wo 20107104685 A2 I 0K OO0 OO O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 rld Intellectual Property Organization /) -sady
(19) World Intellectual Property Organization /g5 1IN 00T -0 OO O A0 1
International Bureau S,/)
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
16 September 2010 (16.09.2010) PCT WO 2010/104685 A2

(51) International Patent Classification: 98052-6399 (US). ALBU, Voicu Anton; c¢/o0 Microsott
GO6F 15/17 (2006.01) HO04L 12/56 (2006.01) Corporation, International Patents, One Microsoft Way,

GOG6F 3/14 (2006.01) Redmond, Washington 98052-6399 (US).
(21) International Application Number: (81) Designated States (unless otherwise indicated, for every
PCT/US2010/025682 kind of national protection available). AE, AG, AL, AM,
) T ional Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(22) International Filing ate.26 Feh 2010 (26.02.2010 CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
ebruary 2010 (26.02.2010) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT.
(25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(26) Publication Language: Enghsh ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
12/400,688 9 March 2009 (09.03.2009) Us SE, 5G, SK, SL, SM, ST, 8V, 8Y, TH, TJ, TM, TN, 1R,

TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant (for all designated States except US): MI- . .
CROSOFT CORPORATION [US/US]; One Microsoft (84) D.e51gnated. States (unle.‘ss othemzse indicated, fO}" every
Way, Redmond, Washington 98052-6399 (US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
(72) Imventors: ABDO, Nadim Y.; ¢/o Microsott Corporation, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). SCHMIEDER, Wilhelm
R.; ¢/o Microsoft Corporation, International Patents, One
Microsoft Way, Redmond, Washington 98052-6399 (US).
SAUL, Elton; c¢/o Microsott Corporation, International
Patents, One Microsoft Way, Redmond, Washington

TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SL SK, SM,
TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

[Continued on next page]

(54) Title: TEAR-FREE REMOTE DESKTOP PROTOCOL (RDP) DISPLAY

Display 318
Application RD:1c2I\ent
306
g S Shadow
RDF;gzrver «— Network 308 — oy buffer 314
Display
Order hea
305 P buffer 316
Server 302 Client 310
Fig. 3

(57) Abstract: Systems, methods and computer readable
media are disclosed for reducing the tearing of display data
received across a communications network. A server deter-
mines at least two logically related drawing orders in an or-
der heap and warps those orders with a begin marker and
an end marker. It sends those wrapped orders across the
communications network to a client. The client receives
those orders and renders them to a shadow buffer. When
the client processes the end marker, it moves the drawing
orders in the shadow buffer to a client display surface.

WO 2010/104685 A2 I 0000)00 T 00T AU A

as to applicant’s entitlement to apply for and be granted Published:
a patent (Rule 4.17(i1)) — without international search report and to be republished

as to the applicant's entitlement to claim the priority of upon receipt of that report (Rule 48.2(g))

the earlier application (Rule 4.17(iii))

10

15

20

25

30

WO 2010/104685 PCT/US2010/025682

TEAR-FREE REMOTE DESKTOP PROTOCOL (RDP) DISPLAY

BACKGROUND OF THE INVENTION

[0001] Although computers were once isolated and had minimal or little interaction with
other computers, today's computers interact with a wide variety of other computers
through communications networks, such as Local Area Networks (LANs) and Wide Area
Networks (WANs). With the wide-spread growth of the INTERNET™, connectivity
between computers is becoming more important and has opened up many new
applications and technologies. The growth of large-scale networks, and the wide-spread
availability of low-cost personal computers, has fundamentally changed the way that many
people work, interact, communicate, and play.

[0002] One increasing popular form of networking may generally be referred to as
virtual computing systems, which can use protocols such as Remote Desktop Protocol
(RDP), Independent Computing Architecture (ICA), and others to share a desktop and
other applications with a remote client. Such computing systems typically transmit the
keyboard presses and mouse clicks or selections from the client to a server, relaying the
screen updates back in the other direction over a network connection (e.g., the
INTERNET). As such, the user has the experience as if their machine is operating as part
of a LAN, when in reality the client device is only sent screenshots of the applications as
they appear on the server side.

[0003] In aremote session, “screen tearing” may occur on a display where a newly
rendered frame partially overlaps a previously rendered frame, creating a torn look as two
parts of a displayed object do not line up. This most commonly occurs in a remote
desktop protocol (RDP) session during periods of rapid drawing, such as for animation or
video playback. Screen tearing will become more significant as RDP advances in areas
such as bitmap encoding, bulk compression and the transport stack. It would therefore be
an improvement over the prior art to group related graphics data to ensure that it is
rendered as a single visual unit, as well as to logically batch related drawing orders that
should be copied from the shadow buffer to the display surface as a group.

SUMMARY OF THE INVENTION

[0004] This logically batching of instructions may be added by the RDP server. This
addition may be accomplished by allowing an application that has display output sent
through RDP to insert “begin-logical-frame” and “end-logical-frame” markers. This may

also be accomplished by a component of the RDP system examining the received stream

10

15

20

25

30

WO 2010/104685 PCT/US2010/025682

of encoded drawing orders, from there determining a start and end of related drawing
orders and at those points inserting “begin-logical-frame” and “end-logical-frame”
markers.

[0005] In an exemplary embodiment, a server determines at least two logically related
drawing orders in an order heap and warps those orders with a begin marker and an end
marker. It sends those wrapped orders across the communications network to a client.
The client receives those orders and renders them to a shadow buffer. When the client
processes the end marker, it moves the drawing orders in the shadow buffer to a client
display surface.

[0006] It can be appreciated by one of skill in the art that one or more various aspects of
the disclosure may include but are not limited to circuitry and/or programming for
effecting the herein-referenced aspects of the present disclosure; the circuitry and/or
programming can be virtually any combination of hardware, software, and/or firmware
configured to effect the herein-referenced aspects depending upon the design choices of
the system designer.

[0007] The foregoing is a summary and thus contains, by necessity, simplifications,
generalizations and omissions of detail. Those skilled in the art will appreciate that the
summary is illustrative only and is not intended to be in any way limiting.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The systems, methods, and computer readable media in accordance with this
specification are further described with reference to the accompanying drawings in which:
[0009] FIG. 1 illustrates an exemplary general purpose computing environment in which
in which the tear-free remote display described herein may be embodied.

[0010] FIG. 2 depicts an operational environment for practicing aspects of the present
disclosure.

[0011] FIG. 3 illustrates a client and server communicating via a remote desktop
protocol (RDP) that utilizes tear-free remote display techniques.

[0012] FIG. 4 illustrates exemplary operational procedures for server-side tear-free
remote display.

[0013] FIG. 5 illustrates exemplary operational procedures for client-side tear-free
remote display.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0014] FIG. 1 is a block diagram of a general purpose computing device in which the

techniques described herein may be employed. The computing system environment 120 is

-0

10

15

20

25

30

WO 2010/104685 PCT/US2010/025682

only one example of a suitable computing environment and is not intended to suggest any
limitation as to the scope of use or functionality of the presently disclosed subject matter.
Neither should the computing environment 120 be interpreted as having any dependency
or requirement relating to any one or combination of components illustrated in the
exemplary operating environment 120. In some embodiments the various depicted
computing elements may include circuitry configured to instantiate specific aspects of the
present disclosure. For example, the term circuitry used in the disclosure can include
specialized hardware components configured to perform function(s) by firmware or
switches. In other examples embodiments the term circuitry can include a general purpose
processing unit, memory, etc., configured by software instructions that embody logic
operable to perform function(s). In example embodiments where circuitry includes a
combination of hardware and software, an implementer may write source code embodying
logic and the source code can be compiled into machine readable code that can be
processed by the general purpose processing unit. Since one skilled in the art can
appreciate that the state of the art has evolved to a point where there is little difference
between hardware, software, or a combination of hardware/software, the selection of
hardware versus software to effectuate specific functions is a design choice left to an
implementer. More specifically, one of skill in the art can appreciate that a software
process can be transformed into an equivalent hardware structure, and a hardware structure
can itself be transformed into an equivalent software process. Thus, the selection of a
hardware implementation versus a software implementation is one of design choice and
left to the implementer.

[0015] Computer 141 typically includes a variety of computer readable media. Computer
readable media can be any available media that can be accessed by computer 141 and
includes both volatile and nonvolatile media, removable and non-removable media. The
system memory 122 includes computer storage media in the form of volatile and/or
nonvolatile memory such as read only memory (ROM) 123 and random access memory
(RAM) 160. A basic input/output system 124 (BIOS), containing the basic routines that
help to transfer information between elements within computer 141, such as during start-
up, is typically stored in ROM 123. RAM 160 typically contains data and/or program
modules that are immediately accessible to and/or presently being operated on by
processing unit 159. By way of example, and not limitation, FIG. 1 illustrates operating

system 125, application programs 126, other program modules 127, and program data 128.

10

15

20

25

30

WO 2010/104685 PCT/US2010/025682

[0016] The computer 141 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, FIG. 1 illustrates a
hard disk drive 138 that reads from or writes to non-removable, nonvolatile magnetic
media, a magnetic disk drive 139 that reads from or writes to a removable, nonvolatile
magnetic disk 154, and an optical disk drive 140 that reads from or writes to a removable,
nonvolatile optical disk 153 such as a CD ROM or other optical media. Other
removable/non-removable, volatile/nonvolatile computer storage media that can be used in
the exemplary operating environment include, but are not limited to, magnetic tape
cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 138 is typically connected to the
system bus 121 through an non-removable memory interface such as interface 134, and
magnetic disk drive 139 and optical disk drive 140 are typically connected to the system
bus 121 by a removable memory interface, such as interface 135.

[0017] The drives and their associated computer storage media discussed above and
illustrated in FIG. 1, provide storage of computer readable instructions, data structures,
program modules and other data for the computer 141. In FIG. 1, for example, hard disk
drive 138 is illustrated as storing operating system 158, application programs 157, other
program modules 156, and program data 155. Note that these components can either be
the same as or different from operating system 125, application programs 126, other
program modules 127, and program data 128. Operating system 158, application
programs 157, other program modules 156, and program data 155 are given different
numbers here to illustrate that, at a minimum, they are different copies. A user may enter
commands and information into the computer 141 through input devices such as a
keyboard 151 and pointing device 152, commonly referred to as a mouse, trackball or
touch pad. Other input devices (not shown) may include a microphone, joystick, game
pad, satellite dish, scanner, or the like. These and other input devices are often connected
to the processing unit 159 through a user input interface 136 that is coupled to the system
bus, but may be connected by other interface and bus structures, such as a parallel port,
game port or a universal serial bus (USB). A monitor 142 or other type of display device
is also connected to the system bus 121 via an interface, such as a video interface 132. In
addition to the monitor, computers may also include other peripheral output devices such
as speakers 144 and printer 143, which may be connected through a output peripheral

interface 133.

10

15

20

25

30

WO 2010/104685 PCT/US2010/025682

[0018] The computer 141 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 146. The
remote computer 146 may be a personal computer, a server, a router, a network PC, a peer
device or other common network node, and typically includes many or all of the elements
described above relative to the computer 141, although only a memory storage device 147
has been illustrated in FIG. 1. The logical connections depicted in FIG. 1 include a local
arca network (LAN) 145 and a wide area network (WAN) 149, but may also include other
networks. Such networking environments are commonplace in offices, enterprise-wide
computer networks, intranets and the Internet.

[0019] When used in a LAN networking environment, the computer 141 is connected to
the LAN 145 through a network interface or adapter 137. When used in a WAN
networking environment, the computer 141 typically includes a modem 150 or other
means for establishing communications over the WAN 149, such as the Internet. The
modem 150, which may be internal or external, may be connected to the system bus 121
via the user input interface 136, or other appropriate mechanism. In a networked
environment, program modules depicted relative to the computer 141, or portions thereof,
may be stored in the remote memory storage device. By way of example, and not
limitation, FIG. 1 illustrates remote application programs 148 as residing on memory
device 147. It will be appreciated that the network connections shown are exemplary and
other means of establishing a communications link between the computers may be used.
[0020] Referring now to FIG. 2, it generally illustrates an example environment wherein
aspects of the present disclosure can be implemented. One skilled in the art can appreciate
that the example elements depicted by FIG. 2 provide an operational framework for
describing the present disclosure. Accordingly, in some embodiments the physical layout
of the environment may be different depending on different implementation schemes.
Thus the example operational framework is to be treated as illustrative only and in no way
limit the scope of the claims. One skilled in the art can also appreciate that the following
discussion is introductory and the elements depicted by FIG. 2 are described in more detail
within the discussion of the operational procedures of FIG. 3 through FIG. 8.

[0021] Generally, FIG. 2 depicts a high level overview of a terminal server environment
that can be configured to include aspects of the present disclosure. In reference to the
figure, a server 204 is depicted that can include circuitry configured to effectuate a
terminal server and for example, three example clients 201, 202, and 203 (while three

clients are depicted the server 204 in embodiments can service more or less clients). The

-5-

10

15

20

25

30

WO 2010/104685 PCT/US2010/025682

example clients 201-203 can include computer terminals effectuated by hardware
configured to direct user input to the server 204 and display user interface information
generated by the server 204. In other embodiments, clients 201-203 can be computers that
include similar elements as those of computer 20 FIG. 1. In these example embodiments,
clients 201-203 can include circuitry configured to effect operating systems and circuitry
configured to emulate the functionality of terminals. In these examples one skilled in the
art can appreciate that the circuitry configured to effectuate the operating systems can also
include the circuitry configured to emulate terminals.

[0022] In the depicted example, the server 204 can be configured to generate one or more
sessions for connecting clients 201, 202, and 203 such as sessions 1 through N (where N is
an integer greater than 1). Briefly, a session in example embodiments of the present
disclosure can generally include an operational environment that is effectuated by a
plurality of subsystems, e.g., software code, that are configured to effectuate an execution
environment and interact with a kernel 218 an operating system 214. For example, a
session can include a shell and a user interface such as a desktop, the subsystems that track
mouse movement within the desktop, the subsystems that translate a mouse click on an
icon into commands that effectuate an instance of a program, etc. In another example
embodiment the session can include an application. In this example while an application
is rendered, a desktop environment may still be generated and hidden from the user. The
session in this example can include similar subsystems as the session described above.
Generally, a session can be generated by the server 204 on a user by user basis when, for
example, the server 204 receives a connection request over a network connection from a
client such as client 201. Generally, a connection request can first be handled by the
transport logic 210 that can, for example, be effectuated by circuitry of the server 204.
The transport logic 210 can in some embodiments include a network adaptor, firmware,
and software that can be configured to listen for connection messages and forward them to
the engine 212. As illustrated by FIG. 2, when sessions are generated the transport logic
210 can include protocol stack instances for each session. Generally, each protocol stack
instance can be configured to route user interface output to an associated client and route
user input received from the associated client to the appropriate session core 244.

[0023] As depicted by FIG. 2, during the session generation process the engine 212 can
be configured to obtain a license for the session. For example, in one example
embodiment the engine 212 can receive a license from the client 201 during the session

generation process. In other example embodiments the engine 212 can receive a copy of a

-6-

10

15

20

25

30

WO 2010/104685 PCT/US2010/025682

license from a license database 222. In some embodiments of the present disclosure the
license database 222 can include a relational database management program that can be
executed on an operating system of a computer such as computer 20 of FIG. 1. In an
example embodiment that includes a license database 222, it can store one or more
licenses that can be checked out when a client attempts to obtain a session from the server
204. In another embodiment each license can itself be associated with an account
identifier, e.g., a username/password combination, a smartcard identifier, etc., and each
license can only be checked out if the correct account identifier is presented. Generally,
the number of connections that a server 204 can generate can be dependent upon the
number of licensees the entity that controls the server 204 has purchased from a service
provider. If for example, the entity has purchased one license, then the server 204 can be
configured to only allow one session. In this example if the license is associated with an
account identifier, then only a user that presents the correct account identifier can obtain a
session.

[0024] In example embodiments of the present disclosure each license can be validated by
a service provider 262 before they can be used. For example, the service provider 262 can
in example embodiments act as a certificate authority that aphorizes and activates licenses
and servers. In these embodiments the service provider 262 can ensure that licenses are
not stolen, copied, or pirated. The service provider 262 can also ensure that the license are
only used by the server 204 they are purchased for by storing a copy of the licenses in a
database and associating the licenses with server 204.

[0025] As illustrated by FIG. 2, a configuration manager 224 in an example embodiment
of the present disclosure can include computer readable instructions that when executed
instantiate a process that can receive a license during the session creation process and
determine a service level for a newly spawned session by interfacing with various
subsystems such as session manager 216. The session manager 216 in an embodiment can
be configured to initialize and manage each session by for example, generating a session
identifier for a session space; adding the session identifier to a table; assigning memory to
the session space; and generating system environment variables and instances of
subsystem processes in memory assigned to the session space. As illustrated by FIG. 2, in
an embodiment the session manager 216 can instantiate environment subsystems such as a
runtime subsystem 240 that can include a kernel mode part such as the session core 244.
For example, the environment subsystems in an embodiment can be configured to expose

a subset of services to application programs and provide an access point to the kernel 218

-7-

10

15

20

25

30

WO 2010/104685 PCT/US2010/025682

of the operating system 214. As illustrated by FIG. 2, in some embodiments the kernel
218 can include a security subsystem 250 and a resource manager 256. In an example
embodiment the security subsystem 250 can enforce security policies of the server 204 by,
for example, performing run-time object protection. In these embodiments the resource
manager 256 in an embodiment can create and terminate processes and threads in response
to requests from the runtime subsystem 240. More specifically, in an embodiment the
runtime subsystem 240 can request the execution of threads and the session core 244 can
send requests to the executive of the kernel 218 to allocate memory for the threads and
schedule time for them to be executed.

[0026] Continuing with the description of FIG. 2, in an embodiment the session core 244
can include a graphics display interface 246 (GDI) and an input subsystem 252. The input
subsystem 252 in an example embodiment can be configured to receive user input from a
client 201 via the protocol stack instance associated with the session and transmit the input
to the session core 244. The user input can in some embodiments include signals
indicative of absolute and/or relative mouse movement commands, mouse coordinates,
mouse clicks, keyboard signals, joystick movement signals, etc. User input, for example,
a mouse double-click on an icon, can be received by the session core 244 and the input
subsystem 252 can be configured to determine that an icon is located at the coordinates
associated with the double-click. The input subsystem 252 can then be configured to send
a notification to the runtime subsystem 240 that can execute a process for the application
associated with the icon.

[0027] In addition to receiving input from a client 201, draw commands can be received
from applications and/or a desktop and processed by the GDI 246. The GDI 246 in
general can include a process that can generate graphical object draw commands. The
GDI 246 in this example embodiment can be configured to pass the commands to the
remote display subsystem 254 that can instantiate a display driver for the session. In an
example embodiment the remote display subsystem 254 can be configured to include
virtual display driver(s) that may not be associated with displays physically attacked to the
server 204, e.g., the server 204 could be running headless. The virtual display driver in
this embodiment can be configured to receive the draw commands and transmit them to
the client 201 via a stack instance associated with the session.

[0028] FIG. 3 illustrates a client 310 and server 302 communicating via a remote

desktop protocol (RDP) that utilizes tear-free remote display techniques.

10

15

20

25

30

WO 2010/104685 PCT/US2010/025682

[0029] In an embodiment where tear-free remote display techniques are not present, a
server 302 is executing an application 306, such as a video player, and sending the output
to a client 310 via a RDP session comprising a RDP server 304 and a RDP client 312. The
application 306 continually outputs to a display by issuing drawing commands, such as
graphics device interface (GDI) application 306 programming interface (API) commands.
This can be done with bit-block transfer (BitBlt) from a source bitmap to a destination
bitmap. These commands are then translated into display driver interface (DDI) calls
(such as Win32K DDI calls) that are dispatched to a remote desktop protocol display
driver (RDPDD). The RDPDD encodes the DDI calls into RDP drawing orders.

[0030] The RDP drawing orders are placed into an “order heap” 305 in memory shared
with a remote desktop protocol windows driver (RDPWD) of the RDP server 304 that
serves as keyboard and mouse driver that receives keyboard and mouse input over the
TCP connection and presents them as keyboard or mouse inputs. RDPWD also allows
creation of virtual channels, that allow other devices, such as disc, audio, printers, and
COM ports to be redirected, i.¢., the channels act as replacement for these devices. The
channels connect to the client 310 over the TCP connection across the network 308; as the
channels are accessed for data, the client 310 is informed of the request, which is then
transferred over the TCP connection to the application 306. This entire procedure is done
by the terminal server 302 and the client 310, with the RDP protocol mediating the correct
transfer, and is entirely transparent to the application 306.

[0031] Then, the RDPWD driver associated with the stack that is connected to the client
310 extracts the drawing orders from the order heap. That RDPWD bulk compresses the
drawing orders and wraps them within RDP transport structures, then sends them down
the stack to the client 310.

[0032] The client 310 receives these drawing orders in RDP transport structures. It
extracts the drawing orders from the RDP transport structures and renders them to a
shadow buffer. When at most a pre-determined number of orders have been rendered to
the shadow buffer, the dirty areas of the shadow buffer are copied to a user-visible display
surface.

[0033] For instance, if the pre-determined number of orders is 25 and the client 310
receives a RDP packet containing 54 orders, the client 310 will progressively render to the
display surface as follows. It will render the first 25 orders, then it will render the second

25 orders, and then it will render the remaining four orders.

10

15

20

25

30

WO 2010/104685 PCT/US2010/025682

[0034] Rendering from the shadow buffer 314 to the display surface 316 (which
corresponds to output on display device 318) at this arbitrary pre-determined number of
orders (here, 25) may result in the user momentarily viewing an incomplete image (the
tearing). This problem will also persist where each order is immediately rendered to the
display surface.

[0035] In an embodiment with tear free techniques, the application 306 that is executing
on a server 302 and has display output remotely displayed on a client 310 may instruct
RDPDD to insert “begin” and “end” frame markers.

[0036] In such an embodiment, an application 306, such as a video player, executes on
the server 302. The application 306 signals the remote desktop protocol display driver of
the RDP server 304 through an application 306 programming interface (API) call that a
logical frame is to be drawn. In response to this call, RDPDD adds a “begin” marker to an
order heap 305, a place where drawing orders are stored for processing. The application
306 draws the frame by issuing GDI drawing commands. These GDI commands are
translated into display driver interface (DDI) calls that are dispatched to the RDPDD
driver of the RDP server 304. RDP encodes the DDI calls into RDP drawing orders.
These encoded drawing orders are placed into the order heap 305 in memory that is shared
with the RDPWD driver. RDPDD adds an “end” marker to the order heap 305. The
RDPWD driver associated with the stack that is connected to the client 310 extracts the
drawing orders from the shared memory. The drawing orders are bulk compressed and
wrapped within RDP transport structures and sent down the stack to the client 310 across a
communications network 308.

[0037] In another embodiment, the server 302 may examine a received stream of
encoded drawing orders and place “begin” and “end” frame markers where appropriate.
[0038] In such an embodiment, an application 306, such as a video player, executes on
the server 302. The application 306 affects its visual display output by issuing GDI
drawing commands. These commands are translated into DDI calls that are then
dispatched to the RDPDD driver of the RDP server 306. RDPDD encodes the DDI
callbacks into RDP drawing orders. The encoding drawing orders are placed into the
order heap 305 in memory that is shared with the RDPWD driver. A “RDP batching
engine” scans the orders in the order heap to determine if there are any orders that are
logically related. Any related orders are wrapped with “begin” and “end” markers. The
RDPWD driver associated with the stack that is connected to the client 310 extracts the

drawing orders from the order heap. It bulk compresses the drawing orders and wraps

- 10 -

10

15

20

25

30

WO 2010/104685 PCT/US2010/025682

them within RDP transport structures, then sends them down the stack and to the client
310 across a communications network 308.

[0039] A client 310 may receive RDP transport structures from both the embodiment
where an application 306 that is executing on a server 302 and has display output
remotely displayed on a client 310 may instruct RDPDD to insert “begin” and “end” frame
markers, and the embodiment where the server 302 examines a received stream of
encoded drawing orders and place “begin” and “end” frame markers where appropriate
[0040] When the client 310 receives RDP transport structures, it extracts the drawing
orders from those transport structures. If a “begin” marker is encountered, then any
subsequent drawing orders in the RDP stream that are rendered to the shadow buffer 314
are not copied to the display surface 316 and thus the display device 318 until the
corresponding “end” marker is encountered. If no “begin” marker is identified, then the
client 310 may use the existing graphics decoding pipeline.

[0041] FIG. 4 illustrates exemplary operational procedures for server-side tear-free
remote display.

[0042] Operation 402 depicts determining at least two logically related drawing orders in
an order heap, the logically related drawing orders having a start and an end.

[0043] In an embodiment, the logically related drawing orders are logically related
because an image frame comprises the logically related drawing orders. The drawing
orders that make up an image frame may be grouped together because they will be
displayed together. The start of these logically related drawing orders may be the first
drawing order that will be executed and the end may be the last drawing order that will be
executed. This may correspond to the upper-left corner of a rectangular image and the
bottom right corner of that rectangular image.

[0044] In an embodiment, the logically related drawing orders are logically related
because one thread produced each logically related drawing order. In a multi-threaded
system, multiple processes may execute. Where each process has a single thread that
issues drawing orders, then one may determine that the drawing orders from different
threads are likely not logically related, and that the drawing orders emanating from one
thread likely are logically related.

[0045] Threads typically switch in two instances. The first is when the thread
voluntarily relinquishes its turn on the processor because it has completed its task. This
may typically occur where a thread has completed issuing drawing orders for an image

frame. Thus, in an embodiment, this may be used as an indication that all drawing orders

-11 -

10

15

20

25

30

WO 2010/104685 PCT/US2010/025682

issued by the thread during its turn where it was active on a processor are logically related
and comprise a frame. The second instance is where a thread runs out of its allotted time
in which to execute on a processor. In this case, while it is likely that every drawing order
issued by the thread during this period of executing is logically related, it may be that
drawing orders issued by the thread when it next executes on a processor are also logically
related to this present thread. In an embodiment, the logically related drawing orders span
from when a thread next regains use of a processor after voluntarily giving it up until it
next voluntarily gives up use of a processor.

[0046] A thread may be determined according to its thread ID (TID). Where a process
has multiple threads that issue logically related drawing orders, similar techniques as the
above may be used, and the processes may be distinguished according to their process ID
(PID).

[0047] In an embodiment, the logically related drawing orders are logically related
because they correspond to one portion of a display. An application window may
comprise a contiguous region of a display surface. It may then be determined that those
orders that correspond to a particular portion of the display surface are all generated by a
single process and therefore are logically related.

[0048] In an embodiment, the logically related drawing orders are logically related
because they were issued at a similar time. Drawing orders for a frame are typically
issued temporally near to each other, making it more likely that a drawing order is
logically related to one issued temporally near to it than temporally far from it. It may
also be determined that two drawing orders are not logically related when a temporally
intervening drawing order is issued between them.

[0049] In an embodiment, a drawing order comprises an application programming
interface (API) call, and the begin marker and the end marker each comprise a call to the
API. For instance, where drawing orders are issued by making calls to the graphics device
interface (DDI) application programming interface (API), the API may be expanded to
have special begin_marker() and end_marker() function calls that are used to signify the
beginning and the end of the marker, respectively.

[0050] In an embodiment, the logically related drawing orders are logically related based
on the application type. This may be used where only drawing orders emanating from the

same application are logically related.

-12 -

10

15

20

25

30

WO 2010/104685 PCT/US2010/025682

[0051] Operation 404 depicts wrapping the logically related drawing orders by placing a
begin marker and at the start of the logically related drawing orders, and placing an end
marker at the end of the end of the logically related drawing orders.

[0052] In an embodiment, the begin and the end are determined by an application from
which the logically related drawing orders originate. Such an “aware” application may be
designed to keep track of which drawing orders are logically related, and send an
indication of such to a component that inserts the begin and end markers. As the
application likely knows the dimensions of a frame, and when a particular frame is being
generated through drawing orders, there is an advantage of efficiency of it marking
logically related drawing orders, as opposed to some later component doing the same
having only a stream of drawing orders from which to make these determinations.

[0053] In an embodiment, the application wraps the logically related drawing orders.
Rather than sending an indication of where the begin and end markers are to occur, the
application may insert these itself. For instance, where these markers comprise an API
call as above, the application may be the entity that issues these begin_marker() and

end marker() calls.

[0054] In an embodiment, the logically related drawing orders correspond to a screen
scrape with a known start and a known end, and wrapping the logically related drawing
orders further comprises placing the begin marker at the known start and placing the end
marker at the known end. A screen scrape may comprise image data as it is intended for
display on a display device, such as a bitmap. It may comprise the entire screen, or a
subportion thereof. Typically, the dimensions of the image being “scraped” are known, so
the start (typically the upper leftmost pixel where the scrape is rectangular) and the end
(typically the lower rightmost pixel in that situation) are known as well, and begin and end
markers may then be placed appropriately.

[0055] In an embodiment, the end marker comprises a transmission control protocol
(TCP) flush command. A TCP flush command may be an indication for a TCP layer of a
network protocol stack to send all currently held data to the next lower layer in the stack
for transmission across a communications network. A TCP flush command typically
comprises a null buffer that is zero bytes long. Where an entity sets the end marker by
making an API call, such as the above end_marker() call, that call may operate to insert a

TCP flush command in its place.

-13 -

10

15

20

25

30

WO 2010/104685 PCT/US2010/025682

[0056] Operation 406 depicts sending the client the wrapped logically related drawing
orders across a communications network, with an indication to display all of the logically
related drawing orders simultancously.

[0057] In embodiment, the wrapped logically related drawing orders are sent across the
communications network in a packet, and the packet is sent when the end marker is
inserted into the packet. Considerations of efficiency come into play when choosing a
packet size to send across a communications network. Each packet comprises header
information, so sending a series of packets with small payloads results in sending a small
amount of data (the payloads) relative to the metadata (the header information). However,
sending a large packet results in that packet spending an increased amount of time on a
network control path (such as a wire, or a part of wireless spectrum), leading to an
increased chance that some other device will send a packet at that time on that path,
causing a collision where both packets are lost, and must be resent.

[0058] In this embodiment, all logically related drawing orders are sent in a single
packet. This ensures that they arrive at the client at the same time. Where they are sent in
multiple packets, the client will still wait on the final packet, containing the end marker, to
display the logically related drawing orders.

[0059] In an embodiment, a packet has a minimum packet size, further comprising:
sending the packet when the end marker is inserted into the packet, when the minimum
packet size of the packet is reached. Where the logically related drawing orders comprise
only a few drawing orders, it may not be efficient to send such a small packet, for reasons
discussed above. In this case, new drawing orders may be added to the packet until it
reaches a minimum packet size, and then it is sent. In an embodiment, the packet is sent
once the first end marker has been inserted into it once the minimum packet size has been
reached. In an embodiment, the packet is sent once the first end marker has been inserted
into it once the minimum packet size has been reached, or a maximum packet size is
reached.

[0060] In an embodiment, the packet is sent via a plurality of protocol layers, further
comprising: flushing the packet to the communications network, by each protocol layer,
when detecting the end marker. In an embodiment, the protocol layers for a network
comprise application layer (e.g. hyper-text transfer protocol, or HTTP), transport layer
(e.g. TCP), internet layer (e.g. internet protocol, or IP), link layer (e.g. Ethernet), and
physical layer (e.g. RJ45/CATS). Where those layers have a flush command, the end

marker may comprise the flush command for each layer, so that by inserting the end

-14 -

10

15

20

25

30

WO 2010/104685 PCT/US2010/025682

marker, the packet is flushed through all layers and sent across the communications
network. In an embodiment, where two layers share the same flush command, it is not
repeated for each layer.

[0061] In an embodiment, the wrapped logically related drawing orders are sent
according to a remote desktop protocol (RDP).

[0062] FIG. 5 illustrates exemplary operational procedures for client-side tear-free
remote display.

[0063] Operation 502 depicts receiving display data across a communications network.
In an embodiment, this data is received as RDP packets as sent by the server as depicted in
operation 306.

[0064] Operation 504 depicts storing the display data in a shadow buffer. In an
embodiment, the shadow buffer comprises an area in memory in which drawing
commands are rendered to a bitmap representation of those drawing commands. The
shadow buffer may correspond to a display buffer, where the data that is displayed on a
display device exists. When the data in the shadow buffer is to be displayed, it is then
copied to the display buffer, and new data may be rendered to the shadow buffer. In an
embodiment, the shadow buffer and the display buffer exist in video memory of the
system. In an embodiment, the display data comprises drawing commands. In another
embodiment, the display data comprises an image, such as a bitmap.

[0065] Operation 506 depicts determining a begin marker and an end marker in the
display data. Where the display data comprises a plurality of drawing commands in an
API, this may comprise identifying the commands corresponding to begin_marker() and
end marker().

[0066] Operation 508 depicts flushing all display data between the begin marker and the
end marker to a display surface. Where the display surface corresponds to a display
buffer, this may comprise transferring all data in shadow buffer to the display buffer.
Where data in the shadow buffer is identified by whether it has been updated since it was
last moved to the display buffer, such as with a dirty bit, it may be that only those dirty
parts of the shadow buffer are copied to the display buffer.

[0067] Inan embodiment, there is a timer, and flushing all display data includes flushing
all display data between the begin marker and the most recently received display data,
including the most recently received display data, when a timer expiration of the timer is
reached. Where the end marker is delayed, be it in generation or transport, it may be

preferable to display some new display data on the display surface so that the end user

-15-

10

15

20

WO 2010/104685 PCT/US2010/025682

does not find the session to be unresponsive, or think that it has frozen. In this case, every
time the display buffer is updated, the timer is reset, and if the timer should reach a
specified time before an end marker is received, it is flushed to the display surface.

[0068] In the embodiment where the timer has expired, then the end marker is received,
the operation may then flush all flush all display data received since the timer expiration
was reached when end marker is determined.

Conclusion

[0069] While the present disclosure has been described in connection with the preferred
aspects, as illustrated in the various figures, it is understood that other similar aspects may
be used or modifications and additions may be made to the described aspects for
performing the same function of the present disclosure without deviating therefrom.
Therefore, the present disclosure should not be limited to any single aspect, but rather
construed in breadth and scope in accordance with the appended claims. For example, the
various procedures described herein may be implemented with hardware or software, or a
combination of both. Thus, the methods and apparatus of the disclosed embodiments, or
certain aspects or portions thereof, may take the form of program code (i.c., instructions)
embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other
machine-readable storage medium. When the program code is loaded into and executed
by a machine, such as a computer, the machine becomes an apparatus configured for
practicing the disclosed embodiments. In addition to the specific implementations
explicitly set forth herein, other aspects and implementations will be apparent to those
skilled in the art from consideration of the specification disclosed herein. It is intended

that the specification and illustrated implementations be considered as examples only.

- 16 -

10

15

20

25

30

WO 2010/104685 PCT/US2010/025682

What is Claimed:
1. A method for reducing tearing in an application display on a client,
comprising:

determining at least two logically related drawing orders in an order heap, the
logically related drawing orders having a start and an end (402);

wrapping the logically related drawing orders by placing a begin marker and at the
start of the logically related drawing orders, and placing an end marker at the end of the
end of the logically related drawing orders (404); and

sending the client the wrapped logically related drawing orders across a
communications network, with an indication to display all of the logically related drawing
orders simultancously (406).

2. The method of claim 1, wherein the logically related drawing orders are
logically related because an image frame comprises the logically related drawing orders.

3. The method of claim 2, wherein the logically related drawing orders are
logically related because one thread produced each logically related drawing order.

4. The method of claim 2, wherein the logically related drawing orders are
logically related because they correspond to one portion of a display.

5. The method of claim 2, wherein the logically related drawing orders are
logically related because they were issued at a similar time.

6. The method of claim 1, wherein the start and the end are determined by an
application from which the logically related drawing orders originate.

7. The method of claim 6, wherein the application wraps the logically related
drawing orders.

8. The method of claim 1, wherein a drawing order comprises an application
programming interface (API) call, and the begin marker and the end marker each comprise
a call to the API.

9. The method of claim 1, wherein the wrapped logically related drawing
orders are sent across the communications network in a packet, further comprising;:

sending the packet when the end marker is inserted into the packet.

10. The method of claim 9, wherein a packet has a minimum packet size,
further comprising;:

sending the packet when the end marker is inserted into the packet, when the

minimum packet size of the packet is reached.

-17 -

10

15

20

25

WO 2010/104685 PCT/US2010/025682

11. The method of claim 1, wherein the application has a type, further
comprising:

the logically related drawing orders are logically related based on the application
type.

12. A system for reducing tearing in an application display comprising display
data received across a communications network, comprising:

circuitry for receiving display data across a communications network (502);

circuitry for storing the display data in a shadow buffer (504);

circuitry for determining a begin marker and an end marker in the display data
(506); and

circuitry for flushing all display data between the begin marker and the end marker
to a display surface (508).

13. The method of claim 12, wherein the system further comprises a timer, and
the circuitry for flushing all display data further:

flushes all display data between the begin marker and the most recently received
display data, including the most recently received display data, when a timer expiration of
the timer is reached.

14. The method of claim 13, wherein the circuitry for flushing all display data
further:

flushes all display data received since the timer expiration was reached when end
marker is determined.

15. The method of claim 12, wherein the shadow buffer comprises at least one
dirty display data, and the circuitry for flushing further:

flushes only all the dirty display data.

- 18 -

PCT/US2010/025682

WO 2010/104685

1/5

ST SNVIDOUd

ooflecsocolloe 5 NOILYOITddY
b7 -
ALONWHTY
H T
oFT _ NI 991 ﬂ.wnoz IST ST
WALNdINOD TST PAe0GAY Sunuiog Vivd WVIDOUd SINVIDOdd INALSAS
ALOWTYH = NVIO0dd WAHILO NOILVOI'TddV | ONILVIAdO
v |
Sl
A 4 /, Y
WAPON |«
SNA0MIAN] «ouﬁoE A
— [————————————7 -r——1- ey
orl | [oo] [oooooo] o]
_ | T -
SAl | A T eeq
[— Y A — — A 4 weisoag
“ €l 9¢l sel deluf el doepaayuy
SIOMPN | ERLAREINT | ERLAREH | KI0WdA] KI0WRA] kAl
BAIY B30T T JI0MION nduj J9sn) IME[OA-UON SIIEI0 A-T0 SIINPOJA
| IEI0A-UON weasoad Y10
| d[qeAomwdy J[rAOWIIY-UON
|) L Y —
“ | 9¢) smeagoag
Pl gaoeads |« “ \ & TZ1 sng waIsks d uonedddy
[A Fal = — =
| €T 661
__ | 1 Soepsayuy ddeLIU] ou&mﬁﬁ wsAg SuneradQ
(34! <] sqgde.r
Jurag _ _«.SME.SAH 09pIA aed (s)nun
\" mdng Y SuIssad0ag 09T (AVY)
_ | v |
TPL Ao TpT | 0cT 54 vl Sold
———— ! K10wdpy ndo \

- ! L €T (Wow
B _ 09PIA A B
< _ ATOWIIIA] WIN)SAS

|

71 Juowuodisauy supnduwo))

WO 2010/104685 PCT/US2010/025682

2/5
222 License Service
database P ovider
204 Server
214 Server Operating System
— Session N
212 Session 2
Engine 216 Session | | session 1 |
224 |I Manager | J
Manager Runtime
Subsystem
| 260 Local
A Security
r Subsystem

258 210 Transport Logic 244 Session Core
Redirection —

Subsystem Stack 252 1/0 246

Instance N J > Subsystem GDI

t A Stack ?
Instance 2
_v A
Stack 254 Remote
Instance 1 J&—¥| Display [|
Subsystem -
218 Kernel
256 .
Resource 250 Security
Manager Subsystem

WO 2010/104685

Application

306

RDP server
304

Order heap
305

Server 302

¢t

3/5

Network 308

PCT/US2010/025682

Display 318
RDP client
312
Shadow
S buffer 314

Display
buffer 316

Client 310

WO 2010/104685 PCT/US2010/025682

4/5

402 determining at least two logically related drawing orders in an order
heap, the logically related drawing orders having a start and an end

404 wrapping the logically related drawing orders by placing a begin
marker and at the start of the logically related drawing orders, and

placing an end marker at the end of the end of the logically related
drawing orders

406 sending the client the wrapped logically related drawing orders

across a communications network, with an indication to display all of the
logically related drawing orders simultaneously

WO 2010/104685 PCT/US2010/025682

5/5

502 receiving display data across a communications network
504 storing the display data in a shadow buffer. In an embodiment, the
shadow buffer comprises an area in memory in which drawing

commands are rendered to a bitmap representation of those drawing
commands

506 determining a begin marker and an end marker in the display data
508 flushing all display data between the begin marker and the end
marker to a display surface

~

Fig. 5

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings

