(O)CH₂⁻

CH₃
- CH=CHCH₂(OCH₂CH₂)ᵥ(OCH₂CH)ₙOC(O)CH₂CH₂⁻

CH₃
- CH=CHCH₂CH₂(OCH₂CH₂)ᵥ(OCH₂CH)ₙOC(O)CH₂⁻

- CH=CHCH₂CH₂(OCH₂CH₂)ᵥ(OCH₂CH)ₙOC(O)CH₂CH₂⁻

CH₃
- (CH₂)₁₀C(O)(OCH₂CH₂)ᵥ(OCH₂CH)ₙOC(O)CH₂CH₂⁻

CH₃
- (CH₂)₁₀C(O)(OCH₂CH₂)ᵥ(OCH₂CH)ₙOC(O)CH₂⁻
- (CH₂)₃OCH₂CHCH₂OH - (CH₂)₃OCH₂CH₂OH

- (CH₂)₂OH - (CH₂)₂OH

- CH₂CHCH₂OH - CH₂CHCH₂CH₂OH

- CH₂CH₂CH₂OC(O)CH₂OH - CH₂CH₂CH₂OC(O)CH₂CH₂OH

V¹ steht bevorzugt für

- R⁹, worin R⁹ einen zweiwertigen, gesättigten oder einfach oder mehrfach ungesättigten, geradkettigen oder verzweigten Kohlenwasserstoffrest mit zwei bis 25 Kohlenstoffatomen darstellt,
- (CH₂)₅C(O)O-[(CH₂CH₂O)₅-(CH₂CH(CH₃)O)]₅-C(O)(CH₂)₉,
- (CH₂)₆C(O)O-R⁹-O-C(O)(CH₂)₉, worin R⁹ wie zuvor definiert ist,
- (CH₂)₅R¹₀-(CH₂)₉, worin R¹₀ eine aromatische Gruppe ist,
- [CH₂CH₂O]₅-[CH₂CH(CH₂)O]₅-CH₂CH₂OH,
- CH(CH₂)₂CH₂O[CH₂CH₂O]₄-[CH₂CH(CH₃)O]₄-CH₂CH(CH₃),
- CH₂CH(OH)CH₂,
- CH₂CH(OH)(CH₂)₂CH(OH)CH₂,
- CH₂CH(OH)CH₂OCH₂CH(OH)CH₂OCH₂CH(OH)CH₂ und
- CH₂CH(OH)CH₂O-[CH₂CH₂O]₅-[CH₂CH(CH₂)O]₅-CH₂CH(OH)CH₂

worin
u von 1 bis 3 ist,
q und r von 0 bis 200, bevorzugt von 0 bis 100, bevorzugter von 0 bis 70 und besonders bevorzugt 0 bis 40 ist, und
\[q + r > 0 \] ist.

Bevorzugte Varianten von \(V^1 \) sind Strukturen der Formel:

- \(-\text{CH}_2\text{C(O)}\text{O}[-\text{CH}_2\text{CH}_2\text{O}]_q[-\text{CH}_2\text{CH}(\text{CH}_3)\text{O}]_r\text{C(O)}\text{CH}_2\text{-}\),
- \(-\text{CH}_2\text{CH}_2\text{C(O)}\text{O}[-\text{CH}_2\text{CH}_2\text{O}]_q[-\text{CH}_2\text{CH}(\text{CH}_3)\text{O}]_r\text{C(O)}\text{CH}_2\text{CH}_2\text{-}\),
- \(-\text{CH}_2\text{CH}_2\text{C(O)}\text{O}[-\text{CH}_2\text{CH}_2\text{O}]_q[-\text{CH}_2\text{CH}(\text{CH}_3)\text{O}]_r\text{C(O)}\text{CH}_2\text{CH}_2\text{CH}_2\text{-}\), veresterte Alkylen-, Alkenylen, Alkinyleneinheiten, speziell der Strukturen

- \(-\text{CH}_2\text{C(O)}\text{O}[-\text{CH}_2\text{O}]_o\text{OC(O)}\text{CH}_2\text{-}\),
- \(-\text{CH}_2\text{CH}_2\text{C(O)}\text{O}[-\text{CH}_2\text{O}]_o\text{OC(O)}\text{CH}_2\text{CH}_2\text{-}\),
- \(-\text{CH}_2\text{CH}_2\text{C(O)}\text{O}[-\text{CH}_2\text{O}]_o\text{OC(O)}\text{CH}_2\text{CH}_2\text{CH}_2\text{-}\),
- \(-\text{CH}_2\text{C(O)}\text{O}[-\text{CH}_2\text{C}==\text{CCH}_2\text{O}]_o\text{OC(O)}\text{CH}_3\text{-}\),
- \(-\text{CH}_2\text{CH}_2\text{C(O)}\text{O}[-\text{CH}_2\text{C}==\text{CCH}_2\text{O}]_o\text{OC(O)}\text{CH}_2\text{CH}_2\text{-}\),
- \(-\text{CH}_2\text{CH}_2\text{C(O)}\text{O}[-\text{CH}_2\text{C}==\text{CCH}_2\text{O}]_o\text{OC(O)}\text{CH}_2\text{CH}_2\text{CH}_2\text{-}\), Alkylen-, Alkenylen-, Alkinylen- und Aryleneinheiten, speziell der Strukturen:

- \(-[\text{CH}_2\text{O}]_o\) mit \(o \) = 2 bis 6,
 \(-\text{CH}_2\text{C}==\text{CCH}_2\text{-}, -\text{CH}_2\text{CH}==\text{CCH}_2\text{-}, -\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_2\text{-}\),

Polyalkylenoxideinheiten, speziell der Strukturen

- \([-\text{CH}_2\text{CH}_2\text{O}]_q[-\text{CH}_2\text{CH}(\text{CH}_3)\text{O}]_r\text{-CH}_2\text{CH}_2\text{-}\),
- \(-\text{CH}(\text{CH}_3)\text{CH}_2\text{O}[\text{CH}_2\text{CH}_2\text{O}]_q[-\text{CH}_2\text{CH}(\text{CH}_3)\text{O}]_r\text{-CH}_2\text{CH}(\text{CH}_3)\text{-}\) mit

mono-, di- oder polyhydroxyfunktionelle Einheiten, speziell der Strukturen
-CH₂CH(OH)CH₂-, -CH₂CH(OH)(CH₂)₂CH(OH)CH₂-,
-CH₂CH(OH)CH₂OCH₂CH(OH)CH₂OCH₂CH(OH)CH₂-,
-CH₂CH(OH)CH₂O-[CH₂CH₂O]₉-[CH₂CH(CH₃)O]₉-CH₂CH(OH)CH₂-
mit
q = 0 bis 200,
r = 0 bis 200
Bevorzugt sind q = 1 bis 50, insbesondere 2 bis 50, speziell 1 bis 20, ganz speziell 1 bis 10, sowie 1 oder 2, r = 0 bis 100, insbesondere 0 bis 50, speziell 0 bis 20, ganz speziell 0 bis 10, sowie 0 oder 1 oder 2.

Die erfindungsgemäßen Polysiloxane können beispielsweise durch ein Verfahren hergestellt werden, worin
a) Ein primäres Amin, dass eine Polyalkylenoxidgruppe enthält, sowie gegebenenfalls weitere Aminverbindungen mit aminoreaktiven Polysiloxan-enthaltenden Verbindungen und gegebenenfalls weiteren aminoreaktiven Verbindungen umgesetzt werden, oder
b) Die Aminogruppe einer Polyamino-Polysiloxan-Copolymer-(Ausgangs-)Verbindung mit einem Alkylierungsmittel, dass eine Polyalkylenoxidgruppe enthält, alkyliert wird.

Durch geeignete Auswahl der Stöchiometrie der Ausgangsverbindungen lässt sich das Verhältnis der Gruppen V¹, V², R⁰ in den erfindungsgemäßen Verbindungen steuern.

Geeignete V¹ einführende Monomere sind beispielsweise alpha,omega-Diamine mit innenständigen Einheiten V¹, wie Alkyldiamine oder Diaminopolyether. Diese werden beispielsweise mit aminoreaktiven V²- und/oder R⁰-Gruppen enthaltenden Monomeren umgesetzt, wie beispielsweise Diepoxyl-Polysiloxan-Verbindungen, Dihalogenalkyl-Polysiloxanverbindungen, Mono-Amino-Polyether.

Alternativ kann V¹ auch über Dihalogenalkyl-Verbindungen, Diepoxid-Verbindungen oder Verbindungen mir gemischten Gruppen eingeführt werden, die
mit aminofunktionellen Monomeren umgesetzt werden, die die Gruppen \(V^2, R^0 \)
oder weitere Gruppen \(V^1 \) einführen.

Zur Herstellung kann beispielsweise auf die WO 02/10257 verwiesen werden.

Die erfindungsgemäßen Polysiloxane der allgemeinen Formel (I) können
Verzweigungseinheiten \(V^3 \) enthalten. Dabei handelt es sich um \(V^3 \) einen drei- oder
höherwertigen, geradkettigen, cyclischen oder verzweigten, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffrest mit bis zu 1000 Kohlenstoffatomen darstellt, der gegebenenfalls eine oder mehrere Gruppen, ausgewählt aus:

- \(-O^- \), \(-CONH^- \), \(-CONR^2^- \), worin \(R^2 \) wie oben definiert ist, \(-C(O)^- \), \(-C(S)^- \), \(-Z^1^- \), das wie oben definiert ist, \(-Z^2^- \) das wie oben definiert ist, und \(Z^3 \), worin \(Z^3 \) eine drei- oder höherwertige Organopolysiloxaneinheit ist, enthalten kann. Die Verzweigungseinheit \(V^3 \) kann silikonfrei sein. Beispiele hiervon schließen ein:

\[
\begin{array}{c}
\text{CH}_3 \\
-(\text{CHCH}_2\text{O})_a\text{CH}_2 \\
\text{CH}_3 \\
-(\text{CHCH}_2\text{O})_b\text{CH} \\
\text{CH}_3 \\
-(\text{CHCH}_2\text{O})_c\text{CH}_2
\end{array}
\]

worin \(a, b \) und \(c \) gleich oder verschieden und von 1 bis 40 sein können,

\[
\begin{array}{c}
\text{CH}_3 \\
-(\text{OCH}_2\text{CH}_2)_w(\text{OCH}_2\text{CH}_2)_w\text{OC(O)}\text{CH}_2 \\
\text{CH}_2\text{C(O)}(\text{OCH}_2\text{CH}_2)_w(\text{OCH}_2\text{CH}_2)_w\text{OC(O)}\text{CH}_2 \\
\end{array}
\]
mit \(v+w \geq 0 \), wobei die Anordnung der Ethylen- und Propylenoxid-Einheiten statistisch oder blockartig sein kann und die Anbindung an Q über Ethylen- und Propylenoxid-Einheiten via ein Kohlenstoffatom erfolgen kann.

Die Verzweigungseinheit \(V^3 \) kann eine dreigliedrige höhere Organopolysilo-

xaneinheit enthalten, wie zum Beispiel:

\[
\text{Si} - \left[\begin{array}{c}
\text{Si} \\
\text{R}^1
\end{array} \right] - \left[\begin{array}{c}
\text{Si} \\
\text{R}^1
\end{array} \right]
\]

\[
\text{Si} - \left[\begin{array}{c}
\text{Si} \\
\text{R}^1
\end{array} \right] - \left[\begin{array}{c}
\text{Si} \\
\text{R}^1
\end{array} \right] - \left[\begin{array}{c}
\text{Si} \\
\text{R}^1
\end{array} \right] - \left[\begin{array}{c}
\text{Si} \\
\text{R}^1
\end{array} \right]
\]

worin \(R^1 \) wie oben definiert ist, \(m = 0 \) bis 1000, und \(m^1 \geq 1 \) und \(m^2 \geq 3 \) ist,
Ein Beispiel einer Z^3-enthaltenden Verzweigungseinheit V^3 ist zum Beispiel:

\[
\begin{align*}
&\text{Die erfindungsgemäßen Polysiloxane enthalten die Einheiten } R^O, \text{ die bevorzugt durch geeignete Alkylierungsreaktionen von primär, sekundär oder tertiär monoaminofunktionalisierten Polyalkylenoxiden mit reaktiv functionalisierten Siloxanvorstufen in das Polymer eingebunden werden. Bevorzugt werden die monoprimär funktionalisierten Jeffamine° der M-Serie (Huntsman Corp.) eingesetzt.}
\end{align*}
\]

Für den weniger bevorzugten Fall, daß die Polyalkylenoxideinheiten die Siloxanblockpolymere gezielt terminieren sollen, kann von sekundär oder tertiär aminofunktionalisierten Polyalkylenoxideinheiten ausgegangen werden. Soweit nicht direkt verfügbar, können diese durch Vorreaktion der primär monoaminofunktionalisierten Polyalkylenoxide mit Alkylierungsmitteln, beispielsweise Monoepoxidien wie Isopropylglycidether oder Dimethylsulfat, hergestellt werden.

Das monofunktionell angebundene hydrophile Element R^O wird in die erfindungsgemäßen polyquaternären Polysiloxancopolymere eingeführt, um gezielt die Hydrophilie zu steigern. Dies führt sowohl zu einer gesteigerten Hydrophilie der erfindungsgemäßen Polysiloxancopolymere selbst, so dass beispielsweise stabile Emulsionen in Wasser entstehen, als auch zu einer Erhöhung der Hydrophilie der mit den erfindungsgemäßen Polysiloxancopolymere behandelten Substrate, was beispielsweise zu einer verbesserten Feuchtigkeitsaufnahme führt.

Es liegt im Rahmen der Erfindung, die Einführung monofunktionell angebundenerhydrophiler Einheiten mit der bekannten Einführung difunktioneller hydrophiler Einheiten in die Polymerhauptkette (WO 02/10257; WO 02/10259) zu kombinieren.

Es liegt weiterhin im Rahmen der Erfindung, die Einführung monofunktionell angebundener hydrophiler Einheiten mit der ebenfalls bekannten
Einführung tri- und höherfunktioneller Einheiten in die Polymerhauptkette (WO 03/078504) zu kombinieren.

Es liegt weiterhin im Rahmen der Erfindung, die Einführung monofunktionell angebundener hydrophiler Einheiten mit der ebenfalls beschriebenen Einführung reaktiver Einheiten in die Polymerhauptkette (Anmeldung PCT/EP 2004/050472) zu kombinieren. Solche reaktive Gruppen schließen Gruppen der folgenden Formeln ein:

\[\text{und} \]

\[-\text{Si(OR)}_{3-a}(R')_a\]

worin 'a' eine ganze Zahl von 0 bis 2 ist und R und R' gleich oder verschieden voneinander sein können und jeweils einen organischen Rest darstellen. Die genannten reaktiven Gruppen können erfindungsgemäß über V oder Q entsprechenden Einheiten eingeführt werden, wie in der PCT/EP 2004/050472 näher beschrieben. In einer bevorzugten Ausführungsform kann die Gruppe \(-\text{Si(OR)}_{3-a}(R')_a\) beispielsweise über die Verwendung von primären oder sekundären Aminen der Formel NR₂-(C1-C12)Alkyle\-\text{Si(OR)}_{3-a}(R')_a\) worin R wie oben definiert ist, eingeführt werden, wie ebenfalls in der PCT/EP 2004/050472 näher erläutert. Die reaktive Gruppe \(-\text{Si(OR)}_{3-a}(R')_a\) befindet sich dann an den Wiederholungseinheiten Q.
Es liegt ebenfalls im Rahmen der Erfindung, die Einführung monofunktionell angebundener hydrophiler Einheiten mit mehreren der vorstehend genannten Konzepte zu kombinieren.

Die erfindungsgemäßen quaternären Ammoniumverbindungen können bei 25°C fest oder flüssig sein. Für den Fall, dass sie bei 25°C flüssig sind, liegen die Viskositäten der genannten Polysiloxane bevorzugt zwischen 50 bis 50.000.000 mPa.s bei 25°C, bevorzugt 1000 bis 2.500.000 mPa.s bei 25°C und bei einem Schergeschwindigkeitsgefälle von D= 1 s⁻¹.

Die Erfindung betrifft weiterhin die Verwendung der erfindungsgemäßen Verbindungen zur Faserbehandlung bzw. Faserausrüstung.

Die Erfindung betrifft weiterhin die Verwendung der erfindungsgemäßen Verbindungen zur Erstausrüstung und Behandlung von Textilien und anderen natürlichen und synthetischen faserartigen Materialien, einschließlich Papier, Haaren und Wolle.

Die Erfindung betrifft weiterhin die Verwendung der erfindungsgemäßen Verbindungen zur Behandlung und Ausrüstung von harten Oberflächen, wie Glas, Keramik, Kacheln, Kunststoffoberflächen, Metalloberflächen, Lackoberflächen,
speziell Automobilkarosserien, ganz speziell in Trocknerformulierungen für die maschinelle Autowäsche.

Es ist weiterhin möglich, die erfindungsgemäßen Formulierungen in kosmetische Systeme zur Behandlung von Haaren und Haut einzuführen.

Die Erfindung betrifft weiterhin wässrige Emulsion, die mindestens eine erfindungsgemäße Polyamino- und/oder Polyammonium-Polysiloxan-Copolymer-Verbindungen, sowie gegebenenfalls ein oder mehrere Tenside sowie gegebenenfalls ein oder mehrere stickstofffreie Polysiloxanverbindungen enthalten sowie die Verwendung der genannten wässrigen Emulsionen in einer der oben genannten Anwendungen.
Beispiele

Beispiel 1

(Einführung monofunktionell angebundener hydrophiler Einheiten in Kombination mit der Einführung difunktioneller hydrophiler Einheiten)

In einem 500 ml Dreihalskolben werden 173,7 g (30 mmol) eines Siloxanepoxides der Struktur

\[
\begin{array}{c}
\text{CH}_3 \\
\text{Si-O-Si} \\
\text{CH}_3 \\
\text{O} \\
\text{O} \\
\end{array}
\]

4,17 g (4 mmol) des monofunktionellen Aminopolyethers Jeffamin® M 1000 der Struktur

\[\text{H}_2\text{N}[\text{CH}(\text{CH}_3)\text{CH}_2\text{O}]_9(\text{CH}_2\text{CH}_2\text{O})_{19}\text{CH}_3\]

und 30 ml 2-Propanol vorgelegt und unter Rühren für 6 Stunden auf 80 °C erhitzt. In diesen Ansatz wird eine Mischung, bestehend aus

8,51 g (4 mmol) des difunktionellen Aminopolyethers Jeffamin® ED 2003 der Struktur

\[\text{H}_2\text{NCH}(\text{CH}_3)\text{CH}_2[\text{OCH}_2\text{CH}(\text{CH}_3)]_a(\text{OCH}_2\text{CH}_2)_{38.7}[\text{OCH}_2\text{CH}(\text{CH}_3)]_b\text{NH}_2\]

mit \(a+b = 6\)

3,79 g (22 mmol) \(N,N,N',N'\)-Tetramethyl-1,6-hexandiamin

1,68 g (28 mmol) Essigsäure

5,6 g (28 mmol) Dodecansäure

6 ml 2-Propanol

24 ml deionisierten Wassers

gegeben.

Dieser Gesamtansatz wird für 8 Stunden auf 80 °C erhitzt, wird in Verlauf der Reaktion klar und färbt sich orange-braun. Es werden 250 g eines Polymeren mit folgenden Strukturelementen erhalten:
(V₁, V₂, Ω und R° zeigen exemplarisch die Wiederholungseinheiten bzw. Reste gemäß der Formel (I)).
Beispiel 2

(Einführung monofunktionell angebundener hydrophiler Einheiten in Kombination mit Polymerendstopping)

In einem 500 ml Dreihalskolben werden 156,33 g (27 mmol) eines Siloxanepoxides der Struktur

![Siloxanepoxid-Strukturformel]

6,25 g (6 mmol) des monofunktionellen Aminopolyethers Jeffamin® M 1000 der Struktur

\[\text{H}_2\text{N}[\text{CH(CH}_3\text{)}\text{CH}_2\text{O}]_3(\text{CH}_2\text{CH}_2\text{O})_{15}\text{CH}_3 \]

und 30 ml 2-Propanol vorgelegt und unter Rührung für 6 Stunden auf 80 ºC erhitzt. Dem Ansatz werden 0,7 g (6 mmol) Isopropylglycidylether zugesetzt. Anschließend wird in diesen Ansatz eine Mischung, bestehend aus 4,14 g (24 mmol) N,N,N',N'-Tetramethyl-1,6-hexandiamin

1,62 g (27 mmol) Essigsäure

5,4 g (27 mmol) Dodecansäure

6 ml 2-Propanol

24 ml deionisierten Wassers gegeben.

Dieser Gesamtansatz wird für 8 Stunden auf 80 ºC erhitzt. Es werden 214 g einer hellbraunen bis orange gefärbten Lösung erhalten. Das Polymer enthält folgende Strukturelemente:

![Polymer-Strukturformel]
Beispiel 3

(Einführung monofunktionell angebundener hydrophiler Einheiten in Kombination mit der Einführung difunktioneller hydrophiler Einheiten und verzweigender hydrophiler Einheiten)

In einem 500 ml Dreihalskolben werden 173,7 g (30 mmol) eines Siloxanepoxides der Struktur

\[
\text{CH}_3\text{CH}_3
\]

4,17 g (4 mmol) des monofunktionellen Aminopolyethers Jeffamin® M 1000 der Struktur

\[
\text{H}_2\text{N}[\text{CH(CH}_3\text{)CH}_2\text{O}]_3(\text{CH}_2\text{CH}_2\text{O})_{19}\text{CH}_3
\]
und 30 ml 2-Propanol vorgelegt und unter Rühren für 6 Stunden auf 80 °C erhitzt. In diesen Ansatz wird eine Mischung, bestehend aus

6,38 g (3 mmol) des difunktionellen Aminopolyethers Jeffamin® ED 2003 der Struktur

\[
\text{H}_2\text{NCH(\text{CH}_3)CH}_2[\text{OCH}_2\text{CH(\text{CH}_3)}]_a(\text{OCH}_2\text{CH}_2)_3\text{N}[\text{OCH}_2\text{CH(\text{CH}_3})]_b\text{NH}_2
\]

mit \(a+b = 6\)

2,1 g (0,66 mmol) des trifunktionellen Aminopolyethers Jeffamin® T3000 der Struktur

\[
\begin{align*}
\text{CH}_3 & \\
\text{H}_2\text{N(CHCH}_2\text{O)}_a\text{CH}_2 & \\
\text{CH}_3 & \\
\text{H}_2\text{N(CHCH}_2\text{O)}_b\text{CH} & \\
\text{CH}_3 & \\
\text{H}_2\text{N(CHCH}_2\text{O)}_c\text{CH}_2
\end{align*}
\]

mit \(a+b+c = 50\)

3,79 g (22 mmol) \(N,N,N',N'-\text{Tetramethyl-1,6-hexandiamin}\)

1,68 g (28 mmol) Essigsäure

5,6 g (28 mmol) Dodecansäure

6 ml 2-Propanol

24 ml deionisierten Wassers

gewiesen.

Dieser Gesamtansatz wird für 8 Stunden auf 80 °C erhitzt. Es werden 237,3 g einer orange-braunen Lösung erhalten. Das Polymer enthält folgende Strukturelemente:
Beispiel 4

(Einführung monofunktionell angebundener hydrophiler Einheiten in Kombination mit der Einführung difunktioneller hydrophiler Einheiten und reaktiver Einheiten)

4a) Herstellung eines uretdionhaltigen ditertiären Amins
In einem 100 ml Dreihalskolben werden bei 30 bis 40 °C 4,36 g (9,8 mmol) Isophorondiisocyanat-Dimer der Struktur

\[
\begin{align*}
O=\text{C}=\text{N} & \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{N}=\text{C}=\text{O} \\
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{N}=\text{C}=\text{O} \\
\text{CH}_3 & \quad \text{N}=\text{C}=\text{O} & \quad \text{O}=\text{C}=\text{N} \\
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3
\end{align*}
\]

in 10,17 g Methoxypropylacetat gelöst. Es werden unter Rührung innerhalb von 20 Minuten 2 g (19,6 mmol) N,N-Dimethyl-1,3-propanediamin zugetropft, wobei die Temperatur auf 70 bis 80 °C steigt. Bei Abkühlung erfolgt Phasentrennung. Durch Zugabe von 1,24 g 2-Propanol wird eine bei Raumtemperatur klare Lösung erhalten. Das aminomodifizierte Isophorondiisocyanat-Dimer hat die Struktur

\[
\begin{align*}
\text{N} & \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{O} & \quad \text{CH}_3 \\
\text{N} & \quad \text{C}=\text{N} & \quad \text{O} \\
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{N} & \quad \text{C}=\text{N} \\
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3
\end{align*}
\]

Beispiel 4b)

In einem 500 ml Dreihalskolben werden 173,7 g (30 mmol) eines Siloxanepoxides der Struktur

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{Si-O} & \quad \text{Si} \\
\text{CH}_3 & \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{CH}_3 \\
\text{O} & \quad \text{O}
\end{align*}
\]
4,17 g (4 mmol) des monofunktionellen Aminopolyethers Jeffamin® M 1000 der Struktur \(\text{H}_2\text{N}[(\text{CH}_3\text{CH}_2\text{O})_3(\text{CH}_2\text{CH}_2\text{O})_{19}\text{CH}_3 \]
und 30 ml 2-Propanol vorgelegt und unter Rührung für 5 Stunden auf 82-84 °C erhitzt.

In diesen Ansatz wird eine Mischung, bestehend aus
8,51 g (4 mmol) des difunktionellen Aminopolyethers Jeffamin® ED 2003 der Struktur
\(\text{H}_2\text{NCH(CH}_3\text{CH}_2[\text{OCH}_2\text{CH}(\text{CH}_3)]_a(\text{OCH}_2\text{CH}_2)_b\text{NH}_2 \]
mit \(a+b = 6 \)

3,41 g (19.8 mmol) \(\text{N,N,N',N'\text{-Tetramethyl-1,6-hexandiamin}} \)
1,68 g (28 mmol) Essigsäure
5,6 g (28 mmol) Dodecansäure
6 ml 2-Propanol
24 ml deionisierten Wassers

gengeben.

Anschließend werden dem Ansatz 4 g (2,2 mmol) des uredionhaltigen ditertiären Amins gemäß Beispiel 4a zugesetzt und der Gesamtansatz für 8 Stunden auf 82-84 °C erhitzt. Es werden 250 g Produkt erhalten. Das Polymer enthält folgende Strukturelemente:
- 43 -

\[
\begin{align*}
\text{H}_2\text{N} & \text{CH(CH}_3\text{)CH}_2[\text{OCH}_2\text{CH(CH}_3\text{)}_n \text{(OCH}_2\text{CH}_2\text{)}_{38.7} \text{(OCH}_2\text{CH(CH}_3\text{)}_b \text{)} \text{NH}_2] \quad \text{a+b = 6} \\
\text{0.137 CH}_3\text{COO}^- & \quad \text{0.93 CH}_3\text{COO}^-
\end{align*}
\]
Beispiel 5
(Einführung monofunktionell angebundener hydrophiler Einheiten mit in die Kette integrierter quaternärer Ammoniumgruppe)

Beispiel 5a) Herstellung eines Chloressigsäureesters

205,3 g (0,5 mol) eines molmassenverteilten Octaethylenglykolmonooallylethers werden unter Stickstoff bei 20 °C Raumtemperatur vorgelegt. Unter intensiven Rühren werden innerhalb 20 Minuten 63,4 g (0,55 mol) Chloressigsäurechlorid zugetropft. Während des Zutropfens steigt die Temperatur auf 67 °C an und eine intensive HCl-Entwicklung setzt ein. Nach Beendigung des Zutropfens wird der Ansatz 1 Stunde auf 120 °C erhitzt. Abschließend wurden alle bis 120 °C bei 20 hPa siedenden Bestandteile abdestilliert. Es wurden 246 g eines hellgelben Esters der Struktur

\[
\text{CICH}_2\text{C(O)O(CH}_2\text{CH}_2\text{O)}_6\text{CH}_2\text{CH}=\text{CH}_2
\]

erhalten.

Beispiel 5b)

In einem 500ml Dreihalskolben werden 173,7 g (30 mmol) eines Siloxanepoxides der Struktur

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{Si-O-Si} & \\
\text{CH}_3 & \quad \text{CH}_3 \\
74 & \quad 0
\end{align*}
\]

0,92 g (9 mmol) N,N-Dimethylpropylendiamin

und 100ml 2-Propanol vorgelegt und unter Rühren für 5 Stunden auf 82-84 °C erhitzt.

Anschließend werden 4,38 g (9 mmol) des Chloressigsäureesters gemäß Beispiel 5a) zugetropft und die Mischung für weitere 5 Stunden auf 82-84 °C erhitzt.

In diesen Ansatz wird eine Mischung, bestehend aus

- 3,62 g (21 mmol) N,N,N',N'-Tetramethyl-1,6-hexandiamin
- 1,26 g (21 mmol) Essigsäure
- 4,2 g (21 mmol) Dodecansäure
- 6 ml 2-Propanol
24 ml deionisierten Wassers gegeben.
Der Gesamtansatz wird für 8 Stunden auf 82-84 °C erhitzt. Es werden 361 g eines zweiphasigen Produkts erhalten. Das Polymer enthält folgende Strukturelemente:

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{Si-O-Si} & \\
\text{CH}_3 & \quad \text{CH}_3 \\
\text{OH} & \\
\end{align*}
\]

\[
\begin{align*}
\text{OH} & \\
\text{N} & \quad \text{N(CH}_3)_2 \quad 0.7 \\
\text{CH}_3 & \quad \text{NCH}_2\text{C(O)O(CH}_2\text{CH}_2\text{O)}_8 \quad \text{CH}_2\text{CH}=&\text{CH}_2 \\
\end{align*}
\]

\[
\begin{align*}
0.7 \text{CH}_3(\text{CH}_2)_{10}\text{COO}^- & \quad 0.7 \text{CH}_3\text{COO}^- \\
\end{align*}
\]

Beispiel 6
(Einführung monofunktionell angebundener hydrophiler Einheiten)
In einem 500 ml Dreihalskolben werden 184,5 g (15 mmol) eines Siloxanepoxides der Struktur

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{Si-O-Si} & \\
\text{CH}_3 & \quad \text{CH}_3 \\
\text{160} & \\
\end{align*}
\]

\[
\begin{align*}
\text{O} & \\
\text{O} & \\
\end{align*}
\]
6,25 g (3 mmol) des monofunktionellen Aminopolyethers Jeffamin® M 2070 der Struktur \(H_2N[\text{CH(\text{CH}_3)\text{CH}_2O}]_{10}(\text{CH}_2\text{CH}_2\text{O})_{32}\text{CH}_3 \)

und 20 g Dipropylenglykolmonobutylether vorgelegt und unter Rührung für 6 Stunden auf 100 bis 103 ºC erhitzt.

In diesen Ansatz wird eine Mischung, bestehend aus

2,07 g (12 mmol) \(\text{N}_2\text{N}_2\text{N'}_2\text{N'}_2\)-Tetramethyl-1,6-hexandiamin

0,9 g (15 mmol) Essigsäure

3,0 g (15 mmol) Dodecansäure

5,5 g Dipropylenglykolmonobutylether

9,25 ml deionisierten Wassers gegeben.

Dieser Gesamtansatz wird für 10 Stunden auf 100-103 ºC erhitzt. Es werden 210 g einer 87,3-%igen Lösung eines Polymeren mit folgenden Strukturelementen erhalten:

\[
\begin{align*}
\text{OH} & \quad \text{CH}_3 \quad \text{CH}_3 \\
\text{Si-O-Si} & \quad \text{CH}_3 \quad \text{CH}_3
\end{align*}
\]

\[
\begin{align*}
\text{HO} & \quad \text{(CH}_3\text{)}_2\text{N} & \quad \text{N(CH}_3\text{)}_2 \\
0.8 & &
\end{align*}
\]

\[
\begin{align*}
\text{OH} & \quad \text{CH}_3 \quad \text{CH}_3 \\
\text{Si-O-Si} & \quad \text{CH}_3 \quad \text{CH}_3
\end{align*}
\]

\[
\begin{align*}
\text{HO} & \quad 0.20 \\
\text{HN[CH(\text{CH}_3)\text{CH}_2\text{O}]_{10}(\text{CH}_2\text{CH}_2\text{O})_{32}\text{CH}_3} & \quad 0.9 \text{CH}_3(\text{CH}_2)_1\text{COO}^- & \quad 0.9 \text{CH}_3\text{COO}^-
\end{align*}
\]

Beispiel 7 nicht erfindungsgemäß

(Einführung difunktionell eingebundener hydrophiler Einheiten)

In einem 500 ml Dreihalskolben werden 184,5 g (15 mmol) eines Siloxanepoxides der Struktur
In diesen Ansatz wird eine Mischung, bestehend aus 6,38 g (3 mmol) des difunktionellen Aminopolyethers Jeffamin® ED 2003 der Struktur

\[
 \text{H}_2\text{NCH(CH}_3\text{)}\text{CH}_2[\text{OCH}_2\text{CH(CH}_3\text{)}]_a(\text{OCH}_2\text{CH}_2)_{38.7}[\text{OCH}_2\text{CH(CH}_3\text{)}]_b\text{NH}_2
\]
mit \(a+b = 6 \)

2,07 g (12 mmol) \(\text{N,N',N'\text{-Tetramethyl-1,6-hexandiamin}} \)

0,9 g (15 mmol) Essigsäure

3,0 g (15 mmol) Dodecansäure

25,5 g Dipropylen glycolmonobutylether

9,25 ml deionisierten Wassers gegeben.

Dieser Gesamtansatz wird für 10 Stunden auf 100-103 °C erhitzt. Es werden 205 g einer 86 %-igen Lösung eines Polymeren mit folgenden Strukturelementen erhalten:
Beispiel 8
(Microemulsionen)
Es werden folgende 20 %-ige Microemulsionen hergestellt:
Tab. 1

<table>
<thead>
<tr>
<th></th>
<th>Microemulsion 1 (erfindungsgemäß)</th>
<th>Microemulsion 2 (nicht erfindungsgemäß)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siloxanquatlösung (87,3%ig) gemäß Beispiel 6</td>
<td>[g] 22,9</td>
<td>-</td>
</tr>
<tr>
<td>Siloxanquatlösung (86%ig) gemäß Beispiel 7</td>
<td>[g] -</td>
<td>23,3</td>
</tr>
<tr>
<td>Renex® 36</td>
<td>[g] 9,5</td>
<td>9,5</td>
</tr>
<tr>
<td>Renex® 30</td>
<td>[g] 2,05</td>
<td>2,05</td>
</tr>
<tr>
<td>Crodet® S40</td>
<td>[g] 1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>[g] 0,46</td>
<td>0,46</td>
</tr>
<tr>
<td>Na-Acetat</td>
<td>[g] 0,34</td>
<td>0,34</td>
</tr>
<tr>
<td>deionisiertes Wasser</td>
<td>[g] 63,7</td>
<td>63,3</td>
</tr>
</tbody>
</table>

Renex® 36 Handelsname der ICI Surfactants; Tridecylalkohol-EO₁₂-OH
Renex® 30 Handelsname der ICI Surfactants; Tridecylalkohol-EO₆-OH
Crodet® S40 Handelsname der Croda GmbH; Stearinsäure-EO₄₀-OH

Beispiel 9
(Textilzusatzmittel)
Gebleichter Baumwollfrottee wird in einem Polymaten (Mathis) zur definierten Konditionierung der Textilien unter unter folgenden Randbedingungen mit den Microemulsionen 1 und 2 gemäß Beispiel 8 ausgerüstet:
Tab.2

<table>
<thead>
<tr>
<th>Konzentration (mg Siliconquat/g Frottee)</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewicht Baumwolle (g)</td>
<td>10</td>
</tr>
<tr>
<td>Flottenmenge (ml)</td>
<td>300</td>
</tr>
<tr>
<td>Ausrüsttemperatur (°C)</td>
<td>40</td>
</tr>
<tr>
<td>Ausrüstzeit (min)</td>
<td>30</td>
</tr>
<tr>
<td>Mechanik (Zahl Stahlkugeln)</td>
<td>21</td>
</tr>
<tr>
<td>Trocknungstemperatur (°C)</td>
<td>80</td>
</tr>
</tbody>
</table>

Zur Einstellung des Feuchtegehaltes werden die beiden Muster Baumwollfrottee für 24 Stunden unter Atmosphärenbedingungen gelagert.

Weichheit
4 Testpersonen haben den Griff der mit den Microemulsionen 1 und 2 ausgerüsteten Frotteemuster miteinander verglichen. Es konnte von keiner der Testpersonen ein signifikanter Unterschied festgestellt werden.

Hydrophilie
50 µl Wassertropfen werden auf die Frotteeoberfläche aufgesetzt und die Zeit bis zum Einsinken in Sekunden gemessen.

Tab.3

<table>
<thead>
<tr>
<th></th>
<th>Tr1</th>
<th>Tr2</th>
<th>Tr3</th>
<th>Tr4</th>
<th>Tr5</th>
<th>TrØ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microemulsion 1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>(erfindungsgemäß)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microemulsion 2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3.0</td>
</tr>
<tr>
<td>(nicht erfindungsgemäß)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Ergebnisse zeigen, daß für Materialien mit vergleichbarem Alkylengoxidgehalt die Hydrophilie durch gezielte Verwendung monofunktionell angebundener
Alkylenoxideinheiten signifikant gesteigert werden kann, ohne daß ein merklicher negativer Einfluß auf die Griffcharakteristik ausgeübt wird.
PATENTANSPRÜCHE:

1. Polyamino- und/oder Polyammonium-Polysiloxan-Copolymer-Verbindungen, dadurch gekennzeichnet, dass sie Wiederholungseinheiten der Formel (I) aufweisen:

 \[-[Q-V]-\quad (I)\]

worin Q aus der Gruppe ausgewählt wird, die besteht aus:

 \[-NR-,\]

 \[-N^+R_2-\]

einem gesättigten oder ungesättigten diaminofunktionellen Heterocyclus der Formeln:

 \[
 \begin{align*}
 &\text{N} \quad \text{N} \\
 \end{align*}
 \]

 \[
 \begin{align*}
 &\text{N} \quad \text{N}^+ \\
 &\text{R} \\
 \end{align*}
 \]

 und

 \[
 \begin{align*}
 &\text{R} \quad \text{R} \\
 \end{align*}
 \]

 \[
 \begin{align*}
 &\text{N}^+ \quad \text{N} \\
 \end{align*}
 \]

 , sowie

 einem aromatischen diaminofunktionellen Heterocyclus der Formel:

 \[
 \begin{align*}
 &\text{N}^+ \quad \text{N} \\
 \end{align*}
 \]
einem dreiwertigen Rest der Formel:

\[\text{N} \]

5
einem dreiwertigen Rest der Formel:

\[\text{N}^+ \]

10einem vierwertigen Rest der Formel,

worin R jeweils Wasserstoff oder einen einwertigen organischen Rest
darstellt,

wobei Q nicht an ein Carbonylkohlenstoffatom bindet,

\[V \] aus der Gruppe ausgewählt wird, die aus \[V^1, V^2 \] und \[V^3 \] besteht, worin

\[V^2 \] ausgewählt wird aus zweiwertigen, geradkettigen, cyclischen oder
verzweigten, gesättigten, ungesättigten oder aromatischen
Kohlenwasserstoffresten mit bis zu 1000 Kohlenstoffatomen (wobei die
Kohlenstoffatome des unten definierten Polysiloxanrestes \(Z^2 \) nicht
mitgezählt werden), die gegebenenfalls eine oder mehrere Gruppen,
ausgewählt aus
-CONR²-, worin R² Wasserstoff, einen einwertigen, geradkettigen, cyclischen oder verzweigten, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffrest mit bis zu 100 Kohlenstoffatomen darstellt, der eine oder mehrere Gruppen ausgewählt aus -O-, -NH-, -C(O)- und -C(S)- enthalten kann, und der gegebenenfalls durch eine oder mehrere Substituenten, ausgewählt aus der Gruppe, die besteht aus einer Hydroxylgruppe, einer gegebenenfalls substituierten, bevorzugt ein oder mehrere Stickstoffatome enthaltenden heterocyclischen Gruppe, Amino, Alkylamino, Dialkylamino, Ammonium, Polyetherresten und Polyetheresterresten substituiert sein kann, wobei wenn mehrere Gruppen -CONR² vorliegen, diese gleich oder verschieden sein können,

-C(O)- und -C(S)- enthalten kann,

der Rest V² gegebenenfalls durch eine oder mehrere Hydroxylgruppen und/oder durch

-Si(OR)₃₋ₐ(R')ₐ

worin a eine ganze Zahl von 0 bis 2 ist und R und R' gleich oder verschieden voneinander sein können und jeweils einen organischen Rest darstellen, substituiert sein kann, und

der Rest V² mindestens eine Gruppe -Z²- der Formel
enthält, worin

\[R^1 \text{ gleich oder verschieden sein kann und aus der Gruppe ausgewählt wird, die besteht aus: } C_1 \text{ bis } C_{22} \text{ alkyl, Fluor}(C_1-C_{10})\text{alkyl, } C_6-C_{10} \text{ aryl und } -W-Si(OR)_3\text{n}_a(R')_b \text{ besteht, worin } R, R' \text{ und } a \text{ wie oben definiert sind und } W \text{ -O- oder einen zweiwertigen, geradkettigen, cyclischen oder verzweigten, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffrest mit bis zu 100 Kohlenstoffatomen darstellt, der eine oder mehrere Gruppen } -C(O)-, -O-, -NH-, -S- \text{ enthalten kann, und gegebenenfalls durch Hydroxygruppen substituiert sein kann, und } \]

\[n_1 = 20 \text{ bis } 1000 \text{ bedeutet,} \]

\[V^1 \text{ ausgewählt wird aus zweiwertigen, geradkettigen, cyclischen oder verzweigten, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffresten mit bis zu 1000 Kohlenstoffatomen, die gegebenenfalls eine oder mehrere Gruppen, ausgewählt aus} \]

\[-O-, -CONH-, \]

\[-CONR^2-, \text{ worin } R^2 \text{ wie oben definiert ist, wobei die Gruppen } R^2 \text{ in den Gruppen } V^1 \text{ und } V^2 \text{ gleich oder verschieden sein können,} \]

\[-C(O)-, -C(S)- \text{ und } -Z^1- \text{ enthalten kann, worin } -Z^1- \text{ eine Gruppe der Formel} \]
ist, worin

\[R^1 \] wie oben definiert ist, wobei die Gruppen \(R^1 \) in den Gruppen \(V^1 \) und \(V^2 \) gleich oder verschieden sein können, und

\[n_2 = 0 \text{ bis } 19 \text{ bedeutet,} \]

und der Rest \(V^1 \) gegebenenfalls durch eine oder mehrere Hydroxylgruppen und/oder durch

\[-\text{Si(OR)}_{3-a}(R')_a \]

worin a eine ganze Zahl von 0 bis 2 ist und R und R' gleich oder verschieden voneinander sein können und jeweils einen organischen Rest darstellen, substituiert sein kann, und

\(V^3 \) einen drei- oder höherwertigen, geradkettigen, cyclischen oder verzweigten, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffrest mit bis zu 1000 Kohlenstoffatomen darstellt, der gegebenenfalls eine oder mehrere Gruppen, ausgewählt aus

\[\text{-O-, -CONH-,} \]

wie oben definiert ist, \(\text{-C(O)-, -C(S)-,} \) wie oben definiert ist, \(\text{-Z^2- das wie oben definiert ist, und Z^3, worin Z^3 eine drei- oder höherwertige Organopolysiloxaneinheit ist, enthalten kann, und} \]
der gegebenenfalls durch eine oder mehrere Hydroxylgruppen und/oder durch

\[-\text{Si(OR)}_3\alpha(\text{R'}\alpha)\]

worin \(a\) eine ganze Zahl von 0 bis 2 ist und \(R\) und \(R'\) gleich oder verschieden voneinander sein können und jeweils einen organischen Rest darstellen, substituiert sein kann, substituiert sein kann,

mit der Maßgabe,

- dass die genannte Polysiloxan-Verbindung mindestens eine Gruppe \(-Z^1\alpha,-Z^2\alpha\) oder \(Z^3\) enthalten,

- dass die drei- und vierwertigen Reste \(Q\) entweder der Verzweigung der aus \(Q\) und \(V\) gebildeten Hauptkette dienen, so dass die Valenzen, die nicht der Bindung in der Hauptkette dienen, weitere aus \(-[Q-V]-\)Einheiten gebildete Verzweigungen tragen, oder die drei- und vierwertigen Reste \(Q\) sättigen sich mit Resten \(V^3\) innerhalb einer linearen Hauptkette ohne Bildung einer Verzweigung ab, und

- dass in den Gruppen \(Q\) mindestens ein Rest \(R\) einen polyalkylenoxid-haltigen organischen Rest \(R^0\) darstellt,

und worin die aus Ammoniumgruppen resultierenden positiven Ladungen durch organische oder anorganische Säureanionen neutralisiert sind.

2. Polyamino- und/oder Polyammonium-Polysiloxan-Copolymer-Verbindungen nach Anspruch 1, dadurch gekennzeichnet, dass das molare Verhältnis \(R^0 : Q\) von 0,001 bis 2 beträgt.

3. Polyamino- und/oder Polyammonium-Polysiloxan-Copolymer-Verbindungen nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass \(R^0\) eine Gruppe der Formel (III) darstellt,
worin X eine Einfachbindung oder einen zweiwertigen, geradkettigen, verzweigten oder cyclischen Kohlenwasserstoffrest mit bis zu 20 Kohlenstoffatomen darstellt, der gegebenenfalls Stickstoff und/oder Sauerstoff enthalten kann, und X über ein Kohlenstoffatom mit dem Stickstoffatom von Q verbunden ist,

E einen Polyalkylenoxidrest der Formel

\[-[(C_{a}H_{2a})O]_y-\]

worin \(a = 2\) bis 4 ist,
\(y = 2\) bis 10000 ist,

darstellt, der über ein Kohlenstoffatom mit der Gruppe X und über ein Sauerstoffatom mit der Gruppe Y verbunden ist,

Y Wasserstoff oder einen einwertigen, geradkettigen, verzweigten oder cyclischen, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffrest mit bis zu 24 Kohlenstoffatomen darstellt, der Sauerstoff und/oder Stickstoff und/oder Halogen enthalten kann und über ein Kohlenstoffatom mit der Gruppe E verbunden ist.

4. Polyamino- und/oder Polyammonium-Polysiloxan-Copolymer-Verbindungen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass \(R^0\) eine Gruppe der Formel (III) ist, in der –E- eine Gruppe der Formel (IV) darstellt:

\[\text{CH}_3\]
\[-(\text{CH}_2\text{CH}_2\text{O})_y(\text{CH}_2\text{CH}_2\text{O})_w-\text{Y}\]

(IV),
wobei es sich um statistische und blockartige Sequenzen der Ethylen- und Propylenoxid-Einheiten handeln kann und die Bindung an E über eine Ethylen- oder Propylenoxid-Einheit erfolgen kann, mit
\[v = 0 \text{ bis } 200, \]
\[w = 0 \text{ bis } 200, \]
\[v + w \geq 1. \]

5. Polyamino- und/oder Polyammonium-Polysiloxan-Copolymer-Verbindungen nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass RO eine Gruppe der Formel (III) ist, in der Y aus H oder geradkettigen, cyclischen, verzweigten C_1 bis C_22-Alkyl-, Alkenyl-, Alkinyl-, Fluor-(C_1-C_10)-alkyl- und C_6-C_10-Arylresten ausgewählt wird.

6. Polyamino- und/oder Polyammonium-Polysiloxan-Copolymer-Verbindungen nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass V Wiederholungseinheiten der Formel V^1 und V^2 umfasst.

8. Polyamino- und/oder Polyammonium-Polysiloxan-Copolymer-Verbindungen nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das molare Verhältnis der Gruppen V^1 und V^2:
\[V^2/V^1 > 1 \]

ist.

9. Polyamino- und/oder Polyammonium-Polysiloxan-Copolymer-Verbindungen nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sie im Mittel mindestens zwei Wiederholungseinheiten der Formel (I) aufweisen.
10. Polyamino- und/oder Polyammonium-Polysiloxan-Copolymer-Verbindungen nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Gruppe \(\text{V}^1 \) ausgewählt wird aus zweiseitigen, geradkettigen, cyclischen oder verzweigten, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffresten mit bis zu 600 bevorzugt bis zu 400 Kohlenstoffatomen, die gegebenenfalls eine oder mehrere Gruppen, ausgewählt aus -O-, -CONH-, -CONR\(^2\)-, worin \(R^2 \) wie oben definiert ist, -C(O)-, -C(S)- und -Z\(^1\)- enthalten können, worin -Z\(^1\)- eine Gruppe der Formel

\[
\begin{align*}
R^1 & \quad \begin{bmatrix} R^1 \end{bmatrix} \quad R^1 \quad \begin{bmatrix} R^1 \end{bmatrix} \quad R^1 \\
\text{-Si-O-}_{n} & \quad \text{-Si-O-}_{n} \\
R^1 & \quad \begin{bmatrix} R^1 \end{bmatrix} \quad R^1 \\
\end{align*}
\]

ist, worin
\(R^1 \) C\(_{1}\) - C\(_{18}\) Alkyl, das gegebenenfalls mit einem oder mehreren Fluoratomen substituiert sein kann, oder Phenyl ist, und \(n_2 \) wie oben definiert ist.

11. Polyamino- und/oder Polyammonium-Polysiloxan-Copolymer-Verbindungen nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Gruppe \(\text{V}^1 \) ausgewählt wird aus:

- \(-\text{R}^9 - \)

worin \(R^9 \) einen zweiseitigen, gesättigten oder einfach oder mehrfach ungesättigten, geradkettigen oder verzweigten Kohlenwasserstoffrest mit zwei bis 25 Kohlenstoffatomen darstellt,

- \(-(\text{CH}_2)_n\text{C(O)O-[}(\text{CH}_2\text{CH}_2\text{O})_q\text{-(CH}_2\text{CH}(\text{CH}_3)\text{O})_r\text{-C(O)(CH}_2)_n- \)

- \(-(\text{CH}_2)_n\text{C(O)O-R}^9\text{-O-C(O)(CH}_2)_n- \), worin \(R^9 \) wie zuvor definiert ist,

- \(-(\text{CH}_2)_n\text{-R}^{10\text{-}(\text{CH}_2)_n-} \), worin \(R^{10} \) eine aromatische Gruppe ist,

- \(-[\text{CH}_2\text{CH}_2\text{O}]_q\text{-[CH}_2\text{CH}(\text{CH}_3)\text{O}]_r\text{-CH}_2\text{CH}_2- \),

- \(-\text{CH}(\text{CH}_3)\text{CH}_2\text{O}[\text{CH}_2\text{CH}_2\text{O}]_q\text{-[CH}_2\text{CH}(\text{CH}_3)\text{O}]_r\text{-CH}_2\text{CH}(\text{CH}_3)- \)

- \(-\text{CH}_2\text{CH(OH)CH}_2- \),

- \(-\text{CH}_2\text{CH(OH)(CH}_2)_2\text{CH(OH)CH}_2- \),

- \(-\text{CH}_2\text{CH(OH)CH}_2\text{CH(OH)CH}_2\text{CH(OH)CH}_2- \) und

- \(-\text{CH}_2\text{CH(OH)CH}_2\text{O-[CH}_2\text{CH}_2\text{O}]_q\text{-[CH}_2\text{CH}(\text{CH}_3)\text{O}]_r\text{-CH}_2\text{CH(OH)CH}_2- \)
worin
u von 1 bis 3 ist,
q und r von 0 bis 200, bevorzugt von 0 bis 100, bevorzugter von 0 bis 70 und besonders bevorzugt 0 bis 40 ist, und
\[q + r > 0 \]

12. Verfahren zur Herstellung der Polyamino- und/oder Polyammonium-Polysiloxan-Copolymer-Verbindungen nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass man
a) Ein primäres Amin, dass eine Polyalkylenoxidgruppe enthält, sowie gegebenenfalls weitere Aminverbindungen mit aminoreaktiven Polysiloxan-enthaltenden Verbindungen und gegebenenfalls weiteren aminoreaktiven Verbindungen umsetzt, oder
b) Die Aminogruppe einer Polyamino-Polysiloxan-Copolymer-Verbindung mit einem Alkylierungsmittel, dass eine Polyalkylenoxidgruppe enthält, alkyliert.

INTERNATIONAL SEARCH REPORT

International application No:

PCT/EP2006/002910

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INV.</th>
<th>C08G77/46</th>
<th>C08G77/54</th>
<th>C08L83/12</th>
<th>C08L83/14</th>
<th>C08G77/388</th>
</tr>
</thead>
<tbody>
<tr>
<td>A61K8/897</td>
<td>D06M15/643</td>
<td>D06M15/647</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C08G C08L A61K D06M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 102 14 290 A1 (GE BAYER SILICONES GMBH & CO. KG) 9 October 2003 (2003-10-09) examples 2,3</td>
<td>1-20</td>
</tr>
<tr>
<td>E</td>
<td>WO 2006/067225 A (GE BAYER SILICONES GMBH & CO. KG; LANGE, HORST; HILGERS, CHRISTOPH; WA) 29 June 2006 (2006-06-29) the whole document</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search

15 August 2006

Date of mailing of the international search report

22/08/2006

Name and mailing address of the ISA/EP

European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3019

Authorized officer

Bergmeier, M
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 10214290 A1</td>
<td>09-10-2003</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

INTERNATIONALES AKTENZEICHEN

PCT/EP2006/002910

A. KLASSEIFIZIERUNG DES ANMELDUNGSSTANDES

<table>
<thead>
<tr>
<th>INV.</th>
<th>C08L77/46</th>
<th>C08L77/54</th>
<th>C08L83/12</th>
<th>C08L83/14</th>
<th>C08S77/388</th>
</tr>
</thead>
<tbody>
<tr>
<td>A61K8/897</td>
<td>D06M15/643</td>
<td>D06M15/647</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nach der Internationalen Patentsklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestdruckstoff (Klassifikationssystem und Klassifikationszahlen):

C08G C08L A61K D06M

Recherchierte, aber nicht zum Mindestdruckstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe):

EPO-Internal

C. ALS WESENTLICH ANGESSEHENEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
</table>

Weitere Veröffentlichungen sind die Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilien

* Besondere Kategorien von angegebenen Veröffentlichungen:
 * A: Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 * E: älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldungsdatum veröffentlicht worden ist
 * L: Veröffentlichung, die gekennzeichnet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht gewesenen Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
 * O: Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 * P: Veröffentlichung, die vor dem internationalen Anmeldungsdatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

1 Spätere Veröffentlichung, die nach dem internationalen Anmeldungsdatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrunde liegenden Prinzips oder der ihr zugrunde liegenden Theorie angegeben ist

1 Ausführung, Angabe der Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung enthält oder auf die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

Datum des Abschlusses der internationalen Recherche: 15. August 2006

Datum des internationalen Rechercheberichts: 22/08/2006

Name und Postanschrift der internationalen Recherchebehörde:

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk
Tel. (+31–70) 340–3040, Tx. 31 651 epc nl, Fax: (+31–70) 340–3016

Bemerkungen:

Formblatt PCT/SA/210 (Bild 0) (April 2003)

Biovollmächtigter Bediensteter

Bergmeier, M
<table>
<thead>
<tr>
<th>Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(e) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 10214290 A1</td>
<td>09-10-2003</td>
<td>KEINE</td>
<td></td>
</tr>
</tbody>
</table>