

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
19 February 2009 (19.02.2009)

PCT

(10) International Publication Number
WO 2009/021615 A1

(51) International Patent Classification:

H04W 36/08 (2009.01)

(21) International Application Number:

PCT/EP2008/006178

(22) International Filing Date: 21 July 2008 (21.07.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

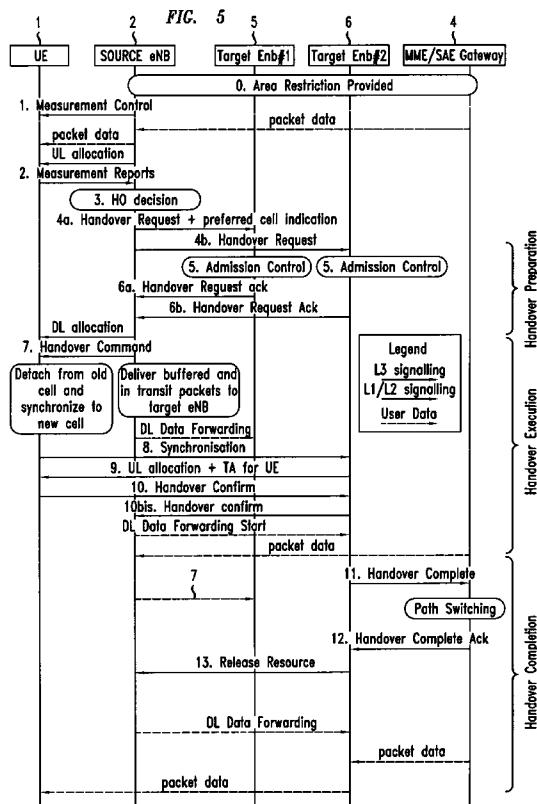
07291016.9	14 August 2007 (14.08.2007)	EP
07291624.0	26 December 2007 (26.12.2007)	EP

(71) **Applicants (for all designated States except US):** LUCENT TECHNOLOGIES INC. [US/US]; 600 Mountain Avenue, Murray Hill, NJ 07974-0636 (US). ALCATEL LUCENT [FR/FR]; 54, rue La Boetie, F-75008 Paris (FR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PALAT, Sudeep,

Kumar [GB/GB]; 17 Heytsbury Gardens, Grange Park, Swindon SN5 6EE, Wiltshire (GB). GODIN, Philippe [FR/FR]; 150, avenue General Leclerc, F-78220 Viroflay (FR).


(74) **Agents:** COCKAYNE, Gillian et al.; Alcatel-Lucent Telecom Ltd., Unit 18, Core 3, Workzone, Innova Business Park, Electric Avenue, Enfield EN3 7XU (GB).

(81) **Designated States (unless otherwise indicated, for every kind of national protection available):** AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) **Designated States (unless otherwise indicated, for every kind of regional protection available):** ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

[Continued on next page]

(54) Title: HANDOVER METHOD AND APPARATUS IN A WIRELESS TELECOMMUNICATIONS NETWORK

(57) **Abstract:** A method for handover of a mobile terminal from a source node to a target node in a wireless telecommunications network, including the steps of: adding an indication in the preparation phase by which source node indicates to the target node if it is the one preferred or not. If a target node is not the one preferred but is still selected by the UE, it may indicate this to the source node as by a specific new message that comes earlier in the handover process than a message requesting the source node to release resources following successful handover to a new node. The source node can then in this case cancel handover preparations to other target nodes earlier and also start data forwarding where applicable earlier.

WO 2009/021615 A1

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— *with international search report*

HANOVER METHOD AND APPARATUS IN A WIRELESS TELECOMMUNICATIONS NETWORK

FIELD OF THE INVENTION

The present invention relates to a method and apparatus for handover in a wireless telecommunications network, and more particularly, but not exclusively, to a method and apparatus implemented in accordance with the 3rd Generation Partnership Project (3GPP) evolved Universal Terrestrial Radio Access Network (E-UTRAN) and evolved Universal Terrestrial Radio Access (E-UTRA) specifications.

BACKGROUND OF THE INVENTION

Currently, 3GPP is considering development of E-UTRA and E-UTRAN as set out in the technical specification 3GPP TS 36.300 v 8.1.0 (2007- 06), incorporated herein by way of reference, and related documents. 3GPP Long Term Evolution (LTE) aims to enhance the Universal Mobile Telecommunications System (UMTS) standard, for example, by improving efficiency and services.

In E-UTRAN, user equipment (UE) communicates with a network node, NodeB (eNB), with data being sent on radio bearers (RBs) over a radio link between them. The eNB interfaces with a Mobile Management Entity/System Architecture Evolution Gateway (MME/SAE GW) via an interface designated as S1. An E-UTRAN network includes a plurality of eNBs and MME/SAE GWs.

In LTE, all the Radio Access Network (RAN) functions are integrated in each node, eNB. Downlink user data, that is Internet Protocol (IP) packets, are transmitted from the SAE GW to the eNB. As the UE is handed over from a first, source, eNB to second, target, eNB, the SAE GW is updated with the second eNB address and the SAE GW starts to send data to that target eNB.

However, to avoid data loss, any data that is already buffered in the source eNB must be forwarded to the target eNB. Also, data that has been sent to the source eNB during the handover (HO) procedure, before the SAE GW is updated with the new eNB address, is also forwarded by the source eNB to the target eNB.

- 2 -

To preserve the order of packets sent to the UE, the target eNB must strive to send data over the radio in the same order as sent by the SAE GW. That is, first data buffered by the eNB is sent to the target eNB, followed by data in transit from the SAE GW during the HO process, and only when these have all been sent should the 5 target eNB send to the UE fresh data that it receives directly from the SAE GW.

The message flow for the HO process applied to a UE 1 is shown in Figure 1, which illustrates a network including a source eNB 2, a target eNB 3 and an MME/SAE GW 4. When the source eNB 2 makes a handover decision based on measurement reports from the UE 1, it sends a Handover Request message, at step 4, 10 to the target eNB 3. At the Admission Control step 5, the target eNB 3 configures the required resources and sends a Handover Request Acknowledge message, at step 6, to the source eNB 2. Following the Handover Command, at step 7, from the source eNB 2 to the UE 1, the UE 1 detaches from the old cell and synchronises to the new cell 15 associated with the target eNB 3. Also, data packets buffered at the source eNB 2 and any in transit are forwarded to the target eNB 3 from the source eNB 2. Following the Handover Confirm message at step 10 from the UE 1 to the target eNB 3, a Handover Complete message, at step 11, is sent to the MME/SAE GW 4 by the target eNB 3. Data packets from the source eNB 2 continue to be delivered to the target eNB 3. Once all the forwarded data from source eNB 2 has been received by the target eNB 20 3, the target eNB 3 can then send to the UE 1 fresh data arriving over S1 from MME/SAE GW.

In LTE, the data forwarding phase, where data is sent to the target eNB from the source eNB, currently starts when the source eNB receives the Handover Request Ack message, at step 6 in Figure 1, from the target eNB which indicates the end of the 25 preparation phase for that target eNodeB.

However, it has recently been proposed that the source eNodeB 2 be able to trigger multiple preparation procedures towards several target eNodeBs 5 and 6, as shown in Figure 2, where the same references are used for the same items. For the purposes of explanation, only two target eNBs are illustrated, but there may be more 30 than two target eNBs available. The source eNB 2 sends Handover Request messages, at steps 4a and 4b, to the target eNBs 5 and 6. The source eNodeB 2 receives

Handover Request Ack messages, shown at step 6a and step 6b, from each of the multiple target eNodeBs 5 and 6, but, at that time, does not know which of the target eNodeBs 5 and 6 will be finally selected as the one to which the UE 1 will hand over. The UE 1 will finally succeed in being handed over to only one of the target eNodeBs

5 5 and 6. Therefore, when the source eNodeB 2 receives the Handover Request Ack messages, at steps 6a and 6b, it does not know towards which of the target eNodeBs 5 and 6 it should trigger data forwarding.

There have been two previous proposals to deal with data forwarding where multiple target eNBs exist to ensure that the finally elected target eNodeB will receive
10 the forwarded data.

In a first proposal, as shown in Figure 3, the source eNodeB 2 triggers multiple data forwarding procedures towards all prepared target eNodeBs 5 and 6 from which it has received Handover Request Ack messages, at steps 6a and 6b. This approach is inefficient, cumbersome and bandwidth consuming, as it involves
15 forwarding the data towards target eNodeBs which will not eventually be elected to form a connection with the UE.

In a second proposal, as shown in Figure 4, the source eNodeB 2 triggers the data forwarding towards only a preferred target eNodeB 5 at the time it receives the Handover Request Ack messages at steps 6a and 6b. The preferred target eNB 5 may, for example, be that one having the highest probability of the UE 1 successfully handing over to it. The probability of success can be assessed in various ways, for example, based on channel quality. The manner in which a target eNB 5 is designated as the preferred target eNB depends on a particular implementation of a network. The source eNB 2 only triggers the data forwarding towards any other target eNodeB 6 if
25 and when it gets an indication, on receipt of a Release Resource message at step 13, from that other non-preferred target eNodeB 6 that it has finally been selected by the UE 1. Thus, when one of the non-preferred target eNBs is finally selected, that indication to the source eNodeB 2 comes quite late in the handover process and makes the data forwarding process quite complex.

BRIEF SUMMARY OF THE INVENTION

According to a first aspect of the invention, a method for handover of a mobile terminal from a source node to a target node in a wireless telecommunications network, includes the steps of: identifying a plurality of target nodes; identifying a preferred target node from the plurality for the mobile terminal to hand over to; and the source node indicating to the preferred target node that it is the preferred target node. A target node may be preferred, for example, because it is most likely to be the one to which the mobile terminal will successfully hand over, or because it involves the most efficient use of resources, or for some other reason, the designation process depending on how the network is implemented and its priorities. The method is applicable to networks implemented in accordance with Long Term Evolution, LTE, standards, but may also be used in other types of network where mobile terminals are connected to different nodes to achieve mobility, or between nodes of different technology types.

In one method in accordance with the invention, when a target node other than the preferred target node is chosen to connect to the mobile terminal, the chosen target node sends a message to the source node to inform it of the choice and, following receipt of the message, and before the source node is sent a request to release resources, the source node begins forwarding data to the chosen target node. This enables data forwarding to the actual node selected for connection to the mobile terminal, where that node is not the designated preferred node, to begin sooner than in the previous second proposal. Before the source node receives the message, it may forward data to the preferred target node. By forwarding data to the preferred node as soon as the source node receives a handover request acknowledgement message from it, the data forwarding remains optimally efficient in the vast majority of cases where the preferred target node becomes node selected by the mobile terminal.

In a method in accordance with the invention, when the preferred target node is selected to connect to the mobile terminal, no message is sent to the source node by the preferred target node to inform it of the selection before the source node is sent by this target node a request to release resources. This ensures that there is no significant additional signalling required to implement the invention.

- 5 -

In a method in accordance with the invention, the source node sends a handover request to the plurality of target nodes and includes an indication in the handover request which indicates the preferred target node. Alternatively, the preferred status of a node may be transmitted via a separate message additional to the handover request message, but this increases signalling overheads. In a method in accordance with the invention, the handover request message sent to the preferred target node includes an information element informing it that it is the preferred target node and the handover request messages sent to non-preferred target nodes do not include the information element. The handover request message may, for example, 5 include a flag which is set to 'preferred' or 'non-preferred', or alternatively, the handover request message may include an information element only where the handover request message is sent to the preferred node, and any non-preferred node infers from its absence that it is not the preferred node.

10

In a method in accordance with the invention, when a target node other than the preferred target node is chosen to connect to the mobile terminal and the chosen target node sends a message to the source node to inform it of the choice, following receipt of the message, and before the source node is sent a request to release resources, the source node sends a Handover Cancel message to the preferred target node to cancel prepared context related to the mobile terminal and held by preferred 15 target node. The source node may also send a Handover Cancel message to each other non-selected target node when it receives the message from the chosen target node informing it of the choice.

20

According to a second aspect of the invention, a wireless telecommunications network is arranged to implement the method in accordance with the invention.

25

BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments and methods in accordance with the invention are now described, by way of example only, and with reference to the accompanying drawings, in which:

30 Figures 1 to 4 schematically illustrate prior art networks and messaging during handover; and

- 6 -

Figure 5 schematically illustrates a network and messaging during handover in accordance with the invention.

DETAILED DESCRIPTION

With reference to Figure 5, when measurement reports from the UE 1 indicate to the source eNB 2 that the UE 1 should hand over to another eNB, it sends a Handover Request message, at steps 4a and 4b, to multiple target eNBs 5 and 6. One of the target eNBs is designated by the source eNB 2 as the preferred target eNB, for example, because it is most likely to be the one to which the UE 1 will successfully hand over, or because it involves the most efficient use of resources, or for some other reason, the designation process depending on how the network is implemented. The Handover Request message sent at step 4a to the preferred eNB 5 also includes an indication that it is the preferred eNB. The indication is an additional information element included in the message. The Handover Request message to the other target eNBs, at step 4b, does not include any indication that they are preferred.

Following receipt of the Handover Ack messages at steps 6a and 6b from preferred and non-preferred eNBs 5 and 6, the source eNB 2 begins forwarding data to the preferred eNB 5.

In most cases, the UE 1 will then attach to the preferred eNB 5, and the handover procedure will continue as set out in Figure 1. However, where instead the UE 1 establishes a connection with a non-preferred eNB 6, as shown in Figure 5, and sends a Handover Confirm message, at step 10, to the non-preferred target eNB 6, the eNB 6 then sends a new Handover Confirm message, at step 10bis, to the source eNB 2. Immediately after receiving the Handover Confirm message 10bis, the source eNB 2 then stops data forwarding to the preferred eNB 5 and begins to send data to the selected target eNB 6 chosen by the UE 1. Thus, data begins to be forwarded to the elected target eNB 6 before the source eNB 2 receives a Release Resource message, at step 13.

The information element in the Handover Request message, at step 4, indicates to the target eNodeB if it is preferred or not in this handover. Thus, if the eNB 5 is preferred, it never sends the new message, at step 10bis, when it becomes selected by the UE 1. Therefore, the new message 10bis is only sent when a non-preferred target

- 7 -

eNodeB 6 is selected by the UE 1, which means in fewer cases. This improves the bandwidth occupancy, for example, without increasing the signalling load.

In addition, an optional, but advantageous procedure, is to cancel the context prepared in the preferred eNodeB 5 as soon as possible in cases where a non-preferred 5 eNodeB 6 is selected by the UE 1. This is done, in one method in accordance with the invention, by the source eNodeB 2 sending a Cancel message, shown as chain broken line 7, to the preferred target eNodeB 5 as soon as receiving the new message 10bis. Alternatively, no Cancel message is sent and reception of the Release Resource message at step 13 is used to cancel the prepared context. Furthermore, after the 10 source eNB 2 receives message 10bis, it may send Cancel messages to other non-selected, non-preferred target eNBs to immediately cancel pending prepared contexts that they hold.

The present invention may be embodied in other specific forms and implemented in other methods without departing from its spirit or essential 15 characteristics. The described embodiments and methods are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

CLAIMS

1. A method for handover of a mobile terminal from a source node to a target node in a wireless telecommunications network, including the steps of:

5 identifying a plurality of target nodes;
 identifying a preferred target node from the plurality for the mobile terminal to hand over to; and
 the source node indicating to the preferred target node that it is the preferred target node.

10

2. The method as claimed in claim 1 and including the steps of:

 when a target node other than the preferred target node is chosen to connect to the mobile terminal, the chosen target node sending a message to the source node to inform it of the choice and, following receipt of the message, and before the source 15 node is sent a request to release resources, the source node begins forwarding data to the chosen target node.

3. The method as claimed in claim 2 and wherein, before the source node receives the message, it forwards data to the preferred target node.

20

4. The method as claimed in claim 2 or 3 and wherein, when the preferred target node is selected to connect to the mobile terminal, no message is sent to the source node by the preferred node to inform it of the selection before the source node is sent a request to release resources.

25

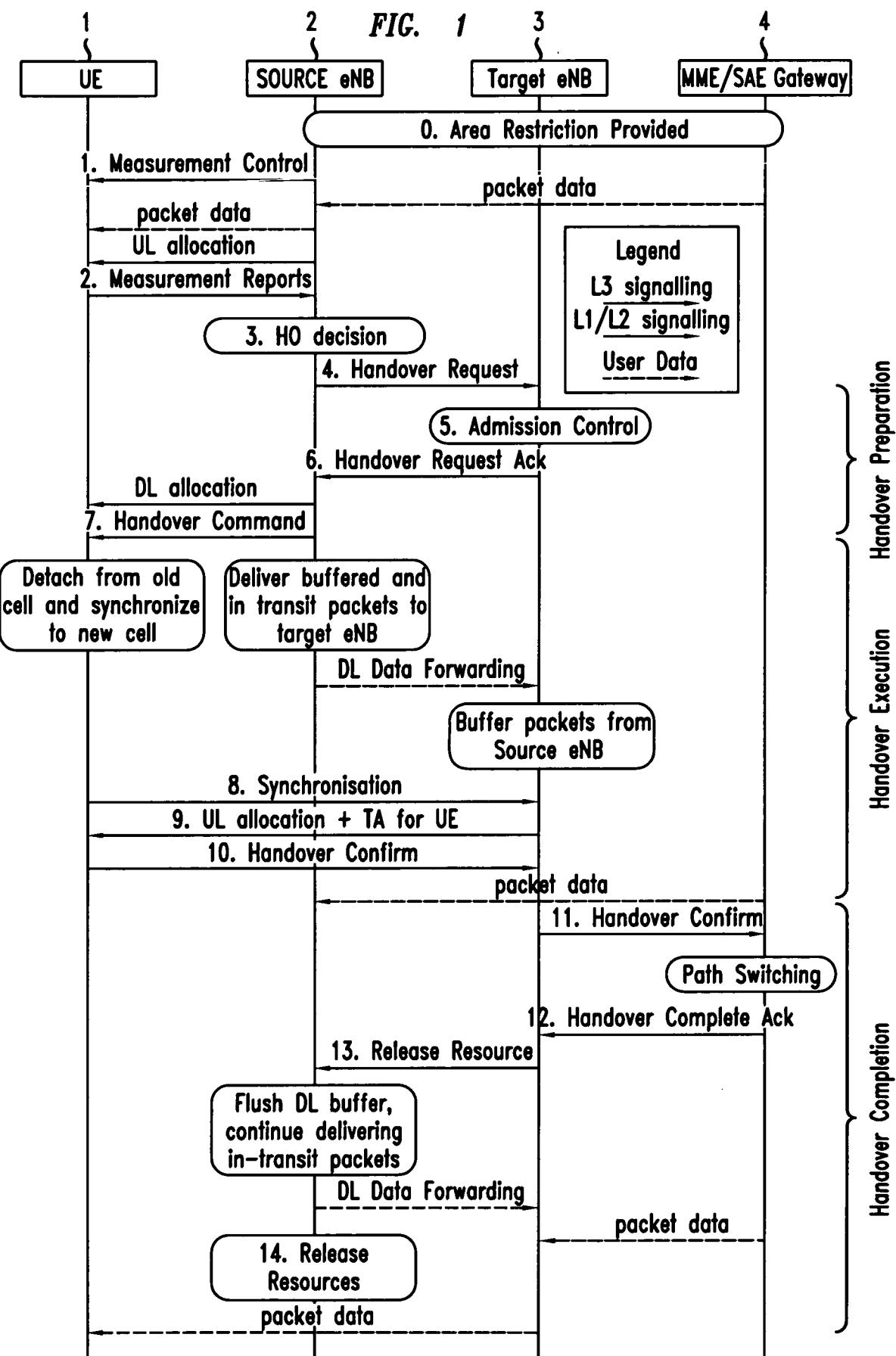
5. The method as claimed in any preceding claim and wherein the source node sends a handover request to the plurality of target nodes and includes an indication in the handover request which indicates which node is the preferred target node and which node is not.

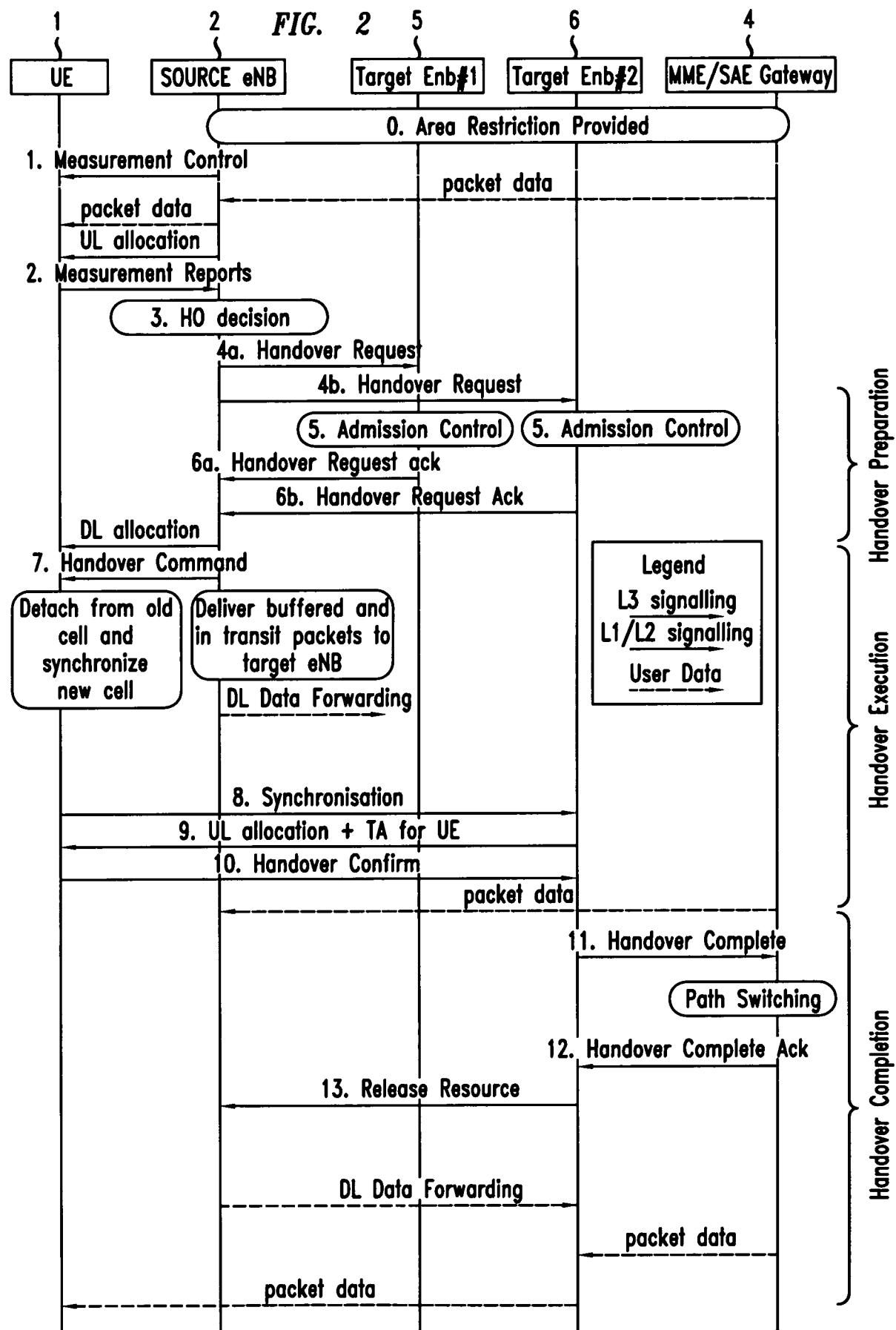
30

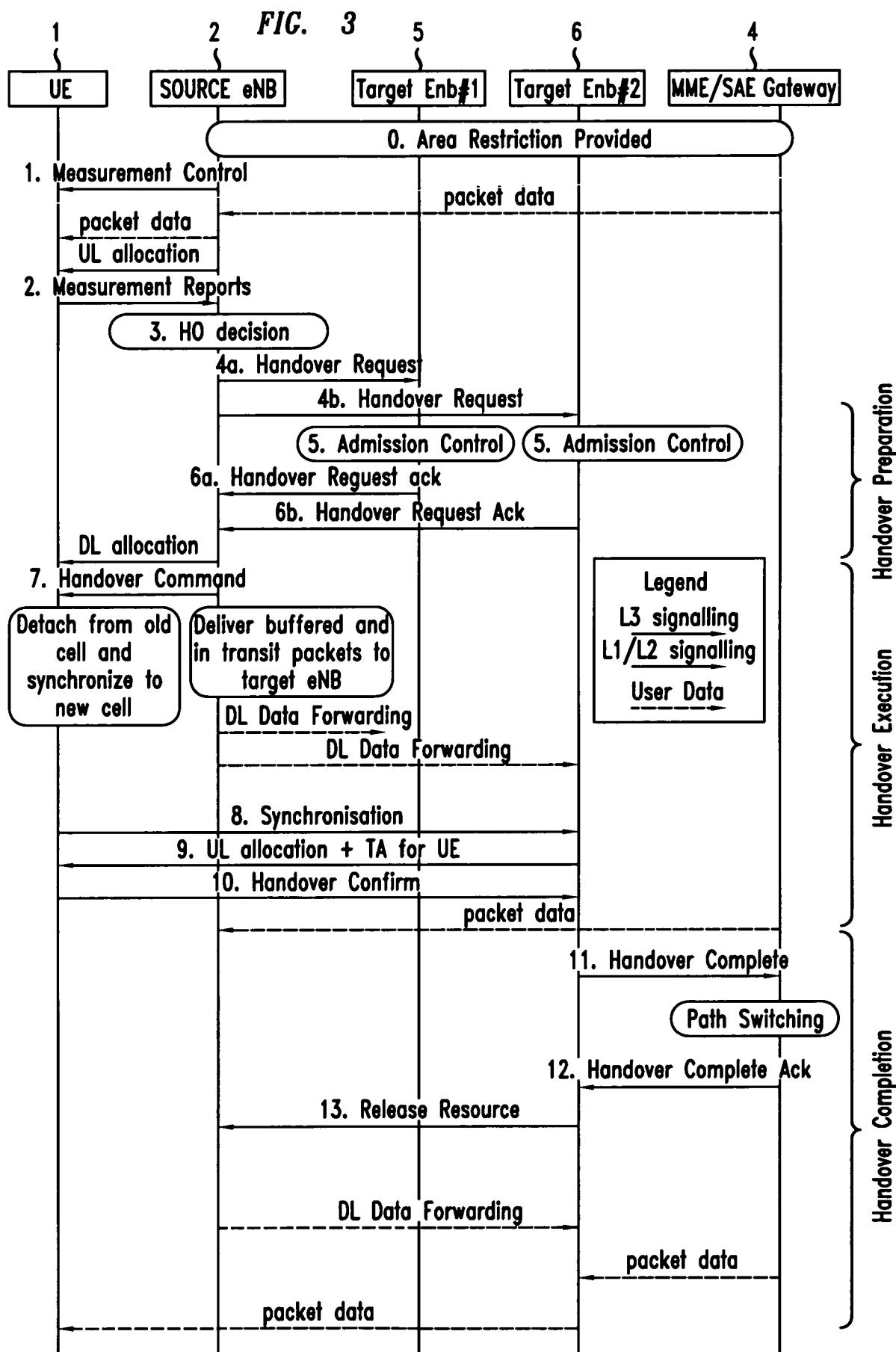
- 9 -

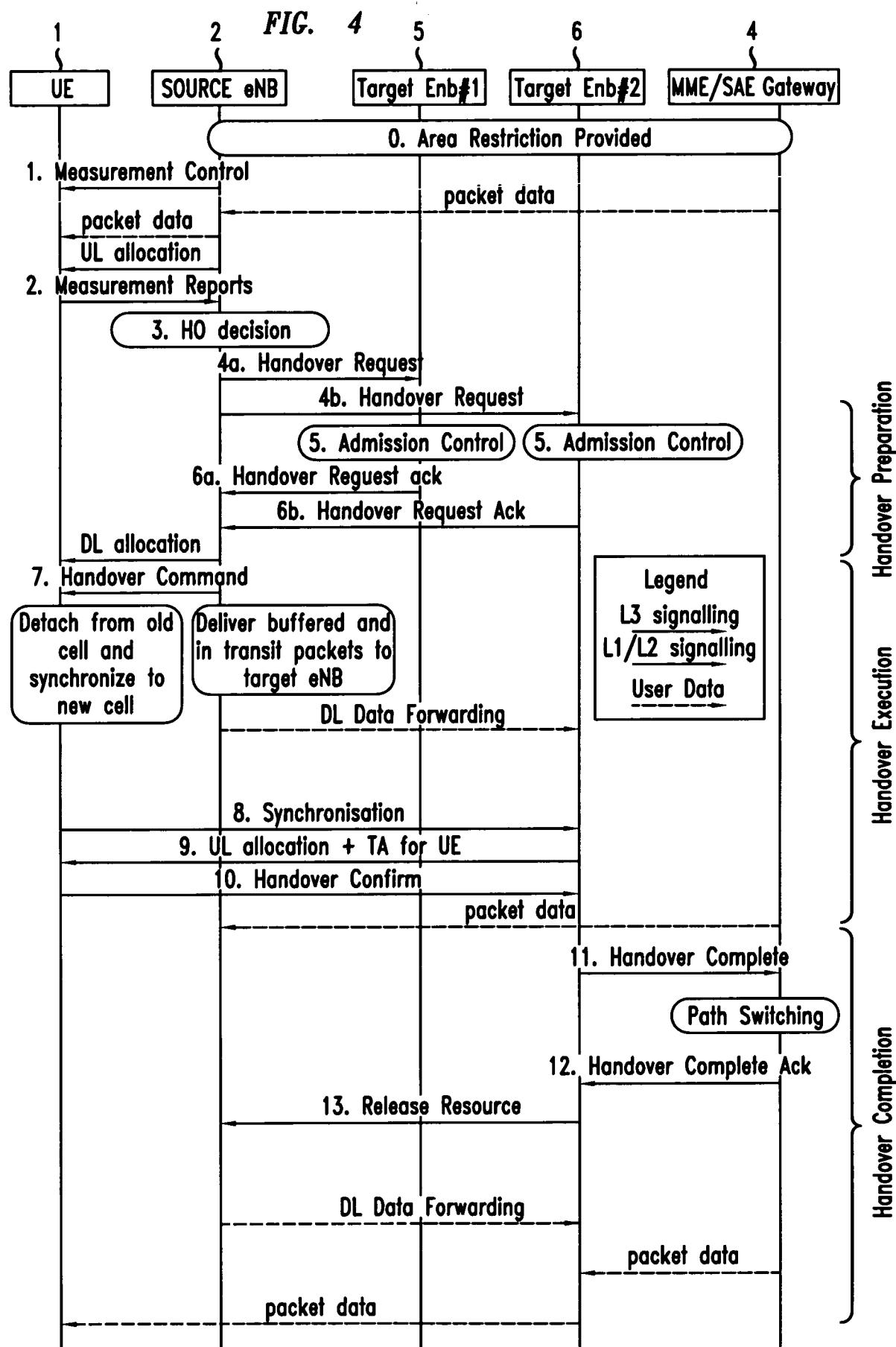
6. The method as claimed in claim 5 and wherein the handover request message sent to the preferred target node includes an information element informing it that it is the preferred target node and the handover request messages sent to non-preferred target nodes do not include the information element.

5

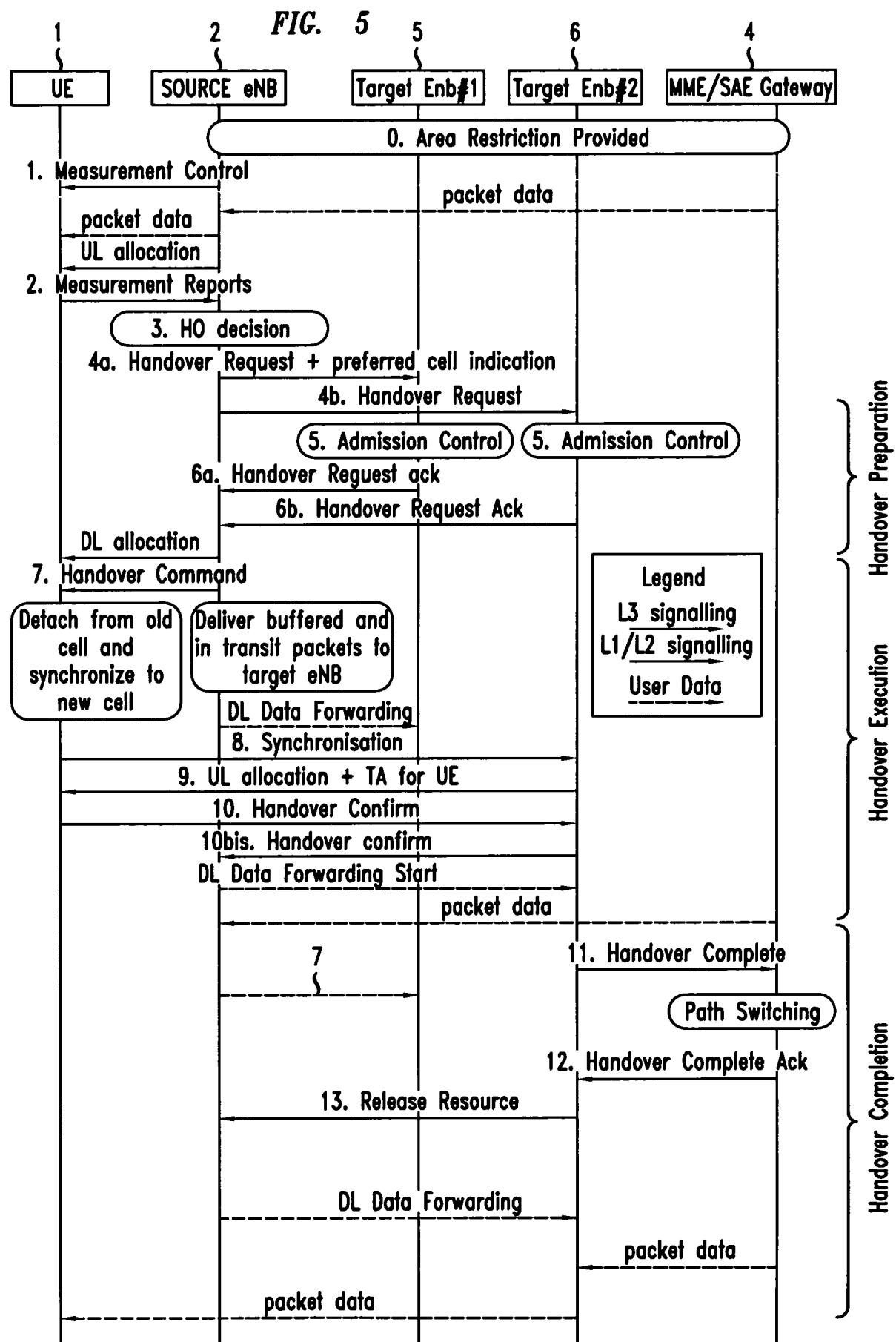

7. The method as claimed in any preceding claim and, when a target node other than the preferred target node is chosen to connect to the mobile terminal and the chosen target node sends a message to the source node to inform it of the choice, following receipt of the message, and before the source node is sent a request to release


10 resources, the source node sends a handover cancel message to the preferred target node to cancel prepared context related to the mobile terminal and held by the preferred target node.


8. The method as claimed in claim 7 and wherein the source node sends a handover cancel message to each non-selected target node when it receives the message from the chosen target node informing it of the choice.


15 9. The method as claimed in any preceding claim and implemented in accordance with Long Term Evolution, LTE, standards.

20 10. A wireless telecommunications network arranged to implement the method as claimed in any preceding claim.



5/5

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2008/006178

A. CLASSIFICATION OF SUBJECT MATTER
INV. H04W36/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H04Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 1 571 786 A (SAMSUNG ELECTRONICS CO LTD [KR]) 7 September 2005 (2005-09-07) paragraph [0001] paragraph [0010] - paragraph [0029] tables 4,7,8 figure 2 ----- -/-	1
Y		2-10

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search 21 November 2008	Date of mailing of the international search report 04/12/2008
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Rosenauer, Hubert

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2008/006178

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	ALCATEL: "Proffer/Bid based Handover Preparation" INTERNET CITATION, [Online] 28 August 2006 (2006-08-28), - 1 September 2006 (2006-09-01) XP002472869 Retrieved from the Internet: URL:Tallin, Estonia http://www.3gpp.org/ftp/tsg%5Fran/WG2%5FRL2/TSGR2%5F5_4/Documents > [retrieved on 2008-03-13] page 1, paragraph 2 - page 2, paragraph 4 figure 1	1
Y	page 1, paragraph 2 - page 2, paragraph 4 figure 1	2-10
A	US 2007/047512 A1 (ZHANG GUODONG [US] ET AL) 1 March 2007 (2007-03-01) paragraph [0002] paragraph [0036] - paragraph [0039] figure 6	1,10
A	----- WO 2007/078051 A (LG ELECTRONICS INC [KR]; LEE YOUNG DAE [KR]; CHUN SUNG DUCK [KR]; JUNG) 12 July 2007 (2007-07-12) page 1, line 4 - line 6 page 1, line 14 - line 18 page 5, line 4 - page 7, line 1 figures 1,4	1,9,10
T	----- ALCATEL-LUCENT: "Impact of Multiple handover preparations on RAN3 specifications" 3GPP TSG RAN WG3 #57, R3-071440, [Online] 20 August 2007 (2007-08-20), - 24 August 2007 (2007-08-24) pages 1-9, XP002504936 Retrieved from the Internet: http://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_57/docs/ > [retrieved on 2008-10-20] page 5, paragraph 3.2 - page 9, paragraph 3.4 figure 5	1-10
T	----- HUAWEI: "Multiple preparations of eNBs" 3GPP TSG RAN WG3 #57BIS, R3-071943, [Online] 8 October 2007 (2007-10-08), - 11 October 2007 (2007-10-11) pages 1-9, XP002504937 Retrieved from the Internet: http://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_57bis/docs/ > [retrieved on 2008-11-20] page 3, paragraph 3.1 - page 7, paragraph 3.2.3 figure 2	1-10

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2008/006178

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP 1571786	A	07-09-2005	WO US	2005086377 A1 2005197124 A1		15-09-2005 08-09-2005
US 2007047512	A1	01-03-2007		NONE		
WO 2007078051	A	12-07-2007		NONE		