(54) Benævnelse: Farmaceutiske sammensætning og fremgangsmåde til stabilisering af et ACE inhibitemedikament

(56) Fremdragne publikationer:
EP 99239 A2

Se side 14, linie 9 til 23.

(57) Sammendrag:
Cycliseringen og hydrolysen af visse ACE-inhibitorer
minimeres når de formuleres med en stabilisator og
mindst ét smøremiddel og/eller excipiens.

Man har fundet at nedbrydningen, der skyldes cyclisering og hydrolyse som vanligvis har været knyttet til doseringsformer indeholdende f.eks. quinapril, kan overvindes ved brug af bestemte mængder ascorbinsyre alene eller ascorbinsyre i kombination med en eller flere af fumarsyre, citronsyre og maleinsyre i formuleringerne.

I tillæg kommer at effekten af ascorbinsyre forstærkes meget når visse smøremidler, f.eks. Sterotex og/eller talkum, bruges i kombination med den.

Endvidere forstærkes den totale stabilitet af det endelige farmaceutske præparat, når specielle typer af exipenter, såsom mannitol og lactose, inkluderes deri.

I EP 99239 A2 er det beskrevet, at ascorbinsyre kan anvendes som en antioxidant i forbindelse med visse anti-glaucoma ACE inhibiter. Det er imidlertid ikke nævnt, at ascorbinsyre kan anvendes til at forhindre eller inhibere cyklisering og/eller hydrolyse af den
aktive ingrediens, der indeholder medikament i en mængde på 10 til 20 vægt% af den totale sammensætning.

Præparaterne ifølge opfindelsen har flere fordele i forhold til præparater, som ikke indeholder den eller de stabiliserende additiver som diskuteres heri. Først og fremst er de aktive ingredienser eller medikamenter, der indeholder heri, i realiteten beskyttet mod cyclisering og hydrolyse. Hertil kommer, at den misfarvning, som sommetider optræder når ACE-inhibitorer af denne klasse formuleres og henstår i længere tid, minimaliseres eller elimineres komplet. Således kan et stabilt quinaprilprøparat fremstilles, hvilket ikke gennemgår nogen påviselig oxidativ misfarvning.

Ud over at have større lagringsstabilitet, gøres de brugsfærdige formuleringer mere faste til anvendelse i kombinationer af medikamenter.

Disse og andre fordele ved opfindelsen vil blive tydelige ved betragtning af følgende beskrivelse af opfindelsen.

Opfindelsen omhandler:
I. Et farmaceutisk prøparat der indeholder:
 (a) En medikamentbestanddel, der omfatter en ACE-inhibitor, som er tilbøjelig til cyclisering og hydrolyse.

 (b) En mængde af en stabiliserende komponent eller komponenter egnet til at forsinke cyclisering og/eller hydrolyse, og;

II. En fremgangsmåde til at stabilisere et ACE-inhibitormedikament, hvilken omfatter det trin, at bringe medikamentet i kontakt med:
 (a) En mængde stabiliserende middel eller midler egnet til at forsinke cyclisering og/eller hydrolyse.
III. En fremgangsmåde til fremstilling af en farmaceutisk doseringsform, hvilken omfatter at inkludere i formuleringen passende mængder af:

(a) En ACE-inhibitor, og

(b) stabiliseringsmidler, der indeholder ascorbinsyre alene eller ascorbinsyre i kombination med organiske syrer, som fumarøyre, maleinsyre og/eller citronsyre som en cycliserings- og hydrolyseinhibitor.

Præparaterne ifølge opfindelsen indeholder mindst en ACE-inhibitor og, om det ønskes, en eller flere andre medikamenter eller gavnlige substanser.

ACE-inhibitorerne, der kan bruges ifølge opfindelsen, er en hvilken som helst af en gruppe af velkendte forbindelser, som har antihypertensive egenskaber.

En foretrukken gruppe forbindelser omfatter forbindelser tilpasset den almene formel

![Chemical Structure](image)

(I)

hvori
R₁ og R₂ er -H eller -OCₙH₂n₊₁,
R₃ er -H eller -CₙH₂n₊₁ og
n er 1 til 5.
R₁ og R₂ skal helst være ens. Allerhelst er R₁ og R₂ begge -H eller -OCH₃, og R₃ er -H eller -C₂H₅.
Forbindelser af denne type er omtalt i US-patent 4.344.949.
Således omfatter en foretrukken gruppe forbindelser quinapril og komponenter med formlerne II-IV.

\[
\text{II}
\]

\[
\text{III}
\]

\[
\text{IV}
\]

Blandinger kan bruges.

Quinapril er stærkt foretrukket. Dets struktur er:
Den punkterede linje repræsenterer bindingen, der dannes når forbindelsen cycliserer til et diketopiperazin.

Det antages at denne ønskede piperazin fremkommer når quinapril og lignende forbindelser lagres uden en eller flere stabiliserende midler.

En anden foretrukken grappe forbindelser omfatter dem med formlen VI:

\[
\begin{align*}
\text{(VI)}
\end{align*}
\]

15 hvori

\(R_4\) og \(R_5\) er C\(_{1-4}\) alkyl og \(R_6\) er -H eller C\(_{1-4}\) alkyl.

Enalapril foretrækkes.

Det totale indhold af medikament i det endelige præparat vil være fra omkring 1 til omkring 70%, fortrinsvis fra omkring 3% til omkring 20%. I almindelighed vil en eller flere ACE inhibitor eller inhibitoryer være det eneste medikament tilstede.

'Alle procenter opgivet heri er vægt%' baseret på den totale præparatvægt, medmindre andet erklæres.

De daglige doseringer af de farmaceutiske præparater ifølge opfindelsen afhænger af typen af doseningsform, typen af medikament og type og udstrækning
af eventuelle vekselvirkninger i medikamentblandinger. Således bestemmes de terapeutiske behov hos den indivi-
duelle patient, og den behandlende læge bestemmer dosisniveauerne der skal anvendes.
5 I almindelighed er imidlertid fabrikantens speci-
cifikationer for et hvilket som helst medikament eller en hvilken som helst medikamentkombination nytte vej-
ledninger med hensyn til administrering. The Physician's Desk - Reference eller andre passende pu-
10 blikationer kan konsulteres for at skaffe sig viden om de passende dosisniveauer.
Det typiske doseringsniveau for quinapril og enalapril er ikke desto mindre fra omkring 1 mg til omkring 80 mg per dosering.
15 Passende kategorier af medikamenter, der kan an-
vendes i tillæg til ACE-inhibitorer i de brugsfærdige præparater, kan variere bredt og repræsenterer i almin-
delighed en hvilken som helst stabil medikamentkombi-
nation.
20 Belysende kategorier og specifikke eksempler
inkluderer:
(a) Diuretika, såsom hydrochlorothiazid.
(b) Antitussiva, såsom dextromethrophan,
dextromethorphan hydrobromid, noscapin, carbetapentan-
25 citrat og chlophedianolhydrochlorid;
(c) Antihistaminer, såsom chlorpheniraminmaleat,
phenidamintartrat, pyrilaminmaleat, doxyaminsuccinat
og phenyltoloxamincitrat.
(d) Midler mod congestion, såsom phenylephrin
30 hydrochlorid, phenylpropanolaminhydrochlorid, pseudo-
ephedrin, hydrochloridephedrin; og
(e) Forskellige alkaloider, såsom codein-
phosphat, codeinsulfat og morfin.
(f) Minderaltilskud såsom kaliumchlorid og calciumcarbonater.

En foretrukken gruppe medikamenter til anvendelse i kombination med ACE-inhibitorer omfatter: β-15 blokkere, diuretika, calciumblokere.

Stabiliseringsmidler.

Den cycliserings- og hydrolytiske instabilitet som visse af de ovenfor diskuterede medikamenter fremviser kan overvindes ved anvendelse af en passende mængde af en ascorbinsyre-indeholdende stabilisator.

Medens brugen af scorbinsyre som antioxidant for farmaceutika er kendt, kendes endnu ikke dens virksomhed som inhibitor af cycliseringsreaktioner og hydrolyse. Medens anvendelsen ikke behøver være bundet af nogen speciel teori, antages det at scorbinsyren forebygger cycliseringsprocessen og derved forhinder dannelsen af diketopiperaziner og andre uønskede forbindelser.

Mængden af den stabiliserende komponent, der skal anvendes, vil ligge mellem omkring 1% og 90%, fortrinsvis omkring 10% til omkring 80%, allerhæst omkring 20% til omkring 50%. I almindelighed kan enhver
mængde, der effektivt vil bremse eller forebygge nedbrydelse af ACE-inhibitorkomponenten, anvendes.

Det er vigtigt at bemærke, at brugen af ascorbinsyre selv i den stabiliserende forbindelse er af gørende for udøvelsen af opfindelsen. Medens der i almindelighed kræves at ascorbinsyreindholdet i præparatet skal være fra omkring 10% til omkring 20% for at opnå stabilitet med hensyn til hydrolyse og antiautocyclisering, kan resten af den stabiliserende komponent være en eller flere syrer valgt fra citronsyre, fumar- og maleinsyre.

Andre stabiliserende midler, der indeholder ascorbinsyredele, skulle ikke bruges. Salt og estere af ascorbinsyre kan ikke anvendes.

Den nøjagtige mekanisme for den stabiliserende aktivitet af de ascorbinsyre-indeholdende stabiliserende systemer ifølge opfindelsen er ikke klart kendt. Ansøgerne tror imidlertid at den ascorbinsyre-indeholdende stabilisator fungerer på i det mindste 2 måder:

1. Syren(erne) hæmmer auto-cycliseringen af forbindelser som quinapril ved at forstyrre dannelsen af bindingen, der er repræsenteret ved en prikket linie i formel V ovenfor.

2. Syren(erne) tjener til at nedsætte pH i præparatsammensætningen således at betingelserne for hydrolyse er ufavorable.

Smøremidler.

De valgfrie smøremiddelkomponenter, der skal anvendes i opfindelsens farmaceutiske produkter og fremgangsmåder, er substanser, som er forenelige med de ascorbinsyre-indholdende stabilisatorer. I alminde-
lighed er de forbindelser, der ikke indeholder grupper som mærkbart kunne forstyrre funktionen, hverken af den ascorbinsyre-indeholderende komponent eller medikament-
komponenten.

Det antages, at nærværelsen af let ioniserbare dele i smøremiddelkomponenten på skadelig måde på-
virker virkningen af ascorbinsyre. Således er stearinsyre og konventionelle metalsalte deraf ikke anvendeli-
ge smøremidler i de brugsfærdige formuleringer fordi de forstyrrer den ascorbinsyre-indholdende komponents
evne til at forebygge cyclisering.

En foretrakken gruppe af smøremidler indeholder hydrogenerede vegetabilske olier, f.eks. hydrogeneret
bomuldssrøolie, og talkum. Sterotex® er en foretrakken
hydrogeneret bomuldssrøolie. Blandinger kan anvendes.

I almindelighed vil den tilstedevarrende mængde
smøremiddel være fra omkring 0,5% til omkring 10%,
fortrinsvis omkring 1% til omkring 5%.

De valgfrie excipienser, der kan blive brugt i
de brugsfærdige præparate, er også forbindelser, som
må være forenelige med ascorbinsyrekomponenten, så de
ikke forstyrres dens funktion i præparatet. I almindel-
lighed inkluderer excipienserne, der skal anvendes he-
eri, sukkere som mannitol, lactose og andre sødemidler
og bæremidler som ikke på ugunstig måde påvirker fun-
ktionen af andre ingredienser i præparatet. Mannitol,
lactose og andre sukkere foretrækkes. Blandinger kan
anvendes.

Præparateerne ifølge opfindelsen kan indeholde
bæremidler, fortyndingsmidler, pigmenter, bindemidler,
farvestoffer og andre additiver, der sædvanligvis
bruges ved fremstillingen af farmaceutiske produkter.

Måden på hvilken ingredienserne kombineres, dvs. teknikken til behandling af produkterne ifølge opfin-
delen er ikke kritisk. En hvilken som helst teknik som er passende ifølge den fysiske og kemiske natur af materialerne, der skal behandles, kan anvendes.

Hvilken procent af exciplenser, der anvendes, er ikke kritisk. I almindelighed vil mængden af dem være konsistent med den mængde, der er givet ovenfor for medikamentet, stabilisatoren og smøremidlerne, dvs. de udgør resten af præparatet.

Faste, halv-faste og flydende formuleringer kan fremstilles. Faste er imidlertid meget foretrukne.

Medikamentpræparaterne kan tilpasses til øjeblikkelig, langsom eller vedvarende frigørelsersprofiler, eller en hvilken som helst kombination af disse. Således overvejes en formulering tilpasset til at give en initial ladningsdosering i løbet af 30 min. fulgt af vedvarende frigivelse af resten af medikamentet over 4-12 timer. Vedvarende og øjeblikkelig frigivelse er foretrukket.

De følgende eksempler belyser opfindelsen.

Eksempel 1
Stabile quinaprilformuleringer til brug ved fremstillingen af tabletter eller kapsler vil typisk indeholde følgende ingredienser:
11
 Vægt\%
Quinapril HCl 3-30
Ascorbinsyre 40-50
Hydrogeneret plante-
olie eller talkum 2-10
Lactose resten

Sådanne præparater har vist sig at være stabile
i en måned ved 45°C.

10

Eksempel 2
Stabile quinaprilpræparater kan fremstilles in-
deholdende følgende koncentrationer af ingredienser.

15
 Ingrediens Vægt\%
Quinapril HCl 3-30
Ascorbinsyre 10
En eller flere af
citron-, fumar- og
maleinsyre 30-40
Hydrogeneret vege-
tabilskolieeller
talkum 2-10
Lactose resten

20

Disse præparater er stabile en mnd. ved 45°C.

25

Eksempel 3
En meget foretrukken præparatsammensætning at
bruge i overensstemmelse med opfindelsen indeholder:
<table>
<thead>
<tr>
<th>Ingrediens</th>
<th>Vægt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinapril HCl</td>
<td>3,6</td>
</tr>
<tr>
<td>Ascorbinsyre</td>
<td>0,0</td>
</tr>
<tr>
<td>5 Lactose</td>
<td>72,4</td>
</tr>
<tr>
<td>Sterotex®</td>
<td>4,0</td>
</tr>
</tbody>
</table>

Denne sammensætning er stabil i 10 dage ved 60°C; en måned ved 45°C og ved 80% relativ fugtighed 10 én dag. Den kan administreres på dosisniveauer på 5 mg til 40 mg to gange dagligt.
PATENTKRAV

1. Farmaceutisk sammensætning, som indeholder:
 (a) en medicinsk komponent, som omfatter 1 til 70 vægt% af en forbindelse med formel (I)

 ![Chemical Structure](image)

 hvor R₁ og R₂ er -H eller OCH₃, R₃ er -H eller -C₆H₄₋, og n = 1 til 5, foretrukket er
 R₁ og R₂ det samme, mest foretrukket er R₁ og
 R₂ begge -H eller -OCH₃, og R₃ er -H eller -C₂H₅,
 (b) 10 til 90 vægt% af en stabilisator, der indeholder ascorbinsyre for at hæmme cyklisering
 og/eller hydrolyse med ascorbinsyre, der er 10 til 20 vægt% af den totale sammensætning,
 (c) en eller excipienter og smøreemidler, som er kompatible med ascorbinsyrekomponenten.

2. Sammensætning ifølge krav 1, hvor (b) yderligere indeholder citronsyre og/eller fumarsyre
 og/eller malinsyre.

3. Sammensætning ifølge krav 1 til 2, hvor (a) er quinapril.

4. Sammensætning ifølge kravene 1 til 3, hvor 30 smøreemidlet er valgt fra hydrogeneret vegetabilsk
 olie, talkum eller blandinger deraf.

5. Sammensætning ifølge kravene 1 til 4, hvor excipienten er valgt fra mannitol og lactose.
6. Sammensætning ifølge krav 1 til 5, hvori smøremidlet er hydrogeneret bomuldsfrøolie.

7. Sammensætning ifølge krav 1 til 6, hvori (a) indeholder mindst et yderligere medikament.

5

8. Tablet eller bolcheforemulering, der indeholder sammensætningen ifølge kravene 1 til 7.

9. Fremgangsmåde til stabilisering af et ACE inhibitormedikament indeholdende en forbindelse med formel (I)

```
R_1

\begin{center}
\begin{tikzpicture}
\node[draw,circle] at (0,0) {H};
\node[draw,circle] at (0.75,0) {H};
\node[draw,circle] at (1.5,0) {H};
\node[draw,circle] at (2.25,0) {CH_3};
\node[draw,circle] at (3,0) {H};
\node[draw,circle] at (3.75,0) {CH_2-CH_2-CH_2-COOR_3}
\node at (0.5,1.5) {N}
\node at (1,1) {\text{COOH}}
\node at (1.5,1.5) {N}
\node at (2,1) {C}
\node at (2.5,1) {N}
\node at (3,1) {C}
\node at (3.5,1) {N}
\node at (4,1) {C}
\node at (4.5,1) {N}
\node at (5,1) {C}
\end{tikzpicture}
\end{center}
```

(I)

10

hvori R_1 og R_2 er -H eller -OC(CH_3)_nH_{2n+1}, R_3 er -H eller -C(CH_3)_nH_{2n+1}, og n = 1 til 5, foretrukket er R_1 og R_2 de samme, mest foretrukket er R_1 og R_2 begge -H eller -OCH_3, og R_3 er -H eller -C(CH_3)_5, mod hydrolyse og/eller cyklisering, som omfatter trinene at bringe medikamentet i kontakt med:

(a) 10 til 90 vægt% af en stabilisator, som indeholder ascorbinsyre i en cykliserings- og/eller hydrolyseinhiberende mængde på 10 til 20 vægt% af den totale sammensætning, og eventuelt

(b) en eller flere excipienter eller smøremidler, som er kompatible med ascorbinsyrekomponenten.

10. Fremgangsmåde ifølge krav 9, hvori medikamentet er quinapril.
11. Fremgangsmåde ifølge krav 9 til 10, hvori
smøremidlet er valgt fra hydrogeneret vegetabilsk
olie, talkum eller blandinger deraf.
12. Fremgangsmåde ifølge kravene 9 til 11, hvori
5 excipienten er valgt fra mannitol og lactose.
13. Fremgangsmåde ifølge kravene 9 til 10, hvori
smøremidlet er hydrogeneret bomuldsfrøolie.