PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:	A1	(11) International Publication Number: WO 86/04911			
C08K 5/43		(43) International Publication Date: 28 August 1986 (28.08.86)			
 (21) International Application Number: PCT/US (22) International Filing Date: 13 February 1986 	•	Company P.O. Box 1967 Midland MI 48641-1967			
(31) Priority Application Number: (32) Priority Date: 14 February 1985 (33) Priority Country:	•	ropean patent). DE (European patent) FR (European			
 (71) Applicant: THE DOW CHEMICAL COMPAUS; 2030 Dow Center, Abbot Road, Mid 48640 (US). (72) Inventors: OGOE, Samuel, A.; 308 Linden Stleton, TX 77515 (US). FARAH, Hani; 244 I Drive, Clute, TX 77531 (US). DICK, Kevin Sycamore Street, Lake Jackson, TX 77566 (1997). 	lland, M reet, Ar Lakewoo . F. ; 5	I With international search report.			

(54) Title: CARBONATE POLYMER COMPOSITIONS CONTAINING A SALT OF AN AROMATIC SULFONA-MIDE AND A FREE AROMATIC SULFIMIDE

(57) Abstract

A carbonate polymer such as a bisphenol A homopolycarbonate containing a small amount of a metal salt of an aromatic sulfonamide and a free aromatic sulfimide resists combustion upon exposure to an ignition source, exhibits good optical properties and exhibits molecular weight stability. Optionally, a halogenated organic compound can be added to the composition. The carbonate polymer compositions of this invention are useful as air filters, fan housings, exterior automobile components, housings for electrical motors, appliances, business and office equipment, photographic equipment and lighting and aircraft applications.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	GA	Gabon	MR	Mauritania
AU	Australia	GB	United Kingdom	MW	Malawi
BB	Barbados	HU	Hungary	NL	Netherlands
BE	Belgium	IT	Italy	NO	Norway
BG	Bulgaria	JP	Japan ·	RO	Romania
BR	Brazil	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SN	Senegal
CH	Switzerland	LI	Liechtenstein	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad
DE	Germany, Federal Republic of	LU	Luxembourg	TG	Togo
DK	Denmark	MC	Monaco	US	United States of America
FI	Finland	MG	Madagascar		
FR	France	ML	Mali		

CARBONATE POLYMER COMPOSITIONS CONTAINING A SALT OF AN AROMATIC SULFONAMIDE AND A FREE AROMATIC SULFIMIDE

This invention relates to carbonate polymer compositions containing additives which act as flame retardants and improve processing stability.

Carbonate polymers derived from reactions of
dihydroxyorganic compounds, particularly the dihydric
phenols, and carbonic acid derivatives such as phosgene,
have found extensive commercial application because of
their excellent physical properties. These thermoplastic
polymers are suitable for the manufacture of molded
parts wherein impact strength, rigidity, toughness,
heat resistance and excellent electrical properties are
required.

Unfortunately, however, these polymers exhibit a brief but definite burning time when contacted with an open flame. More importantly, as is often the case, the carbonate polymers contain stabilizers and other

10

15

20

25

additives which are often more combustible than the unmodified carbonate polymer. As a result, the modified carbonate polymers frequently exhibit substantially poorer resistance to combustion than does the unmodified carbonate polymer.

In attempts to increase the combustion resistance of carbonate polymers including the modified forms thereof, it has been a common practice to employ monomeric phosphites, phosphoric acid esters, thiophosphoric acid esters containing halogenated alkyl radicals and halogenated organic compounds into the carbonate polymer. However, in order to obtain any noticeable improvement in combustion resistance, these additives have been employed in such large quantities that they often adversely affect many of the desirable physical and mechanical properties of the carbonate polymer.

More recently, for example as taught in U.S. Patent No. 4,254,015; metal salts of aromatic sulfonamides are employed as fire retardant additives in order to retard the combustion of carbonate polymers which are exposed to a low temperature ignition source. Unfortunately, the use of such salts as ignition resistant additives to carbonate polymers can adversely affect the processing stability of the carbonate polymer. As a result, carbonate polymers containing such ignition resistant salt additives can exhibit undesirable molecular weight degradation and can adversely affect optical properties.

In view of the deficiences of the conventional 30 fire retardant carbonate polymer compositions, it would be highly desirable to provide a carbonate polymer

15

20

composition having improved resistance to burning when exposed to an ignition source, and which composition exhibits good molecular weight stability and optical stability upon processing.

The present invention is a carbonate polymer composition comprising a carbonate polymer having dispersed therein (1) a salt of an aromatic sulfonamide, said salt being represented by the formula

 $\begin{pmatrix} \operatorname{Arso}_{2_1}^{N^{\bullet}} \\ R \end{pmatrix}_{n}^{M^{\bullet}}$

wherein Ar is an aromatic group, R is a monovalent organic moiety, M is a cation, and n is a number corresponding to the valence of M, in an amount sufficient to retard combustion when the composition is exposed to an ignition source, and (2) a functionally effective amount of a free aromatic sulfimide, said free aromatic sulfimide and amount thereof being selected to provide a desirable degree of molecular weight stability to the carbonate polymer composition upon thermal processing thereof.

Optionally, the carbonate polymer composition of the present invention further comprises a functionally effective amount of a halogenated organic compound.

The fire retardant carbonate polymer compositions of the present invention provide the skilled artisan with a process for providing carbonate polymer compositions which are useful when exposed to an ignition source. Of particular interest are those applications wherein the ignition source is a low temperature

30

ignition source. Said compositions are suitably employed in most applications in which polycarbonates have been previously utilized. Applications of particular interest for the utilization of the said carbonate polymer compositions of this invention are as follows: air filters, fan housings, exterior automobile components, housings for electrical motors, appliances, business and office equipment, photographic equipment, and lighting and aircraft applications.

10 The carbonate polymers employed in the present invention are advantageously aromatic carbonate polymers such as the trityl diol carbonates described in U.S. Patent Nos. 3,036,036; 3,036,037; 3,036,038 and 3,036,039; polycarbonates of bis(ar-hydroxyphenyl)
15 alkylidenes (often called bisphenol-A type diols) including their aromatically and aliphatically substituted derivatives such as disclosed in U.S. Patent Nos. 2,999,835; 3,038,365 and 3,334,154; and carbonate polymers derived from other aromatic diols such as described in U.S. Patent No. 3,169,121.

It is understood, of course, that the polycarbonate may be derived from (1) two or more different dihydric phenols or (2) a dihydric phenol and a glycol or a hydroxy- or acid-terminated polyester or a dibasic acid in the event a carbonate copolymer or interpolymer rather than a homopolymer is desired. Also suitable for the practice of this invention are blends of any one of the above carbonate polymers. Also included in the term "carbonate polymer" are the ester/carbonate copolymers of the types described in U.S. Patent Nos. 3,169,121; 4,287,787; 4,156,069; 4,260,731; 4,330,662; 4,360,656; 4,374,973; 4,225,556; 4,388,455; 4,355,150

ş

and 4,105,633. Of the aforementioned carbonate polymers, the polycarbonates of bisphenol-A and derivatives, including copolycarbonates of bisphenol-A, are preferred. Methods for preparing carbonate polymers for use in the practice of this invention are well known, for example, several suitable methods are disclosed in the aforementioned patents.

The salt form of aromatic sulfonamides which are employed herein are represented by the formula:

 $\begin{pmatrix} \operatorname{Arso}_{2_{i}^{N}} \Theta \end{pmatrix}_{n} \oplus_{M}$

wherein Ar is an aromatic group, R is a monovalent organic moiety, M is a suitable cation such as a metal cation and n is a number corresponding to the valence 15 of M. M is preferably an alkali metal. Alternatively, M is a divalent cation preferably alkali earth or multivalent cation such as, for example, those obtained from copper, aluminum, and antimony. Representative 20 preferred sulfonamide salts include the alkali metal salts of saccharin, N-(p-tolylsulfonyl)-p-toluenesulfonamide, N-(N'-benzylaminocarbonyl)sulfanilamide, N-(phenylcarboxyl)-sulfanilamide, N-(2-pyrimidinyl)sulfanilamide, N-(2-thiazolyl)sulfanilamide and other salts of the 25 sulfonamides disclosed in U.S. Patent No. 4,254,015. Combinations of the above-identified salts can also be employed.

The halogenated organic compound can be virtually any halogenated organic compound commonly used as a fire retardant additive. A functionally

effective amount of halogenated organic compound is
that amount which provides fire retardant character to
the carbonate polymer. The preferred compounds are the
halo-substituted aromatic compounds (halo is fluoro,
chloro, or bromo). Suitable compounds include, for
example, decabromo diphenyloxide, tris(tribromophenoxy)triazine, decabromo diphenyl carbonate, a tetrafluoroethylene polymer, an oligomer or polymer of tetrabromobisphenol A, and a copolymer of bisphenol A/tetrabromobisphenol A. Combinations of the above-identified
compounds can be employed. Examples of other suitable
monomeric and polymeric halogenated compounds are
disclosed in U.S. Patent No. 4,263,201.

is suitably any free imide compound in acid form.

Typically, such a compound is one which is capable of introducing a buffering character to the carbonate polymer composition containing an amount of the aforementioned salt form of the aromatic sulfonamide.

Typically, the pKa of the imide compound ranges from 1 to 3. Preferred free aromatic sulfimides are the sulfimides described as free sulfonamides disclosed in U.S. Patent No. 4,254,015. Such free aromatic sulfimides are advantageously represented by the formula:

25 (Arso₂)₂NH

30

where Ar is an aromatic group. It is believed that a functionally effective amount of the free aromatic sulfimide component provides the desired molecular weight stability and maintains the desirable optical properties to the carbonate polymer composition containing the salt form of the aromatic sulfimide.

WO 86/04911 PCT/US86/00301

-7-

Ş

5

10

The fire retardant carbonate polymer compositions of the present invention are suitably prepared by combining the carbonate polymer with an effective amount of fire retardant additive using any of a variety of blending procedures conventionally employed for incorporating additives into carbonate polymer resins. For example, dry particulates of the carbonate polymer and the fire retardant additive can be dry blended and the resulting dry blend extruded and molded into the desired shape. By "effective amount" is meant that combination of the desired fire retardant additive components is sufficient to provide fire retardant character to the carbonate polymer with which it is blended.

15 While any amount of fire retardant additive that imparts to the carbonate polymer an improved fire retardancy is suitable, that amount of additive which provides an effective amount of fire retardancy to the carbonate polymer in combination with the maintenance 20 of good processing stability and desirably good optical properties is particularly desirable. Preferred amounts of components typically range from 0.001 to 2, more preferably 0.01 to 0.5 weight percent salt of an aromatic sulfonamide; from 0 to 20, more preferably from 0.01 to 10, most preferably from 0.01 to 5 weight percent 25 halogenated organic compound; and from 0.001 to 2, more preferably 0.01 to 0.5 weight percent free aromatic sulfimide. All weights are based on the weight of carbonate polymer to which the components are added.

In addition to the aforementioned fire retardant additives, other additives can be included in the carbonate polymer composition of the present invention

10

such as fillers (i.e., a tetrafluoroethylene polymer or glass fibers), pigments, dyes, antioxidants, stabilizers, ultraviolet light absorbers, mold release agents and other additives commonly employed in carbonate polymer compositions.

The following examples are given to further illustrate the invention and should not be construed as limiting its scope. In the following examples, all parts and percentages are by weight unless otherwise indicated.

Examples 1, 2, 3 and Comparative Runs A and B

Example 1 is prepared using a bisphenol-A polycarbonate pellet heat stabilized with an organo phosphorus compound as described in U.S. Patent 15 No. 4,474,937, along with 0.06 percent para-tolylsulfimide (HPTSM), 0.6 percent phenoxy terminated tetrabromo bisphenol-A carbonate oligomer having an average of 5 repeating units (TBBPAC), and 0.06 percent potassium para-tolylsulfimde (KPTSM). The components are mixed for about 5 minutes and the mixture is extruded 20 into pellets at 550°F (288°C) on a twin screw extruder. The pellets are dried on a force draft oven at 250°F (121°C). A portion of the resulting example is subjected to melt shearing at 540°F (282°C) by a torque 25 rheometer for over 30 minutes. The initial and final molecular weight of the example so treated is presented in Table I. The remainder of the example is injection molded at 575°F (302°C) into bars and disks for flammability and optical properties.

In a similar manner, Example 2 is prepared using the heat stabilized polycarbonate, 0.06 percent KPTSM, 0.09 percent HPTSM and 0.6 percent TBBPAC.

WO 86/04911 PCT/US86/00301

-9-

In a similar manner, Example 3 is prepared using the heat stabilized polycarbonate, 0.06 percent KPTSM, 0.12 percent HPTSM and 0.6 percent TBBPAC.

Comparative Run A is the heat stabilized 5 polycarbonate.

In a similar manner to Example 1, Comparative Run B is prepared using the heat stabilized polycarbonate, 0.06 percent KPTSM and 0.6 percent TBBPAC.

Evaluations of the Examples and Comparative 10 Runs are presented in Table I.

TABLE I

ties(2)	Haze	(Percent)	1.7	1.8	1.9	1.4	1.4
Optical Properties (2)	Trans.	(Percent)	90.2	90.2	90.3	6.06	6.68
Opti		YI	2.7	2.6	1.5	2.5	2.8
		ומ	0-A	V-0	0-A	V-2	0-0
U-94 Test(1)	Test' - '	No. Drips Rating	9/0	9/0	9/0	5/5	0/5
		Ave. T. (sec)	1.7	1.5	1.4	10	2.6
s Polycarbonate Molecular Weight	ght	Change	1,900	1,800	1,500	1,470	000'9
	ular Wei	Final	25,300	25,400	25,600	25,800	21,000
	FO Molec	Initial	27,200	27,200	27,100	27,250	27,000
Examples and	Comp.	Runs	Н	7	က	A	В

(1) Tests are performed on a 1/8 inch (3.175 mm) molded bar. Ave. T. is the average flame time in seconds for 5 bars. No. Drips is the number of bars that drip per 5 bars tested. $^{(2)}{
m YI}$ is yellowness index; Trans (percent) is percent transmittance; Haze (percent) is

percent haze.

-11-

The data in Table I indicate that Examples 1, 2 and 3 exhibit good ignition resistant properties and improved processing stability as indicated by the low change in molecular weight. Correspondingly, Comparative Run B exhibits a large change in molecular weight upon 5 evaluations. Examples 1, 2 and 3 exhibit compatibility of the HPTSM with the carbonate polymer as is illustrated by the negligible change in optical properties of the samples over an untreated sample such as Comparative Run A.

1. A carbonate polymer composition comprising a carbonate polymer having dispersed therein (1) a salt of an aromatic sulfonamide, said salt being represented by the formula

$$\left(\underset{R}{\text{Arso}}_{2_{1}^{N^{\Theta}}} \right)_{n} M^{\Phi}$$

wherein Ar is an aromatic group, R is a monovalent organic moiety, M'is a cation, and n is a number corresponding to the valence of M, in an amount sufficient to retard combustion when the composition is exposed to an ignition source, and (2) a functionally effective amount of a free aromatic sulfimide, said free aromatic sulfimide and amount thereof being selected to provide a desirable degree of molecular weight stability to the carbonate polymer composition upon thermal processing thereof.

2. The composition of Claim 1 wherein said carbonate polymer is a homopolycarbonate of bisphenol A.

P

- 3. The composition of Claim 1 wherein said free aromatic sulfimide exhibits a pKa of from 1 to 3.
- 4. The composition of Claim 3 wherein said free aromatic sulfimide is represented by the formula:

(Arso₂)₂NH

wherein Ar is an aromatic group.

- 5. The composition of Claim 1 wherein the amount of said salt of an aromatic sulfonamide ranges from 0.001 to 2 weight percent and the amount of said free aromatic sulfimide ranges from 0.001 to 2 weight percent, based on the weight of the carbonate polymer.
- 6. The composition of Claim 5 wherein the amount of said salt of an aromatic sulfonamide ranges from 0.01 to 0.5 weight percent and the amount of said free aromatic sulfimide ranges from 0.01 to 0.5 weight percent, based on the weight of the carbonate polymer.
- 7. The composition of Claim 1 wherein said salt of an aromatic sulfonamide is potassium p-tolylsulfimide and said free aromatic sulfimide is p-tolylsulfimide.
- 8. The composition of Claim 1 which further comprises a functionally effective amount of a halogenated organic compound.
- 9. The composition of Claim 9 wherein said halogenated organic compound is a halogenated aromatic compound.

-14-

10. The composition of Claim 8 wherein the amount of said halogenated organic compound is up to 20 weight percent, based on the weight of the carbonate polymer.

<u>...</u>

À.

INTERNATIONAL SEARCH REPORT

International Application No PCT/US86/00301

I. CLASS	I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 3							
According to International Patent Classification (IPC) or to both National Classification and IPC INT. CL.4 COSK 5/43								
U.S. CL. 524/83, 159, 167, 168								
11. FIELDS SEARCHED								
(I. FIELDS	3 SEARCE	160			Minimum Document	ation S	Sparehod 4	
Classification	on System						cation Symbols	
							odion dymbols	
υ.	U.S. 524/83, 159, 167, 168							:
	Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched 6							
III. DOCL					ELEVANT 14			
Category *	Citat	ion of	Document, 16	6 with in	dication, where appr	opriate	, of the relevant passages 17	Relevant to Claim No. 18
	1							
Y	US,	Α,	4,254,	015	THOMAS ET PUBLISHED		, 8 MARCH 1981	. 1-10
Y	US,	Α,	4,486,	560	THOMAS PUBLISHED	04	DECEMBER 1984	1-10
<u> </u>	:						·	
	:							
	1							
	1				•			
	;							
	!						•	
	; ;							
	1							
	İ							
	t t E							
	1							
	:							
	:							1
	-		ited documen		ne art which is not	"T"	later document published after or priority date and not in con	flict with the application but
co	nsidered to	be of	particular rele	evance			cited to understand the princi invention	
	rlier docume ng date	ant bu	t published or	n or afte	er the international	"X"	document of particular releva- cannot be considered novel of	nce; the claimed invention or cannot be considered to
"L" do	cument whi	ch ma	ay throw doub	ots on p	oriority claim(s) or on date of another	10.711	involve an inventive step document of particular releva	
cit	ation or oth	er spe	ecial reason (a	as speci	ified)		cannot be considered to involv document is combined with or	e an inventive step when the
"O" document referring to an oral disclosure, use, exhibition or other means							ments, such combination being in the art.	obvious to a person skilled
"P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family							patent family	
IV. CERTIFICATION								
Date of the	he Actual C	omple	tion of the Int	ernation	ial Search ²	Date	e of Mailing of this International	Search Report *
_ 13	3 MARC	H I	L986				2 4 MAR	1986
Internatio	nal Searchi	ng Aı	ithority 1			Sign	nature of Authorized Officer 20	P. Hole.
1 70	211/ AS						Vononias D. W.	