(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization w/ [I

) IO O OO T 50O

International Bureau

(43) International Publication Date
29 November 2007 (29.11.2007)

(10) International Publication Number

WO 2007/136507 Al

(51) International Patent Classification:
GOG6F 17/30 (2006.01)

(21) International Application Number:
PCT/US2007/010163

(22) International Filing Date: 24 April 2007 (24.04.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/437,512 18 May 2006 (18.05.2006) US
(71) Applicant (for all designated States except US): ORACLE
INTERNATIONAL CORPORATION [US/US]; 500 Or-

acle Parkway, Redwood City, CA 94065 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHAN-
DRASEKAR, Sivansankaran [IN/US]; 540 Everett
Avenue, Palo Alto, California 94301 (US). GUPTA, Nitin
[IN/US]; 3833 Park Blvd, Apt. 6, Palo Alto, California
94306 (US). MURTHY, Ravi [IN/US]; 33227 Jamie Cir-
cle, Fremont, California 94555 (US). AGARWAL, Nipun
[US/US]; 4768 Cheeney Street, Santa Clara, California
95054 (US). SEDLAR, Eric [US/US]; 956 Woodside Rd.
#3, Redwood City, California 94061 (US).

(74) Agent: BINGHAM, Marcel; Hickman Palermo Truong &
Becker LLP, 2055 Gateway Place, Suite 550, San Jose, CA
95110 (US).

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,

CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,

FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L, IN,

IS, JIP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,

LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY,

MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,

RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,

TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,

PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

7136507 A1 I AT 00 00O OO O

=
—

=
=

[Continued on next page]

(54) Title: EFFICIENT PIECE-WISE UPDATES OF BINARY ENCODED XML DATA

RECEIVE A REQUEST FOR A CHANGE TO AN XML
DOCUMENT THAT IS STORED IN A DATABASE IN A
COMPACT BINARY FORM
102

i

BASED ON THE REQUEST, IDENTIFY ONE OR MORE
NODES OF THE XML DOCUMENT FOR WHICH A CHANGE
1S REQUESTED
104

l

‘COMPUTE HOW THE REQUESTED CHANGE AFFECTS THE
COMPACT BINARY FORM OF THE ONE OR MORE NODES
106

l

COMPUTE HOW THE REQUESTED CHANGE AFFECTS THE
COMPACT BINARY FORM OF THE XML DOCUMENT
BEYOND THE EFFECT THE REQUESTED CHANGE HAS ON
‘THE ONE OR MORE NODES
108

l

COMPUTE AND REPRESENT PARAMETERS THAT
REPRESENT THE ACTUAL EFFECT THE REQUESTED
CHANGE HAS ON THE COMPACT BINARY FORM OF THE
XML DOCUMENT, FOR APPLICATION TO THE COMPACT
BINARY FORM OF THE XML DOCUMENT
10

(57) Abstract: An XML document can be represented in a compact binary form that maintains all of the features of XML data
in a useable form. In response to a request for a modification (e.g., insert, delete or update a node) to an XML document that is
stored in the compact binary form, a certain representation of the requested modification is computed for application directly to the
binary form of the document. Thus, the requested modification is applied directly to the persistently stored binary form without
constructing an object tree or materializing the XML document into a corresponding textual form. Taking into account the nature of
the binary form in which the document is encoded, the bytes that actually require change are identified, including identifying where
in the binary representation the corresponding actual changes need to be made.

WO 2007/136507 A1 |0 DA0 000 0T 0000000 0

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2007/136507 PCT/US2007/010163

EFFICIENT PIECE-WISE UPDATES OF BINARY ENCODED XML DATA
FIELD OF THE INVENTION
[0001] The present invention relates generally to data management and, more
specifically, to techniques for efficiently updating compact binary encoded XML data in a

piece-wise manner in a relational database management system (RDBMS).

BACKGROUND
[0002] Use of the Extensible Markup Language (XML) has become a popular and
useful technique for representing and exchanging information of any kind, such as
exchanging information among computer program applications and services.
Consequently, effective and efficient storage and manipulation of XML data has likewise
become useful and necessary. Thus, some databases have been augmented to support the
storage and manipulation of and access to XML data. One of the primary requirements of
applications using XML as their data model is schema flexibility. However, databases for
storing XML data are traditionally not optimized for schema flexibility. Although such
databases may operate efficiently in a scenario in which a schema is provided and the
schema is not prone to change, these databases lack adequate support for XML when the
schema is prone to changes or when the schema is loosely structured.
[0003] XML data is self-descriptive (i.e., it contains tags along with data), but the
standard XML serialization format is text-based, including the numbers and dates. This
results in a significant increase in the size of XML documents compared to other
proprietary formats for capturing the same data. The increased size of XML documents
causes overhead costs during transmission, due to limited network bandwidths, as well as
slower performance of storage and retrieval operations, due to limited disk I/O
bandwidth. Hence, a binary encoding form for XML data was introduced which attempts
to maximize schema flexibility while still prbv}ding storage and querying benefits. This
binary encoding form is déscribed in U.S. Patent Appl. No. 11/182,997 filed by Ravi
Murthy et al., entitled “Encoding of Hierarchically Organized Data for Efficient Storage
and Processing” (“the Murthy application™), the entire content of which is incorporated
by reference in its entirety for all purposes as if fully disclosed herein.
[0004] With the encoding format described in the Murthy application, XML data is
stored in a compact binary form that maintains all of the features of XML data in a
useable form, such as the hierarchical structure underlying the data (e.g., the data model
or infoset), the notion of elements and attributes, etc. This compact binary format
significantly minimizes the overhead due to XML tags. Hence, the encoded XML is

more compact than a binary representation of the corresponding textual character

-1-

WO 2007/136507 PCT/US2007/010163

representation. This binary format can be processed more efficiently than parsing
because the data is effectively pre-parsed.

[0005] XML documents in a database can be modified by inserting new nodes and by
changing or deleting existing nodes, all of which are referred to herein collectively as an
update operation. Depending on the nature of the application manipulating XML data,
these types of operations can be relatively common. However, existing XML data .
storage systems do not provide efficient means of updating bmary encoded XML,
documents. Such systems typlcally load an entire XML documeiit mto local memory
(e.g., RAM) in the form of an object tree (e.g.,-a DOM), change the data in memory, and
convert the updated DOM tree back into the binary form for stofqge. This process is
generally inefficient and leads to scalability and performance problems because, for one
reason, the entire XML document needs to be materialized in local memory.
Additionally, some existing XML data storage systems might provide optimized
techniques for updating XML data when there is a very specific XML schema available.
However, these systems do not adequately address scenarios in which the XML schema is
very unconstrained or scenarios in which there is no XML schema available.

[0006] Hence, based on the foregoing, there is a need for techniques for efficiently
updating XML data stored persistently in a database.

[0007] The approaches described in this section are approaches that could be pursued,
but not necessarily approaches that have been previously conceived or pursued.
Therefore, unless otherwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art merely by virtue of their inclusion

in this section.

BRIEF DESCRIPTION OF THE DRAWINGS
{0008] The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:
[0009] FIG. 1 is a flow diagram that illustrates a process for generating a change tuple
cérresponding to a requested modification to an XML document that is stored persistently
in a compact binary form in a database, according to an embodiment of the invention;
[0010] FIG. 2 is a diagram illustrating an example of how an update to compact
binary encoded XML data is expressed in a corresponding change tuple, according to an
embodiment of the invention; and
[0011] FIG. 3 is a block diagram that illustrates a computer system upon which an

embodiment of the invention may be implemented.

-2~

WO 2007/136507 PCT/US2007/010163

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
[0012] In the following description, for the purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding of the present
invention. It will be apparent, however, that the present invention may be practiced
without these speciﬁc'details. In other instances, well-known structures and devices are
shown in block diagram form in order to avoid unnecessarily obscuring the present

invention,.

FUNCTIONAL OVERVIEW OF EMBODIMENTS

[0013] ‘Techniques for updating XML data stored in a database are described herein.
Based on existing technology, an XML document can be represented and interpreted in a
compact binary form that maintains all of the features of XML data in a useable form.
This compact binary representation of XML may in turn be persistently stored (e.g., on
disk) as a large object (e.g., binary large object, or BLOB). In response to a request for a
modification (e.g., insert, delete or update a node) to an XML document that is stored in
the compact binary form, a certain representation of the requested modification is
computed for application directly to the binary form of the XML document. Thus, the
requested modification can be applied directly to the persistently stored binary form
without constructing an object tree (e.g., a DOM) of the XML document and/or
constructing or materializing the XML document into a corresponding textual form.
[0014] The node(s) of the XML document that actually need to be changed are
identified. Identifying the affected node(s) includes identifying where in the binary
representation the corresponding actual changes need to be made, such as at what byte do
the actual changes begin. Thus, at what byte the actual changes begin is included in the
representatipn of the requested modification as a ‘destination offset’ parameter.
However, if using a preferred compact binary form for XML data, identifying where in
the binary representation the actual changes begin is not as straightforward as simply
identifying the range or ranges of bytes in which the affected nodes or nodes are
represented. This is because the preferred binary form takes advantage of known
structural properties and constraints in respective XML documents, such as those that are
imparted to the documents by way of corresponding XML schemas, for purposes of
compacting the XML document generally via tokenization of tags and use of opcodes.
For example, if the same tag is repeated multiple times, or if an XML schema constrains
the order of elements, then corresponding token IDs can be avoided using the preferred
binary form. Thus, computing where in the binary representation the corresponding

actual changes need to be made may take into account the nature of the compact binary

-3-

WO 2007/136507 PCT/US2007/010163

form in which the XML document is encoded. Refer to the Murthy application for
greater detail regarding the preferred, non-limiting example of a compact binafy form of
encoding XML data. ‘

[0015] In addition to the destination offset parameter, enough information is included
in the representation of the requested modification to be able to interleave the actual
changes directly into the binary form of the XML document. For example, certain sets of
bytes corresponding to respective updated nodes can be changed, added, or deleted

without overwriting the entire XML document.

OPERATING ENVIRONMENT-STORAGE SYSTEM

[0016] A database system typically comprises one or more clients that are
communicatively coupled to a database server that is connected to a shared database.
“Database server” may refer collectively to a cluster of server instances and machines on
which the instances execute. Generally, a server is combination of integrated software
components and an allocation of computational resources, such as memory, a node, and
processes on the node for executing the integrated software components on a processor,
where the combination of the sofiware and computational resources are dedicated to
providing a particular type of function on behalf of clients of the server.

[0017] Among other functions of database management, a database server governs
and facilitates access to a particular database, processing requests by clients to access the
database. In order for a client to interact with a server, a session is established for the
client. A session, such as a database session, is a particular connection established from a
client to a server, such as a database server. Through a session, the client can issue a
series of requests (e.g., requests for data and/or metadata) to the database server.

[0018] A database comprises data and metadata that is stored on a persistent memory
mechanism, such as a set of hard disks. Such data and metadata may be stored in a
database logically, for example, according to relational and/or object-relational database
constructs. Database applications interact with a database server by submitting to the
database server commands that cause the database server to perform operations on data
stored in a database. A database command that is sent from a database application to a
database server contains an original statement of the database command. For the database
server to process the commands, the commands must conform to a database language
supported by the database server. One non-limiting database language supported by
many database servers is known as the Structured Query Language (SQL).

[0019] Generally, data is stored in a database in one or more data containers, each

container contains records, and the data within each record is organized into one or more

-4

WO 2007/136507 PCT/US2007/010163

fields. In relational database systems, the data containers are typically referred to as
tables, the records are referred to as rows, and the fields are referred to as columns. In
object oriented databases, the data containers are typically referred to as object classes,
the records are referred to as objects, and the fields are referred to as attributes. Other
database architectures may use other terminology. Systems that implement the present
invention are not limited to any particular type of data container or database architecture.
However, for the purpose of explanation, the examples and the terminology used herein
shall be that typically associated with relational databases. Thus, the terms “table”, “row”
and “column” shall be used herein to refer respectively to the data container, record, and
field.

[0020] A relational database system may be extended to provide native support for
storage, management, and query of (and thus function as a repository for) particular types
of data. For example, a traditional relational database system may be augmented with
features and technologies to enable storage of XML documents directly in the database,
and access to such XML data in either an XML-centric (e.g., using XPath and the XQuery
query language) or a relational-centric (e.g., using the SQL query language) manner.
Such a repository is at times referred to as an XML repository or an XML database (i.c.,
“XDB”).

UPDATING XML DOCUMENTS

[0021] XML documents can be modified by inserting, updating, and/ or deleting
XML nodes in the documents. A request for a modification to an XML document can be
expressed by identifying the XML document, identifying the node(s) to be changed with
an XPath or other pathname expression, and providing a new value, if applicable. The set
of operations that may be requested are as follows.

(1) Adding new nodes: a user can identify a target node or the parent node by
means of an XPath or other pathname expression, and specify the value for the child node
to be inserted. The location within an XML document at which a new node is inserted
can be identified, for example, by identifying a target node before which the new node is
inserted (e.g., insertChild() command) or by identifying a parent node and providing the
child node to be inserted as the last child of the identified parent node (e.g.,
appendChild() command).

(2) Updating existing nodes: a user can identify the target node by means of an
XPath or other pathname expression, and specify the new value for the target node to be

updated.

-5-

WO 2007/136507 PCT/US2007/010163

(3) Deleting nodes: a user can identify the target node for deletion by means of an
XPath or other pathname expression.
[0022] As discussed, traditional XML storage systems typically load the whole XML
document into local memory to perform the requested operation. However, this is an
inefficient process that results in slow performance. Therefore, according to one
embodiment, a stored éompact binary representation of the XML document is updated
directly based on.an XML data modification request.. In-other words, the XML document
may be updated directly on persistent storage (i.e., non-volatile memory, sﬁch as disk)
without loading the document into local volatile memory, Alternatively, the XML
document may be loaded into local volatile memory for updating, but in the compact
binary representation rather than as an object tree, where the compact binary
representation is more compact than simply representing the textual XML in binary

format (see, e.g., the Murthy application).

AN EFFICIENT PROCESS FOR UPDATING XML DOCUMENTS STORED IN A
DATABASE

[0023] As mentioned before, a certain representation of a change to an XML
document is computed for application directly to a compact binary form of the XML
document. According to an embodiment, such a change is represented by a set of
parameter values, referred to herein as a “change tuple.” Generally, FIG. 1 is a flow
diagram depicting a process for generating a change tuple.

[0024] FIG. 1 is a flow diagram that illustrates a process for generating a change tuple
corresponding to a requested modification to an XML document that is stored persistently
in a compact binary form in a database, according to an embodiment of the invention.
The method illustrated in FIG. 1 may be performed by executing one or more sequences
of instructions by one or more processors, such as within a computer system (e.g.,
computer system 300 of FIG. 3).-

[0025] At block 102, a request for a modification to an XML document is received, in
the context of an XML document that is stored in a database in a compact binary form.
For example, a SQL or SQL/XML statement is received at a database server in a database
system that supports storage and management of XML data. Such a statement typically
identifies (a) an XML document to be updated; (b) one or more pathnames, within the
identified XML document, to nodes being updated (e.g., XPaths); and (c) new values for
the corresponding nodes being updated.

[0026] At block 104, one or more nodes for which a modification is requested in the

XML document are identified based on the modification request. Various approaches to

-6-

WO 2007/136507 PCT/US2007/010163

locating XML data stored in a database may be used to identify the affected nodes based
on the pathname specified in the modification request. Non-limiting examples of
approaches to locating XML data stored in a database include the use of XML indexes,
streaming XPath evaluation (e.g., nondeterministic finite state automation, or NFA), and
the like. Furthermore, the compact binary form in which the XML document is stored in
persistent storage may ultimately be a binary large object (BLOB). In such a scenario,
block 104 may include-identifying the exact location within the BLOB at which the
affected node or nodes are represented in the serialized binary form.

[0027] At block 106, how the requested modification affects the compact binary form
of the one or more nodes is computed. For example, if a node value is changed from “1”
to “1000”, how to represent “1000” in the compact binary form is computed. For another
example, if a node value is changed from an integer type “1” to a float type “1000”, how
to represent the float “1000” in the compact binary form is computed because the
compact binary form may store values in their native datatype, as described in the Murthy
application. According to one embodiment, the “new value” for the one or more nodes,
as represented in the compact binary form, is computed and represented as a parameter ih
a certain representation (e.g., a change tuple) of the requested modification to the XML
document, such as at block 110. According to one embodiment, the new value takes into
account any effects the requested modification has on the compact binary form beyond
the direct effect the requested modification has on the identified one or more nodes, as
described in greater detail hereafter. Hence, the new value represents the net set of bytes .
inserted into the byte string of the compact binary form to replace the old value.

[0028] Furthermore, a representation of “1000” will likely require more bytes than a
representation of “17, thus, a “new value length” may be computed as part of block 106.
According to one embodiment, the new value length for the one or more nodes is
computed and represented as a parameter in the change tuple corresponding to the
requested modification to the XML document, such as at block 110. According to one
embodiment, the new value length takes into account any effects the requested
modification has on the compact binary form beyond the direct effect the requested
modification has on the identified one or more nodes, as described in greater detail
hereafter. '

[0029] For an XML document that is stored in a compact binary form (i.e., not a
simple binary representation of the character-based XML content), a change to one node
may affect the compact binary representation beyond the direct effect on that one node.

For example, the Murthy application describes a technique referred to as “array mode

-7-

WO 2007/136507 PCT/US2007/010163

optimization,” whereby if the same tag is repeated multiple times, corresponding token
IDs are not repeated. Thus, addition or deletion of a node could affect the tag sequence
and, therefore, affect the array mode optimization component of the compact binary
encoding scheme. For another example, the Murthy application describes a technique
referred to as “schema sequential optimization,” whereby if structure related metadata
(e.g., an XML schema) constrains the order of elements to be in a specific order, token
IDs can be avoided within the encoding due to exploitation of the XML data model.
Thus, a change to an XML schema (e.g., via a DDL operation) could provoke a
corresponding change to an XML document in order to remain conforming to the schema.
This change to the XML schema and the resultant change to a corresponding XML
document could ultimately affect the order of elements within the document and,
therefore, the schema sequential optimization component of the compact binary encoding
scheme. .

[0030] Hence, at block 108, how the requested modification affects the compact
binary form of the XML document beyond the effect the requested modification has on
the one or more identified nodes is computed. According to one embodiment, this entire
net effect-on the compact binary form for a particular re'quested modification is
represented as the “new value” for insertion into the compact binary form. Hence, the
new value for the entire effect on the compact binary form for a particular requested
modification is computed and represented as a parameter in the change tuple
corresponding to the requested modification, such as at block 110. Similarly, this entire
effect on the compact binary form is represented in the corresponding “new value length”
parameter in the change tuple corresponding to the requested modification, such as at
block 110. Stated otherwise, the direct effect and the indirect effect, if any, that the
requested modification has on the compact binary form are computed and represented
together in the corresponding change tuple as corresponding parameters: new value and

new value length.

EXPRESSING THE EFFECT OF THE REQUESTED MODIFICATION

[0031] At block 110, parameters that represent the actual effect the requested
modification has on the compact binary form of the XML document are computed and
represented, such as in a corresponding change tuple. In turn, this cfxangc tuple can be
applied to the compact binary form of the XML document stored persistently in the
database, or locally in volatile memory. According to one embodiment, the effect that the
requested modification has on the compact binary form of the XML document is

expressed in the form of the following change tuple: <destOffset, changedLen, newValue,

-8-

WO 2007/136507 PCT/US2007/010163

newValueLen>. The names used to refer to the foregoing change tuple parameters may
vary from implementation to irhplementation. Hénce, the components of the change tuple
are not limited to the foregoing parameter names.

[0032] " Note that the nature of a BLOB may vary from implementation to
implementation. Thus, some types of BLOBs in which the compact binary representation
of the XML document is stored are able to be inserted into and deleted from, whereas
other ’t.y‘pes'. df BLOBs are not. Stated otherwise, some BLOBs allow for.inserting or
deleting a groﬁp of contiguous bytes anywhere Within the BLOB without necessarily
having to rewrite the remainder of bytes to the end. By contrast, some BLOBs do not
allow inserting or deleting a group of contiguous bytes without overwriting the entire
BLOB after the starting insertion/deletion point. Regardless of the nature of the BLOB,
the techniques described herein can account for the characteristics of the BLOB when
computing change tuple parameters.)

10033] | FIG. 2 is a diagram illustrating an example of how an update to compact
binary encoded XML data is expressed in a corresponding change tuple, according to an
embodiment of the invention.

[0034] The parameter “destOffset” (destination offset) is used to express the point, in
the compact binary form, at which the effect of the requested modification begins. Thus,
the destination offset identifies, for at least the first atomic node (as appearing in the
binary form) being updated via the requested modification, the offset location within the
compact binary form at which the requested modification begins. According to one
embodiment, the destination offset is represented as a number of bytes from the beginning
of the compact binary form. As discussed, the destination offset may not be the actual
starting location of an identified node directly affected by the requested modification.
Rather, the destination offset identifies the beginning location of the actual change to the
compact binary form, with consideration to the nature of the compact binary form. For
example, the actual effect of the requested modification on the binary form may begin at a
location before the location of the node value in the binary form.

[0035] For the example shown in FIG. 2, assume that only one node is being updated
and that the old value of that node is represented in the compact binary form with sixteen
bytes, i.e., from bytes 227-243. Assume further that the tag name for the updated node is
changed, resulting in a change to the associated array mode optifization component of
the compact binary encoding scheme, e.g., a series of five consecutive <lineltem> tags is
disrupted by changing the fifth <lineItem>‘ tag to some other tag at the same location in

the corresponding XML hierarchy. Therefore, the change to this node has an impact on

9.

WO 2007/136507 PCT/US2007/010163

the compact binary form beyond just the node being changed, i.e., some bytes before the
node need to be changed to reflect the change in array mode optimization. Because of
this effect on other bytes, the net effect on the binary form actually begins at byte 222
rather than byte 227. Thus, the destination offset for this update is 222, which indicates
that the change to the binary form begins at byte 222 of the byte string.

[0036] The parameter “changedlen” (changed length) is used to express the length of
the changed, or old, value of the updated node in its compact binary form. It is noted
above that in this example the old value of that node is represented in the compact binary
form with sixteen bytes. Thus, the changed length for this update is 16 bytes.

[0037] The parameter “newValue” (hew value) is used to express the new value of
the entire change to the compact binary form because of the node update, where the new
value is expressed in its corresponding compact binary form and includes any effect on
the binary form beyond the updated node. The parameter “newValueLen” (new value
length) is used to express the length in bytes of the new value of the entire change to the
compact binary form because of the node update, where the new value is expressed in its
corresponding compact binary form. Thus, the new value length for this update is 21 -
bytes, i.e., from destination offset byte 222 to the end of the node at byte 243. In this
example, a string of bytes representing the old node value, which was expressed with 16
bytes, is replaced with a new string of 21 bytes representing the new node value and this
node value’s effect on the rest of the binary form.

[0038] A single user update operation might result in multiple change tuples based on
the number of nodes being identified by the XPath in the modification request.
According to one embodiment, these sets of change tuples are represented in an XML
change document referred to herein as “atom-diff-XML,” where the “atom” here refers to
a primitive change operation. As discussed, the “atom-diff-XML"”, which represents the
changes to the compact binary form resulting from a modification request, can be applied
to the base storage based on the corresponding storage capabilities. For example, if the
storage supports piece-wise updates, the primitive change operations represented in the
atom-diff-XML are translated directly to the underlying base storage construct. If the
storage only supports overwriting cépabilities (without the ability to increase/decrease
lengths), the overall requested changes represented in the atom-diff-XML are applied to
the underlying base storage construct by overwriting everything past the first change
(based on the document order).

[0039] In addition to a node update operation, as with the example described in

reference to FIG. 2, a node may be inserted or deleted. Inserting a new node into an

-10-

WO 2007/136507 PCT/US2007/010163

XML document adds bytes to the compact binary form. The destination offset identifies
where in the byte string the new node is inserted, taking into consideration the new node’s
effect, if any, on surrounding nodes and the surrounding nodes’ corresponding binary
representation. Similarly, the new value and new value length corresponding to the node
insert operation take into account the new node and the new node’s entire effect on the
compact binary representation. Even though a new node is being added, there may be a
corresponding value for the changed length parameter (the ‘old’ length) because the new
node may affect the compact binary representation of surrounding nodes. Thus, the
changed length parameter in such a scenario would represent the old representation of any
surrounding nodes that are affected by the insertion of the new node, if any. Likewise,
deleting a node from an XML document may replace x number of bytes with y number of
bytes, because deleting the node may have an affect on the binary representation of other
nodes, whose new binary representation would consist of the y bytes. In summary,
whether updating, deleting, or adding a node to an XML document, the values for the
change tuple reflect the change to the node as well as the effect the node change has on
the compact binary representation of other nodes, if any.

[0040] Hence, techniques are described for applying user update statements without
materializing the entire target XML document in memory as a DOM tree, thereby

improving the performance and scalability in comparison with other techniques.

HARDWARE OVERVIEW

[0041] FIG. 3 is a block diagram that illustrates a computer system 300 upon which
an embodiment of the invention may be implemented. Computer system 300 includes a
bus 302 or other communication mechanism for communicating information, and a
processor 304 coupled with bus 302 for processing information. Computer system 300
also includes a main memory 306, such as a random access memory (RAM) or other
dynamic storage device, coupled te bus 302 for storing information and instructions to be
executed by processor 304. Main memory 306 also may be used for storing temporary
variables or other intermediate information during execution of instructions to be
executed by processor 304, Computer system 300 further includes a read only memory
(ROM) 308 or other static storage device coupled to bus 302 for storing static information
and instructions for processor 304. A storage device 310, such as a magnetic disk or
optical disk, is provided and coupled to bus 302 for storing information and instructions.
[0042] Computer system 300 may be coupled via bus 302 to a display 312, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device

314, including alphanumeric and other keys, is coupled to bus 302 for communicating

-11-

WO 2007/136507 PCT/US2007/010163

information and command selections to processor 304. Another type of user input device
is cursor control 316, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to processor 304 and for
controlling cursor movement on display 312. This in;ﬁit device typically has two degrees
of freedom in two axes, a first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.
.. [0043] The inyention is related to the use of computer system 300 for implementing
the techniques described herein. According”to one embodiment of the invention, those
techniques are performed by computer system 300 in response to processor 304 executing
one or m;)re"s'equences of one or more instructions contained in main memory 306. Such
instfuctions may be read into main ;nemory 306 from another machine-readable medium,
such as storage device 310. Execution of the sequences of instructions contained in main
memory 306 causes processor 304 to perform the process steps described herein. In
alternative embodiments, hard-wired circuitry may be used in place of or in combination
with software instructions to implement the invention. Thus, embodiments of the
invention are not limited to any specific combination of hardware circuitry and software.
[0044] The term “machine-readable medium” as used herein refers to any medium
that participates in providing data that causes a machine to operation in a specific fashion.
In an embodiment implemented using computer system 300, various machine-readable
media are involved, for example, in providing instructions to processor 304 {or execution.
Such a medium may take many forms, including but not limited to, non-volatile media,
volatile media, and transmission media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 310. Volatile media includes dynamic
memory, such as main memory 306. Transmission media includes coaxial cables, copper
wire and fiber optics, including the wires that comprise bus 302. Transmission media can
also take the form of acoustic or light waves, such as those generated during radio-wave
and infra-red data communications.

[0045] Common forms of machine-readable media include, for example, a floppy
disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-
ROM, any other optical medium, punchcards, papertape, any other physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory
chip or cartridge, a carrier wave as described hereinafter, or any other medium from
which a computer can read.

[0046] Various forms of machine-readable media may be involved in carrying one or

more sequences of one or more instructions to processor 304 for execution. For example,

-12-

WO 2007/136507 PCT/US2007/010163

the instructions may initially be carried on a magnetic disk of a remote computer. The
remote computer can load the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem local to computer system
300 can receive the data on the telephone line and use an infra-red transmitter to convert
the data to an infra-red signal. An infra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data on bus 302. Bus 302 carries
the data to main memory 306, from which processor 304 retrieves and executes the
instructions. The instructions received by main memory 306 may optionally be stored on
storage device 310 either before or after execution by processor 304.

[0047] Computer system 300 also includes a. communication interface 318 coupled to

_bus 302. Communication interface 318 provides a two-way data communication coupling
to a network link 320 that is connected to a local network 322. For example,
communication interface 318 may be an integrated services digital network (ISDN) card
or a modem to provide a data communication connection to a corresponding type of
telephone line. As another example, communication interface 318 may be a local area
network (LAN) card to provide a data communication connection to a compatible LAN.
Wireless links may also be implemented. In any such implementation, communication
interface 318 sends and receives electrical, electromagnetic or optical signals that carry
digital data streams representing various types of information.
[0048) Network link 320 typically provides data communication through one or more
networks to other data devices. For example, network link 320 may provide a connection
through local network 322 to a host computer 324 or to data equipment operated by an
Internet Service Provider (ISP) 326. ISP 326 in turn provides data communication
services through the world wide packet data communication network now commonly
referred to as the “Internet” 328. Local network 322 and Internet 328 both use electrical,
electromagnetic or optical signals that carry digital data streams. The signals through the
various networks and the signals on network link 320 and through communication
interface 318, which carry the digital data to and from computer system 300, are
exemplary forms of carrier waves transporting the information.
[0049] Computer system 300 can send messages and receive data, including program
code, through the network(s), network link 320 and communication interface 318. In the
Internet example, a server 330 might transmit a requested code for an application program

through Internet 328, ISP 326, local network 322 and communication interface 318.

-13-

WO 2007/136507 PCT/US2007/010163

[0050] The received code may be executed by processof 304 as it is received, and/or
stored in storage device 310, or other non-volatile storage for later execution. In this
manner, computer system 300 may obtain application code in the form of a carrier wave.
[0051] In the foregoing specification, embodiments of the invention have been
described with reference to numerous specific details that may vary from implementation
to implementation. Thus, the sole and exclusive indicator of what is the invention, and is
intended by the applicants to be the invention, is the set of claims that issue from this
application, in the specific form in which such claims issue, including any subsequent
correction. Any definitions expressly set forth herein for terms contained in such claims
shall govern the meaning of such terms as used in the claims. Hence, no limitation,
element, property, feature, advantage or attribute that is not expressly recited in a claim
should limit the scope of such claim in any way. The specification and drawings are,

accordingly, to be regarded in an illustrative rather than a restrictive sense.

-14-

® NN U AW N -

e e T e e T e
wv KL WwN - O O

N Oy R W -

HOWON =

N

WO 2007/136507 PCT/US2007/010163

CLAIMS

What is claimed is:

1. A method comprisixig performing a machine-executed operation involving
instructions for updating XML data stored in a database, wherein the machine-
executed operation is at least one of:

E?A"j'iééﬁdiiﬁg"théinstfuétions over transmission media;

B) receiving the instructions over transmission media;

C) storing the inst:gqtions onto a machine-readable storage medium; and

D) executing the insiructions;

wherein the instructions are instructions which, when executed by one or more
processors, cause the one or more processors to perform the steps of:

receiving a request for a modification to an XML document that is stored in a
database in a compact binary form;

computing parameters that characterize a change to the compact binary form of
the XML document, wherein said change reflects said modification; and

making the requested modification to the compact binary form of the XML

document based on the parameters.

2. The method of Claim 1, wherein the instructions are instructions which, when
executed by one or more processors, cause the one or more processors to perform
the steps of:
based on the request, identifying one or more nodes of the XML document for

which a modification is requested, including identifying a beginning
location within the compact binary form at which a first change is to be

applied.

3. The method of Claim 2, wherein computing the parameters comprises computing:
a destination offset parameter that represents the beginning location, wherein the
beginning location is identified as a number of bytes offset from the

beginning of the compact binary form of the XML document.

4. The method of Claim 2, wherein computing the parameters comprises computing
a single XML document that characterizes the modifications to all of the one or

more nodes.

-15-

e e T = R ¥ e e S N

— b et b ek e et
J 00w & W R = o

W Pt

o s W N~

—

WO 2007/136507 PCT/US2007/010163

The method of Claim 2, wherein the modification to the XML document includes
at least one node insert operation or node update operation, and wherein
computing the parameters comprises:

a destination offset parameter that specifies the beginning location, wherein the
beginning location is identified as a number of bytes offset from the
beginning of the compact binary form of the XML document;

a changed length parameter that specifies a number of bytes of the compact binary
form of the XML document used to represent an old binary value
associated with a node that is a subject of the node insert operation or node
update operation, wherein the old binary value is what is replaced as a
result of the node insert operation or node update operation;

a new value parameter that represents a new binary value that results from the
node insert operation or node update operation, wherein the new binary
value is what replaces the old binary value in the compact binary form of
the XML document; and

a new value length parameter that specifies a number of bytes to represent the new

value of the part of the compact binary form of the XML document.

The method of Claim 5, wherein making the change to the compact binary form of
the XML document comprises:

replacing the old value with the new value beginning at the beginning location.

The method of Claim 1, wherein computing the parameters comprises:

computing how the requested modification affects the compact binary form of the
XML document beyond an effect the requested modification has on bytes
representing one or more nodes from the XML document that are

identified for updating based on a pathname expression in the request.

The method of Claim 1, wherein making the requested modification to the
compact binary form of the XML document comprises making the requested

modification directly to the compact binary form stored on persistent storage.

The method of Claim 8, wherein making the requested modification to the
compact binary form of the XML document comprises making the requested

modification without constructing an object tree of the XML document.

-16-

WO 2007/136507 PCT/US2007/010163

173

RECEIVE A REQUEST FOR A CHANGE TO AN XML
DOCUMENT THAT IS STORED IN A DATABASE IN A
COMPACT BINARY FORM

102

l

BASED ON THE REQUEST, IDENTIFY ONE OR MORE
NODES OF THE XML DOCUMENT FOR WHICH A CHANGE
=+ IS REQUESTED *
104

COMPUTE HOW THE REQUESTED CHANGE AFFECTS THE

COMPACT BINARY FORM OF THE ONE OR MORE NODES
106

l

COMPUTE HOW THE REQUESTED CHANGE AFFECTS THE
COMPACT BINARY FORM OF THE XML DOCUMENT
BEYOND THE EFFECT THE REQUESTED CHANGE HAS ON
THE ONE OR MORE NODES
108

l

COMPUTE AND REPRESENT PARAMETERS THAT
REPRESENT THE ACTUAL EFFECT THE REQUESTED
CHANGE HAS ON THE COMPACT BINARY FORM OF THE
XML DOCUMENT, FOR APPLICATION TO THE COMPACT
BINARY FORM OF THE XML DOCUMENT
110

FIG. 1

PCT/US2007/010163

WO 2007/136507

2/3

¢ OId

(o

0001

_ _
| HIONAT |
| ANTVAMEN
| oD 5 (zTo)
| HIONAT | | 14SH0
, QEDNVHD | | NOLLVNIISHQ
o 344 LTT TTT

SHLAE

PCT/US2007/010163

WO 2007/136507

W € OId
1SOH
e Ipnp -~~~ """ " T T T T oo T oo oo
cct SN 0 8ie
MHOMIAN v_mo\émz“ © 3OV4M3INI 70¢
901 _ NOLLVOINNINNOD ¥0SS3004d
|
i
]
o
@ "
9z¢ ” 0
| sSng
dS _
]
|
1INYAINI |
|
| 01 30¢ a0¢
82¢ = " I0IAQ AHOWIN
HIANIS , | FOW0LS NOY NIVW

9l¢
JOY1INOD
HOSHNO

vie
30IA30 1NdN}

423
AV1dSId

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2007/010163

CLASSIFICATION O 3%UBJECT MATTER

NV S G0eF LY

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y WO 03/107576 A (CERISENT CORP [USI) 1-9
24 December 2003 (2003-12-24)
pages 3,4, paragraphs 12,13
pages 8,9, paragraph 46-52

Y US 2006/021246 Al (SCHULZE JAMES M [US] ET 1-9
AL) 2 February 2006 (2006-02-02)
cited in the application
abstract

A WO 2006/026534 A (YAHOO INC [US]; NARSUDE 1-9
CHETAN [US]) 9 March 2006 (2006-03-09)
page 2, paragraph 5

pages 3,4, paragraphs 15,19

A US 6 598 055 B1 (KEESEY JAMES LOUIS [US] 1-9
ET AL) 22 July 2003 (2003-07-22)
column 3, Tine 50 - column 4, line 60

_____ L

Furiher documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents
P 9 *T* later document published after the international filing date

*A" document defining the general state of the art which is not
considered to be of particular relevance

"E* earlier document but published on or after the international
filing date

*L" document which may throw doubts on priority claim(s) or
which is cited 1o establish the publication date of another
citation or other special reason {(as specified)

'O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
merrllts, such combination being obvious to a person skilled
inthe art,

*&" document member of the same patent family

Date of the actual completion of the international search

5 October 2007

Date of mailing of the intemational search report

12/10/2007

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo
Fax: (+31-70) 340-3016

Authorized officer

CORREIA MARTINS, F

Form PCT/ISA/210 {second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2007/010163

C(Continuation), DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 6 018 747 A (BURNS RANDAL CHILTON [US]
ET AL) 25 January 2000 (2000-01-25)
abstract

1-9

Form PCT/ISA/210 (continuation of second sheet) (Aorif 20051

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2007/010163
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 03107576 A 24-12-2003 AU 2003276815 Al 31-12-2003
US 2006021246 Al 02~-02-2006 BR 0317044 A 16-11-2005
CA 2523243 Al 24-06-2004
EP 1588141 A2 26-10-2005
KR 20050089812 A 08-09-2005
WO 2004052074 A2 24-06-2004
Us 2006026915 Al 09-02-2006
US 2004110460 Al 10—06—2004
WO 2006026534 A 09-03-2006 US 2006059184 Al 16-03-2006
US 6598055 Bl 22-07-2003 NONE
US 6018747 A 25-01-2000 NONE

Fom PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - wo-search-report
	Page 23 - wo-search-report
	Page 24 - wo-search-report

