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FAST PATH FOR PERFORMING DATA OPERATIONS

BACKGROUND

1. Technical Field

This application generally relates to computer data storage, and more particularly to

performing data operations in connection with computer data storage.

2. Description of Related Art

Computer systems may include different resources used by one or more host processors.
Resources and host processors in a computer system may be interconnected by one or more
communication connections. These resources may include, for example, data storage devices
such as disk drives. These data storage systems may be coupled to one or more host processors
and provide storage services to each host processor. An example data storage system may
include one or more data storage devices that are connected together and may be used to provide

common data storage for one or more host processors in a computer system.

A host processor may perform a variety of data processing tasks and operations using the
data storage system. For example, a host processor may perform basic system I/O operations in
connection with data requests, such as data read and write operations and also administrative

tasks, such as data backup and mirroring operations.
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Host processor systems may store and retrieve data using a storage device containing a
plurality of host interface units, disk drives, and disk interface units. The host systems access the
storage device through a plurality of channels provided therewith. Host systems provide data
and access control information through the channels to the storage device and storage device
provides data to the host systems also through the channels. The host systems do not address the
disk drives of the storage device directly, but rather, access what appears to the host systems as a
plurality of logical disk units or logical volumes. The logical disk units may or may not
correspond to the actual disk drives. Allowing multiple host systems to access the single storage

device unit allows the host systems to share data stored therein.

Data operations issued from a host may utilize switching fabric comprising a
combination of hardware and/or software in routing a data operation and associated
communications between a host and a target data storage device. The switching fabric may
include hardware, such as switching hardware, and software. Software used in routing
operations between a host and a data storage device may utilize a layered approach. Calls may
be made between multiple software layers in the switching fabric in connection with routing a
request to a particular device. One drawback with the layering approach is the overhead in
performing the calls that may result in increasing the amount of time to dispatch the data

operation to the data storage device.

Thus, it may be desirous and advantageous to utilize a technique that efficiently
dispatches a data operation to a data storage device. In particular, it may be advantageous to

utilize this technique in connection with more commonly performed data operations.
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SUMMARY OF THE INVENTION:

In accordance with one aspect of the invention is a method for processing a data
operation. It is determined if the data operation has at least one predetermined criteria
characterizing the data operation as being a commonly performed non-complex data operation
using a primitive operation. The data operation is routed to a fast path for processing if the data
operation has the at least one predetermined criteria, and routing the. data operation to a general

control path for processing otherwise.

In accordance with another aspect of the invention is a computer program product that
processes a data operation. Machine executable code determines if the data operation has at least
one predetermined criteria characterizing the data operation as being a commonly performed
non-complex data operation using a primitive operation. Machine executable code routes the
data operation to a fast path for processing if the data operation has the at least one
predetermined criteria, and routing the data operation to a general control path for processing

otherwise.

In accordance with another aspect of the invention is a method executed in a computer
system for performing a data operation. The data operation is réceived by a switching fabric. At
least one processing step for performing the data operation is determines in accordance with a
current state of at least one mapping table. At least one mapping primitive operation for
processing the data operation is determined. The mapping primitive is used to perform virtual to

physical address translation by the switching fabric using at least one mapping table. The
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mapping primitive operation is executed and a physical address associated with the data

operation is obtained.

In accordance with yet another aspect of the invention is a computer program product that
performs a data operation. Machine executable code receives, by a switching fabric, the data
operation. Machine executable code determines at least one processing step for performing the
data operation in accordance with a current state of at least one mapping table. Machine
executable code determines at least one mapping primitive operation for processing the data
operation. The mapping primitive is used to perform virtual to physical address translation by
the switching fabric using at least one mapping table. Machine executable code executes the

mapping primitive operation and obtains a physical address associated with the data operation.

In accordance with another aspect of the invention is a method executed in a computer
system for performing virtual to physical address mapping of a virtual address. A volume
descriptor associated with said virtual address is determined. The volume descriptor includes a
variable size extent table. The variable size extent table includes a plurality of portions. Each of
the portions is associated with a varying range of virtual addresses. A first extent included in
the variable size extent table corresponding to the virtual address is determined. A
corresponding physical address is determined for the virtual address using mapping table

information associated with the first extent.

In accordance with another aspect of the invention is a computer program product that

performs virtual to physical address mapping of a virtual address. Machine executable code
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determines a volume descriptor associated with the virtual address. The volume descriptor
inclﬁdes a variable size extent table. The variable size extent table includes a plurality of
portions. Each of the portions is associated with a varying range of virtual addresses. Machine
executable code determines a first extent included in the variable size extent table corresponding
to the virtual address. Machine executable code determines a corresponding physical address for

the virtual address using mapping table information associated with the first extent.

In accordance with another aspect of the invention is a method executed in a computer
system for performing virtual to physical address translation. Mapping tables used in performing
the address translation are determined. The mapping tables include an extent table
corresponding to a logical block address range and a storage redirect table includes physical
storage location information associated with the logical block address range. The extent table is
divided into a plurality of portions. A fast path is used in performing the virtual address
translation if an associated data operation meets predetermined criteria independent of at least
one of a general control path and another fast path. therwise a general control path is used. A
portion of the extent table corresponding to a current data operation is loaded into a memory
local to the fast path. The portion of the extent table is included in a memory managed using a

cache management technique.

In accordance with one aspect of the invention is a computer program product that
performs virtual to physical address translation. Machine executable code determines mapping
tables used in performing said address translation. The mapping tables include an extent table

corresponding to a logical block address range and a storage redirect table includes physical
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storage location information associated with the Jogical block address range. The extent table is
divided into a plurality of portions. Machine executable code uses a fast path in performing the
virtual address translation if an associated data operation meets predetermined criteria
independent of at least one of a general control path and another fast path, and otherwise uses a
general control path. Machine executable code loads into a memory local to the fast path a
portion of said extent table corresponding to a current data operation. The portion of the extent

table is included in a memory managed using a cache management technique.

In accordance with one aspect of the invention is a method executed in a computer
system for controlling access to shared data. A message is sent from a requester to at least one
other user of the shared data accessing the shared data for read access. The requester receives
approval messages from each of the at least one other user. The requester obtains a lock on a
first copy of the shared data included in a global storage location upon receiving the approval
messages wherein the requester releases the lock when the lock is requested by another. The

requester, in response to obtaining the lock, modifies the first copy of shared data.

In accordance with yet another aspect of the invention is a computer program product that
controls access to shared data. Machine executable code sends a message from a requester to at
least one other user of the shared data accessing the shared data for read access. Machine
executable code receives approval messages for the requester from each of the at least one other
user. Machine executable code obtains a lock for the requester on a first copy of the shared data

included in a global storage location upon receiving the approval messages wherein the requester
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releases the lock when the lock is requested by another. Machine executable code, in response to

obtaining the lock, causes the requester to modify the first copy of shared data.
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BRIEF DESCRIPTION OF THE DRAWINGS:

Features and advantages of the present invention will become more apparent from the
following detailed description of exemplary embodiments thereof taken in conjunction with the

accompanying drawings in which:

5
Figure 1 is an example of an embodiment of a computer system according to the present
invention;
Figure 2 is an example of an embodiment of a data storage system;
10
Figure 3 is an example of a logical view of the devices as seen from the host computer
systems of Figure 1;
Figure 4A is an example of how a host may communicate with a physical device;
15

Figure 4B is an example of another embodiment of how a plurality of hosts may

communicate with physical devices;

Figure 4C is an example of yet another embodiment of how a plurality of hosts may

20  communicate with physical devices;

Figure 5 is a flowchart of steps of an embodiment for processing a data operation within

the computer system of Figure 1;
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Figure 6 is a flowchart of steps of an embodiment for processing results of a data

operation;

5 Figure 7 is a flowchart of more detailed steps for processing a data operation;

Figure 8 is an example of a model of application programming interfaces that may be

used in connection with fast paths;

10 Figure 9 is an examplerf an embodiment of tables used in connection with mapping a

virtual address to a physical address in the computer system of Figure 1;

Figure 10 is an example of an embodiment of mapping virtual to physical storage using

the volume segment descriptors;

15
Figure 11 is an example of an embodiment of using the mapping tables in connection
with a multipath technique;
Figure 12 is an example of updated tables in connection with a multipath operation;
20

Figure 13 is an example of information that may be cached within a fast path (FP);

Figure 14 is an example of information that may be included in mapping table entries;
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Figure 15 is an example of information that may be included in a host I/O request;

Figure 16 is a flowchart of steps of one embodiment for processing a received I/O request

as may be performed by the FP;

Figure 17 is a flowchart of steps of one embodiment for processing a received I/O request

as may be performed by the CP;

Figure 18 is an example of an embodiment illustrating the pending I/O lists within the

switching fabric as maintained by the CP and FP;

Figure 19 is an example of an embodiment of mapping tables at initialization within the

FP;

Figures 20-21 are examples of an embodiment of a snapshot operation within the

computer system of Figure 1;

Figure 22 is an example of an embodiment of an incremental operation of a virtual

volume within the computer system of Figure 1;

Figures 23 and 24 are examples of an embodiment of online migration;

10
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Figures 25A and 25B are examples of an embodiment of metadata;

Figure 26 is an example of an embodiment of how a variable size extent maps to fixed

portions of metadata;

Figure 27 is an example of a state transition diagram that may be associated with a

distributed virtualization engine(DVE);

Figure 28 is an example of an embodiment of two DVEs exchanging messages in

10 connection with acquiring lock;

Figure 29 is an example of a flowchart of steps in connection with performing a snapshot

operation;

15 Figures 30 and 31 are examples of an embodiment in connection with performing

operations with mirrored devices;

Figure 32 is an example of an embodiment in connection with performing an
asynchronous replication operation;
20
Figure 33 is an example of an embodiment of a compound example of a snapshot during

a migration; and

11
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Figure 34 is an example of an embodiment of a data structure for the rmap table.

12
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DETAILED DESCRIPTION OF EMBODIMENT(S):

Referring now to Figure 1, shown is an example of an embodiment of a computer system
according to the present invention. The computer system 10 includes a data storage system 12
connected to host systems 14a-14n and data management system 16 through communication
medium 18. In this embodiment of the computer system 10, the data management system 16 and
the N hosts 14a-14n may access the data storage system 12, for example, in performing
input/output (I/O) operations or data requests. The communication medium 18 may be any one
of a variety of networks or other type of communication connections as known to those skilled in
the art. The communication medium 18 may be a network connection, bus, and/or other type of
data link, such as a hardwire or other connections known in the art. For example, the
communication medium 18 may be the Internet, an intranet, network or other connection(s) by
which the host systems 14a-14n, and the data manager system may access and communicate with
the data storage system 12, and may also communicate with others included in the computer
system 10. The components comprising the computer system 10 may comprise, for example, a

storage area network (SAN) or other configuration.

Each of the host systems 14a-14n, the data management system 16, and the data storage
system 12 included in the computer system 10 may be connected to the communication medium
18 by any one of a variety of connections as may be provided and supported in accordance with
the type of communication medium 18. The processors included in the host computer systems
14a-14n and the data management system 16 may be any one of a variety of commercially

available single or multi-processor system, such as an Intel-based processor, IBM mainframe or

13
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other type of commercially available processor able to support incoming traffic in accordance

with each particular embodiment and application.

It should be noted that the particulars of the hardware and software included in each of
the host systems 14a-14n and the data management system 16, as well as those components that
may be included in the data storage system 12 are described herein in more detail, and may vary
with each particular embodiment. Each of the host computers 14a-14n, as well as the data
management system 16, may all be located at the same physical site, or, alternatively, may also
be located in different physical locations. Examples of the communication medium that may be
used to provide the different types of connections between the host computer systems, the data
manager system, and the data storage system of the computer system 10 may use a variety of
different communication protocols such as SCSI(Small Computer System Interface), ESCON,
Fibre Channel, or GIGE (Gigabit Ethernet), and the like. Some or all of the connections by
which the hosts, data management system 16 and data storage system 12 may be connected to
the communicatioﬁ medium 18 may pass through other communication devices, such as a Fibre
Channel switch, or other switching equipment that may exist such as a phone line, a repeater, a

multiplexer or even a satellite.

Each of the host computer systems as well as the data management system may perform
different types of data operations in accordance with different types of administrative tasks. In
the embodiment of Figure 1, any one of the host computers 14a-14n may issue a data request to

the data storage system 12 to perform a data operation. For example, an application executing on

14
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one of the host computers 14a-14n may perform a backup, mirroring or other administrative

operation and may do so while performing data requests to the data storage system 12.

The data management system 12 may be responsible for performing administrative
operations in connection with the other components and switching fabric included in the
computér system 10. For example, the data management system 12 may be responsible for
performing administrative operations in connection with system configuration changes as well as
performing periodic administrative operations, such as automated backups, performance tuning,
reporting, and the like. Functionality included in the data management system may also include

abstracting components accessed within the computer system.

Referring now to Figure 2, shown is an example of an embodiment of the data storage
system 12 that may be included in the computer system 10 of Figure 1. Included in the data
storage system 12 of Figure 2 are switching fabric 20 and physical devices 22a-22n. In this
particular example, each of the physical devices may be inter-connected (not shown) as well as

be connected to the switching fabric 20. The switching fabric may be characterized as a

. hardware and/or software that perform switching of voice, data, video and the like from one

place to another. In connection with Figure 2, the switching fabric 20 performs switching of data
between components in the computer system 10, such as between a host and a physical device.
The components included in the switching fabric 20 may vary with each particular embodiment
and device in accordance with the different protocols used in a particular embodiment.
Additionally, the type of connections and components used may vary with certain system

parameters and requirements, such as those related to bandwidth and throughput required in

15
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accordance with a rate of I/O requests as may be issued by the host computer systems, for

example, to the data storage system 12.

Host systems provide data and access control information through channels to the data
storage system, and the data storage system may also provide data to the host systems also
through the channels. The host systems do not address the disk drives of the storage systems
directly, but rather access to data may be provided to one or more host systems from what the
host systems view as a plurality of logical devices or logical volumes (LVs). The LVs may or
may not correspond to the actual disk drives. For example, one or more L.Vs may reside on a
single physical disk drive. Data in a single storage system may be accessed by multiple hosts

allowing the hosts to share the data residing therein.

Referring now to Figure 3, shown is an example of a logical view of devices in one
embodiment as may be viewed from the hosts included in the computer system 10 of Figure 1.
Hosts 14a-14n are included in the illustration 30 as described previously in commection with the
system 10 of Figure 1. The illustration 30 includes a portion of the components of the computer
system 10 previously described in connection with Figure 1. In particular, the illustration 30
includes the hosts 14a-14n and storage related components included in the data storage system
12. Also shown are logical components or devices LV 32a-32n which are not actually physical
components included in the computer system but rather represents a logical view of a portion of
physical devices PD1 through PDn. The same LVs may be used and accessed by one or more of
the host’s computer systems 14a-14n. Each of the LVs maps to a portion of a physical device or

a plurality of physical devices also included in the data storage system 12.

16
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In this particular example, the data storage system 12 may also include switching fabric
20 which may include one or more switches and other associated hardware and software in
connection with facilitating data transmissions between each of the host computer systems and
the physical devices. As will be described herein, part of the functionality of the switching fabric
is to map a particular logicdl address of an LV to its actual physical location on one or more of

the physical devices 22a-22n.

It should be noted that binding a particular physical device or portions thereof to an LV

may be performed in connection with data management system functionality.

Also included within the switching fabric 20 are a number of virtualization engines (VEs)
which collectively may be referred to as a distributed virtualization engine (DVE). The DVE
collectively exposes LVs to a set of hosts and may be used in accessing a set of physical devices.
The VEs may utilize a coherency channel, for example, using a storage area network (SAN)
and/or a local area network (LAN), to present a single system image to the hosts as well as to the
administrator (data management system). The VEs may have a partially shared back end of
physical volumes or devices. Multiple VEs may be physically located within the same hardware
box or unit or be physically located in separate hardware units. If multiple VEs are located
within the same hardware box, these VEs may have redundant power supplies, cords, and
cabling to the hosts. Software associated with each VE in an embodiment may execute
independently and perhaps redundantly providing for a single system image to each of the hosts

in the computer system.

17
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The DVE may be characterized as being responsible for functionality associated with
data virtualization, such as in connection with virtualizing storage data accesses across the
computer system 10. The DVE may also be characterized as supporting a number of higher level
functions and operations, such as, for example, replication, snapshots, on-line migration, and the

like.

It should be noted that any one or more of the DVEs may be implemented in portions
anywhere between the host application and the actual physical storage device or devices. For
example, a portion of the functionality of a DVE may be included in the host side filter driver, in
an appliance between the host and the storage system, in an existing switch, or within a data

storage device itself.

A DVE, or portion thereof, may be implemented anywhere between the host application
and associated physical storage devices as, for example, described elsewhere herein. A preferred
embodiment may include functionality described herein associated with a DVE within the SAN
switching fabric itself, such as within a switch. The switch implementation platform may take
advantage of the DVE’s distributed coherency and scalability, for example, between multiple
switches within the SAN fabric as well as between multiple ports within a given switch. As
physical switches may be added to a SAN fabric, the DVE preserves a single distributed coherent
view of storage to the hosts. It should be noted that the DVE’s overall bandwidth capabilities are
scaled in accordance with the number of port switches through the use of per port fast path

processing power.

18
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Referring now to Figure 4A, shown is an example 40 of how a host, such as 14a, may
communicate with a physical device such as 22a or 22b. It should be noted that the components
included in illustration 40 represent an example of how a particular host may issue a data
operation in connection with a particular physical device. An actual embodiment may include
more computer systems, for example, as described previously in connection with the computer
system 10 of Figure 1. The number of components included in the illustration 40 have been
reduced in order to facilitate the explanation of how the switching fabric rﬁay operate in

connection with data transfers between a host and a physical device.

In the example 40, the host 14a may perform a data operation in connection with one or
more physical devices, such as physical device 22a and 22b. Included within switching fabric 20
of the data storage system 12 is DVE 34a. The DVE 34a in this example includes fast path FP1-
1 and FP1-2 as well as one or more control paths (CPs), such as CP1 through CP3. On either
side of a particular fast path (FP) such as FP1-1, a switch may connect the FP1-1 hardware
and/or software implementation to physical device 12a as well as facilitate communications with
the host 14a. It also should be noted that although the arrows show communications as flowing
from the host to the physical devices, the reverse communication path of forwarding data from

the physical device through one of the FPs or CPs to the host also exists in the system.

In one embodiment, the communication path from the host may be only through the FP.
In other words, the CP may communicate to the host through the FPs such that only an FP serves

as an "exposed" communication endpoint for host communications.

19
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It should be noted that an embodiment of a DVE may include one or more CPs. A DVE
may include a plurality of CPs in which exactly one may be active at a time with the other
available, for example, for failover purposes. The number of CPs in an embodiment of 2a DVE

may be less that the number of FPs.

As shown in 34a, a DVE may include one or more CPs and one or more FPs. The FP
may optionally be implemented in hardware, software, or some combination thereof. The CP
and FP may be implemented each on different CPUs. An embodiment may include a portion of
hardware in an implementation of the FP, for example, in connection with functionality

associated with the FP and its communication port(s).

A path designated using an FP, for example, when connecting a host to a physical device,
may be used when performing I/O operations, such as read and write operations that may be
applied to LVs. Generally, a large portion of the data operations may be handled by the FP. In
one embodiment, the FPs handle a bulk of the I/O bandwidth from the hosts with no CP
intervention meaning that the overall bandwidth capabilities scale with the number of FPs in the
DVE. The particular I/O operations that may be handled by the FP is described in more detail in
paragraphs that follow. The FP is a streamlined implementation of hardware and/or software
that may be used in connection with optimizing and performing a portion of I/O operations. In
this embodiment described herein, only successful /O operations may be handled using the FPs.

Error cases and associated recoveries may be performed in connection with one or more CPs

20
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since this type of error recovery may involve for example changes to metadata or reconfiguring

of data management states which are operations not delegated to the FPs.

In this embodiment, I/O operations from a host are initially directed to an FP. If an FP is
able to dispatch the I/O operation further to a particular physical device using a mapping table
which is populated by the CP in this example, the FP does such dispatching without further
intervention by the CP. Otherwise, the I/O operation may be forwarded to the CP for processing
operations. Similarly, completions of an I/O operation directed from a physical device to a host
are directed to the FP in this embodiment. If the completion is successful, the FP may return any
/O operation data and associated status to the host. This may be done without any CP
intervention. Otherwise, for example, in the event of an error in performing the I/O operation,

completion may be forwarded to the CP for processing.

As will be described herein, only the CP, not the FP, may be used to modify a metadata
state. Metadata, as will be described herein in connection with performing I/O operations, may
be that information such as included in mapping tables. Metadata may be characterized as data
about or describing data. The CP may handle all error processing, all coherency and
synchronization operations in connection with other CPs and all intervolume coherency, for
example, as may be included in complex systems such as those using mirroring, striping,
snapshots, on-line migrations, and the like. All errors may be returned to the host or forwarded
through the CP. An FP may also notify a CP about I/Os, for example, in connection with

gathering statistics or error recovery purposes.

21
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As shown in connection with the illustration of Figure 4A, the DVE 34a includes an FP
or a fast path connection between a host and each of the physical devices that may be accessed
by the host. As shown in Figure 4A also, each of the FPs is connected to an associated CP and

each of the CPs also have connections to each other.

It should be noted that the assignment or association of hosts to FPs may vary in
accordance with platform configuration. In particular, which FPs are used by which hosts may
be in accordance with where FPs are located within the switching fabric and how the hosts
connect to the fabric. In the embodiment described in connection with Figure 44, the FP is
included in the fabric switch and there is preferably one FP per switch port and hosts are

physically connected to one or more switch ports.

Referring now to Figure 4B, shown is an example of another embodiment of how a
plurality of hosts may communicate with physical devices. The embodiment 42 includes aA16
port switch with 12 ports, 45a-451, connected in pairs to 6 hosts, H1-H6, with the remaining 4
ports, 45m-45p, connected in pairs to two data storage devices Devl and Dev2. In this instance,
the FPs may be logically and possibly physically, located on each of the host ports and each host

is communicating to two FPs.

Referring now to Figure 4C, shown is another embodiment of how a plurality of hosts
may communicate with physical devices. Figure 4C shows a configuration 46 which is a
modification of the configuration 42 from Figure 4B but with one of the hosts (H4) removed and

two switches(47a and 47b) in place of the host, each of the two switches having 16 ports. Each
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of the two switches 47a and 47b plugs into locations 45g and 45h includes in the original switch
43. On the two newly added switches 47a and 47b, 15 hosts (H10-H24) may be connected up to
the fabric with each of the 15 hosts (H10-H24) being connected to a first port in the first switch
47a and a second port in the second switch 47b, such as host H10 is connected to 47¢ and 47d.

Each of the hosts H10-H24 now shares FP7 and FPS.

In a different configuration, FPs may also be included in a "shared appliance" within the
switching fabric resulting a configuration similar to that of Figure 4C in which hosts share access

to the same FPs.

Referring now to Figure 5, shown is a flowchart 50 of steps of one embodiment for
processing a data operation within a computer system 10 of Figure 1. It should be noted that this
processing described in connection with flowchart 50 generalizes the processing just described in
connection with forwarding an I/O operation between a FP and/or a CP from a host to a
particular physical storage device. A data operation request is received at step 52 and is
forwarded from a host to the data storage system. At step 54, a determination is made as to
whether this is an FP appropriate operation. It should be noted that the details of step 54 are
described in more detail in following paragraphs. If a determination at step 54 is made that this
is an FP appropriate operation, control proceeds to step 60 where the data request is dispatched
and issued to the appropriate physical device using the FP. Otherwise, control proceeds to step
56 where the I/O or data operation is forwarded to the CP for processing. Accordingly, at step

58, the CP issues the data request to the appropriate physical device. It should be noted that part

23



10

15

20

WO 03/071419 PCT/US02/39232

of the processing included in the steps of flowchart 50 is a mapping from the logical address to
the physical address as well as other processing operations.

Referring now to Figure 6, shown is a flowchart 70 of steps of a method performed in
connection with processing the results of a data operation. The processing in connection with
flowchart 70 generally describes those steps that may be performed in an embodiment when
forwarding results from a physical device back to a host through a DVE such as 34a. At step 72,
the results of the data operation are determined and received at the DVE. In particular, it is
determined at step 74 as to whether the data operation has been successful. If the data operation
has been successful, control proceeds to step 78 where the results are forwarded back to the host
using the FP connection. Otherwise, control proceeds to step 76 to forward results to the CP for

error processing and/or recovery.

Referring now to Figure 7, shown is the flowchart 80 of steps of an embodiment
providing more detail in connection with the processing described in connection with flowchart
50. In particular, flowchart 80 describes in more detail the steps of determining Whe£her or not
to use the FP or the CP in connection with processing and forwarding an I/O request between a
host and a physical data storage device. At step 82, the I/O operation is received. At step 84, a
determination is made as to whether or not this is a Virtual device identifier (DID). Ifa
determination is made that the current I/O operation involves a physical devices, control
proceeds to step 86 where a transparent /O operation is routed directly to the physical device,
for example, using the FP hardware to forward the physical address of an I/O request. An /O
operation to a physical device may be handled transparently, that is, without requiring FP

processing. An I/O operation to a virtual device is handled by the FP and CP. Both virtual and
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physical devices may exist on the same SAN and may be addressable by Fibre Channel device
identifiers (FC DIDs). Physical devices correspond to physical disks, as may be, for example,

plugged into a SAN.

It should be noted that a DID indicates an address associated with, for example, a disk or
host bus adapter that is plugged into the switching fabric. An I/O operation may be specified
using the DID or other SAN address in accordance with the particular SAN (storage area
network) protocol such as an IP address for iSCSI. In connection with virtual volumes or LVs as
described elsewhere herein, the VE fabricates a virtual DID such that the virtual DID may be

accessed, for example, using a name server as a physical DID may be accessed.

If the determination at step 84 results in a determination that there is no virtual DID, then
the I/0 operation is to a real physical device connected to the switching fabric and control

proceeds to step 86 to route the I/O operation to the correct outbound port of the switch.

If a determination is made at step 84 that the I/O operation involves a virtual DID, control
proceeds to step 88 where processing steps may be taken to remap the virtual DID to a physical
device. At step 88, a determination is made as to whether this I/O operation involves an access
other than a read or a write. If this I/O operation involves access other than a read or write,
control proceeds to step 90 where the CP is used in connection with processing the data
operation. Otherwise, if this is a read or a write operation, control proceeds to step 92 where a
look up of the TE or target exposure is performed. This is performed using the DID (or other

SAN Address) of the virtual device addressed by the intercepted I/O.
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At step 93, a determination is made as to whether the LUN is masked. If so, control
proceeds to step 90 where the current I/O faults to the CP for further processing. An
embodiment may include, as part of the determination of whether the LUN is masked, values
used in connection with determining the security of a device, such as whether a host has
permission to perform I/O operations. An embodiment may also include as part of step 93
processing a determination of whether a particular host has a LUN reserved, such as in
connection with processing SCSI Reservations, and SCSI Unit Attention conditions, such as
when each host is notified of particular occurrences like, a LUN size change, and the like. When
there is such a mask used, such as associated with permissions and securities as well as those
associated with SCSI reservations, unit attention conditions and the like, control proceeds to step

90 where there is a fault to the CP for processing the current I/O operation.

At step 94, a determination is made as to whether the particular I/O operation involves a
LUN of a device which is currently connected to the host. If not, control proceeds to step 90
where the CP is used in connection with processing the I/O operation. Otherwise, control

proceeds to step 96 where the LV is determined at step 96 for the particular LUN.

Control proceeds to step 98 where the appropriate segment descriptor is determined for
the particular I/O operation. At step 100, it is determined whether the I/O operation spans
multiple segments. If so, control proceeds to use the CP for processing at step 90. Otherwise,

control proceeds to step 102 where a further determination is made as to whether the I/O logical
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block address or LBA extent is cached. If the /O LBA extent is not cached, control proceeds to
step 104 where an inquiry is made by the FP using the CP to obtain the LBA extent at step 104.
The FP may proceed to obtain the LBA extent from the CP, for example, by performing a routine

call and returning the LBA extent as a routine result or parameter.

Control proceeds to step 106 where the extent's redirect index is determined. Control
proceeds to step 108 where a determination is made as to whether the I/O spans extents. If so,
control proceeds to step 90 where the CP is used in processing. Otherwise, control proceeds to

step 110 where the extent's redirect entry of additional processing information is obtained.

It should be noted that the extent redirect index used at step 106 may be used as an index
into an array, for example, or other equivalent data structure of redirect entries to access
additional information, as at step 110, as may be used to process a particular I/O operation. In
one embodiment, the extent redirect index may be, for example, 4 bits used to access, for
example, directly or indirectly, a hundred bytes of other information. The array of extent redirect

entries is used and described in more detail elsewhere herein.

Control proceeds to step 112 where a determination is made as to whether the fast path

. may be used in processing a read or write operation to this particular device. One of the

additional pieces of information that may be included in an embodiment of a redirect entry is a
set of flags indicating which particular operations are allowed to be performed using a fast path
to a particular device. In one embodiment, these flags may indicate which operations are

disallowed, such as "fault on read" (FoR) and "fault on write" ("FoW"). In other words, if a read
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operation is incoming into an extent having a corresponding redirect entry that specifies "FoR",
then a fault is made to the CP for processing. Similarly, if an incoming operation is a write
operation to an extent having a corresponding redirect entry that specifies "FoW", then a fault is

made to the CP for processing.

It should be noted that a given virtual volume seginent may be divided into a set of
variable length extents. Each of these extents may have an associated "redirect entry". These
extents may correspond to a state of virtualization. In other words, the redirect entry associated
with an extent may indicate state information about a portion of a volume, for example, such as
whether that portion of a volume has béen migrateci, snapshot, and the like, depending on the
progress of an operation. As such, multiple extents may reference the same redirect entry in
accordance with the particular state of the different portions. For example, blocks 0..12
inclusively may reference redirect entry 0. Blocks 13..17 inclusively may reference redirect
entry 1, and blocks 18 and 19 may also reference redirect entry 0. The redirect entries indicate
which operations may be performed in using the FP in accordance with state of a particular
portion of a virtual segment. Additionally, the redirect entry may indicate where the actual data
is located (storage descriptor) for a particular portion of an LV, such as whether the data has

already been pushed to a particular physical device).

If a determination is made at step 112 that it is one of the particular read or write
operations, control proceeds to step 90 where the CP is used in processing the I/O request.
Otherwise, control proceeds to step 114 where the storage descriptor is obtained. At step 116, a

determination is made as to whether the FP capacity is exceeded.

28



10

15

20

WO 03/071419 PCT/US02/39232

It should be noted that the particular FP capacity or capability may vary in accordance
with each embodiment. For example, in one embodiment, an FP may have a limit on the size of
an I/O operation it is capable of processing. An embodiment may have other limitations or
restrictions. In one embodiment, an FP may not perform I/O operations that must be sent to two
different devices such as may be when an I/O operation spans a RAIDO stripe and part of the I/O
operation is associated with disk A and another part associated with disk B. Each particular
embodiment may determine what limits or tasks may be streamlined and performed by an FP
allowing for customization of FP operations to those most prevalent within each particular

implementation. The remaining operations may be handed over to the CP for processing.

If the FP capacity is exceeded, control proceeds to the CP for processing. Otherwise,
control proceeds to step 118 where a determination is made as to whether the particular I/O
operation is for a mirroring device or involves a write to a journal. If so, control proceeds to step

120 where a further determination is made as to whether there is a serialization conflict.

A serialization conflict may be determined in connection with mirrored devices. For
example, one rule in an embodiment for writing to a mirrored device is that only one FP within a
particular VE may write to a particular LBA (logical block address) range at a time to ensure
integrity of mirrors. A serialization conflict may occur when, within a single FP, one or more
hosts have issued two write operations to overlapping LBA ranges. When this serialization
conflict is detected, such as may be in connection with a failover, the conflicting I/O operation

may be routed to the CP for later retry.
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If a serialization conflict is determined at step 120, control proceeds to step 90 where the
CP is used for processing the I/O request. Otherwise, control proceeds to step 122 where a
determination is made as to whether the write journal is full. If the write journal is full, control
proceeds to step 90 where the CP also processes the I/O operation. Otherwise, control proceeds

to process the operation and route the particular I/O request using the fast path at step 124.

It should be noted that in connection with the flowchart 80, a variety of different tests
may be included in an embodiment in determining whether to use the fast path or FP in routing a
particular I/O request to a physical device. The processing of the steps of flowchart 80 may be
characterized as filtering out or detecting those operations which are not common or are more
complex than those which the FP may handle in an expedient fashion. Those operations that
involve other processing and are not able to be performed in a stream line fashion are forwarded
to the CP. For example, in a determination at step 122 that the write journal is full, processing
steps that are taken from the CP may for example involve emptying a portion of the journaling

entries prior to performing the I/O operation.

Referring now to Figure 8, shown is an example 200 of a model of application
programming interfaces or APIs that may be included in an embodiment of the switching fabric
when implementing the fast path (FPs) as described herein. In this particular example, the FP or
fast path may be implemented in software using a set of platform dependent APIs. These
platform dependent APIs may be used by platform independent CP software through the use of

the FP API 206.
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Referring to the example 200 of Figure 8, included are various CPs 202a-202n that
interface with the FP API 206. The FP API 206 may be a platform independent interface with
different platform dependent hardware configurations 204a-204n. In other words, the FP API
206 may provide an interface linking the different hardware platforms, such as 204a-204n, to
platform independent CP software, such as 202a-202n, that may in turn interface with one or
more applications 210, such as a particular database software, running on a host computer
system. A CP, such as 202a, may utilize the platform dependent APIs through the FP API 206 to
communicate with any one or more of a variety of different hardware platforms 204a to 204n.
Any one of the CPs 202b-202n may also utilize the same platform dependent API included in the

FP API 206 to communicate with particular hardware platforms 204a-204n.

In one embodiment, the CP software and/or hardware and FP API 206 may be included in
the switching fabric within the DVE. Alternatively, an embodiment may also include all or
portions of this and other hardware and/or software anywhere between the host application
software and the physical storage. For example, a portion or all of the foregoing may be
included in a host-side filter driver. The FP API 206 may be supplied by a platform vendor. An
embodiment may also include some additional code in an embodiment to "shim" the different

APIs together, such as to get the FP API 206 to work with the CP software.

The techniques described herein of using the FP may be used in an embodiment that
includes file system storage and block storage techniques. For example, virtual block storage is

addressed using LVs, and virtual file storage may be addressed using logical files. The
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techniques described herein may be used in connection with file level protocols, such as NFS,
CIFS and the like, as well as block level protocols, such as SCSI, FC, iSCSI, and the like, with
appropriate modifications as may be made by one of ordinary skill in the art. For example, an
embodiment using a file level protocol may have one volume segment descriptor for each file

and accordingly use the Rmap and storage descriptor table described elsewhere herein.

Referring now to Figure 9, shown is an example of an embodiment of tables used in
connection with mapping a virtual address to a physical address in the computer system of
Figure 1 using the FP and CP techniques. The example 240 includes an LBA Rmap table 242
and a storage redirect table 244. The tables 242 and 244 may be used in mapping a virtual
address range of a volume descriptor to a storage descriptor identifying a physical device
location. A virtual address reference associated with a particuiar volume segment descriptor as
described in more detail elsewhere herein may include, for example, an identifier of a device, a
starting offset within a particular segment, and the length representing an ending offset or span
from the starting location. For a particular device, a starting offset in terms of a logical block
address or LBA value may be used to index into the LBA Rmap 242. The length of the I/O
operation may specify the span or length at which an ending offset within an LBA range may be

determined.

Referring to the LBA Rmap 242, a particular LBA range from 0 to LBA_MAX is
represented by the LBA Rmap 242. A starting offset may be a value from 0 to LBA_MAX. The
length of the data associated with the I/O operation may be used in determining an ending offset

from the starting value. A particular LBA range from zero to LBA_ MAX may be partitioned
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into a plurality of extents. An extent represents a particular subset of an LBA range. Example of
extents corresponding to particular LBA ranges are indicated as volume extent A and volume

extent B on the LBA Rmap 242.

When an I/O operation is received by the FP, the FP identifies the appropriate volume
segment descriptor (VSEG) and LBA Rmap entry in accordance with the virtual device, the
starting address and the length associated with the I/O operation. Each volume segment
descriptor describes a volume segment which is a contiguous range of LBAs included in a virtual
volume. The volume segment descriptor may include those tables in the example 240, in
particular the LBA Rmap 242 and the storage redirect table 244. In one embodiment, the volume
segment descriptor is the only location within the system for mapping virtual to physical
addresses that includes the LBA range of specific information storage. Each entry in the LBA
Rmap 242 associates its volume extent or a particular LBA range, such as volume extent A, with
a storage redirect table entry representing the state of that particular portion of physical storage

corresponding to the LBA range for that particular extent.

For example, referring to the volume extent A of LBA Rmap 242, a first portion or range
of addresses is defined. Associated with that portion of volume extent A identifying a first
particular LBA fange is an index value of 1 as included in the second entry of the LBA Rmap
table. The value of 1 represents an index into the storage redirect table 244 containing an entry
corresponding to the state of that particular portion of the LBA range associated with volume
extent A. In other words, the storage redirect table having an index of 1 246 includes state

information that describes the state of that portion of the storage associated with volume extent

33



10

15

20

WO 03/071419 PCT/US02/39232

A. Similarly, the portion of the LBA range identified by volume extent B also has a redirect
index value of 1 meaning that volume extent A and volume extent B have a state represented by
entry 246 of the storage redirect table 244. It should be noted that two extents may have the
same reference to the same redirect table entry or Rmap value. Alternatively, a particular extent
corresponding to an LBA range may be associated with a different entry in the redirect table to

reflect its current state.

It should be noted that extents included in the LBA Rmap 242 may be variable in size.
Each extent may correspond to any particular size between zero and LBA_MAX and identify a
particular entry in the storage redirect table. Each entry in the storage redirect table 244
describes the state of the physical storage portion corresponding to the extent. Details of how the

LBA_Rmap and extents may be used are described in more detail elsewhere herein.

Each entry in the storage redirect table 244, such as entry 246, may include a storage
descriptor as well as faulting mode flags, such as the FOW (fault on write) flag and the FOR
(fault on read) flag used in connection with FP and CP processing. Other information may also
be kept in the storage redirect table entries that may vary in accordance with each embodiment.
The FOW and FOR flags may be used, for example, as in connection with processing steps of
the flowchart 80 of Figure 7 when deciding whether to use the CP or the FP for processing an
I/O operation. The information used in performing processing steps of Figure 7 may be obtained
from the storage redirect table 244. Additionally, other processing steps of Figure 7 describe the
use of the LBA Rmap table 244 and the storage redirect table 244 in processing the I/O path on

either the CP or the FP.
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The storage descriptor that may be included in an entry in the storage redirect table 244
describes how to actually access the storage corresponding;r to a particular LBA range of the
volume. For example, a storage descriptor may be used to locate data associated with a
particular LBA range in more complex storage systems which may include mirroring, striping,

and the like.

Mappings may be maintained coherently across DVEs in the metadata. Metadata may
include, for example, the state information included in the storage redirect table 244 as well as
the state information included in the LBA Rmap 242. It should be noted that entries such as
those included in the storage redirect table 244 as well as the LBA Rmap 242 are not modified
by the FP but rather in one particular embodiment may only be modified by the CP when the FP

faults, for example, in performing an I/O operation.

In one embodiment, the Rmap table 242 may include a fixed number of extents that may
be specified, for example, as a bounded resource requirement where each extent may be of a
variable size and each have a value or range associated with it. A new extent may be added and
an associated value or range may also be added to the Rmap at any time. Additionally, the value

of an extent or part of an extent may also be changed at any particular time.

It should be noted that in one embodiment, all Rmap or resource map management
information and operations involved in the management of the metadata may be performed by

the CP. For example, the CP is solely responsible for reading and writing the age list and other
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metadata. The FP may read the LBA Rmap 242, as accessed though the CP. It should be noted
that in this embodiment, the CP reads and writes both the age list (described elsewhere herein)
and Iba rmap. The FP does not directly access metadata information. Rather, in this
embodiment, the FP can query LBA Rmap information and other metadata from the CP. The CP

may also communicate LBR Rmap information to the FP through an FP APIL

Referring now to Figure 10, shown is an example of an embodiment of how a particular
virtual address using volume segment descriptors may be mapped to physical locations using the
Rmap and s'tofage redirect table as described elsewhere herein. Each volume segment descriptor
may be associated with its own Rmap and storage redirect table. For the sake of simplicity, the
Rmap and storage redirect table of each of the volume segment descriptors are omitted. The
illustration 260 includes a virtual volume 262 that has address range or LBA range O through N.
The LBA range 0 through M is associated with a first volume segment descriptor 264. Similarly,
the upper portion of the LBA range M+1 through N is associated with volume segment
descriptor 2 266. This mapping for any LBA within the range 0..M causes volume segment
descriptor 1 264 and associated tables to determine that physical device P1 268 includes
corresponding data portions. Similarly, using the tables from volume segment descriptor 2 266
for an incoming virtual address falling in the LBA range M+1 through N, a portion of the

physical device P2 270 may be determined as the physical storage location of the data.

Using the foregoing, when an incoming I/O operation specifies a range of blocks falling
between 0 through M, volume segment descriptor 1 264 may be used. Similarly, when a

particular I/O operation includes an LBA range within the range M through N, volume segment
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descriptor 2 266 may be used. The foregoing also represents how a single virtual volume may
correspond to portions of multiple physical devices. In other words, the use of the tables in
connection with the volume segment descriptors may be used in mapping logical or virtual
devices to physical devices. In this instance, a single virtual device is mapped to portions of a
plurality of physical devices. Similarly, a single virtual volume may correspond only to a

portion of a single physical device using the techniques described herein.

It should be noted that the foregoing techniques in connection with the LBA Rmap and

the storage redirect table may be used in connection with multipathing. Generally, multipathing

may refer to alternate paths to the same physical device. A first path to a first physical device

may be used. When there is a problem with transferring data along the first path to the first
physical device, a second alternate path may be used to send data to the same physical device.
Use of the storage redirect table and the LBA Rmap may be used in specifying an alternate path.

For example, the CP may determine that there are two paths to the same physical device.

Referring now to Figure 11, shown is an example of an embodiment 280 of how the
LBA Rmap and storage redirect table may be used in connection with a multipathing technique.
An incoming virtual address V1 is determined to be in the volume descriptor that includes LBA
Rmap 282. In particular, it refers to the second entry in the LBA Rmap table 282. The second
entry of the LBA Rmap table includes a 1 as indicated by element 281. When an incoming I/O
operation uses the path specified by storage redirect table entry 1, an I/O failure may occur and
the CP may get involved to perform a path test to device 290 along the path specified by the

storage redirect table entry 1. The CP may determine that storage redirect table entries 1 and 2
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specify two different paths to the same device 290. Upon an I/O failure, the CP may determine
that the particular path specified by storage redirect table entry 1 has indeed failed. The CP may
then reconfigure the destination of the volume segment descriptor to use the second path
specified by the storage redirect table entry 2. An I/O error may be returned to the host and the
host may retry the I/O. On retry, the FP sends the I/O to the newly configured and presumably
good path specified by the storage redirect table entry 2. The CP may indicate the use of this

alternate path by modifying entry 281 of the LBA Rmap table 282 to indicate a 2 rather than a 1.

It should be noted that an embodiment may preferably use another technique in
connection with specifying multiple or alternate paths. The foregoing technique may be
characterized as one which specifies path changes on a local level, or per entry. In other words,
using the foregoing technique, to make a "global" or system wide change, all entries referencing
a particular path that has been modified need to be updated causing a failover to the CP to update
each entry of the LBA Rmap referencing a particular path.. An embodiment may utilize an
alternate technique in specifying such a global change by redefining a particular path associated
with a physical volume using techniques external to the LBA Rmap, such as global or system

configuration data.

Referring now to Figure 12, shown is an example of the updated LBA Rmap table as
modified by the CP, for example, in connection with the multipathing example just described
upon detection of a failure by the CP. It should be noted that alternatively the storage descriptor

within an entry of the redirect table may also be modified to specify an alternate path to take to
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the particular device rather than modifying the LBA Rmap itself. Figure 12 shows an example

of performing and specifying an alternate path at a global level.

It should be noted that the FP may cache a portion of the LBA Rmap which is included in
the CP. The LBA Rmap in the CP may be a cache of the LBA Rmap included on a form of
media or other storage. This three level caching of the variable length extents allows the FP

LBA Rmap to be very efficient in terms of resource utilization and speed.

Referring now to Figure 13, shown is an example of some information that may be
cached or stored within each of the FPs. In this particular embodiment, the FP 300 may include
one or more of the mapping tables 310 as well as a pending I/O list 320. It should be noted that
the mapping tables 310 may include information such as the LBA Rmap and the storage redirect
table described elsewhere herein. The pending I/O list may include an entry, such as 322a for
each of the pending or outstanding I/Os. In this particular embodiment, an entry is added to the
pending I/0 list when an I/O request is received from "upstream", for example, from a host. The
entry may also be removed from the list when a message is sent from the switching fabric to the
request issuer, such as the host, that the I/O operation has completed. For the duration that the

I/O operation is outstanding, the I/O is said to have a status of active.

While the I/O status is active, the FP keeps track of any supporting I/Os sent "down
stream" or to the particular physical devices. These supporting I/Os may be maintained in a
separate "downstream" pending I/O list. Supporting I/Os may include, for example, any type of

handshaking messages and protocols in accordance with each particular embodiment. For
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example, in connection with performing a write operation, once the FP receives the data, the FP
may issue a write command to a device, receive a "ready to transfer" command from the device
itself, actually perform a write of the data, and then receive a return status prior to any other
information being returned to the initiating host. FP keeps track of all of these supporting I/Os

sent for example to the devices.

An entry included in the pending I/O list 320, such as 322a, may include an exchange ID,
state, and other information. The exchange ID in this particular example may represent
corresponding protocol dependent information allowing the FP to process subsequent command
sequences using the exchange ID to properly identify any mappings. For example, if a particular
lookup service may have been used, the actual physical device determined from the logical
device may be used in connection with the exchange ID such that a name resolution is not
performed each time in connection with performing I/O operations. Mapping information may
be determined when the initial sequence of a command is intercepted based on, for example, a
target LUN, LBA and the like. In connection with subsequent sequences, this mapping
information may be obtained using the exchange ID, which is common across all command
sequences rather than performing perhaps multiple processing steps in connection with

associated mapping information.

The state information included in the record 322a may describe the state of the /O

operation, for example, as pending, queued, completed, failed or other type of status as

appropriate in accordance with each particular embodiment. Each entry may also include other

40



10

15

20

WO 03/071419 PCT/US02/39232

information as needed in connection with performing other supporting I/O operations and other

processing steps in connection with performing I/O operations.

Within a series of DVEs, and CPs and FPs included therein, different mappings, such as
the information contained in the LBA Rmap as well as the storage redirect table, may be
maintained coherently. A subset of these mappings may be included in the FP for use by the FP
and for communications between the CP and the FP. Mappings are read by the CP and
populated to the FP. The FP does not modify the metadata, for example, in the tables in this
particular embodiment. Rather, the CP may modify any information in the tables, for example,

when the FP faults to the CP in connection with processing an I/O operation.

It should be noted that a virtual device may be described by more than one mapping
entry. It is the CP’s responsibility to ensure that all of the statuses of the various mapping entries
are synchronized with one another. In other words, it is up to the CP to enforce uniformly
different state rules such that, for example, one half of a mirroring device is not indicated as up
and running and another portion of the same device indicated by another entry as being down. It
is up to the CP to enforce coherent and synchronize statuses in accordance with the different
entries of the different devices. For example, when the CP changes or finds that one particular
device is inaccessible or down, the CP should also modify any other relevant mapping entries to

also indicate this particular device is also down. The CP is involved in state changes.

It should be noted that in one embodiment, the FP may maintain a cache of the redirect

table and a portion of the rmap table in use by the FP. The cache is local to the FP, for example,
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in memory only accessible by the FP. The portion of the rmap table that is cached within the FP
is synchronized with the complete copy maintained by the CP. Additionally, copies of mapping

tables maintained by each CP are also synchronized.

Techniques that may be included in an embodiment for data coherency and

synchronization are described elsewhere herein.

The DVEs may choose whether to participate in coherency operations in connection with
the mapping entry. For example, a DVE not accessing a particular virtual device does not need
to participate in ensuring that data included in particular tables such as mapping is coherent in

connection with information stored in other tables.

Age lists may be used in connection with mirrors requiring fast re-sync ability. The use

of age lists and mirroring operations are described elsewhere herein.

Referring now to Figure 14, shown is information 350 that may be included in mapping
table entries. Collectively, the mapping tables may include information from the previously
described Rmap and storage redirect tables described elsswhere herein. A particular mapping
table entry may correspond to a volume descriptor or VSEG. A volume descriptor corresponds
to a particular virtual device or VDEVICE 352 having a starting LBA noted as the VLBA 354.
The VSIZE 356 indicates the size of the portion of the virtual device described by the mapping
included in the table or descriptor 350. The LBA RMAP OF EXTENTS 360 defines the range or

resource map of the device extents of this particular volume segment descriptor. The STORAGE
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REDIRECT TABLE DATA 370 includes information needed to physically identify the location
of a particular storage area corresponding to a particular virtual device location and address.
Additionally, other information included in the storage redirect table includes an indicator as to
whether certain operations are valid and may be performed by the FP rather than the CP as well
as the age list.' Through the use of these basic parameters included in the table and the entry 350,
the DVE supports the FP operation in connection with performing online migration, LUN
pooling, snap shots, incremental storage, RAID 0, RAID 1 and RAID 10, as well as
asynchronous replication and atomic group operations. It should be noted that RAID 0 requires
I/O striping, RAID 1 requires write splitting. RAID 10 requires the use of the I/O striping and
the write splitting. Performing asynchronous replication requires the use of the write splitting
and the write journaling. These are basic primitives that are described elsewhere herein and may
be used in connection with using FP to perform particular operations. The primitives are

described elsewhere herein in more detail.

Referring now to Figure 15, shown is an example of information that may be included in
the host I/O request sent from a host, such as 14a, over the network' or other connection 18 to the
data storage system 12. An I/O request 400 may include a VDEVICE 402, an LBA 404, a
TYPE 406 and a SIZE 408. The VDEVICE 402 may include a virtual device destinatioﬁ for
the I/O operation. The TYPE 406 may identify a type of I/O operation. Data as described by
fields 406 may be included, for example, in a control data block or CDB indicating whether the
I/O operation is a read or write. The LBA 404 may include the starting LBA if the I/O operation
of the type 406 is a read or write operation. Otherwise, the LBA field 404 may be not applicable

or otherwise null. The SIZE field 408 may specify the size of the data involved in the /O
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operation. The data may be stored in a data buffer that is a number of bytes specified by SIZE
408 of a read or a write operation. Otherwise, the SIZE field 408 may include information that is

not used.

A particular I/O request may be said to have "hit" a corresponding mapping table entry if
the particular mapping table entry may be used for processing the I/O request. In particular, the
I/O type of the received I/O operation may be a read or write operation, and a devicé of the /O
request corresponds to that which is described by the mapping table entry. Additionally, the I/O
request specifies a portion of data with a starting LBA whose entire size is within a single Rmap
entry. In other words, the data associated with the I/O request may not span multiple Rmap
entries in order for there to be a hit on a particular entry of the Rmap table. Generally, the
information of processing steps just described herein connection with having a "hit" on a
mapping table entry or Rmap entry are those processing steps described previously in connection

with Figure 7.

It should be noted that an embodiment of an FP may divide an I/O operation into multiple
pieces in the event an I/O operation spans multiple extents such that each piéce "hits" within a
single LBA Rmap entry. However, an embodiment of the FP may also not include such

functionality and optionally choose to cause such I/O operations to fault to the CP for processing.

In connection with performing I/O operations, downstream I/Os may be issued by the FP
without CP intervention. However, as the complexity of an operation increases, there may be a

fault from the FP to the CP, for example, in handling particular instances of I/0 striping option
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and write splitting option. In connection with the I/O striping option, the stripe destination for
the I/O request is determined. If the I/O spans multiple stripes, the CP may handle the I/O
operation. In other words, this operation in one embodiment can be performed by the CP rather

than the FP. For the write splitting option, for each mirror side that is writeable, a physical I/O

operation is dispatched to the physical device offset by the LBA. When the physical I/O requests

complete, the FP may complete the corresponding virtual I/Os. However, if any of the physical
1/Os completes unsuccessfully, there is a miss to the CP, for example, in connection with error
processing. It should be noted that the FP may be responsible for a small degree of write
serialization for the write splitting option. The write journaling op.tion similarly go from this

functionality.

Referring back to Figure 7, when an I/O is received by the FP, the FP must identify the
appropriate volume segment descriptor or mapping table entry based on the virtual device, such
as the identifier and logic unit number, as well as in accordance with the logical block address
and length in connection with the I/O operation. Each volume segment descriptor describes a
virtual volume segment which is a contiguous range of LBAs of a particular virtual volume
starting at a particular address for a length. A volume may be described by multiple volume
segment descriptors in which each of the volume segment descriptors describes non-overlapping

LBA ranges of a particular virtual volume.

The virtual volume segment descriptor or VSEG as described elsewhere herein includes
an LBA Rmap. The volume segment descriptor in this embodiment is the only place where the

LBA range specific information is stored. Each entry of the LBA Rmap associates its volume
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extent or a particular LBA range with a storage redirect table entry. The storage redirect table
entry specifies various faulting modes such as whether to fault on read or write in connection
with the FP processing operations for a particular volume extent as well as the corresponding
storage descriptor indicating where data is actually stored for a particular volume. Note that each
of the storage descriptors describes storage of the same virtual length as the virtual volume
segment being mapped. Storage descriptors may indicate striping, mirroring and the like as the
part of the storage descriptors internal implementation not visible outside of the storage
descriptor field included in the storage redirect table entry. A storage descriptor may also
include a set of physical storage elements that are used to store data for a virtual volume
segment. A storage descriptor can typically describe both a RAID 0 and a RAID 1 mapping over
a set of physical storage elements. Each physical storage element may be, for example, a

physical device. Each storage element may be referenced by one storage descriptor.

FPs may play a role in connection with I/O write serialization in connection with mirrors
as described elsewhere herein. The CP is responsible for ensuring that only one FP has write
permission at the time to any particular mirrored volumes. However, additional serialization
within the FP may be required. If the FP cannot provide the serialization in connection with
mirroring, for example, then the FP rejects mirrored I/O operations associated with mapping
table entries that require waiting. Consequently, these mirrored I/O operations are faulted back
to the CP for processing so the CP can serialize them. It should be noted that this is the case
when the mirror runs at CP speeds and the CP may become a bottleneck. This serialization is the
synchronization operation of one embodiment that may be included in the FP processing. All

other synchronization and coherency may be put into effect by the CP by revoking I/O authority
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associated with fast path mapping table entries and causing the FP to fault I/Os to the CP for
queuing or other dispatching. This goes along with the goals of the FP in an environrﬁent being
simple and light in handling of both of those I/O operations as described herein. Heavier
processing such as involved in synchronization operations is faulted to the CP for processing. In
the case of the accelerated mirror problem, though, the FP plays a role to ensure correct
operation. The problem that the FP is trying to avoid may result in a form of silent data
corruption with inconsistent mirrors. This may happen for example in an instance where two
outstanding I/Os are overlapping block ranges through the same FP. Thus, the FP needs a way to
determine at FP dispatch if a particular I/O operation such as a write, overlaps any currently
outstanding write operations. If an I/O operation does overlap any currently outstanding writes,
this I/O operation must be quened until sometime later. This may be done by faulting this I/O
operation to the CP for processing. The conflicting I/O operation may be over-queued longer
than absolutely necessary to the CP. It should be noted that in an embodiment this over-
queueing may be performed with negligible affects on overall performance due to the fact that

this may occur infrequently.

When the FP receives an I/O operation, it adds the virtual upstream pending I/O
operation to the virtual or upstrea;n pending I/O list. If the I/O misses in the fast path mapping
table then it is faulted to the CP for processing. Similarly, if there is an outstanding write /O to
an overlapping LBA range and the virtual upstream pending I/O list, the incoming I/O operation
is faulted to the CP. If there is no fault to the CP for processing, an atomic update of the physical

or downstream pending I/O list is performed and then the I/O is redispatched to the downstream

I/O processing to the physical device. Note that the atomicity requirement may be met in other

47



10

15

20

WO 03/071419 PCT/US02/39232

ways as long as the CP can tell that the FP has, or is in the process of, dispatching physical I/Os
for that corresponding virtual I/O. This is typically accomplished with a “timestamp” on the

upstream pending I/O which indicates that it is “in progress”, and its effects on the downstream
pending I/O list might not be fully known yet. Again, the CP waits for these to drain if it wants

to perform serialization itself which it must do if a conflicting I/O is ever faulted to the CP.

When the CP is serializing I/Os such as in connection with mirrors, the CP ensures that
both the corresponding pending physical or downstream I/Os overlapping the LBA range have
drained and completed and are no longer pending and additionaliy, the FP is prevented from
itself initiating new pending physical I/Os overlapping the same LBA range. Again, in keeping
the FP simple and streamlined, both of these processing steps may be performed with the
primitives defined elsewhere herein, such as, for example, querying the pending I/O table and

revoking the fast path mapping table entry.

In this embodiment described herein, it should be noted that when serialization occurs, it
occurs either in the FP or in the CP, but not both. The CP ensures this by revoking any mapping
table entries that give the FP authority to itself redispatch downstream I/Os while the CP is

performing the serialization.

In summary, the FP performs serialization on the virtual or upstream side at initial
dispatch time. If that serialization fails, or if the CP has to perform any type of manual I/O
dispatching, the FP will be put on hold and the CP will take over the role of serialization. Note

that as stated earlier, an FP need not implement serialization if it does not need these operations
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to be fast and scaleable. In other words, if the task of writing to a mirror is not allocated to the

FP, then the FP need not be concerned in an embodiment with serialization.

It should be noted that in this particular embodiment described herein there are three
distinct types of faults within the FP causing trgnsfer of control to the CP for processing in
connection with an I/O operation. A fault in the FP may occur because no mapping table entry
exists. A fault may occur within the FP and default to the CP for processing because a particular
mapping table permission was violated such as performing a write in a read only extent. Lastly,
a fault may occur because of serialization rule violations as just described herein. The FP allows

these to be dealt with in a variety of different ways.

Figures 16 and 17 summarize processing steps as may be performed by the FP and the
CP, respectively, in connection with performing I/O write serialization in an embodiment that

includes mirroring.

Referring now to Figure 16, shown is a flowchart 420 of processing steps in one
embodiment that may be performed by the FP in connection with processing a received I/O
request. In particular, the processing steps of flowchart 420 summarize the type of overall
processing and faults that are described in more detail, for example, in connection with Figure 7.
At step 422, the FP receives an I/O request. This I/O request may be deemed a virtual or
upstream /O request dispatch, for example, from a host received by the FP within the switching
fabric. At step 424, the FP determines if there is an FP map table miss or whether the received

I/O request overlaps an LBA range in the pending virtual I/O list. An FP map table miss may
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occur because there is no mapping table entry within the FP for the corresponding I/O request for
dual address, or also because the mapping table permissions have been violated, such as the
mapping table indicates that the FP may not be used in connection with the write operation and
the I/O request is for a write operation. If at step 424 one of the conditions results in a positive
or yes determination, controls proceeds to step 428 where the operation is faulted to the CP for
processing as it is determined that the current I/O request may not be processed by the FP.
Otherwise, at step 424, control proceeds to step 426 where the FP atomically updates the
physical pending I/0 list and also dispatches corresponding I/0 downstream. In other words,
atomically performed at step 426 is an access to the shared resource which is the physical or
downstream pending I/O list. Additionally, the I/O operation is redispatched downstream or

physically to the devices. These two operations are performed atomically at step 426.

Referring now to Figure 17, shown is a flowchart of steps of an embodiment 460 that
may be performed by the CP in connection with the serialization operations. The CP may
serialize I/Os, for example, either because the FP is incapable of doing the serialization or
because the FP faulted in I/O to the CP such as when a serialization violation is detected. At step
462, the CP receives an I/O request such as a write I/O request. At step 464, a determination is
made as to whether there are I/O requests in the physical or downstream pending I/O list
overlapping the LBA range of the received I/O request. If not, control proceeds to step 470

where the I/O request is queued to the FP such that the FP will again later retry the operation.

50



10

15

20

WO 03/071419 PCT/US02/39232

If at step 464 it is determined there is an overlap between the LBA range of the I/O
request and the LBA range of other pending I/O requests in the physically pending I/O list,
control proceeds to step 466 where the FP is blocked or prevented from itself initiating any new
pending physical I/O requests that overlap the LBA range of the currently received I/O request.
The I/O request is placed and remains in the CP's queue until the FP "authority" has been
"revoked", such as by invalidating an entry in the LBA Rmap table, and the existing FP I/Os

have drained.

FPs may be characterized as operating with "authority" independent of other FPs. An FP
may be authorized by a CP to perform certain operations with certain data, such as metadata,
which the FP obtains from the CP. The FP stores such data in its local cache. The FP continues
processing once it has been so authorized by a CP independent of other FPs. The FP also
continues to use information in its local cache until, for example, the CP invalidates information
included in the FP's local cache. The CP may "revoke" the FP's authority, for example, by
invalidating information in the FP's local cache, modifying an entry in the LBA Rmap causing a

fault to the CP, and the like.

Contro] proceeds to step 468 where the CP proceeds to issue pending physical I/O
requests by adding the appropriate items to the physical or downstream pending I/O request and

further dispatching the I/O request downstream.

As described elsewhere herein, various operations may be performed in connection with

performing the processing steps described in flowcharts 460 and 420 such as, for example,
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clearing the pending I/O table using APIs provided herein and revoking an FP mapping table
entry, for example, and causing an operation to fault to the CP by an invalid or a miss on an FP

map table.

Referring now to Figure 18, shown is an example of an embodiment of I/O operations
and the switching fabric. In particular, the example 500 illustrates the use of "upstream" and
"downstream" I/O operations and pending I/O lists with respect to the previous descriptions
herein. An I/O operation incoming to the switching fabric, such as a from a host, may be
referred to as an "upstream" I/O operation handled by the FP or CP. A "downstream" I/O
operation is an I/O operation that is initiated by the FP or CP to the data storage system in
connection with processing an upstream I/O request. For example, a received Write I/O request
may result in a plurality of downstream I/O requests in accordance with particular protocols and

message exchanges in each particular embodiment.

The FP in one embodiment described herein may include functionality in mapping logical
or virtual devices to physical devices. This may be accomplished using the FP mapping table
entries, including the LBA Rmap and Storage Redirect tables described herein. Also included in
the FP is a list of pending I/Os which may be used in connection with error recovery operations.

Operations that cannot be performed by the FP may be faulted to the CP for processing.

In one embodiment, the FP may use the following API when interacting with the CP in
performing various processing steps as described elsewhere herein. Other embodiments may use

other APIs for CP/FP communications than as described herein.
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The CpMappingMiss() routine may be called from the FP to indicate to the CP that a
particular I/O could not be mapped by the FP. As a result, the CP may return CONTINUE,
IGNORE, or QUEﬁE. CONTINUE includes a new virtual device mapping from the CP which
may have been added, for example, to the FP mapping table. IGNORE indicates that no
mapping is valid for this particular I/O operation and the FP should take appropriate action.
QUEUE indicates that the I/O operation should be queued to the CP for manual processing via

CpQueuelO described elsewhere herein.

CpQueuelO() is called by the FP to the CP to queue an I/O request, for example, as may
be received from a host, for manual processing by the CP. The CP may manually dispatch
supporting "downstream" I/Os (between the switching fabric and the storage for example). The
CP will subseciuenﬂy set the I/O completion status, for example, as may be returned to the

issuing host, and call FPQueuelOComplete to complete the "upstream" I/O back to its initiator.

CpDispatchIOComplete() indicates to the CP by the FP that a "downstream" I/O initiated
with FPDispatchIO, described elsewhere herein, has completed. The FP has already set the

downstream I/O completion status for return to the CP.

Following are some APIs that may be called from the CP to the FP in connection with
performing various operations described herein.
FPDiscover() to return a list of physical devices which the CP may access for storage

operations.
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FPExpose() to "expose" a virtual device making the device available for storage
operations.
FPHide() to hide a device.
FPAddMapping() to add a new mapping entry to the FP cached tables.
5 FPReplaceMapping() to reuse an existing mapping entry in the FP. An embodiment may
use a locking mechanism to ensure that a mapping entry is not removed while still in use.

FPRemoveMapping() to remove an entry from the FP tables.

FPQueryPendinglOs() returns a list of pending I/Os from the FP.
10

FPAbortPendingIOs() to abort a pending I/O included in the FP

FPQueryStatistics() to return statistics from the FP. Note that the FP may keep and track
statistical information in connection with performing I/O operations. This API may be used to

15  obtain particular information.
FPDispatchIO() may be used to queue a downstream 1/O from the CP for dispatch by the
FP. This API may be used by used by the CP in manually dispatching supporting I/Os, to

maintain metadata state, and to establish backend enforcement, such as administrative or other

20 commands to storage device. The FP sets the downstream I/O completion status and a call to

CpDispatchloComplete() to complete the I/O back to the CP.
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FPGetData() to obtain data from the FP for an I/O request for an I/O queued to the CP.

FPPutData() to set data for an I/O operation for an I/O operation queued to the FP.

FPQueuelOComplete() indicates to the FP that an upstream I/O queued to the CP with
CPQueuelQ() has its completion status set and the FP may complete the upstream I/O back to the

initiator.

In connection with performing the I/O operations, primitives may be used in mapping an
"upstream" I/O operation to one or more "downstream" I/O operations. An embodiment may
include one or more primitives forming a hierarchy in which a higher level primitive may be
implemented by using one or more lower level primitives. The CP and the FP may both perform
all of, or a portion of, the primitives. Other embodiments may include other primitives than
those that are described in following paragraphs. The goal of primitives is to define one or more
basic low-level operations to avoid multiple calls, for example, by the FP or CP in performing an
upstream I/O operation. These primitives should also be as flexible as possible so that the CP
and/or the FP may build other complex higher level operations using these primitives. An
embodiment may have the FP, for example, perform the simpler operations that may be
performed with a primitive and the CP may perform more complex operations requiring use of

multiple primitives.

An embodiment may include an LBA/LUN remapping primitive which is the primitive

used by the FP and the CP to dispatch a received I/O to an LBA on a physical device.
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Additionally, this primitive also includes receiving a return data request and I/O completion
status and, if successful, return success by the FP to the request initiator. Otherwise, control is
passed to the CP for unmapped or unsuccessful I/Os. The LBA/LUN remapping primitive may
be used in performing the virtual to physical address mapping using the Rmap and storage
redirect tables described elsewhere herein. Whether an embodiment includes additional

primitives depends on the functionality included in an embodiment.

For the LBA/LUN remapping primitive, the FP may accept an I/O from a host and
perform a lookup using the mapping tables in the FP based on: whether it is a read or write
operation, the starting and ending LBAs, and the destination or target virtual device ID. If there
is no corresponding table entry, the /O is forwarded to the CP for processing. If the /O is Write
and write operations may be performed for the particular LBA range, or the I/O is a read and
read operations may be performed for the particular LBA range, then the downstream I/O is
issued to the destination device, possibly with a new destination LBA. The foregoing steps are a
portion of the processing steps previously described in connection with Figure 7. Information
about the /O is recorded in the pending I/O lists described elsewhere herein. Information may
include, for example, an exchange ID, that may be used by the CP if needed, for example, in

connection with error processing for status return codes for the I/O operation.
It should be noted that for a read operation from a mirrored devices, the mapping tables

may indicate that the read may occur from any one of N target devices. In this instance, the FP

may implement a read load balancing policy.

56



10

15

20

WO 03/071419 PCT/US02/39232

If there is no response from a downstream device, the DVE may not know until the host
(request initiator) sends an abort or a retry request. At that point, this request may be sent to the
CP for error processing and redispatch a downstream I/O request. Upon completion of an I/O
operation, a message is received from the downstream I/O device(s), the downstream and
upstream pending I/O lists are cleaned up by removing entries as appropriate, and any success or

other status is returned to the requestor/initiator, such as a host.

A second primitive, the I/O striping primitive, may be included in an embodiment that
implements I/O striping. An embodiment may also perform multiple LBA/LUN remapping
operations rather than use this I/O striping primitive since the I/O striping primitive is built on
the LBA/LUN remapping primitive. However, there is more overhead involved in performing
multiple lookups using the LBA/LUN remapping primitive than using the single I/O striping
primitive. Information about the physical location of each of the disk stripes, for example, may
be stored in the storage descriptor accessed by the redirect table with one access of the redirect
table. The I/O striping primitive may be included in embodiments using RAIDO striping, for

example.

This second primitive of I/O striping is an extension of the first primitive, LBA/LUN
remapping in which a set of downstream devices may be specified and LBA computations
performed by shifting and masking, for example, based on the size of the stripes. An
embodiment may allocate processing of I/O operations spanning multiple stripe boundaries to the
CP. It should be noted that a RAIDS5 format may be implemented using this second primitive for

reads. In this instance, an embodiment may be initially written in RATD1 and then, using the CP,
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migrated to RAIDS as it falls out of use. The LBA Rmap and corresponding redirect table
entries may be used to migrate the data back to RAID1 if the data was subsequently modified. In

one embodiment, the write gate functionality may utilize an entry in the storage redirect table, as

- described elsewhere herein, such that a write operation causes a fault to the CP to migrate data

back to a RAID-1 organization to allow the write operations.

An embodiment may also include a third higher level primitive called the write splitting
primitive which is the ability to perform the LBA/LUN remapping of a virtual I/O and
simultaneously initiate a second mapped write I/O to another physical device with the same data.
This primitive may also include the ability to receive and correlate I/O completion status
information from all devices written to and, if all are successful, return success to the request
originator. Otherwise, control may be passed to the CP for processing. The FP performs local

serialization of overlapping I/Os here for proper function.

A mapping table entry may indicate if a write operation to a particular virtual address
needs to be split to one or more additional devices. When this happens, the original I/O is
mapped and reissued using the first primitive. Additionally, one or more additional downstream
I/Os are also issued with the appropriate mapping information for each device obtained from the
mapping table. Multiple linked entries are made in the downstream pending I/O table, one for
each downstream I/O. In one embodiment, the CP may use timer indicators, such as time
stamps, for pending I/Os and the FP may record the fact that an I/O is pending. Time stamps
may be stored with corresponding pending I/O entries when received by the FP. The time stamps

may be used to indicate a relative age of the I/O operation and may be used by the CP in
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coordinating its own functions in connection with outstanding I/O operations. For example,
prior to updating an Rmap entry, the CP determines whether there are any pending I/O
operations referencing the Rmap entry. The CP waits until all pending I/O operations
referencing the Rmap entry have drained prior to updating the Rmap entry. The CP may use the
time stamp associated with a pending I/O operation in performing this coordination by
comparing the timestamp of the pending I/O operation to the current timestamp. This may be
used as an alternative to other techniques, for example, such as keeping a reference count in the

FP for each of the Rmap entries which may require more storage.

A fourth and highest level primitive, the write journaling primitive, may also be included
in an embodiment the extends write splitting (the third primitive) while maintaining a journal of
writes that have occurred to each physical device. The journal, also described elsewhere herein,
may be on media or some form of storage (for persistent resynchronization functionality). The
journal may be fixed in size and writes to a full journal may be forwarded to the CP for
processing. Typically, the CP will then “swap out” the full journal with an empty one so that the

FP can keep running.

The destination of a write splitting operation may be either a non-journalling device or a
write journal device. A write journal may be characterized as a portion of media where a record
is made of each write operation including, for example, a copy of the data, destination device and

location information. Once the journal fills up, the write operation is transferred to the CP for
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processing. It should be noted that each FP may have its own journal to avoid locking issues

between FPs.

A portion of the information needed to implement each of these primitives may be stored
in the redirect table and the storage descriptor, such as related to the physical locations and
policies of each system. Thus, when an incoming I/O is received by the FP, the FP may perform
the I/O operation, for example, by dispatching a read or write operation using the first primitive
above. If an embodiment includes striping, the FP may perform this operation using the second
primitive. Similarly, if the I/O operation is to a device with mirroring, the write splitting
primitive may be used. In an embodiment that includes the foregoing 4 primitives, an FP may
support operations such as, for example, LUN pooling, multi-pathing, snapshots, on-line
migration, incremental storage, RAIDO using I/O striping, RAID1 using the write splitting
primitive to implement synchronous replication with a fast resynchronization, RAID10 using the
I/O striping and write splitting, asynchronous ordered replication (AOR) using the write splitting

and write journaling primitives, and others.

It should be noted that the CP may support operation of any functions not supported or
performed by the FP, such as any optional primitive functionality of primitives 2-4 above not

included in an embodiment.

An embodiment may implement primitives in any combination of hardware and/or
software. One embodiment may implement the foregoing primitives in silicon or hardware to

maximize speed. This may be particularly important, for example, in connection with FP
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processing since an embodiment may allocate to FP processing those I/O operations which are
commonly performed. The processing typically associated with the FP may be characterized as
"light weight" processing operations as well. An embodiment that allocates to the FP light
weight processing operations associated with primitives and is interested in increased

performance may choose to implement primitives completely in hardware.

It should be noted that in connection with performing I/O operations using the tabies
described in connection with Figure 11, such as the storage redirect table, any vendor's storage
descriptor may be used. In this particular embodiment, the storage descriptor information, such
as an indicator for a particular vendor as to whether RAIDO or RAID1 and the like are supported,
may be included in the storage redirect table 284.

In connection with the FP, caching techniques may be used such that the FP caches only
a portion of the LBA map table 282 as needed. Any one of a variety of different caching
techniques and policies may be included in an embodiment of the FP. For example, in one
embodiment, the FP may implement an LRU or "least recently used" policy for determining
which portion of the LBA map table to displace on loading a newer portion of the LBA map
table. When a first accesses made to a particular volume segment or VSEG, the associated Rmap
and redirect tables may be loaded into cache local to the FP. In one embodiment, the storage
redirect table associated with the VSEG may be loaded along with an "empty" Rmap table that
includes a single extent. Portions of the Rmap are loaded in as needed in connection with
performing mapping for an I/O operation. The storage redirect table in its entirety is loaded on

the first fault within the FP.
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As described elsewhere herein, the LBA map table 282 is formed of one or more extents.
The number of extents that are currently loaded for a particular FP may be referred to as the
working set or size window. As known to those skilled in the art, a working set algorithm that
may be used in connection with page replacement may be used in determining when to increase
or decrease this size or window associated with the working set algorithm as used with the FP

cache. It should be noted that a single extent is the smallest unit within an Rmap table.

Referring now to Figure 19, shown is an example of an embodiment of the mapping
tables at initialization or start-up within the FP. Initially, the first time a VSEG or volume
segment is loaded, the storage redirect table and an Rmap table having a single extent are loaded
into the FP as shown in Figure 19. As complex operations are performed, such as snapshots,
migrations and the like, the number of extents within the Rmap table may increase as well as the
number of entries in the storage redirect table in accordance with the different states of the
different devices included in the computer system. For example, in connection with performing
a migration, within the LBA map table there may be three extents to represent the states of
virtualization. In particular, a first state of a first entry may represent those portions of a device
that have already been migrated from one device to another, a second state of a second entry may
represent those portions of a device that have not yet been migrated, and a third state may

represent those portions of a device that are currently in the process of being migrated.

In connection with a snapshot operation, for example, there may be two states

represented in the storage redirect table. A first state of a first entry may be associated with
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those portions on a device that have not yet been pushed to a snapshot device and a second state
of a second entry in the storage redirect table may be associated with those portions of a device
that have already been pushed to the snapshot device. A DVE may implement a copy on write
operation in connection with performing a snapshot. Generally, a snapshot involves mapping
two virtual volumes initially to the same physical storage. When the original virtual volume is
subsequently written to, the old data that was "snapshot" is ‘copied from the original physical

storage to a backing or snapshot storage device.

In connection with Figures 20 and 21, what will now be described is a sample snapshot

operation using the previously described VSEG mapping tables, the Rmap and redirect tables.

Referring now to Figure 20, shown is an example 520 that includes two virtual volumes
Vand V snap. V snap is a snapshot of the virtual volume V at a particular time T. At time T, all
of V's Rmap entries in the table Rmap]1 reference the redirect tablel entry zero. The redirect
tablel entry zero indicates that only incoming I/O operations that are "read only" are directed
towards P1. Additionally, all of V snaps Rmap?2 entries reference redirect table2 entry zero also
causing all "read only" operations to be mapped to physical device P1. V snap is then equal by
definition to the virtual volume V. Physical volume P2 is initially unused. When a subsequent
incoming write I/O operation is made to volume V as indicated by the Write I/O arrow 521 by
Rmap 1 to a particular LBA address range, the FP faults to the CP since the Rmap1 entry for the
corresponding logical block address (LBA) range includes zero identifying entry zero of the

redirect tablel.
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Referring now to Figure 21, illustrated are subsequent steps involved in performing the
snapshot operation in connection with the write I/O operation previously described in connection
with Figure 20. Subsequently, the CP then pushes the corresponding disk extent portion for the
I/O operation corresponding to the write I/O from physical device P1 to P2 as indicated by arrow
522. The CP then changes V snap's Rmap?2 entry, as indicated by element 524, from a zero to a
1 now indexing into the first entry of redirect table2. Redirect table2 entry 1 indicates that I/O
operations are directed towards physical device P2 and this is for read only access thereby
preserving V snap's view of the original virtual volume V data from time T. The CP also
changes V’s Rmap1 entry for the corresponding disk extent of the write I/O operation to identify
entry 1 of redirect table 1 as indicated by element 526. Redirect table 1 entry 1 indicates that
I/O operations are directed towards physical device P1 and that read and write operations may be
performed to device P1. This particular write I/O operation, for example, is allowed to proceed
onto device P1 as indicated by arrow 528. Additionally, any subsequent writes to that same

extent in which the write I/O operation has previously been made are also allowed to proceed.

In the foregoing description, redirect table entry zero, such as redirect tablel entry 0,
indicates the state of those portions of the disk that have not yet been pushed. Redirect tablel
entry 1 is used and associated with those extents that have already been pushed to the snapshot
device. If a write is made to a particular LBA, an entry in the Rmap table for the corresponding
variable length extent is modified from a zero to a 1. It should be noted that as different write
I/O operations are performed, a variable length extent may be formed in the Rmap table of a size
equivalent to a particular write I/O operation. As additional data is pushed with subsequent

copies on write operations, there may be neighboring extents within the Rmap table that may be
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coalesced or merged to form a single extent. Thus, as more write operations are performed in
connection with the snapshot, there exists fragmentation within a particular embodiment of an

Rmap table.

An embodiment may have a cleanup process in connection with this fragmentation of the
Rmap table. In one embodiment, a completion thread may be executed and started when a
snapshot actually begins. This completion thread, for example, may run as a background process
within the FP and be scheduled so as not to interfere with other operations within a computer
system. Generally, the completion thread may start at the top of the Rmap table at the beginning
of an associated LBA range and push those portions associated with each extent that have not
already been pushed to V snap. This allows for a closing up or coalescing of holes that may be
created by write I/O operations. As the completion thread works its way through the Rmap table,
it performs writes of any portions of the corresponding VSEG address space that have not been

already pushed to the snapshot device.

At any particular time, the completion thread may be at a particular point P within the
virtual address range [0... LBAMAX] as represe;nted by an Rmap. At this point P, the state of
the LBA range up to point P may be represented in an Rmap by a single entry or single extent.
This single extent corresponds to that portion or entry in the redirect table indicating that the
data had already been copied to V snap. The source, or V's mapping tables, reference the source
storage which in this case is P1 either through a read only or a read write redirect indicated by
the LBA range in the Rmap1 depending on whether the snapshot data has already been pushed to

the destination or not. The target or snapshot device's mapping tables, which in this example are
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Rmap?2 and storage redirect table 2, indicate either the source storage P1 if the snapshot data has
not yet been pushed, or the destination storage P2 if the data has already been pushed to the

snapshot device.

As part of any cleanup or compression process described herein, entries in the storage
redirect table may be combined if duplicates, and may also be removed once an operation is
complete such that there are no longer any portions of a device in the state represented by a

particular eniry.

Mappings may be modified synchronously prior to the host completing. In the instance
where multiple VE’s write to the same source volume, only one of them at a time performs write
operations. In the VE “fault handler”, each VE must acquire a lock (an oplock for the LBA
range of interest, as described in more detail elsewhere herein) and in doing so, will prevent
“concurrent faults” to the same LBA range on other VEs. The first VE that acquired the lock
handles the fault, pushes the snapshot data, and updates the LBA Rmap. All subsequent VEs,
upon inspecting the LBA rmap, see that the data has already been pushed with the LBA Rmap
also updated. The particular locking mechanism used in connection with this as well as other
types of accesses is described elsewhere herein. As described elsewhere herein in more detail,
the mapping tables are included in metadata that may be subject to modification by one or more
processes in the computer system of Figure 1. A locking technique may be used in connection

with synchronizing accesses to shared metadata.
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Referring now to Figure 22, shown is an example 540 of how an incremental of a virtual
volume may be implemented in connection with using the Rmap and redirect tables as included
in the VSEG described elsewhere herein. The incremental of a virtual volume is similar to a
snapshot operation by involving initially mapping two virtual volumes to the same physical
storage. However, unlike the snapshot operation described previously, subsequent modifications
to an original virtual volume may be stored in a private backing store rather than on an original
physical volume. With an incremental operation, the original physical volume becomes read
only. The fact that an original physical volume is now read only allows multiple incremental
virtual volumes to be based on the same original physical volume all of which continued to be
read write without adversely impacting each other. Incrementals may be used to allow ‘multiple
instantaneous copies of a single virtual volume to seamlessly diverge in time. Although the
example 540 that will be described shows only a single incremental virtual volume, any number

of incremental virtual volumes may be included in an embodiment.

It should be noted that in connection with Figure 21, redirect table 2, entry P2 may be
read/write rather than read-only allowing data to be directly written to the device P2. This

allows an embodiment to utilize the incremental approach on the destination of the snapshot.

The incremental virtual volume in this example is denoted as V Inc and the original
physical volume is denoted as V Base. When an incoming write operation is directed to an LBA
having a corresponding Redirect tablel entry of 0, as indicated by the write I/O operation to 545,
a fault to the CP occurs because it is indicated by entry 0 of Rmap] that only read operations are

allowed to device P1 as may be performed by the FP. For all other operations, fault to the CP.
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The CP then modifies the entry in Rmap1 table as indicated by entry 545, from a zero to a 1, to
allow read write operations to occur to device P2. By performing this operation of modifying the
entry in the Rmap1 table from a zero to a 1, the write operation is "redirected" via the redirect
table 1, to physical device P2. The write operation is then allowed to proceed as indicated by

arrow 548.

Using the foregoing techniques, V Inc and V Base are initially set to the same physical
storage. When an incoming write I/O operation occurs, the new data is rerouted to a second
physical device. In connection with incremental operations, old data from V Base is not pushed.
Rather, any new or incremental data is simply rerouted to an incremental or second device which

in this case is indicated by VInc.

- Referring now to Figure 23, shown is an example 560 using the Rmap and redirect tables
of a VSEG in connection with performing an online migration. An online migration operation of
physical storage for a virtual volume involves the use of a copy agent that may be included in the
CP and three entries in the storage redirect table indicated in the redirect table 1 in this example.
Entry 0 of the storage redirect table 1 indicates that for device P1, read and write operations are
enabled. Entry O represents a state of data that has not yet been migrated from device P1 to P2.
Redirect table éntry 1 represents a state of data which is in the process of currently being
migrated. Redirect table 1 entry 2 represents a state of data that has already been migrated.
Using these three states of the redirect tablel, the number of extents indicated by Rmap 1 may
include at most three extents. The first extent are all of those portions of the Rmap 1 table

indicated by entry 2 of the redirect table corresponding to data that has already been migrated.
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Data in the second extent represented by redirect tablel entry 1 may be referred to also as the
copy barrier which indicates that portion of the data which is currently in the process of being
migrated. Any data subsequent to that in a particular LBA range is indicated as being associated

with redirect table entry zero representing that data which has not yet been copied.

It should be noted that the size of the second extent, for example as indicated by entry

562, may represent the granularity of the data that is currently being copied or migrated.

Referring to example 560, there is a single virtual volume V and two physical volumes
P1 and P2. The CP is currently migrating data from physical volume P1 to P2. The CP is
responsible for establishing a copy barrier range by setting the corresponding disk extent to
having a redirect table entry of 1 indicating a read only operation for device P1. This is indicated
by the entry 562. The entry 562 has a redirect entry 1. The CP then copies the data in the copy

barrier range from device P1 to P2 as indicated by the arrow 564.

Referring now to Figure 24, the CP may then advance the copy barrier range by 1)
setting the rmap entry 562 to 1, 2) copying the data from P1 to P2, and 3) setting the rmap entry
566 to 2. Setting a corresponding disk extent indicated by the entry 562 in the table to refer to
redirect table entry 2 causes read and write operations to proceed to the second device P2. Any
data that has already successfully been migrated to device P2 is accessed through table entry 2.
Any data that has not yet begun being migrated to the physical device P2 is accessed through
table entry zero with read write operations to P1. Data that is in the process of being migrated

within the copy barrier range is accessed through entry 1 with read only operations to device P1.
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This means that any accesses before or after the copy barrier range, as well as reads to the copy
barrier range itself, are satisfied through the FP to P1 or P2. Only a write operation being
performed to the copy barrier range itself is actually faulted to the CP to be later retried once the
copy barrier range moves to a subsequent extent of the Rmap. The migration is complete when
the entire Rmap1 references entry 2 of the redirect tablel at which time entries zero and 1 may

be deleted or removed from the redirect tablel.

It should be noted that in connection with pushing data for a snapshot or a migration, the
granularity of data that is actually copied may vary in accordance with each particular
embodiment. In one embodiment, for example, the amount of data pushed in a single instance
may be a 64K byte size. Generally, when an incoming I/O operation occurs, it's size may be
"bounded" in accordance with a granularity associated with data copy operations. In other
words, even though a write operation may be, for example, writing a 10K byte block of data, the
smallest amount of data that may be copied in connection with a snapshot or a migration may be
a 64K byte block of data. Thus, the 10K byte write I/O operation may be bounded within a 64K
byte block of data that is actually copied. The granularity size is 64K bytes in this example and

may vary in accordance with each particular embodiment.

As described herein, data such as metadata, that may be used by FPs as well as by CPs
within a single DVE may need to be coherent. Additionally, the same global metadata may be
accessed for update by multiple DVEs also requiring synchronized access. Different types of
synchronization and/or locking mechanisms may be used in pefforming intra-DVE and inter-

DVE synchronization to manage the data coherency between copies of metadata.
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Within a DVE, a single CP may manage one or more associated FPs to maintain CP and
FP data coherency and synchronization, for example, in connection with metadata associated
with a virtual volume descriptor, such as the RMAP and storage redirect tables. The CP may
communicate with the one or more FPs and, for example, request that one or more FPs remove
entries from their local FP caches. The FP and the CP may communicate using one or more
APISs as also described elsewhere herein in connection with performing metadata accesses. In
one embodiment, only CPs may modify global metadata that may require the CP to gain
exclusive access over a portion of the metadata using a locking technique described in more
detail elsewhere herein. Accesses to metadata may also involve reading, for example, which

does not necessarily require exclusive access by a particular CP.

It should be noted that within a single DVE, there may be a plurality of CPs. However, an
embodiment may have only a single CP active at a time. Other CPs may be included, for
example, for redundancy and fault tolerancy in case of CP or other failures. Accordingly, a
single DVE may have a one-to-one relationship with a CP at execution time. It should be noted
that this relationship may change over time, for example, when a CP fails. In discussions that
follow, a CP may be used interchangeably with a DVE for purposes of this one-to-one
relationship. For example, the foregoing paragraphs state that DVEs may communicate using a

messaging protocol which means that CPs of each of the DVEs may communicate.

It should be noted that an embodiment may select to minimize the number of CPs such

that there may be reduced inter-CP communication, for example, in connection with performing
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operations requiring cluster-like communications between CPs as described elsewhere herein.
An embodiment may include multiple CPs within a single DVE to share the load within a single

DVE, but from a viewpoint external to the DVE, there may be a single CP.

Referring now to Figure 25A, shown is an example of an embodiment 600 of how
metadata may be distributed in an arrangement in the computer system of Figure 1. It should be
noted that although only a single DVE 610 is shown, an embodiment as described elsewhere
herein, may include multiple DVEs each having a plurality of CPs and associated FPs. Also
included in the embodiment 600 is a set of global metadata and oplocks 602. Included in the
store 602 is global metadata which is maintained coherently between each of the CPs, for
example, in connection with performing a write of particular metadata by a CP. Oplocks, which
are described elsewhere herein, are the mechanism by which access to global metadata is
synchronized and controlled to maintain data coherency of the metadata being accessed, for
example, by multiple CPs in connection with write metadata operations. Each of the CPs, such
as 604a and 6062, include may cache a local copy of metadata which may be a portion of the

global metadata.

Each of the CPs may be associated with one or more FPs, for example, such as CP 604a
may be associated with two FPs, 604b and 604b. Each of the FPs may also maintain in a local
FP cache a portion or a subset of the metadata. In one embodiment, the FP caches the storage
redirect table and a portion of the Rmap table that the FP is currently using. Caching techniques

that may be used in an embodiment of an FP are also described elsewhere herein. The CP
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maintains cache coherency between the FP cache contents and the contents of the CP's own

cache.

The arrangement 600 in Figure 25A illustrates a hierarchical data arrangement in
connection with metadata that may be included in an embodiment. The CP and its associated
FPs maintain master/slave vertical coherency from the CP to the FP. In other words, any
mappings found in the FP mapping tables are guaranteed to be valid by the CP which itself has
populated the FP tables. Essentially, the FP mapping table is a cache or a subset of a portion of
the information available within the CP. Additionally, CPs, of which there may be many, for
example, in a distributed system, may maintain peer-to-peer horizontal coherency between
themselves. In other words, they agree cooperatively using, for example, cluster semantics on
what mappings are valid. In one embodiment as will be described herein, membership
management and distributive techniques may be used in connection with the cluster-type
environment. Each CP may be thought of as having a globally coherent copy of a subset of an
authoritative mapping table and each FP as having a locally coherent subset of the table
maintained by the CP with which it is associated. CPs may communicate with each other when
necessary and scale horizontally in a symmetric distributed system. Each FP commuﬁicates with

its associated CP. The FPs form an asymmetric distributed system off of each of the CPs.

As also described elsewhere herein, only the CP in one embodiment modifies the
metadata information. The CP handles all I/O errors, all coherency and synchronization with
other CPs, through the use of metadata and all inter-volume coherency. All errors returned to a

host originate from the software CP. The FPs are not involved in synchronization or coherency
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issues in connection with the metadata. The CP, in direct contrast, is intimately involved in the

synchronization and coherency of the metadata.

Intra-DVE locks are used to ensure only one thread within a DVE is modifying or
accessing global metadata at a time. Inter-DVE locks are used to ensure that only one DVE is
modifying or accessing a portion of global metadata at a time. Therefore, true mutual exclusion,
from all threads on all DVEs, is obtained when a thread acquires both the intra-DVE and inter-

DVE locks protecting a piece of global metadata.

In one émbodiment, the intra-DVE locking technique may use mutual exclusion thread
locks that may be included in a particular platf:orm and may vary with embodiment in accordance
with the functionality provided. Intra-DVE locks may be based upon metadata apportioned
using the variable length extents described, for example, in connection with the Rmap table and
the storage redirect table which are divided into variable length extents in RAM as used with
mapping. The intra-DVE locks may be associated with each portion of metadata accessible for
global access to maintain control of metadata within a DVE. As described elsewhere herein,
there may be many processes within a single DVE competing for a single lock, such as sweep
threads, migration threads and the like, all executing simultaneously. The intra-DVE locking
mechanism is local to each DVE and may be stored in volatile storage, for example, such as
RAM, rather than a form of persistent non-volatile storage, such as on media or disk, for use in
connection with system failure and recovery operations. In one embodiment, critical sections
may be used to implement exclusive access for intra-DVE locking. The critical sections may be

used to lock a range of an rmap between contending threads. Other embodiments may use other
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techniques in connection with implementing an intra-DVE locking mechanism that may vary in

accordance with each embodiment.

Referring now to Figure 25B, shown is a more detailed representation of one embodiment
of the global metadata and oplocks included in the global metadata and oplocks store 602.
Included are examples of some of the inter-DVE oplocks and metadata 622. It should be noted
that as described elsewhere herein, oplocks may be used as an inter-DVE locking mechanism in
contexts fof synchronization without being associated with metadata, such as with mirror write
serialization operations. When a CP wants to modify a portion of metadata, the CP first acquires
the corresponding intra-DVE lock and then acquires the inter-DVE oplock and corresponding
global metadata. Bach piece of data that is globally accessed by multiple DVEs may have an

associated oplock.

Included in the global storehouse 602 may be, for example, LBA Rmap table metadata
and oplocks 626a, storage redirect metadata and oplocks 626b, journal metadata and oplocks
626¢, and global cluster membership, oplock and ownership 626d. The journal metadata and the
global cluster membership are non-volatile. As described herein, a portion of data may be either
volatile or non-volatile. Associated with each portion of data may be an oplock that is either
volatile or non-volatile. Non-volatile data is recorded in some form of permanent storage that
retains its state, for example, when there is a failure. For non-volatile oplocks, ownership

information is recorded in an oplock journal also stored in metadata.
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The LBA Rmap or rmap table metadata and oplocks 626a includes rmap metadata and
associated oplocks. As described elsewhere herein, rmap metadata is non-volatile metadata
because upon failure, a node performing clean-up operations needs to know, for example, which
portions of an LV have already been migrated. For non-volatile oplocks, ownership information
may also be recorded indicating which DVE is the current "owner" that has acquired the oplock.
This may be used in connection with performing data recovery operations described elsewhere

herein.

The journal metadata and oplocks 626¢ includes journal metadata and oplocks. A single
journal may be associated with each DVE describing or journaling the operations performed by,
or in the process of being performed by, each DVE as known to one of ordinary skill in the art.
The journals may be stored in global storehouse 602 in non-volatile storage since these journals
may be played back and used in performing data recovery. For example, a first DVE may "clean
up" after a second DVE goes off-line. The first DVE may walk through the operations the
second DVE was in the process of performing. Once the first DVE is done, the journal
associated with the second DVE may be released. If the second DVE comes on-line/alive, prior
to the first DVE completing the clean-up, the second DVE will have to wait until its journal is
released by the first DVE. If the journal is not released in a timely manner, the second DVE
may evict the first DVE from the cluster, and inherit its own journal back, as well as that of the

newly failed first DVE.
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As described elsewhere herein, the global storehouse may also include oplocks used for
inter-DVE synchronization which may or may not be used in protecting associated metadata.
The global storehouse may also contain other global metadata protected using other types of
inter-DVE locking mechanisms. It may also contain global metadata that is not protected by a
lock, for example, when machine instructions accessing the global metadata implicitly lock the

data.

It should be noted that the global metadata and the oplocks 602 may be étored in any one
of a variety of different locations. For those oplocks that are non-volatile, a persistent storage
location may be used to store the oplocks, ownership and associated information used in
connection with performing data recovery operations. The global metadata and the oplocks may
be stored in any location and may be provided by a service, for example, in connection with
APIs, to modify and access the data. It should be noted that within a particular embodiment of a
computer system, there may be multiple information stores including multiple copies, as well as

different portions of, the global metadata and oplocks 602.

Communications between DVEs in which there is one CP active per DVE, such asin a
peer-to-peer relationship, is described in more detail elsewhere herein. What will now be

described is the process of coherently maintaining data between a CP and each of its FPs.

In the process of, for example, removing or modifying an entry from a global mapping
table, each CP must insure that each of its slave FPs have already removed the entry from their

own FP tables after obtaining the corresponding locks, such as intra-DVE locks and inter-DVE
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oplocks. Note that adding entries to an FP mapping table can be done as needed since the worst

case is that theré is no matching entry and the I/O would be handled by the CP.

The CP may coherently modify an FP table entry from an upstream source to a
downstream destination by first deleting the old FP table entry, such as an entry, for example,
may be that used in connection with an RMAP or the storage redirect table. By deleting the old
FP entry, new I/Os are prevented from being started with the old mapping. Any subsequent
initiations or accesses to this particular entry from the upstream source will be forwarded to the
CP as a fault will occur in the FP since there is no current entry. Next, the CP may query the FPs
pending I/O list to determine if there are any I/Os that are outstanding on the downstream
pending I/O list for this particular FP entry. If there are any pending I/Os, the I/O operations
may be aborted and the entry in the pending I/O table may also be deleted or removed, or the CP
may wait for those operations to fully complete. This prevents pending I/Os from resuming or
henceforth completing using the old mapping. The CP may delete its own copy then of a
particular entry in a table. The CP may then further synchronize with the other CPs, such as
using messaging, to make the new CP entry valid and modify, for example, the global metadata
using the inter-DVE oplocks. Subsequently, the CP modifies its own copy of the data and

traditionally updates any copy of this particular table entry in each of the FPs.

There is a potential problem when a mapping is changed while I/Os are outstanding, for
example, when an I/O is dispatched to a downstream device as a result of a mapping. The /O
has not yet completed but the mapping has changed and the mapping table entry is deleted. This

problem may occur because there is no positive acknowledgement to an abort command and the
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DVE may not be sure that the I/O is not still being processed. This problem may be referred to
as the ghost I/O probletﬁ in which I/Os, such as write operations, may be initiated by a DVE but
not complete prior to a DVE going off line, or being unavailable. An embodiment may attempt
to prevent such I/Os from completing. When a DVE failover occurs, an embodiment may
attempt to abort ghost I/Os using any one or more of a variety of different techniques having
different associated costs and conditions. For example, an embodiment may abort all I/O
operations for a particular target device, or initiated by a particular device for a specified time
period. This may be performed by coordinating with other DVEs to stop I/O operations in
accordance with certain conditions. Subsequently, messaging, as described elsewhere herein,
may be used to coordinate a restart of sending I/O operations among DVEs. If any I/O
operations have been aborted that should not have been, the initiator may subsequently detect the

abort and reissue the I/O operation. Other techniques may be employed in an embodiment.

In one example in connection with accessing the global metadata and the oplocks, a host
may issue a write I/O requést causing a fault to the CP. The CP may then obtain exclusive
access to a particular portion of the global metadata by obtaining the intra-DVE and inter-DVE
locks needed. As will be described in more detail elsewhere herein, the CP communicates to

those CPs using only the particular portion which the first CP wishes to lock.
Portions of metadata may have an associated inter-DVE oplock. Additionally, there may

be a list of those nodes that maintain a copy of the metadata locally in memory of all of the

DVEs that are caching that particular metadata. In order for a CP to modify a particular piece of
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global metadata, it obtains the corresponding oplock for that metadata by obtaining permission

through messaging techniques described elsewhere herein.

Included in the global metadata 602 are RMAPs and storage redirect tables each having
associated volatile oplocks. One point to note is that the LBA RMAP or RMAP tables of a
volume segment descriptor include variable length extents when represented in memory.
However, the metadata RMAP is divided into fixed size portions or chunks rather than variable
length extents. Similarly, each oplock or locking mechanism is associated with a fixed
corresponding RMAP portion. The variable length extents included in an RMAP, for example,
as may be maintained within a CP or an FP may be mapped to one or more fixed size chunks
within the global metadata. In order to modify, for example, RMAP information associated with
a variable length extent that stands three chunks or portions, the CP obtains the volatile oplocks

for the fixed size portions associated with the corresponding metadata.

Referring now to Figure 26, shown is an example 640 of how a variable size extent may
map to one or more chunks or portions. The illustration 640 shows an RMAP 646 that includes
three extents of variable lengths. Extent noted by element 642 may need to be accessed by a CP,
for example, in connection with modifying the contents of the RMAP referring to a particular
entry in the storage redirect table. In order for a CP to modify the value denoted in the RMAP
646 by element 642, the CP obtains access to the oplocks corresponding to the portion 644. The
portion 644 represents three fixed size segments or portions each having their own associated

oplock. The CP obtains each of the three oplocks associated with the portion 644 in order to
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modify the global metadata corresponding to portion 642 which it may store locally within the

CP itself.

The boundaries of a particular oplock may be referred to as lock boundaries. In the event
that a CP wishes to obtain the lock for a portion of metadata that does fall evenly on an oplock
boundary, the CP may obtain the oplock to the next successive boundary including the LBA

range desired.

Referring now to Figure 27, shown is a state transition diagram 700 of the different states
that may be associated with a particular oplock within a particular DVE. Associated with each
of the different oplocks for each particular piece of metadata, a list of DVEs in a particularly
relevant state may be maintained. This may be stored in volatile memory local to each DVE.
For example, in connection with performing a write operation, it may be desirable to know who
is sharing or using a particular portion of metadata. When a DVE initially boots or starts up, it
progresses from the boot to initially the uninterested state where it is not part of the cluster and
does not care to know or be communicated with regarding metadata modifications. The DVE
may then want to join the cluster and progress to the joined state. When in the joined state, a
DVE is part of the cluster but has not yet begun using or accessing any of the metadata the
oplock may be protecting. From the joined state, a DVE may want to move to the sharing state
to indicate that they are caching or accessing metadata that the oplock may be protecting.
Sharing, for example, may be associated with performing a read operation and accessing that part
of the metadata. From the sharing state, a DVE may want to acquire the particular oplock or

other type of lock associated with that particular metadata for example in performing a write of
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the metadata associated with, for example, an RMAP table entry. This DVE may then progress

to the acquired state.

In order to communicate with other DVEs in connection with transitioning between these
different states, different messages may be exchanged or broadcast between DVEs when a DVE

wants to change its state, such as, for example, acquire a lock.

In one embodiment associated with the foregoing states, a "join" list and a "share" list
may be maintained locally in each DVE in volatile memory. Each DVE may use its own list, for
example, in determining to what other DVESs to send an acquire message request. AsaDVE
changes state, for example, from "joined" to "shared", the DVE may broadcast state change

messages to other DVEs in the "join list".

The DVEs may communicate using the VI or Virtual Interconnect messaging protocol
;Nhich is an ordered reliable datagram messaging mechanism. This is only one type of
messaging protocol and mechanism that may be used to facilitate communications between each
of the DVEs in its cluster-like environment. Messages that may be included and exchanged
between different DVEs may include a "join" message notification when a DVE wants to join the
cluster protocol. There may also be a corresponding complementary operation of "leave" for
when a DVE leaves the cluster indicating that the DVE is no longer interested in information
regarding the shared metadata. When a particular DVE begins caching data, the DVE may enter
the sharing state and accordingly send a corresponding share message to other DVEs. Similarly,

a complimentary unshare operation may be exchanged between DVEs when a particular DVE
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ceases caching metadata associated with a particular oplock. Acquire may be a message sent
from one DVE to other DVEs indicating that the DVE sending the acquire message wishes to
acquire the oplock for a particular metadata. Release may be a message exchanged between CPs
to indicate that a particular CP that is sending the message has released the metadata from
update. It should be noted that an embodiment may not include an explicit release message.
Rather, an oplock may be considered taken by a first requester until it is next requested and
acquired by a second requester. Alternatively, the first requester may release the oplock when the
first requester is done with the metadata by issuing an explicit release message. An example of
the former technique for acquiring/releasing an oplock is described in more detail elsewhere

herein.

There may be also be acknowledgment messages, such as a positive acknowledgment and
a negative acknowledgment message included in an embodiment. One of the acknowledgment
messages may be sent from a CP for example in response to another CP’s request to acquire a

particular oplock to modify metadata.

An oplock is used cooperatively among the one or more DVEs for inter-DVE coherency
and synchronization of metadata. An oplock is hosted for example on the DVE that acquired it
most recently. That DVE can often reacquire the oplock with a simple write to a private journal
to take the oplock or reacquire the oplock. If the oplock is volatile, thefe is no need to write to a
journal. A DVE may communicate with the oplock’s DVE host and thereby becoﬁe the

oplock’s new DVE host.

83



10

15

20

25

WO 03/071419 PCT/US02/39232

What will now be described is one embodiment of the inter-DVE and intra-DVE oplock
structures. In the global storehouse 602, the global cluster membership list may be denoted as a
"jlist" of all the nodes (DVEs) in the cluster having an associated lock referred to as the "jlock".
Also included in the global storehouse may be an eviction list or "elist" to which DVEs are
added when they are to be evicted, such as when a first DVE does not receive an
acknowledgement message from a second DVE in response to a message from the first DVE.
The first DVE may conclude that the second DVE is offline and begin cluster eviction and

recovery.

In one embodiment, an inter-DVE lock associated with the global cluster membership list
626d may be represented as:
Jlock -- oplock for jlist
Jlist - “join broadcast list” (lists all nodes) This is the global cluster list or
membership list of DVEs.
elist -- “eviction list”
elock --oplock for eviction list
It should be noted that an embodiment may use a different locking mechanism besides

oplocks in connection with the locks for the jlist and the elist referenced above.

As described in more detail elsewhere herein, an oplock may be a particular lock
optimized for distributed access where some locality of reference exists. An embodiment
may use oplocks for inter-DVE locks. Oplocks may be volatile or non-volatile. If an oplock
is volatile, there is no backup media copy. Alternatively, if an oplock is non-volatile, there is
a backup copy stored, an identifier as to which DVE is the owner, and a journal of oplock

operations. If anode goes off-line such as in the event of a disaster, another node inherits the
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off-line node's journals and performs any clean-up needed for any non-volatile oplocks, such
as may be associated with mirrored writes. In the event that a DVE goes off-line, its volatile
locks are automatically released by virtue of the protocol described elsewhere herein in that a
DVE acquires a lock by obtaining permission from all other DVEs in the sharing state for the

associated data.

Oplocks may be used as an alternative to other locking mechanisms, such as critical
sections, semaphores and the like. The use of oplocks keeps a list of all readers. When one
DVE decides that it needs to write to the commonly accessed data, it obtains permission from
all other readers first. In other words, with oplocks, only writers need to acquire and release
the locks. This policy is in contrast to an embodiment using an alternative locking
mechanism, such as a critical section, in which both readers and writers acquire and release a
lock when accessing the shared resource to ensure exclusive access to a shared resource for

both reading and writing.

Additionally included in the global storehouse 602 as described elsewhere herein are
the oplocks for each piece of metadata, such as a fixed portion of the Rmap table
which include an indication of who is the acquirer or owner of the oplock. It should
be noted that the acquirer or the owner of the oplock may also be referred to as a

host of the oplock.

Each of the non-volatile inter-DVE oplocks may be represented by the following:

owner (current and recent, if known)
slist -- “share broadcast list” (all joined DVEs)
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alist -- “acquire broadcast list” (all sharing DVEs)
dirty -- indicates dirty (unrestrictive) metadata needs to be flushed

Note that s/ist and alist may be maintained privately (per-node), in-memory and per-
oplock. Current owner is the present owner of the oplock. Recent owner may refer to a previous
owner, as in the instancé where a node goes down and the current owner is performing cleanup
for the recent owner. In the foregoing, Jlist is the list of all possible nodes in the cluster. “join”
requests are broadcast to the DVEs in this list. Slist is the subset of nodes which have actually
“Joined” the cluster to which “share” requests are broadcast. Alist is the further subset of nodes
which are actually “sharing” access to metadata. “acquire” requests are broadcast to these
DVEs. jlock is a lock that protects access to the JIist. It should be noted that volatile oplocks
may be represented by a slightly modified version of the above structure described for non-
volatile oplocks. The volatile oplock structure may be the above structure without the ownership

information.

An update to data associated with an oplock may be characterized as unrestrictive (dirty)
or restrictive.  With a restrictive update, a requesting node acquires the associated lock, notifies
all other nodes of the update. All other nodes stall the I/O operations until the update is
performed. With an unrestrictive update, I/O operations are not stalled. The update may be
performed by each node at some point, for example, as performed by a background task update
when there are idle processor cycles. Generally, an unrestrictive acquisition and update may be
associated with locks for metadata which grant new or additional authority. A restrictive
acquisition and corresponding restrictive update may be associated with locks for metadata
which restrict or take away authority. For example, an Rmap update may be a restrictive update

performed by the CP such as when an Rmap entry is updated to further restrict the types of
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operations that may be performed by the FP (e.g., change from "FP can perform R and W
operations" to "FP can only perform read operations"). In contrast, an unrestﬁctive Rmap entry
update may be, for example, a modification by the CP of an entry to increase the types the
operations that the FP may perform (e.g., change from "FP can perform only read operations" to
"FP can perform read and write operations"). With restrictive updates, all copies of associated
data as referenced by all CPs are invalidated and replaced with the new updated version prior to

performing additional I/O operations.

For example, consider an unrestrictive update by node B in which node B must obtain
node A's permission to acquire the lock. Node B sends a message to node A requesting to
acquire a lock. Node A sends an acknowledgement to node B. Node B updates the metadata and
this is a restrictive update. Node B sends node A a message regarding the unrestrictive update of
the metadata. Node A records the unrestrictive update in node A's journal and sends an
acknowledgement back to node B. Node A then purges all outdated copies of the metadata as

time allows.

Following are pseudo-code representations of processing steps as may be performed by a
DVE when the DVE is in a particular state as described elsewhere herein in connection with
Figure 27 when different messages are received by the DVE.
Boot state
on “join” received, respond with “nak” (not interested);
main {
acquire global jlock;

if (not already in global jlis?) {
add self to global jlist;
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}
release global jlock;

goto Uninterested,

}

Uninterested state (primary dormant state for oplocks of unshared metadata)
on “join” received, respond with “nak” (not interested);
on “leave” received, ignore;

main {

if (need to access metadata) {
clear slist;
clear alist;
goto Want to join,

}
}

Want to join state

on “ack” received, add sender to slist; notice below;

on “nak” received, ignore (sender is not interested);

on ‘join” received, add sender to slist; respond with “ack”;
on “leave” received, remove sender from slist;

on “share” received, add sender to alist; respond with “ack’”:

main {
forever {
broadcast “join” to jlist;
if (final ack received) {
goto Joined,
} else if (ack/nak timeout) {
broadcast “/eave” to current broadcast set;
clear slist,
evict timed out sender(s) to elist;

}
}
}

Joined state (primary dormant state for oplocks of shared metadata)
on “join” received, add sender to slist; respond with “ack”;

on “leave” received, remove sender from slist;

on “share” received, add sender to alist; respond with “ack”;

main {

if (need to cache metadata) {
goto Want to share;
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}

if (no longer need any access to metadata) {
async broadcast “/eave” to slist;
goto Uninterested,

}
}

Want to share state
on “ack” received, add sender to alist; notice below
on “nak” received, notice below;
on “join” received, add sender to slist; respond with “ack’;
on “leave” received, remove sender from s/ist;
n “share” received, add sender to alist; respond with “ack”;
on “unshare” received, remove sender from alist;
on “acquire” received, respond with “ack’;

main {
forever {

broadcast “share” to slist;

if (final ack received) {
goto Sharing;

} else if (nak received) {
async broadcast “unshare” to current broadcast set;
wait for retry signal,

} else if (ack/nak timeout) {
async broadcast “unshare” to current broadcast set;
evict timed out sender(s) to elist;

}
}
}
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Sharing state

on “join” received, add sender to slist; respond with “ack”;
on “leave” received, remove sender from slist;

on “share” received, add sender to alist; respond with “ack”;
on “unshare” received, remove sender from alist;

on “acquire” received, notice below;

main {
if (acquire received) {
PURGE METADATA CACHE;
async broadcast “unshare” to alist,
if (dirty) {
FLUSH METADATA JOURNAL;
dirty = false;
}
owner = invalid;
respond with “ack” and “old dirty”; /* old dirty is the value of the variable dirty
prior to being updated above. */
goto Joined,
}
CACHE METADATA,
if (need to update metadata) {
goto Want to acquire;
}
async broadcast “unshare” to alist;
goto Joined,

}

Want to acquire state

on “ack” received, notice below;

on “nak’ received, notice below;

on “join” received, add sender to slist; respond with “ack”;
on “leave” received, remove sender from s/ist;

on “share’” received, respond with “nak”;

on “unshare” received, remove sender from alist;

on “acquire” received, notice below;

on “release” received, signal retry;

main {
forever {
purge = false;
broadcast “acquire” to alist;
if (ack received) {
if (ack was dirty) {
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purge = true;

}
if (final ack received) {
goto Acquired,

} else if (nak received) {
async broadcast “release” to current broadcast set;
wait for retry signal;
} else if (acquire received) {
if (other node preempts us) {
async broadcast “release” to current broadcast set;
if (dirty) {
FLUSH METADATA JOURNAL;
dirty = false;
}
owner = invalid;
respond with “ack” and “old dirty”;
wait for retry signal;
purge = true;
} else {
respond with “nak’;
keep waiting for final ack, above;

} else if (ack/nak timeout) {
async broadcast “release” to current broadcast set;
evict timed out sender(s) to elist;

}
}

}

Acquired state
on “join” received, add sender to slist; respond with “ack”;
on “leave” received, remove sender from slist;
on “share” received, respond with “nak”;
on “acquire” received, respond with “nak”;

main {

if (purge) {
PURGE CACHE;

if (owner !=self) {
owner = self;

host = owner; // update on-media records

if (non-volatile) {
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JOURNAL ACQUIRE;
}

if (unrestrictive update) {

dirty = true;

UPDATE METADATA JOURNAL;
} else {

UPDATE METADATA,

}

if (non-volatile) {
JOURNAL RELEASE;
}

async broadcast “release” to alist;
goto Sharing,

In the foregoing, the variable "purge" is set to indicate that the oplock was successfully
acquired but that the previous node holding the oplock flushed some dirty metadata that was
protected by the oplock prior to releasing the oplock. Accordingly, the current node purges the
cached metadata and rereads the metadata from the media or non-volatile storage. Purge is set in
the "Want to acquire" description elsewhere herein when the previous lock owner released the
lock. "Non-volatile" is a characteristic of alé oplock specified when the oplock was previously

created such that a record of the oplock is stored, such as on media, in the event of node owner

failure.

As described elsewhere herein, an oplock acquisition may be done in a restrictive or
unrestrictive manner for each acquire. An unrestrictive acqﬁisition may be characterized as
stating that metadata is being updated by a first node but if the other nodes do not need to learn
about this update immediately. This allows communication to other nodes that the lock was

acquired and metadata changed in less restrictive fashion. An unrestrictive acquisition may be

92



10

15

20

WO 03/071419 PCT/US02/39232

used, for example, in connection with metadata updates that grant new authority to other DVEs

in the cluster, as opposed to revoking existing authority.

It should be noted that an explicit release of a lock in this embodiment triggers a retry for
other nodes attempting to share or acquire a lock that another node has already acquired. In
another embodiment without explicit releases, other nodes may retry after a predetermined time

period.

In one embodiment, a metadata structure may be one or more arrays associated with a
device. Each array associated with a device may correspond to a logical device identifier. A
particular portion of metadata may be accessed by a triple represented as:

global id, local id, index
where

global id corresponds to a volume segment number,

local_id corresponds to a particular attribute, and

index corresponds to a particular portion, such as a particular 32 megabyte extent.

Local_id may correspond to a particular attribute, such as rmap information for a particular
volume segment. In one embodiment, the metadata structure may be a two-dimensional array in
which an element is accessed by [first_index, second_index]. The global id and local id may be
used in obtaining a hash value corresponding to the first_index value. Any one of a variety of

different hashing techniques may be used. For example, if the metadata structure is a 2-
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dimensional array, the global_id and local _id may be used to obtain a first index value such as
represented by:

(global_id + local_id) MOD (first_index_range+1)
to obtain a value in the range of 0...first_index_range. The value of the second_index may be
that of the index included in the triple above. In the embodiment described herein, an oplock
may be similarly referenced by the tuple and each oplock may be a record or structure including

the ownership information, and the like, as described elsewhere herein.

It should be noted that the level of granularity associated with an oplock may vary with
each embodiment. An oplock may be associated with an element in the array, an entire array, or

(
an entire instance of metadata.

An embodiment may represent metadata and oplocks using data structures other than

those described herein as known to those of ordinary skill in the art.

It should be noted that if a physical volume or device that includes the metadata is not
fully accessible to all the DVEs needing the access the metadata, there may be a need to provide
an alternate interprocedural call (IPC) to acquire the metadata, such as, for example, using a

proxy or passthrough DVE.

In one embodiment, the data structure used to implement DVE oplocks allows access to a
particular oplock by a guid.luid[index] tuple as described elsewhere herein in connection with a

metadata data structure. RMAP metadata, for example, may include an array of redirect values,
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whose elements are addressed by VSE Gguid . RMAPluid[ BBAindex/BLOCKSIZE] in which
VSEGguid is the volume segment identifier, RMAPIuid refers to the RMAP identifier,
BBAindex refers to the beginning block address index, and BLOCKSIZE refers the size of a
block of data. There is a corresponding oplock for each element in the RMAP metadata array.
When multiple nodes want to coordinate the access to shared RMAP metadata, the following

RMAP oplock policy may be employed cooperatively between nodes:

e To read (or cache) the RMAP metadata, a DVE isin a sharing state for the corresponding
oplock.

¢ To write the RMAP metadata, a DVE acquires the corresponding oplock. This causes
copies of the metadata to be “purged” from all the RMAP caches of other reading nodes
(peers) sharing the oplock. If the oplock is acquired with a restrictive update, the peers
also synchronize waiting for all upstream I/Os that might be using the old RMAP redirect
value to complete (based on RMAP VSEG, upstream I/O BBA range, and upstream I/O
timestamp). Once all peers have acknowledged the purge (and synchronization) as
complete, the node now owning the oplock can update the RMAP metadata knowing no
other node is using it. When the oplock is finally released, reader nodes may return to
reading the métadata as in the corresponding "shared reader" state of the oplock. Note
that if only one node is using an oplock, all subsequent transitions from shared to

acquired state require no inter-node coherency traffic.

In connection with processing an I/O operation, an upstream I/O is timestamped prior to

reading the (potentially cached) redirect values from the RMAP metadata. As described
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elsewhere herein, the timestamp may be used to “synchronize” I/Os that might be using old
RMAP redirect values when making restrictive updates to the RMAP metadata. In other words,
prior to updating the RMAP value to a new valte, pending I/Os referencing the old value drain
prior to the RMAP update to a new value. The timestamp is used in determining which I/Os
need to drain by comparing the I/0's timestamp to a current timestamp value for those I/Os
referencing the RMAP value being updated. The timestamp may be used as an alternative to a

usage count on each and every generation of RMAP redirect values.

It should be noted that the use of timestamps may have an advantage of reducing the

amount of memory used within an FP.

An embodiment of a system, such as the computer system of Figure 1, may utilize many
oplocks. The RMAP metadata described above is an oplock protecting each array element of
each VSEG’s metadata RMAP state. Oplocks may also be used for other “Iba range” specific
functions, like mirror write serialization oplocks, as well as oplocks protecting various fields of
LV, VSEG, and SD metadata state. It should be noted that although oplocks may be used to
protect metadata state associated with DVE objects, oplocks may be used in connection with
other data objects, such as in the case of the mirror write serialization oplocks as an “lba range”

mutual exclusion access mechanism for concurrent mirror writes.

If one node has acquired the oplock and one of the remaining nodes fails, the acquired

oplock and metadata are not affected as part of the recovery process of the failed node. If the
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node that has acquired the oplock fails, the recovery processing steps taken depend on whether

the oplock is volatile or non-volatile.

In the case of a volatile oplock, the oplock is implicitly released and some other node can
immediately acquire it. This presumes that the failed node (that previously owned the oplock)
needs no other cleanup. In the case of a non-volatile oplock, the failed node may have left the
collective system in a state that needs cleaning up. When the failed node is subsequently evicted
from the cluster, the recovering node performs cleanup prior to explicitly releasing the non-
volatile oplock. Additional processing steps as may be performed by a recovering node are

described elsewhere herein in more detail.

It should be noted that volatile oplocks are released not by an explicit "release" message
being broadcast, but rather in that another node is now free to request and acquire the oplock
when a current owner no longer refuses anqther's request to acquire the lock. A message may be
broadcast when a node that has acquired the oplock is done in order to signal other nodes that
they may now attempt to acquire the oplock and also obtain a new copy of the data associated
with the oplock. If nodes attempt to acquire the lock based on a self-invocation or self-
awakening, such as retrying to acquire the lock at predetermined time intervals, and also obtain a
copy of the data, an embodiment may not broadcast a cluster-wide message when a node that has
acquired the lock is done. However, an embodiment may choose to broadcast such a message as
a way to notify other nodes that they may try to acquire the oplock. In the instance where a DVE
goes off-line, an embodiment may use a self-awakening of retrying and predetermined time

internvals for retries by other nodes.
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A single DVE at a time may make changes to particular shared objects. The other DVEs
may pause I/Os to the affected objects waiting for the single DVE to complete its metadata
updates, at which time the “following” DVEs will reload the affected objects, in a restrictive or

unrestrictive fashion.

Oplock broadcasts messages may be used in performing a DVE cluster node eviction.
When a DVE broadcasts an oplock request (join, share, or acquire) to a set of peers, and one or
more of the peers do not respond, those peers may be “evicted” from the DVE cluster. An
embodiment may use other cluster techniques, such as quorum rules for performing an operation.
It should be noted that when a node is evicted, the evicting (or “recovering”) node becomes the
caretaker of the evicted node’s cluster resources. If a cascaded eviction occurs, the evicting node
may become caretaker of the evicted node’s resources and also any nodes evicted, directly or

indirectly, by the evicted node.

Oplocks as described herein may be volatile or non-volatile. For volatile oplocks, when
the node owning the oplock dies, the oplock is implicitly released since an oplock is only owned
by virtue of the owning node defending the oplock against other peer node’s “share” or “acquire”
requests with a negative response. Non-volatile oplocks, on the other hand, behave exactly like
volatile ones, except a) their ownership records are recorded in a journal (for performance)
backed by metadata, and b) the most recent owner of an oplock is always considered a member
of the “join set”, and hence is always included in subsequent requests to “share” the oplock.

This ensures that if the most recent owner node has failed, the owner node is evicted from the
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cluster as a result of the next attempt to share the oplock. The node that does the evicting "cleans

up" the failed node before the oplock can subsequently be shared (or acquired).

It should be noted that an evicting node defends the non-volatile oplock while the
evicting node is cleaning up for the evicted node. Eviction attempts of a given node may be
globally serialized, and if two nodes attempt to evict the same other node, only one of them
actually performs eviction steps and performs any clean-up needed before the other evicted node
can re-attempt its oplock broadcast. If an oplock broadcast results in an eviction, the broadcast

processing may be retried from the beginning.

The oplock state hierarchy described elsewhere herein may minimize inter-node coherency
traffic in the performance path. These tiers correspond to, for example, “joining” an oplock,
“sharing” an oplock (for caching), and “acquiring” an oplock (for update). At each tier, to
elevate to the next tier requires a broadcast message. The set of recipients at each level is always
a subset of the set of recipients at the previous level. In the ideal case, the “shared” to “acquired”

transition will require no inter-node coherency traffic at all.

As described elsewhere herein, a node can “join” (express interest in potentially later
sharing) an oplock with a broadcast to the entire set of potential peers. The response from each
peer to the broadcast indicates if the peer “cares” about the join. A join may occur only at
boot/configure time. Typically, anode “joins™ oplocks for all VSEGS that it has configured. It

should be noted that the "working set” of VSEGS for a node may be pre-configured at boot time

99



10

15

WO 03/071419 PCT/US02/39232

with additional VSEGS configured on-demand, such as in connection with a first /O operation

to a particular VSEG's LV.

A node can “share” (express interest in potentially later acquiring) an oplock with a

broadcast to the set of nodes that want to know, such as those nodes in a "join" state.

A node can “acquire” an oplock with a broadcast message to the set of nodes that are
currently sharing the oplock. In the ideal case, this is just the node itself, so no inter-node
coherency traffic is required. For example, consider a pair of hosts in a cluster accessing LVs
through a pair of DVEs. Each host has a single path to one of the DVEs. One host accesses the
LV while the other is waiting. This means that the active host’s DVE shares the oplock (is in the
sharing state). The other host's DVE is in the join state since it is servicing no /O operations.
The active host’s DVE can then “acquire” the associated lock without talking to the passive
host’s DVE, since the broadcast to elevate to the “acquired” tier is only made to the set of nodes

currently “sharing” the oplock.

Following is a list of DVE oplocks that may be included in an embodiment. Oplocks are

volatile unless otherwise specified.

Oplock name How it may be What metadata state it protects?
addressed?
guid.luid[index]

Mirror Side State Changes MIRROR_LUID mirror state for all mirror sides of

the SD as well as a generation
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number (possibly per-DVE)
Mirror Write Serialization VSEG.RMAP LUID |NA
(non-volatile) [BBA/BLOCKSIZE]
RMAP VSEG.RMAP LUID | RMAP values
[BBA/BLOCKSIZE]
Redirs ‘ VSEG.DIRS LUID dirs array (i.e., the interpretation of
RMAP values)
SCSI Reserve LV.RESERVE_LUID | list of hosts that have the LV
reserved
Unit Attention Conditions LV.UALIST LUID list of hosts that need to receive
Unit Attention for the LV
Group Atomic Operations LV.PAUSE LUID NA
LV Reconfig LV.RECONFIG set of VSEGs associated with the
LV
MigrationThread(taskset) TS NA
(non-volatile)

As described elsewhere herein, an oplock may be used as a locking mechanism to
synchronize access to associated data, which may be volatile or non-volatile. Additionally, an
oplock may not be used to synchronize access of any particular piece of data, such as the
migration thread (task set) oplock above. In this instance, the oplock's function may be
characterized as a flag used in process or thread restart, for example, in the event that a DVE
fails. All of the foregoing metadata associated with the oplocks in the table is non-volatile
metadata in this embodiment except for the Mirror Write serialization, Group Atomic
Operations and Migration Thread oplocks. The former two are volatile metadata in this
embodiment. Other embodiments may have other metadata characterized as volatile or non-

volatile in accordance with the requirements of each embodiment.

Each of the foregoing oplocks included in the table is discussed in more detail in

following paragraphs. It should be noted that although each of these are discussed individually,

101



10

15

20

WO 03/071419 PCT/US02/39232

many of the functions and operations are dependent on others. For example, when changing the

state of a mirror, the associated RMAP for the volume segment(s) is also updated.

It should be noted that an embodiment may include different oplocks than as described
above in accordance with each particular embodiment. The specific reference above regarding
how the oplock may be addressed may vary with the oplock data structure included in each
embodiment. The particular oplock structure referenced in the foregoing table is described

elsewhere herein in more detail.

As described elsewhere herein, an agelist maybe used in recording differences in mirror
sides and used in connection with resynchronizing a mirror side brought back on-line. The value
stored in an age list may be referred to as a generation number. In addition to the generation
number, a DVE identifier corresponding to the DVE which updated the age list may be stored.
The particular generation number may be valid only when associated with that particular DVE.
The current DVE generation number is incremented whenever a mitror side state change occurs.
Whenever a mirror side dies, the Rmap values for the remaining live sides of the mirror (i.e., for
the mirror’s VSEG) may be updated to fault on write for all extents, and the current DVE
generation numbers is incremented. On the fault encountered on the first subsequent write to
each extent, the live mirror side’s age list is updated to the current (new) generation number, and

then the Rmap value for the faulted extent is updated to allow subsequent writes without faulting

In connection with mirroring in this embodiment, only a single DVE may update a

specific LBA range of a mirror at a time. This embodiment allows only one DVE to write to a
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given range of a mirror, and further only one FP within that single DVE. In addition, the DVE
updates its per-DVE current generation number. The global copy of the RMAP metadata may be
set to fault-on-write for all extents if the embodiment also supports fast resynchronization, as

described elsewhere herein.

Mirror side state changes and the use of the associated oplock will now be described. For
purposes of illustration and example, assume the system is in steady state, and all DVEs are
sharing the Mirror Side State Change oplock. A mirror side state change from “alive” to “dead”
may be initiated by the notification of a failed write I/O to a mirrored side device. It should be
noted that a failed read need not technically change the state of the mirror, but an embodiment
may prevent other unsuccessful reads when a failure of a first read has been determined. The CP
indicates to the FP which mirror sides may be read from and which ones may be written to. This
information may be included, for example, in the storage redirect table. The state change from
"alive" to "dead" for a mirror side is completed before upstream status can be returned for the

failed write I/O.

The DVE that detects a failed write I/O may acquire the mirror side state change oplock.
If, upon acquiring the oplock, it finds that the mirror side has already been declared “dead” by
some other DVE, then this is a “false alarm”, so it reloads the metadata for the mirror side,
releases the oplock, and continues. The metadata which is reloaded may be characterized as
storage descriptor metadata that describes which mirror sides are "dead" or inactive, and which
are "alive" or active. It should be noted that another DVE has already declared a particular

mirror side as "dead" and has already completed the appropriate processing steps.
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If, upon acquiring the oplock, the DVE that detects a failed write I/O finds that the mirror
side is still “alive”, then the DVE performs steps in connection with declaring the mirror side
"dead" or off-line. At this point, all of the “other” DVEs have been notified to pause I/Os to the
virtual volume segment 6r VSEG, unload the mirror side metadata state information from all
cache copies, and then wait on resharing the oplock, reloading the metadata, and unpausing I/O
operations to the mirror side. The DVE which acquired the oplock also pauses 1/O operations to

the mirror side and unloads all copies of associate metadata.

The DVE that has acquired the lock then increments the generation number, and sets the
RMAP for the live sides of the mirror to fault-on-write, so that new writes are intercepts and
fault to the CP and record the fact that the dead mirror side is now out-of-date. This may include
making a copy of the current “age list” for the dead mirror side, if one was not being currently
maintained. The DVE that has acquired the oplock marks the mirror side as "dead" by, for

example, updating metadata included in the storage redirect table. The oplock may then be

released, and the operations may continue using the new state information from the storage

descriptor; as pointed to by the redirect table entries described herein. Upstream status for the

failed write I/O may then be returned.

If a DVE goes off-line while performing this process of marking a down mirror side as

"dead", no status has been returned for the failed I/O yet, and processing steps may be

performed and repeated by the next DVE to encounter a failed write I/O.
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It should be noted that if multiple RMAP entries result in writes being delivered to the

live sides of the mirror via the fastpath, then all of these entries are set to fault-on-write initially.

What will now be described is handling Mirror Write Serialization (and Reconciliation)
which, in this embodiment, utilizes a non-volatile “mirrored write” oplock covering each extent
(fixed size) of each mirrored VSEG's Iba range. Sharing this oplock gives a DVE “write
authority” for that extent of the mirrored VSEG’s Iba range. Intra-DVE locks are used to

distribute write authority further among the FP’s that may be associated with each CP.

When a DVE wants to write to an extent of the mirrored VSEG, the DVE acquires the
oplock, thereby revoking sharing authority from any peer DVEs. It releases the lock
immediately (still sharing it), and thereby implicitly keeps write authority until another has
acquired the associated lock. A DVE “shares", "acquires” and "releases" before it can assume it

has write authority.

If the DVE goes off-line while writing the extent (or more precisely, while holding the
lock giving it write authority over the extent), the records of the non-volatile oplock ownership
are in the DVE’s journal. The evicting DVE performs mirror reconciliation at failover time by

copying from one side of the other mirror sides, and then releases the oplock.

As described elsewhere herein, non-volatile oplocks, including the mirrored write
oplocks, are swept or unshared so that a DVE only has records of owning oplocks for extents that

were recently written, for example, in the last minute.
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Ownership records for non-volatile oplocks may be updated by the owning node at
acquire time. The ownership information may change, for example, when the lock is unshared as

by the sweep process, or acquired by another node.

Handling an RMAP state change in connection with the Rmap metadata and associated
oplocks is described elsewhere herein. In connection with processing redirect entries as may be
referenced in an Rmap entry, a redirect entry is created before any RMAP entries or Rmap
values reference a particular redirect entry. RMAP values, in addition, can only be changed by a
fault handler in the CP. A redirect entry cannot be free until there are no RMAP value references

to the particular redirect entry.

A pause/reload technique may be used in connection with the redirect entries.

Initially, assume the system is in steady state, and all DVEs are sharing the Redirs oplock. When
a high-level function, such as a snapshot or migration thread, need to create a new redirect entry,
the function acquires the oplock. At this point, all of the “other” DVEs pause I/Os to the VSEG
and then wait on resharing the oplock, reloading the redirs, and unpausing the VSEG. The local
DVE (which acquired the oplock) similarly pauses its I/O operations. The acquiring DVE then
updates the redirs metadata and released the oplock. Operations may be resumed using the new
updated information. If a DVE goes off-line or dies during this process, the steps may be

performed by the next DVE to receive the request to perform the high-level function.
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Metadata may also be maintained in connection with each LV in which a list is associated
with each LV of hosts currently allowed to access each LV . This involves using the previously
listed SCSI reserve oplock. Reservation conflicts may be handled when an I/O is faulted to the
CP and also in the FP. In one embodiment a LUN Masking FP API may be used to indicate to
an FP using a mask which hosts hold a reservation to perform fastpath I/O. Other hosts' I/Os
fault to the CP. It should be noted that any host may issue a SCSI “reserve” command to a disk
to say that it wants to access the disk also to prevent any other host from accessing the disk.
Once this has been done, if another host tries to access the disk, the other host receives a special
return error status which may be referred to as a “reservation conflict” indicating that the other

host's request to access the disk is denied.

As an example, assume the system is in steady state, and all DVEs are sharing the SCSI
Reserve oplock for the LV. When a reserve or release command is received, if successful, the
command changes the reservation state of the LV. When a reserve or release command is
received, such as in connection with a SCSI device, an intra-DVE lock may also be acquired to
ensure mutual exclusion within a DVE. To change the reservation state of an LV, the a device
module, such as a SCSI device module, acquires the SCSI Reserve oplock for the LV. At this
point, all of the “other” DVEs have disabled the FP from processing I/Os for the LV, and then
wait on resharing the oplock, reloading tﬁe LUN Masking information from the global copy of
the associated metadata, and unpausing the LV. The local DVE which acquired the oplock. has
to perform similar processing steps of prior to acquiring the oplock. The acquiring DVE then
updates the reservation list and releases the oplock and operations may resume. If a DVE dies

during this process, all of the rest of the steps can safely be repeated by another DVE.
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What will now be described are handling L'V Unit Attention Conditions and its associated
oplock. In a clustered environment, where multiple DVEs are may be accessing the same LV,
when the LV experiences a Unit Attention condition. An embodiment may receive this
condition, for example, if removable medium has been changed on a device. Others accessing
this LV may be notified accordingly since, for example, the previously sent write I/O may be
meant for another piece of media that was removed. The metadata is a list of associated nodes
that are notified upon the occurrence of such a condition. An embodiment may respond with
Check Condition/Unit Attention to only the first I/O from each initiator to the LV, regardless of
which DVE the I/O was subsequently processed by. The list of hosts indicated by the
associated metadata indicates which nodes are notified and subsequently, the host is removed

from the list. The list may be initially the set of logged in hosts at the time of the condition.

In connection with pausing I/O operations to a particular LV, an associated oplock may
be used in connection with handling this and other group atomic operations. Group atomic
operations may be characterized as a set of operations that are perceived as occurring atomically.
For example, taking a snapshot of a set of devices associated with a database may be perceived
as an atomic operation by pausing I/O operations to the devices, taking a snap shot of each
device and then restarting or resuming I/O operations. In connection with the foregoing,
consider performing a snapshot of a group of VSEGs atomically at once. The following may be

performed:
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a) pause the corresponding LVs at the FPs and CPs of all DVEs (this does not imply waiting
for already issued I/Os to drain, necessarily, except as required by snapshot processing
described elsewhere herein;

b) take the snapshot;

c) resume the I/O operations to the LVs.

Use of this oplock is similar to others described herein.

If a DVE fails while the LVs are paused, it is the responsibility of the recovering DVE
(which evicted the failed DVE) to continue the operation and resume the LVs. The LVs are not
available during this time (however long it takes to detect the previous DVE had failed).

These particular oplocks are volatile, which means that in order to support failure recovery, the
DVE may first acquire some other non-volatile oplock (typically for the taskset) before entering

into the a), b), ¢) sequence above.

What will now be described is processing in connection with the LV Reconfig oplock.
This oplock may be used, for example, when adding a VSEG to an LV (growing the volume).
This oplock may also be used, for example, to split a VSEG in two (not changing the volume,
but changing the number of VSEGs) or to merge a VSEG. All of the foregoing may be
coordinated between DVEs using this oplock. In other words, a DVE may acquire this lock when
performing one of these or possibly other operations in connection with an LV when the set of

VSEGS associated with an LV are being updated.
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Like the group atomic operations described elsewhere herein, there is an associated
taskset that is non-volatile. If a DVE fails in the middle and has acquired this lock, the
processing is performed by the recovering DVE. As part of the LV reconfiguration processing,
I/0O operations to the LV are paused as well.

In one embodiment utilizinig Group Atomic Operations oplock, the LV reconfigure
oplock and the task set or migration set oplock, the former two may be implemented as volatile
oplocks and the latter oplock as a non-volatile oplock. The former two oplocks are acquired as
part of the taskset oplock and are accordingly reacquired and re-released in connection with a

failed DVE.

In connection with migration threads and other threads as may be associated with a
particular task set, an embodiment may have a migration thread and others as described
elsewhere herein executing on each DVE node, for example, when performing clustered
migrations. An oplock may be associated with a task set including a migration thread that is
non-volatile such that if a node goes off-line, another node detecting that a failed node is off-
line, takes of the failed node's migration process. An embodiment may associate a single non-
volatile oplock with a taskset, and the node with the thread running acquires the oplock. If that
node dies, the evicting node restarts the migration thread and possible others associated with the
taskset when performing cleanup for the dead node (since it will find that oplock in the dead
node’s journal). In this example, the migration thread and others included in the taskset are able

to execute on any node. Other embodiments may require that a migration thread execute on a
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particular DVE and accordingly may require modifications that may vary from what is described

herein.

As described herein, a taskset may be referred to as a set of tasks to be performed. The
set of tasks may include, for example, relatively "quick” or short tasks, such as a snapshot, or
relatively "slow" tasks, such as migration which may take hours to complete. Once a DVE that
has commenced performing a taskset fails, another DVE picks up and continues completion of
the taskset on another DVE. By commencing operation of the taskset, there is an expectation of
the host or other caller to complete the taskset. Since there is a non-volatile oplock associated
with each taskset, if an executing DVE fails, a recovering DVE will replay the taskset of the

failed DVE.

A DVE may acquire a taskset oplock (non-volatile) when a taskset is started, and release
the associated oplock (and unshare and leave) when the taskset has completed. If the DVE goes
off-line prior to this, arecovering DVE continues the taskset, such as perform an ongoing
migration, or complete a partially completed group atomic operation. It should be noted that
taskset oplocks are not contended for, that is, no two DVEs start the same taskset except during

failover recovery when one of the DVE's is off-line.

What will now be described are some examples and how the locking mechanism

described herein may be used in connection with performing different operations such as a

snapshot.
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Referring now to Figure 28, shown as an example of an embodiment 750 that includes
two DVEs that handle an I/O request from a host. It should be noted that the example shown in
the illustration 750 is a simplified view of how different DVEs may access physical devices. In
other words, the actual mapping mechanism is not shown as part of the DVE accessing particular
physical device. Additionally, the details within a particular DVE such as whether there are one
or more CPs in the FPs are not shown in detail. The oplock mechanism for modifying global
data will be explained on the level of inter-DVE communication. It is assumed that each
particular DVE monitors all intra DVE communication and access these for synchronizing access

to any type of data.

In this example, assume that each of the DVEs, DVE 1 and 2, both have copies of the
same RMAPs in comnection with a V and a V Snap (snapshot) device as described elsewhere
herein in connection with performing a snapshot operation, copy on write. In connection with
performing a snapshot operation as described elsewhere herein, both the RMAP and the storage
redirect tables may be modified in connection with performing a snapshot operation. Also recall
that the RMAPs that are in the metadata use fixed length extents, and those RMAPS which are in
the memory, for example, within the DVEs corresponding to the V and the VSnap devices, use

variable length extents as also described elsewhere herein.

In this example, the host issues both a read and a write operation simultaneously. The
host writes to a part of virtual volume through DVE 1 which ends up faulting to a CP within
DVE 1 since a snapshot is being performed for two virtual devices using physical devices P1 and

P2. Simultaneously, the host issues an I/O read request to DVE2 to the same portion of a
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physical device. The FP of DVE2 may be used to do the read operation. When aread and a
write operation occur at the same time, it is indeterminant as to which one will complete first or
be performed first. In one example, assume that the write is pending in DVE1. DVE1 issues a
message to acquire the corresponding oplock associated with the particular RMAP portions for
the extent associated with the I/O write operation. DVE1 may broadcast a point-to-point
message to all DVEs indicated with sharing this particular portion of the global metadata using
its local share list. Essentially, DVEI is asking permission to acquire the lock for particular
metadata portions or RMAP portions it needs to perform its modifications on the metadata. The
acquire message that is sent to DVE2 is also a request for DVE2 to invalidate its corresponding
portion of the RMAP and its cache as well as take care of synchronizing any other references to
that particular RMAP portion in CP and FP portions included within the DVE2. In résponse to
receiving the acquire message, DVE2 purges RMAP portions requested included those within
the CP and the FP. When all of the portions or copies have been purged within the DVE2,
DVE2 then sends to DVE1 a message indicating acknowledgment that DVE1 ﬁay acquire the
lock and update the metadata. In connection with performing a snapshot operation, DVE1
performs a write operation to update portions on P1 and P2 corresponding, respectively, to

portions for V and V Snap.

It should be noted that in connection with performing processing associated with a
release operation, a DVE releasing a lock may broadcast a message to all other nodes having a
local copy or those other nodes that have registered themselves as wanting to receive such
notification. Upon receiving this release notification, a node may reshare and reread the updated

data from the global storehouse described elsewhere herein.
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After DVE1 acquires the lock for a portion of the virtual device on P1, DVEI also
acquires the corresponding lock on V snap which, in this instance, is device P2. Data is then
pushed from physical device P1 to P2 if the global Rmap entry indicates a state of zero such that
the data has not yet been copies. Subsequently, the Rmap in the global metadata for device P2 is
then modified to reflect the state change that the data has now been copied to the snapshot device
P2. DVE then also updates its portions internally which reference this particular Rmap location,
such as within the CP and the FP. DVE1 may now release the lock associated with the Rmap
portion on device P2. Part of releasing the lock may mean that another may acquire the lock
rather than P2 issuing an explicit release lock message. Subsequently, DVE1 waits for the reads
to device P1 to drain and then changes portions of the global Rmap table of device P1 to have the
appropriate redirect table entry indicating that the data has been pushed from P1 to P2. Note that
this update has been to the global metadata. Simultaneously, DVE1 again may update any local
copies of CP or FP data to this portion of the Rmap and then DVE1 may release the lock, for

example, by allowing another DVE to acquire the lock to the corresponding Rmap portion.

Referring now to Figure 29, shown is a flowchart 760 of steps summarizing processing
just described in connection with performing a snapshot operation and acquiring the necessary
locks by DVEI1 in connection with the write operation of the global metadata. At step 762,
DVE1 attempts to acquire the oplock for P1, for example, by issuing an acquire message and
receiving the appropriate acknowledgement back from the other DVEs. At step 764, DVE1 also
attempts to perform and acquire the corresponding lock on physical device P2. At step 766 the

determination is made as to whether the data has already been pushed from device P1 to P2. If
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not, control proceeds to step 774 where the data is pushed from device P1 to P2. Control
proceeds to step 768 where the global metadata for the Rmap of P2 is updated to indicate that the
data has been pushed, for example, by updating the particular Rmap entry index to be one.
Control proceeds to step 770 where it is determined if any reads to device P1 are in process of
being performed. If so, control proceeds to step 776 where DVE1 waits for the reads to device
P1 to drain. Control proceeds to step 772 where the global metadata Rmap portions for device

P1 are updated to indicate that the data has been pushed to device P2.

RMAP values may be updated in a restrictive and an unrestrictive fashion as described
elsewhere herein. When making a restrictive update to an rmap value as described above, the
DVE must wait for all I/Os that were issued using the old rmap value to drain. This must occur
prior to making any subsequent changes to the system state that are dependent on the new rmap

value.

For example, when faulting writing to the source of a snapshot, a) the snapshot data is
pushed and then b) the destination rmap is updated to reflect the new location of the data (and
that writes are now allowed), and c) the source rmap is ﬁpdated to reflect that the write is now
allowed (to the original location of the data). In this embodiment, the steps are perfofmed in the
foregoing order. Additionally, after step b), and before proceeding to step c), there is a wait for
any I/Os issued referencing the destination rmap to the old location to drain. Otherwise at step
c), writes to data may be allowed that the destination side of the snap is still reading resulting in

corruption. The foregoing also applies on a larger scale in embodiments using a single DVE and
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a single CP execution thread, as well as multiple CP execution threads, such as migration threads

and fault handler threads.

Tt should be noted that in connection with the prior discussions elsewhere herein, the lock
for the portion of the global metadata on P2 may be released after step 768 and similarly, the
lock for the global metadata portion on device P1 may be released after step 772. In this
particular embodiment using a volatile oplock, a lock is released not by the action of sending a
particular message from a first DVE currently holding the lock to other DVEs. Rather, one of the
other DVEs may now successfully acquire the lock in connection with the particular metadata
portions from the first DVE. Any message sent in connection with a release operation is not an
explicit release of the lock. Rather, it may serve as a signal to "wake up" other nodes that they
may now attempt to acquire the lock and should accordingly obtain a fresh copy of the global
data. Tf the node that has acquired the lock goes down, the volatile oplock may be automatically
released in that now another node is free to acquire the lock. An embodiment may have other
nodes routinely retry to acquire the lock after a certain amount of time has past from a prior
acquisition attempt. Thus, the sending of the release message may be omitted from an
embodiment, for example, if the other nodes attempt to retry to acquire a lock and otherwise

obtain an updated global copy of the data.

It should be noted that in one embodiment, when a DVE that has acquired a volatile
oplock is done, the DVE may broadcast a message (e.g., asynchronously at a lower priority) so
that other DVEs know in a timely manner that they may attempt to acquire the volatile oplock.

Relying solely on timeouts for the retries may be not as efficient as the broadcast technique.
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However, in the instance where a DVE that has acquired a volatile oplock goes off-line, timeouts
may be relied on for subsequent attempts to acquire the oplock since the volatile oplock is
released when the DVE goes off-line using the technique of acquiring the lock by obtaining

permission from all others in the shared state as described elsewhere herein.

A DVE, such as DVEI, may be turned off or inaccessible, for example, in connection
with a power failure. Assume that a host, for example, has not received an acknowledgement
that a previously requested write operation has successfully completed. Subsequently, the host
may retry the write operation if there is a time out and reissue the write request. If, for example,
DVE] has a power failure, all intra-DVE oplocks and volatile inter-DVE locks of DVE1 are
released as they are volatile or non-persistent. However, non-volatile inter-DVE locks that have
been acquired by DVE1 are still locked. Using these acquired inter-DVE locks, another DVE

may perform "clean-up" operations in connection with DVE1.

Another DVE may be elected, as a member of the cluster, to clean up after another DVE,
such as DVE], that has failed. The DVE performing the cleanup may be a predetermined
cluster member, or it may be the first DVE that determines that DVE has failed and evicts the
failed DVE from the cluster. This may vary in accordance with policies included in each

embodiment.

The cleanup may be performed by using the list of inter-DVE non-volatile oplocks which
DVE! had acquired. If DVE2 is performing the cleanup of DVE1 upon DVEL failing, DVE2

first inherits all of DVE1's non-volatile inter-DVE oplocks. DVE2 implicitly acquires each of
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the oplocks by inheriting those of the failed node. In other words, DVE2 acquires the locks
without DVE2 first asking and obtaining permission from all the other nodes. DVE2 is recorded
as the owner in the ownership information for the non-volatile inter-DVE oplock. DVE2 now

defends the implicitly acquired locks.

Using any journalling information, DVE2 examines the list of inter-DVE non-volatile
oplocks and, for each non-volatile inter-DVE oplock owned by the failed DVE, completes the
write, update of the global metadata, or other operation associated with the oplock. DVE2 then
releases the locks implicitly acquired. Only non-volatile locks, non volatile locks, play a role in

recovery operations as described above.

A DVE that is returning to service after a failure performs operations similar to those in
connection with a DVE coming online initially; the DVE joins the cluster. When a DVE starts
up or boots up, such as initially or subsequent to going off-line, the DVE performs certain steps
that may be represented as follows for DVE A coming on-line:

1. if another node has acquired DVE A's journal (is currently indicated as the
owner), DVE A waits a predetermined time period to acquire own journal

2. if the predetermined time period has passed, evict the node X that has acquired
DVE A's journal and DVE A inherits all of X's journals, locks, etc. including DVE A's own
journal. All the journals are read-only accessible.

3. If DVE A's journal indicates a "dirty" shutdown with tasks that were in

progress, replay the corresponding journal entries for those tasks.
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4. If any of the journals that DVE A inherited also show a dirty shutdown, replay
the corresponding journal entries for those tasks. |
5. Release any journals belonging to other DVEs that have been replayed so that
the other DVEs may also boot.
5 6. Open DVE A's journal for writing

7. DVE A comes on-line

If a first DVE sends a message to a second DVE that never responds, the first DVE evicts
the peer from the cluster. As part of performing the clean-up, the first DVE acquires all of the
10 second DVE's journals, locks, etc., and performs clean-up operations, including processing of
steps 4 and 5 above. The first DVE does this clean-up while continuing itself to run on-line as a
member of the cluster. As described elsewhere herein also, the evicting DVE inherits
responsibility for all journals of the DVE that has been evicted. This may be characterized as a
cascading eviction. For example, A evicts B and A goes off-line before cleaning up B. C evicts
15 A and then C performs clean-up operations for A and B. As known in the art, journals record
important operations in progress, such as write operations, that either may be re-issued or

"undone" in the event that the DVE performing them goes off-line.

When a particular DVE fails, for example, as when a DVE experience a power failure,
20  any mirror reconciliation is also be performed. If there was a mirroring operation being
performed, only a portion of the mirroring operation or update may have been performed. For
example, there may be two mirroring devices, M1 and M2. In connection With performing a

write operation, the DVE 1 may update mirror device M1 but DVE1 failed prior to completing
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the write to device M2. When DVEI fails, if DVE1 was potentially writing to a mirror, there
may be a need to reconcile the mirroring devices such that the data on the mirroring devices is

coherent.

When performing a mirroring operation, a DVE acquires the necessary locks, such as the
inter-DVE non-volatile oplocks, in order to write for all mirroring devices. Only one FP is
allowed to write at a time to a particular mirror or mirroring device. The locks are acquired and
held until another node issues a request to obtain the lock. With this in mind, an embodiment
may include a sweeping process that runs on each of the DVE’s. The sweeping process may be
executed, for example, each minute to release the inter-DVE non-volatile oplocks. The DVE
may reacquire the locks as needed. As described elsewhere herein, a non-volatile inter-DVE

oplock may be released by clearing the ownership information.

A DVE returning to service may perform recovery operations for mirrored devices, for
example, such that the DVE coming on line may be brought up to date with the operations that

have occurred while offline or out of service.

In connection with performing mirroring operations, when a DVE goes off-line or fails,
an embodiment may not want to reconcile the entire volume or device for all mirroring devices.
A fast reconciliation may be desirable by only copying those portions that have changed. As
described herein, reconciliation occurs when a DVE fails and uses non-volatile oplocks.
Resynchronization occurs when a mirror side fails and comes back on line. Age lists may be

used in performing the resynchronization operation when a mirror side comes back on-line.
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An embodiment may include and utilize and age list in connection with performing a fast
resynchronization for failed mirroring devices brought back on-line. An example of a failed
write in connection with a mirrored device will now be described. A host initiates a write
request to a DVE which causes multiple downstream write I/O requests to a plurality of mirror
devices, Ma and Mb. During the write operation, Mb goes off line due to a device failure. When
Mb comes back on-line, the copy of Mb's data needs to be resynchronized with the other mirror
devices, such as Ma. A technique will now be described using age lists that provides for a fast
resynchronization of data on the mirror devices to copy those portions to Mb from Ma that are

out of date since Mb was off-line.

Each of the mirroring devices has an associated age list that includes fixed size extents in
metadata. The agelist may be stored as inter-DVE metadata with associated locks in persistent
storage. When a write operation is being performed, the agelist remains the same. Initially, all
elements of the agelist are assigned the current age. A DVE has the conéept of a current age
counter which may be initially 0. This counter is used in connection with indicating an age of
the mirror data. When a mirror device, such as Mb, is disconnected or fails, the DVE is so
notified and updates the current age counter, such as updates the age counter by 1. At this point,
the DVE modifies the Rmap entries of the associated down mirror device to cause a fault to the
CP when there is a write operation. As described elsewhere herein, the DVE obtains the
necessary intra-DVE and inter-DVE locks to modify the Rmap table to indicate a different
redirect table entry causing a CP fault on a write operation to the mirror device. Upon a write

operation occutring, there is a fault to the CP. The CP then updates the agelist entry or entries
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corresponding to the address for the particular write operation to be the updated current age,
which is 1 in this instance. When Mb comes back on line, éll of Mb's extent portions having a
cotresponding agelist entry not equal to 0 are updated by migra;ting data from Ma to Mb. This
may be done using the migration thread, for example, to push data from Ma to Mb for each entry
in the agelist not equal to 0. In other words, when a mirror side is being resynchronized with a
live mirror, the DVE performing the clean-up must update all extents on the mirror side whose
age list generation numbers do not match the generation number of the live side mirror. The age
list generation numbers may be maintained on a per-volume basis rather than a per-side/device
basis. It should be noted that the agelist metadata may be associated with fixed size extents

portions of a mirrored storage device.

In one embodiment, reads to a mirror may be load balanced round-robin between mirror
sides with the best load balancing priority as may be specified in the mapping table. This may be
implemented in an embodiment using the storage redirect table by maintaining an index of the
last mirror side to receive an operation. The index may be incremented to indicate the next
mirror to use for the next I/O operation. When the index reaches the number of mirror sides, the
index may be reset to indicate the first side mirror. Other embodiments may use other
techniques to implement a load balancing. This technique allows the CP to have the ability to
specify and modify which mirror sides are remote, and accordingly, a high "cost" to use, but also
whether any form of round-robin or other balancing technique is appropriate. If each mirror side

1s given a unique value or cost, then the lowest cost mirror side may be selected.
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Mirroring operations may be implemented using the write splitting functionality, such as
the write splitting primitive, described elsewhere herein. The CP may implement locking for
shared mirrors, which may be accessed by multiple FPs, such that only one FP is enabled for
write at any given time for an extent of a virtual volume included in a mirror. The locks for
shared mirrors may be implemented as inter-DVE oplocks described elsewhere herein in mode

detail.

In connection with mirroring devices, reads to an extent are not synchronized with writes.
In other words, if reads and writes are currently outstanding, the reads may return old data, new
data, or a combination of old and new on a block-by-block basis. The combination of mix of
data returned for a read may change over time so that two concurrent reads to the same portion
may return different data if there are also outstanding writes completing as data is being read.
Once a write operation to an extent is complete and there are no other pending writes, read

operations to the extent return the same data.

In the case where a DVE fails or goes off-line, another DVE may remove the failed DVE
from the cluster, such as described elsewhere herein. The recovering DVE may assume
ownership of all the failed DVE's inter-DVE oplocks in addition to its journals. The failed DVE
may also have outstanding writes which may result in a mirror being out of synchronization with
other sides of the same mitror. As with rules for concurrently outstanding I/Os above, order of
completion in this embodiment is unspecified and read return data is unspecified. If a write was
outstanding to a mirror device on the failed DVE, the requester may eventually time out and/or

abort the write, and reissue the write. The write operation may then be blocked since the
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recovering DVE cleaning up after the failed DVE blocks writes to the mirror until the mirrors are

resynchronized. However, writes may be allowed.

A more detailed generalized example in connection with the foregoing mirror and

synchronous replication will now be described in detail.

Referring now to Figure 30, shown is an example of an embodiment of a device V that
has two corresponding mirror devices P1 and P2. Initially, both P1 and P2 are on-line and Read
and write operations are allowed to the devices and both mirror sides are up-to-date. Assume P2

fails. This initial state is shown in Figure 30.

Referring now to Figure 31, additional processing steps are illustrated when a write is
subsequently issued to P2 and there is a fault to the CP. The CP then marks P2 as DEAD
status/offline and updates the generation number to "n+1", as indicated by 802. The CP then
updates P1's age list to indicate, using the new generation number, that P1 has newer data for the
extent just faulted on when writing, as indicated by 804. The CP then marks all the Rmap
entries, except the one just faulted on as indicated by 806, to indicate that a resynchronization is
to be performed if the mirror side is subsequently brought back online. The CP then allows the

write operation to complete.

The penalty for supporting fast resynchronization, as above, is that the first write to the
extent following a mirror side state change of either ALIVE to DEAD, or DEAD to RESYNC,

causes a fault to the CP with other writes using the FP. Later, when a write is made to an extent
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after P2 has been declared DEAD or offline, as above, there is a fault to the CP and P1's age lists

are updated to reflect the new dirty regions.

Fast resynchronization may be implemented by the CP by comparing age lists when P2 is
brought back online. Fast resynchronization involves resynchronizing the mirrors to have the
same set of data. The Resynch state of P2 allows P2 to participate in write splitting without

being involved in processing read operations until P2 is brought back on-line.

As described herein, an age map may be used in synchronous mirroring as described in
connection with, for example, Figures 30 and 31. The relative age of extents of various mirror -
sides may be recorded. If one mirror side is off line and operations are performed to other mirror
sides, when the down mirror side is brought back on-line, it is resynchronized with other mirror
sides. In one embodiment, this may be performed using the technique described herein which
that only the extents that are out of date are copied. This may also be referred to as a fast
resynchronization. When a mirror side is offline and the remaining mirrors are updated, a new
generation number may be assigned to the age maps. The current generation number is
incremented whenever any mirror side changes state. Subsequently, the first write to the
remaining mirror sides are intercepted and the age map is updated to indicate that the remaining

mirrors have been modified relative to the offline mirror side.

Fast reconciliation involves reconciling shared metadata using the inter-DVE oplocks
held by the DVE to extents for which writes may have been outstanding when the DVE failed.

As described elsewhere herein, the DVE performing the cleanup of the failed DVE inherits the
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failed DVE's inter-DVE oplocks and therefore knows which extents are suspects for
reconciliation. The inter-DVE oplocks may actually be implemented so as to journal their state
sequentially to media, like traditional DRL, while offering significantly more flexibility at
failover time. The inter-DVE locking techniques that may be used in an embodiment are

described elsewhere herein.

Within an embodiment, each DVE may have its own non-volatile oplock journal.
Additionally, a data journal may be maintained for each FP. It should be noted that the per-DVE
non-volatile oplock journal and the per-FP data journals are maintained independently of one
another. The non-volatile oplock journals may be used in connection with performing recovery
operations for a failed DVE. The data journal of an FP may be used for asynchronous ordered

replication.

There may be a need to merge FP data journals in embodiments allowing asynchronous
1/O operations. In one embodiment, asynchronous I/O operations are recorded in the journal and
then to the actual device. Inbound I/Os for each FP may be paused at discrete points in tinze,
such as every minute or other time interval in accordance with system parameters, such as
incoming I/O rate, bandwidth, and the like. Existing journals for each FP may then be swapped
out and inbound I/Os then resumed. I/O operations subsequent to the resume may be redirected
to a new journal. Meanwhile, there is a wait for the existing journal I/O operations to commit to
the existing FP journals. These I/O operations as recorded in the existing journals are sent to

another site that may be remote for reconstruction by being applied to a copy of the actual data.
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It should be noted that during the reconstruction process, the FP journals are merged. As
part of this merging process, there may be a determination for a given location whether there are
multiple write operations, and which of these is the last write operation in time. The last write
operation may then be applied to the given location. This may be performed as an alternative to
actually applying all the write operations. An embodiment may include this and other processing
as part of the merging process. It should be noted that as described elsewhere herein, if a request
being processed by an FP is determined to overlap an LBA range as being performed by another
FP, control faults to the CP. Thus, any FP journaled I/O operation is for a non-overlapping LBA

range.

Referring now to Figure 32, shown is an example of an embodiment 850 in connection
with performing an asynchronous replication operation for FP journalling as described above. In
this instance, there are some aspects (such as write serialization at the FP) similar to that
previously described in connection with mirroring in that writes to virtual device V are split to
two physical devices P1 and P2. Writes to P1 are delivered natively, that is, writes are
performed on P1. On P2-J, the location on P2 where the second set of writes are performed, the
write entries are journalled to journal entries. Each entry as shown in 852 has a header indicating
where the write entry is supposed to go, such as the logical block address. When both the write
to P1 and the entry to P2-J are complete, a message that the operation is complete is sent back to
the caller. If P2-J reaches the end of the journal, there is a fault to the CP as if writing in a read-
only context. The CP then waits for any pending I/Os to the journal to complete, as by checking
the downstream pending /O list, and then swaps in a new journal resetting the journal pointer in

the FP to the beginning of the new journal. The new journal may be, for example, at device P3-J
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854 and may be swapped in place of P2-J as the journal, as indicated by arrow 856, when the
journal 852 is full. The FP journal pointer is then reset at 860 as indicated so the FP can resume
journalling. The CP may then send the P2-J journal 852 to an asynchronous copy agent for

delivery to a remote site where the data may be reassembled.

The foregoing allows for asynchronous ordered replication of a set of volumes in a
distributed system. A database, for example, may be implemented on more than one volume and
may involve multiple servers. The foregoing may be used as an alternative, for example, to
ordering all I/O operations through a central point that may become a bottleneck in performance.
Alternatively, the foregoing techniques may be used to provide synchronization at discrete points
in time that may be selected in accordance with parameters that may vary with each embodiment

to minimize any negative performance impact.

The foregoing asynchronous mirroring may be implemented using the write splitting and
write journaling primitives described elsewhere herein. The FP may synchronously split writes
to a private journal using a private index as described in connection with Figure 33. When the
journal fills, control is passed or faulted to the CP which exchanges a new, empty journal for the
old journal. The CP may then copy the journal contents to a remote location using an
asynchronous copy agent. It should be noted that in one embodiment, data from the journal is

not being moved through the CP.

Multiple journals may be synchronized periodically. Multiple journals may occur, for

example, with multiple volumes, or multiple FPs or DVEs to the same volume. The multiple
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journals may be synchronized by revoking mapping entries for all journals and waiting for
downstream I/O operations to the journals from the FP to complete. The journals may then be
swapped out and copied to a remote location followed by a synchronization barrier. The copy
agent on the remote side knows that the remote image set is only valid when a barrier is reached.
In one embodiment, journals may be implemented per-DVE or per FP such that no DVEs and
FPs communicate with each other to do journalling. Otherwise, there may be performance
penalties. Synchronization may be performed at discrete points in time that are predefined as

described elsewhere herein.

In the case where a DVE fails, the recovering DVE takes over the data journals of the
failed DVE, as well as the non-volatile oplock journals. When a DVE fails, its journals may
have incomplete data for I/Os for which a status has not yet been returned to the host. For those
I/Os, the state of the actual disk blocks on the data storage device may be characterized as
"unknown". The host may issue a retry of the I/O operation. In the case of synchronous
mirroring on failover, differences are detected and reconciled between the N sides of the mirror.
Similar reconciliation may be performed for journals. The DVE performing cleanup in
connection with a failed DVE, through non-volatile oplocks, knows which block ranges the
failed DVE may have been modifying and may read the data from the device and write to the
journal making the journal complete for those block ranges. Reconciliation for a failed DVE
being brought up to date may use the non-volatile oplocks as a form of dirty region logging to
detect those portions. In other words, when DVE A is cleaning up after failed DVE B, DVE A
may traverse the list of non-volatile oplocks to identify those which DVE B owned when it

failed. Accordingly, DVE A may update DVE B's journal for any write operations, for example,
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that DVE B may have been in the process of completing. All volatile inter-DVE oplocks are

released when DVE B goes off-line.

Referring to Figure 33, shown is an embodiment 900 of a compound example of
performing a snapshot during a migration. The example 900 illustrates an initial state of the
rmapl and rmap2 tables. Data is being migrated from P1 to P2 and V snap is also a snapshot of
V. The rmaps are modified in accordance with the state changes as described elsewhere herein
in connection with performing the snapshot and migration operations, for example, when there is
a write operation to a portion of data in V. The foregoing illustrates that the FP can handle more
complex and compound examples such as depicted in Figure 33. It should be noted that entries 0
and 2 in redirect table 2 may be combined if the CP can handle this compression since these

entries are the same in this example.

It should be noted that in the foregoing examples, the Rmap describes the vaﬁable length
extents included in the VSEG descriptors LBA range. The Rmap shown is also a cache in the FP
which is a portion of the potentially larger RMAP included in the CP, which itself may be
implemented as é cache of media-based Rmap information. The Volume to VSEG descriptor
mapping has been eliminated as if there is only a single Volume Segment per Volume to keep
the foregoing examples simple. Additionally, the foregoing examples treat each physical volume
(P) as if fully consumed without having some offset into the device as the base address.
However, these examples are in a system that uses the three-level caching of variable length

extents described herein.
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In connection with the foregoing for both volatile and non-volatile oplocks, an acquiring
DVE obtains all necessary locks, purges its local cache and all copies of the data cached
elsewhere, such as by other DVEs, updates the global copy of the associated data, if any, and
issues a broadcast to signal to other nodes that the lock is now available and that a new global
copy of the associated metadata is also available. If there is no such broadcast sent to interested
nodes (sharing list nodes), such as when an acquiring node has failed, other nodes may have
individual timers. These timers may be used by each node as a default signaling mechanism to

attempt to acquire locks.

What will be described in following paragraphs is an embodiment of an Rmap data
structure. The Rmap data structure is shown elsewhere herein, for example, in Figure 9 as

element 242.

Referring now to Figure 34, shown is an illustration 1000 that includes an embodiment of
an rmap data structure 1001 and a key value 1002. The key value 1002 may be a value, such as
an LBA. The rmap data structure 1001 in this example may be implemented as a multi-level
page table structure in which successive portions of the key 1002 are used as indices into a series
of cascaded arrays. The arrays at a first level point to other arrays at a next level until a leaf is
reached. As known to those of ordinary skill in the art, this may be referred to as a trie data
structure. In this example, for a given key value 1002, a look up in the rmap data structure 1001

may be performed to determine a particular defined range, if any, into which the key value falls.
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For an rmap table 1001, one or more ranges Qf values may be defined, such as 1006a, in
which a starting value, length and associated value are specified. In this example, each range
may correspond to an LBA range of each extent, for example, as in the rmap 242 described
previously in connection with Figure 9. The value, such as "A" in 1006a, may correspond to the
index into the storage redirect table, as also described elsewhere herein. These ranges are the
leaf nodes of the trie. Bits of a key value 1002 are used in traversing a path of connected arrays
at each level. In this example, the key includes 8 bits having a degree of log; (8) = 3. This
particular key value 1002 as described herein is a small key value for purposes of illustrations.

Embodiments may use other key values including a varying number of bits, such as 16 or 256.

In this example, 2 bits of the key value 1002 are used to map and determine which next
array, if any, to follow in determining whether, for a given key value, there is defined range and
obtaining associated information regarding that range, such as the value A of 1006a which may
correspond to the index into the storage redirect table for a given LBA address. The rmap 1001
includes arrows with solid lines defined when traversing the arrays with a starting value of one
of the ranges. Additionally, the rmap 1001 includes single dashed line arrows defined providing
paths to the range leaf nodes, such as 1006a, for values of each range other than the starting
value. For example, if a key value is 0x11 having the binary representation "0001 0001", the
first two bits of the key value "00" are used to select the corresponding element of 1022a which
points to 1022b. The next two bits of the key value "01" of 1022b point to 1020c. The next two
bits of the key value "00" point to array 1020d. The final two bits of the key value "01" point to
the leaf range 1006a via the solid arrow 1006b. For a key value is 0x12, the final two bits of the

key value "10" lead to 1006a via final connector 1006¢c. For a key value of 0x10, there is no
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arrow from the first array element of 1020d corresponding to the two bit key value "00".
Accordingly, a determination is made that there is no defined range that includes the key value

0x10.

If a given two-bit of the key value at a current level may only be associated with one leaf
node range, intervening arrays between the current level array and the leaf node may be omitted
and a direct connection may be made to the leaf. For example, for a key of 0x14 having a binary
representation of "0001 1000", arrow 1008d provides a direct connection to the corresponding
leaf range node 1008a. A lookup is then performed to determine if the key value is indeed
included in the range of 1008a since more than one key value may be possible depending on the

current level and not all key values may actually be included in the range of leaf node 1008a.

This trie may also be further compressed and collapsed in that arrays 1020a and 1020b
and all pointers included therein may be omitted and replaced with double dashed arrow 1012.
All valid key values with the first four bits of "0011" fall within the range of leaf node 1010a.
All valid key values with the first two bits "01" may also be mapped directly to 1010a. A
determination is then made as to whether the key is actually in the range by obtaining
information from the leaf node and determining if the key is within the range "start
valuetlength-1". As just described, the rmap 1001 may be referred to as a compressed trie in
which arrays at intervening levels may be removed as a space optimization also providing a time

saving optimization when performing a look-up.
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The foregoing description uses a technique in which "legs" of the trie may be pruned if

the leg has only a single hit by collapsing the leg up to the parent pointer.

Other data structures may be used in an embodiment to represent the rmap and other

embodiments may also optionally include other space and time saving optimizations.

It should be noted that portions of the foregoing embodiment may be implemented using
the C programming language or other language that may vary in accordance with each
embodiment. In one embodiment, the C language fault handler performs the updating of the
global metadata and pushing snapshot data, for example in connection with performing a write

using a snapshot device described elsewhere herein.

Described herein are a “fast path” (FP) and a “control path” (CP) for data processing,
with an interface between them. The FP in an embodiment may implement one or more
“primitive” operations. The primitive operations, used as building blocks, may be used together
to perform more complex operations. The CP, for example, utilizing an FP interface, may issue
instructions to the FP to perform a set of the primitives in a carefully orchestrated way, so as to
perform higher level data operations, such as snapshots, migrations, replications, and other
operations. The CP can do the foregoing such that multiple FPs and CPs can provide access to

the same data concurrently and redundantly.

In the foregoing coordination controlled by the CP, the FP does not have specific

knowledge as to what particular more complex data operation may be performed. Rather, the CP
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has knowledge of the how the individual primitive operations piece together to complete the
more complex data operation. The CP invokes the one or more FPs to perform the various
primitive operations as may be defined in accordance with the FP API as described elsewhere

herein.

Other embodiments may perform I/O operations using a volume manager rather than
using the CP and FP techniques as described herein. In a traditional volume manager, there may
be independent modules used to perform different complex operations, such as snapshot,
migration, mirroring, striping, and the like. Each of the foregoing modules may perform
independent virtual to physical LBA translations. Each of these independent modules may be
called in a predetermined sequence in connection with performing any I/O operation. Each
module may accordingly perform the relevant processing in connection with the current I/O

operation.

However, this may be inefficient in that a predetermined generic path or series of routines
may be invoked for all I/O operations incurring much overhead in processing I/O operations. In
other words, all I/O operations are performed by executing a same set of routines associated with
the same software call stack. Additionally, coordination and synchronization is performed at a

local level of each of the modules.

In the foregoing FP and CP technique, the CP determines what particular I/O primitives
and computations from virtual to physical LBA translates are necessary to complete a particular

I/O operation. These I/O primitives may be implemented in hardware and/or software.
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Consider, for example, the following. An incoming I/O operation may be initially routed to the
FP which faults to the CP because it is too complex in accordance with one or more conditions

described elsewhere herein. In connection with the I/O operation, the CP then determines that

the following translations from virtual LBAs to physical LBAs are needed to complete the

incoming I/O operation:

Virtual address: Physical Address:
v1-v100 -> p201-p300
v101-v300 -> p501-p700
v301-v400 -> p301-p400
v401-v500 -> FAULT
v501-v600 -> p401-p500

The CP determines the foregoing translations and associated states of the LBA Rmap table
entries prior to invoking any FPs for processing. Since the CP has knowledge about what other
processes or threads may be accessing a particular LBA range, device, etc., the CP may
coordinate activities to be performed by the FPs in connection with completing this I/O operation
as well as other ongoing activities. In this instance, the CP may determine that the foregoing
virtual address LBA ranges may be accessed and used in connection with performing this current
1/O operation. The CP may then invoke and authorize multiple FPs to perform, in parallel, the
translations and associated I/O operation for the above virtual addresses, except v401-v500. As
indicated by the "fault" above, the CP may need to perform an action, such as load a table entry,
prior to authorizing an FP to perform an operation in cormection with virtual addresses v401-

v500.

The use of the foregoing CP and FP may be characterized as different from the

architecture associated with a volume manager which sends every I/O operation through a
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central code path. In contrast, the CP and FP embodiment separates the I/O operations into those
that may be performed by the FP and those that may not. In general, most I/O operations may be
processed in a streamlined fashion as described herein by the FP. The foregoing provides a

scaleable technique for use with I/O operations.

The relationship between the CP and one or more associated FPs may be characterized as
a master-slave relationship. The CP is the master that coordinates and controls the one or more
FPs to perform tasks. The CP's responsibilities include coordination of FP processing to perform
an I/O operation. Additionally, the CP may be deemed a taskmaster and coordinator in
connection with other operations that need to be performed in a system, such as migration. The
CP enlists the assistance of the one or more FPs also in performing the migration, for example.
The CP coordinates and balances the performance of other tasks, such as migration, and

incoming I/O operations.

When the CP instructs an FP to perform an operation, such as perform a mapping
primitive operations, the CP grants authority to the FP to perform the operation. The FP as
described herein also has its own local cache that ma‘y include data used by the FP in performing
the operation. The FP continues to operate using the current data in its local FP cache
independent of other FP caches and the CP cache until the CP revokes the authority of the FP,
for example, by invalidating the contents of the FPs local cache. The FP may then continue to
complete its current I/O operation but not begin any new I/O operations. The FP may

subsequently acknowledge the invalidation message by sending an acknowledgement to the CP.
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The CP then takes appropriate subsequent action. For example, the CP may wait for pending
1/Os to drain from the FP and CP's pending 1/0 lists if there is a restrictive update being
performed. In connection with the foregoing, the FP does not synchronize its cache with any
other FP cache providing each of the FPs with the independence needed to make the CP and FP

techniques described herein scalable.

While the invention has been disclosed in connection with preferred embodiments shown
and described in detail, their modifications and improvements thereon will become readily
apparent to those skilled in the art. Accordingly, the spirit and scope of the present invention

should be limited only by the following claims.
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What is Claimed is:
1. A method executed in a computer system for processing a data operation
comprising:

determining if said data operation has at least one predetermined criteria
characterizing said data operation as being a commonly performed non-complex data
operation using a primitive operation; and

routing said data operation to a fast path for processing if said data operation has
said at least one predetermined criteria, and routing said data operation to a general

control path for processing otherwise.

2. The method of Claim 1, wherein said fast path and said general control path are

included in a switching fabric.

3. The method of Claim 2, wherein said fast path and said general control path

are implemented in at least one of: hardware and software.

4. The method of Claim 1, wherein said predetermined criteria is one of: said
data operation is within a single logical volume, said data operation involves data from
within virtual address boundaries of a single mapping table entry, said data operation is a

read operation, and said data operation is a write operation.
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5. The method of Claim 1, wherein said predetermined criteria is one of: said
data operation is indicated as allowable in accordance with information included in a
mapping table used in mapping virtual to physical locations for said data operation, and
said data operation does not cause a serialization conflict in connection with a mirrored

device.

6. The method of Claim 1, further comprising:
routing said data operation to said general control path by causing a fault if said

data operation does not have said at least one predetermined criteria.

7. The method of Claim 1, further comprising:
routing said data operation to said general control path in accordance with
information included in a mapping table associated with a virtual address to physical

address translation of an address of said data operation.

8. The method of Claim 7, further comprising:
determining a volume segment descriptor associated with said data operation, said

volume segment descriptor including said mapping table.

9. The method of Claim 2, wherein said switching fabric includes a plurality of

general control paths, each of said general control paths associated with at least one fast

path.
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10. The method of Claim 9, further comprising:
each of said plurality of general control paths controlling said at least one

associated fast path.

11. The method of Claim 10, wherein said switching fabric includes a plurality of
virtualization engines, each of said plurality of virtualization engines including at least

one general control path and at least one associated fast path.

12. The method of Claim 11, wherein, for each virtualization engine that includes
a plurality of general control paths, only one of said general control paths being active at
a time with another of said plurality of general control paths being active if said only one

general control path is off-line.

13. The method of Claim 12, further comprising:
issuing said data operation from a host system to a virtualization engine which
performs virtual to physical address translation of an address associated with said data

operation.
14. The method of Claim 13, wherein said data operation from said host is

routed through a first switch that is directly connected to a fast path included in a second

switch.
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15. The method of Claim 14, wherein said first switch is directly connected to

said second switch by plugging into a port of said second switch.

16. The method of Claim 1, wherein said data operation is issued by said fast
path if said data operation has said at least one predetermined criteria and is otherwise

issued by said general control path.

17. The method of Claim 1, wherein said data operation is an upstream data
operation from a host and the method further comprising:

producing at least one downstream data operation to a physical device associated
with said data operation corresponding to said upstream data operation; and

creating an element on a pending data operation list corresponding to said data

operation.

18.  The method of Claim 1, further comprising:
routing return data operation data using said fast path to a host that issued said
data operation if there is no error, and otherwise routing return data operation data using

said general control path to a host that issued said data operation.

142 -



10

15

20

WO 03/071419 PCT/US02/39232

19. A computer program product that processes a data operation comprising:

machine executable code that determines if said data operation has at least one
predetermined criteria characterizing said data operation as being a commonly
performed non-complex data operation using a primitive operation; and

machine executable code that routes said data operation to a fast path for
processing if said data operation has said at least one predetermined criteria, and routing

said data operation to a general control path for processing otherwise.

20. The computer program product of Claim 19, wherein said fast path and said

general control path are included in a switching fabric.

21. The computer program product of Claim 20, wherein said fast path and said

general control path are implemented in at least one of: hardware and software.

22. The computer program product of Claim 19, wherein said predetermined
criteria is one of: said data operation is within a single logical volume, said data operation
involves data from within virtual address boundaries of a single mapping table entry, said

data operation is a read operation, and said data operation is a write operation.
23. The computer program product of Claim 19, wherein said predetermined

criteria is one of: said data operation is indicated as allowable in accordance with

information included in a mapping table used in mapping virtual to physical locations for
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said data operation, and said data operation does not cause a serialization conflict in

connection with a mirrored device.

24. The computer program product of Claim 19, further comprising:
machine executable code that routes said data operation to said general control
path by causing a fault if said data operation does not have said at least one

predetermined criteria.

25. The computer program product of Claim 19, further comprising:
machine executable code that routes said data operation to said general control
path in accordance with information included in a mapping table associated with a virtual

address to physical address translation of an address of said data operation.

26. The computer program product of Claim 23, further comprising;
machine executable code that determines a volume segment descriptor associated

with said data operation, said volume segment descriptor including said mapping table.
27. The computer program product of Claim 20, wherein said switching fabric

includes a plurality of general control paths, each of said general control paths associated

with at least one fast path.
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28. The computer program product of Claim 27, further comprising:
machine executable code in each of said plurality of general control paths for

controlling said at least one associated fast path.

29. The computer program product of Claim 28, wherein said switching fabric
includes a plurality of virtualization engines, each of said plurality of virtualization

engines including at least one general control path and at least one associated fast path.

30. The computer program product of Claim 29, wherein, for each virtualization
engine that includes a plurality of general control paths, only one of said general control
paths being active at a time with another of said plurality of general control paths being

active if said only one general control path is off-line.

31. The computer program product of Claim 30, further comprising:
machine executable code that issues said data operation from a host system to a
virtualization engine which performs virtual to physical address translation of an address

associated with said data operation.
32. The computer program product of Claim 31, wherein said data operation

from said host is routed through a first switch that is directly connected to a fast path

included in a second switch.
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33. The computer program product of Claim 32, wherein said first switch is

directly connected to said second switch by plugging into a port of said second switch.

34. The computer program product of Claim 19, wherein said data operation is
issued by said fast path if said data operation has said at least one predetermined criteria

and is otherwise issued by said general control path.

35. The computer program product of Claim 19, wherein said data operation is an
upstream data operation from a host and the computer program product further
comprising:

machine executable code that produces at least one downstream data operation to
a physical device associated with said data operation corresponding to said upstream data
operation; and

machine executable code that creates an element on a pending data operation list

corresponding to said data operation.

36.  The computer program product of Claim 19, further comprising:

machine executable code that routes return data operation data using said fast path
to a host that issued said data operation if there is no error, and otherwise routing return
data operation data using said general control path to a host that issued said data

operation.
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37. A method executed in a computer system for performing a data operation
comprising:

receiving said data operation by a switching fabric;

determining at least one processing step for performing said data operation in
accordance with a current state of at least one mapping table; |

determining at least one mapping primitive operation for processing said data
operation, said mapping primitive being used to perform virtual to physical address
translation by said switching fabric using at least one mapping table; and

executing said mapping primitive operation and obtaining a physical address

associated with said data operation.

38. The method of Claim 37, wherein a control path performs said determining

said at least one processing step and said at least one mapping primitive.

39. The method of Claim 38, wherein there are at least two mapping primitives
and at least two fast paths associated with said control path, and the method further
comprising:

authorizing, by said control path, a first fast path of said at least two fast paths to
perform a first of said at least two mapping primitives; and

authorizing, by said control path, a second fast path of said at least two fast paths

to perform a second of said at least two mapping primitives.
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40. The method of Claim 38, wherein said control path performs said
determining said at least one processing step and said at least one mapping primitive

before authorizing any fast path in performing processing steps.

5 41. The method of Claim 37, further comprising:

dispatching a data request to a physical device at said physical address.

42. The method of Claim 37, further comprising:
using a portion of said at least one mapping table, said portion being included in a
10 local cache of said fast path, said fast path executing said mapping primitive operation,
said fast path being a path for routing commonly performed data operations which are

non-complex.

43. The method of Claim 42, wherein said mapping primitive operation is a first
15  primitive and the method further comprising:
determining a second primitive, a striping primitive, for processing said data
operation, said striping primitive performing multiple lookups from a plurality of

physical devices using a single operation performed by said fast path.

20 44. The method of Claim 43, wherein said striping primitive is included in a

computer system that implements at least one of: RAIDO, RAID 1 and RAIDS.

- 148 -



10

15

20

WO 03/071419 PCT/US02/39232

45. The method of Claim 44, further comprising:
using said fast path for processing said data request if said data request does not
span multiple stripes, and otherwise using a general control path for processing said data

operation.

46. The method of Claim 42, further comprising:
performing a striping operation for processing a data operation by performing said

mapping primitive operation for each of said disk stripes.

47.  The method of Claim 45, further comprising:

determining a third primitive, a write splitting primitive, for processing said data
operation that performs processing of said remapping primitive operation to a first
physical device and simultaneously initiates a second mapped write to another physical

device with data also being written to said first physical device.

48. The method of Claim 47, wherein performing said write splitting primitive
also causes receiving and correlation of return information from all physical devices

written to.

49. The method of Claim 48, further comprising:

using information included in said at least one mapping table to indicate if write

splitting is to be performed for an associated destination location.
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50. The method of Claim 49, wherein said write splitting includes writing to a

journal device.

51. The method of Claim 49, wherein said write splitting includes writing to a

non-journal device.

52. The method of Claim 50, further comprising:
determining a fourth primitive in processing said data request that includes

performing write splitting and write journalling by executing said fourth primitive.

53. The method of Claim 52, wherein said first, said second, said third and said
fourth primitives form a hierarchy of primitives wherein said first primitive is at the
lowest level and the fourth primitive is at the highest level, each of said primitives in said
hierarchy having a characteristic that a primitive at a higher level may be implemented

using one or more lower level primitives.

54. The method of Claim 52, wherein at least one of said first, said second,

said third and said fourth primitives are implemented in hardware.
55.  The method of Claim 52, further comprising:

using said write splitting primitive in connection with performing a data operation

to a mirror device.
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56. The method of Claim 52, further comprising:

using said write splitting primitive in connection with performing synchronous

replication.

57. The method of Claim 52, further comprising:

using said write splitting primitive and said fourth primitive in connection with

performing asynchronous replication.
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58. A computer program product that performs a data operation comprising:

machine executable code that receives, by a switching fabric, said data operation;

machine executable code that determines at least one processing step for
performing said data operation in accordance with a current state of at least one mapping
table;

machine executable code that determines at least one mapping primitive operation
for processing said data operation, said mapping primitive being used to perform virtual
to physical address translation by said switching fabric using at least one mapping table;
and

machine executable code that executes said mapping primitive operation and

obtains a physical address associated with said data operation.

59. The computer program product of Claim 58, wherein a control path includes

machine executable code determines said at least one processing step and said at least one

mapping primitive.

60. The computer program product of Claim 59, wherein there are at least two
mapping primitives and at least two fast paths associated with said control path, and the
computer program product further comprising machine executable code that:

authorizes, by said control path, a first fast path of said at least two fast paths to

perform a first of said at least two mapping primitives; and
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authorizes, by said control path, a second fast path of said at least two fast paths

to perform a second of said at least two mapping primitives.

61. The computer program product of Claim 59, wherein said control path
includes machine executable code that determines said at least one processing step and
said at least one mapping primitive before authorizing any fast path in performing

processing steps.

62. The computer program product of Claim 58, further comprising:
machine executable code that dispatches a data request to a physical device at said

physical address.

63. The computer program product of Claim 58, furthér comprising;:

machine executable code that uses a portion of said at least one mapping table,
said portion being included in a local cache of said fast path, said fast path executing said
mapping primitive operation, said fast path being a path for routing commonly performed

data operations which are non-complex.

64. The computer program product of Claim 63, wherein said mapping primitive
operation is a first primitive and the computer program product further comprising:

machine executable code that determines a second primitive, a striping primitive,
for processing said data operation, said striping primitive performing multiple lookups

from a plurality of physical devices using a single operation performed by said fast path.
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65. The computer program product of Claim 64, wherein said striping primitive
is included in a computer system that implements at least one of: RAIDO, RAID 1 and

RAIDS.

66. The computer program product of Claim 65, further comprising:
machine executable code that uses said fast path for processing said data request
if said data request does not span multiple stripes, and otherwise using a general control

path for processing said data operation.

67. The computer program product of Claim 63, further comprising:
machine executable code that performs a striping operation for processing a data

operation by performing said mapping primitive operation for each of said disk stripes.

68.  The computer program product of Claim 66, further comprising:

machine executable code that determines a third primitive, a write splitting
primitive, for processing said data operation that performs processing of said remapping
primitive operation to a first physical device and simultaneously initiates a second
mapped write to another physical device with data also being written to said first physical

device.
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69. The computer program product of Claim 68, wherein said machine
executable code that performs said write splitting primitive also causes receiving and

correlation of return information from all physical devices written to.

70. The computer program product of Claim 69, further comprising:
machine executable code that uses information included in said at least one
mapping table to indicate if write splitting is to be performed for an associated destination

location.

71. The computer program product of Claim 70, wherein said write splitting

includes writing to a journal device.

72. The computer program product of Claim 70, wherein said write splitting

includes writing to a non-journal device.

73. The computer program product of Claim 71, further comprising:
machine executable code that determines a fourth primitive in processing said
data request that includes performing write splitting and write journalling by executing

said fourth primitive.
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74. The computer program product of Claim 73, wherein said first, said second,
said third and said fourth primitives form a hierarchy of primitives wherein said first
primitive is at the lowest level and the fourth primitive is at the highest level, each of said
pﬁmitives in said hierarchy having a characteristic that a primitive at a higher level may

be implemented using one or more lower level primitives.

75.  The computer program product of Claim 73, wherein at least one of said

first, said second, said third and said fourth primitives are implemented in hardware.

76. The computer program product of Claim 73, further comprising;
machine executable code that uses said write splitting primitive in connection

with performing a data operation to a mirror device.

77. The computer program product of Claim 73, further comprising:
machine executable code that uses said write splitting primitive in connection

with performing synchronous replication.
78. The computer program product of Claim 73, further comprising:

machine executable code that uses said write splitting primitive and said fourth

primitive in connection with performing asynchronous replication.
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79. A method executed in a computer system for performing virtual to physical
address mapping of a virtual address comprising:

determining a volume descriptor associated with said virtual address, said volume
descriptor including a variable size extent table, said variable size extent table including a
plurality of portions, each of said portions associated with a varying range of virtual
addresses;

determining a first extent included in said variable size extent table corresponding
to said virtual address; and

determining a corresponding physical address for said virtual address using

mapping table information associated with said first extent.

80. The method of Claim 79, wherein said variable size extent table includes a
first extent and a second extent, said first extent corresponding to a first range of virtual
addresses, said second extent corresponding to a second range of virtual addresses, said

first and second ranges of virtual address being of different sizes.

81. The method of Claim 80, further comprising:
dynamically modifying said first range of virtual addresses associated with said
first extent in response to a state change of physical data storage corresponding to said

first range of virtual addresses.
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82. The method of Claim 80, further comprising:
creating a second extent corresponding to a state change of physical storage

associated with said second extent.

83.  The method of Claim 82, wherein a portion of said mapping table

information is included in a storage redirect table having at least one entry.

84. The method of Claim 83, wherein each entry in said storage redirect table
includes physical storage address information and state information corresponding to a

physical storage location.

85. The method of Claim 84, wherein said variable size extent table includes, for
each extent, an index into the storage redirect table corresponding to an entry in the

storage redirect table.

86. The method of Claim 85, wherein at least two extents included in said
variable size extent table are associated with the same index into the storage redirect

table.
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87. A computer program product that performs virtual to physical address
mapping of a virtual address comprising:

machine executable code that determines a volume descriptor associated with said
virtual address, said volume descriptor including a variable size extent table, said variable
size extent table including a plurality of portions, each of said portions associated with a
varying range of virtual addresses;

machine executable code that determines a first extent included in said variable
size extent table corresponding to said virtual address; and

machine executable code that determines a corresponding physical address for

said virtual address using mapping table information associated with said first extent.

88. The computer program product of Claim 87, wherein said variable size extent
table includes a first extent and a second extent, said first extent corresponding to a first
range of virtual addresses, said second extent corresponding to a second range of virtual

addresses, said first and second ranges of virtual address being of different sizes.

89. The computer program product of Claim 88, further comprising:
machine executable code that dynamically modifies said first range of virtual
addresses associated with said first extent in response to a state change of physical data

storage corresponding to said first range of virtual addresses.
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90. The computer program product of Claim 88, further comprising:
machine executable code that creates a second extent corresponding to a state

change of physical storage associated with said second extent.

5 91.  The computer program product of Claim 90, wherein a portion of said

mapping table information is included in a storage redirect table having at least one entry.

92. The computer program product of Claim 91, wherein each entry in said
storage redirect table includes physical storage address information and state information

10  corresponding to a physical storage location.

93. The computer program product of Claim 92, wherein said variable size extent
table includes, for each extent, an index into the storage redirect table corresponding to an

entry in the storage redirect table.

15
94, The computer program product of Claim 93, wherein at least two extents
included in said variable size extent table are associated with the same index into the
storage redirect table.
20
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95. A method executed in a computer system for performing virtual to physical address
translation comprising:

determining mapping tables used in performing said address translation, said
mapping tables including an extent table corresponding to a logical block address range
and a storage redirect table including physical storage location information associated
with said logical block address range, said extent table being divided into a plurality of
portions;

using a fast path in performing said virtual address translation if an associated
data operation meets predetermined criteria independent of at least one of a general &
control path and another fast path, and otherwise using a general control path; and

loading into a memory local to said fast path a portion of said extent table
corresponding to a current data operation, said portion of said extent table being included

in a memory managed using a cache management technique.
96. The method of Claim 95, wherein said cache management technique selects a
portion of said table to remove in accordance with one of a least recently used policy, a

random policy and a sequential policy.

97. The method of Claim 95, wherein said cache management technique uses a

window size in accordance with a working set.
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98. The method of Claim 95, wherein a general control path performs said
address translation if not performed by said fast path, and the method further comprising:
loading said portion of said extent table in memory local to the fast path using a

copy of said extent table included in other memory managed by said general control path.

99. The method of Claim 95, further comprising:
determining by a general control path at least one processing operation to be
performed in connection with completing an incoming operation; and
{0 authorizing, by said general control path, at least one fast path to each perform
one of said at least one processing operation, each of said at least one fast path operating

independent of other fast paths.

100. The method of Claim 99, wherein said at least one fast path continues
15  performing using data in its local cache until authority of said at least one fast path is

revoked by said general control path.

101. The method of Claim 100, further comprising:

said general control path revoking said authority of said at least one fast path by

20  invalidating data included in said local cache of said fast path.
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102. The method of Claim 95, further comprising:
using an application programming interface between said fast path and a general
control path in order for said fast path to obtain said portion from a general control path

associated with said fast path.

103. The method of Claim 100, further comprising:

receiving, by said at least one fast path, a message from said general control path
invalidating data included in said local cache of said fast path;

said at least one fast path continuing processing of a current I/O operation; and

sending an acknowledgement by said at least one fast path to said general control
path after completion of said current I/O operation, said acknowledgement indicating that
said at least one fast path has acknowledged revocation of its current authority by said

general control path.
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104. A computer program product that performs virtual to physical address
translation comprising:

machine executable code that determines mapping tables used in performing said
address translation, said mapping tables including an extent table corresponding to a
logical block address range and a storage redirect table including physical storage
location information associated with said logical block address range, said extent table
being divided into a plurality of portions;

machine executable code that uses a fast path in performing said virtual address
translation if an associated data operation meets predetermined criteria independent of at
least one of a general control path and another fast path, and otherwise using a general
control path; and

machine executable code that loads into a memory local to said fast path a portion
of said extent table corresponding to a current data operation, said portion of said extent

table being included in a memory managed using a cache management technique.

105. The computer program product of Claim 104, wherein said cache

management technique selects a portion of said table to remove in accordance with one of

a least recently used policy, a random policy and a sequential policy.

106. The computer program product of Claim 104, wherein said cache

management technique uses a window size in accordance with a working set.
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107. The computer program product of Claim 104, wherein a general control path
performs said address translation if not performed by said fast path, and the computer
program product further comprising:

machine executable code that loads said portion of said extent table in memory
local to the fast path using a copy of said extent table included in other memory managed

by said general control path.

108. The computer program product of Claim 104, further comprising:

machine executable code that determines by a general control path at least one
processing operation to be performed in connection with completing an incoming
operation; and

machine executable code that authorizes, by said general control path, at least one
fast path to each perform one of said at least one processing operation, each of said at

least one fast path operating independent of other fast paths.

109. The computer program product of Claim 108, wherein said at least one fast

path continues performing using data in its local cache until authority of said at least one

fast path is revoked by said general control path.
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110. The computer program product of Claim 109, further comprising:
machine executable code included in said general control path that revokes said
authority of said at least one fast path by invalidating data included in said local cache of

said fast path.

111. The computer program product of Claim 104, further comprising:
machine executable code that uses an application programming interface between
said fast path and a general control path in order for said fast path to obtain said portion

from a general control path associated with said fast path.

112. The computer program product of Claim 109, further‘ comprising:

machine executable code that receives, by said at least one fast path, a message
from said general control path invalidating data included in said local cache of said fast
path, said at least one fast path continuing processing of a current I/O operation; and

machine executable code that sends an acknowledgement by said at least one fast
path to said general control path after completion of said current I/O operation, said
acknowledgemenf indicating that said at least one fast path has acknowledged revocation

of its current authority by said general control path.
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113. A method executed in a computer system for controlling access to shared
data comprising:

sending a message from a requester to at least one other user of said shared data
accessing said shared data for read access;

said requester receiving approval messages from each of said at least one other
user;

said requester obtaining a lock on a first copy of said shared data included in a
global storage location upon receiving said approval messages wherein said requester
releases said lock when said lock is requested by another; and

said requester, in response to obtaining said lock, modifying said first copy of

shared data.

114. The method of Claim 113, further comprising:
prior to each of said other users sending an approval message, each of said other

users invalidating all local copies of said shared data.

115. The method of Claim 113, wherein a local copy of said shared data is
divided into varying size portions and said first copy is a global copy that is divided into
corresponding fixed size portions, the method further comprising:

determining at least one lock of a fixed size portion corresponding to at least one

portion of varying size; and
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obtaining said at least one lock of a fixed size portion to obtain a lock on a

corresponding varying size portion.

116. The method of Claim 115, wherein said fixed size portions are included a
mapping table used in determining a physical address location corresponding to a virtual

address.

117. The method of Claim 114, further comprising:
a user sending a non-approval message to said requester such that said requester is

not granted permission to obtain said lock.

118. The method of Claim 114, wherein said requester is a first requester and the
method further comprising:

a second requester sending a message to at least one user requesting permission to
obtain said lock after said first requester has obtained said lock; and

said first requester sending a message to said second requester granting
permission to obtain said lock, said first requester being an owner of said lock until said

second requester obtains permission to obtain said lock.

119. The method of Claim 118, wherein said second requester is unavailable after

obtaining said lock.
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120. The method of Claim 119, wherein said first requester performs clean-up
operations of said second requester, and the method further comprising:

said first requester acquiring said lock to perform said clean-up operations.

5 121. The method of Claim 113, further comprising performing a snapshot

operation.

122. The method of Claim 121 wherein, said snapshot operation pushes data
from a first device to a second snapshot device, included in said shared data is metadata
10  used in accessing a physical data location for a data operation, the method comprising:
acquiring at least one lock for a portion of metadata associated with said first
device;
acquiring at least one lock on said second device corresponding to those of said
first device;
15 determining if data has already been copied from said first to said second device;
if said data has not been copied, copying said data;
updating said metadata to indicate a state change in said second device that data
has been copied from said first device;
waiting for read operations to said first device to complete; and
20 updating said metadata to indicate a state change in said first device that data has

been copied from said first device.
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123. The method of Claim 113, wherein a first set of users is included in a
broadcast list and said sending a message from a requester is sent to each user included in

said broadcast list.

124. The method of Claim 123, further comprising:

updating said broadcast list in accordance with a change in users associated with
said shared data; and

sending another message from another requester to users included in said

broadcast list.
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125. A computer program product that controls access to shared data comprising:

machine executable code that sends a message from a requester to at least one
other user of said shared data accessing said shared data for read access;

machine executable code that receives approval messages for said requester from
each of said at least one other user;

machine executable code that obtains a lock for said requester on a first copy of
said shared data included in a global storage location upon receiving said approval
messages wherein said requester releases said lock when said lock is requested by
another; and

machine executable code that, in response to obtaining said lock, causes said

requester to modify said first copy of shared data.

126. The computer program product of Claim 125, further comprising:
machine executable code that, prior to each of said other users sending an
approval message, causes each of said other users to invalidate all local copies of said

shared data.

127. The computer program product of Claim 125, wherein a local copy of said
shared data is divided into varying size portions and said first copy is a global copy that
is divided into corresponding fixed size portions, the computer program product further
comprising:

machine executable code that determines at least one lock of a fixed size portion

corresponding to at least one portion of varying size; and
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machine executable code that obtains said at least one lock of a fixed size portion

to obtain a lock on a corresponding varying size portion.

128. The computer program product of Claim 127, wherein said fixed size
portions are included a mapping table used in determining a physical address location

corresponding to a virtual address.

129. The computer program product of Claim 126, further comprising:
machine executable code that causes a user to send a non-approval message to

said requester such that said requester is not granted permission to obtain said lock.

130. The computer program product of Claim 126, wherein said requester is a
first requester and the computer program product further comprising:

machine executable code that causes a second requester to send a message to at
least one user requesting permission to obtain said lock after said first requester has
obtained said lock; and

machine executable code that causes said first requester to send a message to said
second requester granting permission to obtain said lock, said first requester being an

owner of said lock until said second requester obtains permission to obtain said lock.

131. The computer program product of Claim 130, wherein said second requester

is unavailable after obtaining said lock.
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132. The computer program product of Claim 131, wherein said first requester
performs clean-up operations of said second requester, and the computer program product
further comprising:

machine executable code that acquires a lock for said first requester to perform

5  said clean-up operations.

133. The computer program product of Claim 125, further comprising:

machine executable code that performs a snapshot operation.

10 134. The computer program product of Claim 133 wherein, said snapshot
operation pushes data from a first device to a second snapshot device, included in said
shared data is metadata used in accessing a physical data location for a data operation, the
computer pio gram product comprising:

' machine executable code that acquires at least one lock for a portion of metadata

15  associated with said first device;

machine executable code that acquires at least one lock on said second device
corresponding to those of said first device;

machine executable code that determines if data has already been C(I)pied from
said first to said second device;

20 machine executable code that, if said data has not been copied, copies said data;

machine executable code that updates said metadata to indicate a state change in

said second device that data has been copied from said first device;
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machine executable code that waits for read operations to said first device to
complete; and
machine executable code that updates said metadata to indicate a state change in

said first device that data has been copied from said first device.

135. The computer program product of Claim 125, wherein a first set of users is
included in a broadcast list and said sending a message from a requester is sent to each

user included in said broadcast list.

136. The computer program product of Claim 135, further comprising:

machine executable code that updates said broadcast list in accordance with a
change in users associated with said shared data; and

machine executable code that sends another message from another requester to

users included in said broadcast list.
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