This invention relates to pressurized assemblies for heating dispenser contents, and it particularly relates to an adjoining container for a pressurized dispenser in which the pressurized material is heated as it is discharged.

A primary object of this invention is a simple assembly for heating the pressurized contents of a dispenser as the contents are discharged.

Another object is an adjoining container adapted to be associated with a pressurized dispenser so that a circulating bath warms an elongated conduit from the dispenser.

Another object is a simple apparatus for heating pressurized contents such as shaving cream by directly using hot tap water.

Another object is a separable or separated container with an elongated conduit connected to a pressurized dispenser, which container receives heated fluids to warm the discharged contents traveling through the conduit.

Another object is a container holding an elongated conduit adapted to be fitted onto an outlet valve of a pressurized dispenser so that a circulating bath in the container warms the discharging material from the dispenser.

The foregoing objects are achieved by the present invention along with other objects which will become apparent from reading the specification and the claims.

The pressurized dispenser assembly is illustrated in the drawings wherein:

FIGURE 1 is an elevational side view partly in section of the assembly,

FIGURE 2 is an elevational side view of another embodiment, and

FIGURE 3 is a top plan view of the assembly incorporating a flowthrough housing.

Like numerals will be used to refer to like parts and structures throughout the specification.

The illustrated embodiment of FIGURE 1 shows a pressurized dispenser 10 of conventional design having an actuating member 11 with an outlet valve 12. To the outlet valve is fitted one end 14 of an elongated conduit shown here generally as a coiled conduit 16.

The coiled conduit is seated substantially within the container or housing 24. It has a straight inlet branch 18, a series of loops such as 19, an ascending branch 20, and a straight outlet branch 21. A discharge opening 22 is at the end of the outlet branch, and a closure 23 may be removably fitted therein. The outlet branch may pass through an aperture in the container where it may be secured by adhesive 42 or the like. The series of loops are shown preferably within the confines of a container 24.

The container may have continuous side walls 25 shown here as attached to the dispenser by a top connecting plate 26 and a bottom supporting plate 27. These plates may be removable or securely fixed to the dispenser. The top plate is shown with pressed snap members such as 37 which are adapted to frictionally fit under a bead 38 of the dispenser. An opening in the connecting plate receives the container, and the supporting plate may be fixed to the bottom of the container by means such as an adhesive mass 43. The top plate is preferably formed from materials which permit a snap fit so the container may be attached and removed.

The container 24 has a floor 28 and an open top 29. The open top receives and empties heated fluids such as tap water designated as 30 coming from a faucet tap such as 31.
be removably mounted on the dispenser by a snap fit. Also, a separated and independent container such as 32 is adapted to be positioned adjacent the pressurized dispenser. Such a separated container may be kept available, and fitted onto ordinary and conventional pressurized dispensers available on the market in wide numbers.

The top of the container may be fashioned in various ways so long as an opening is provided to permit entry of heated fluid, and to preferably permit such fluids to empty out of the container. The conduit may be fabricated from many inexpensive materials, but it is desirable to select a material which has a high rate of heat conductivity. Many metal conduits such as aluminum and copper may be used, as well as rigid or semi-rigid plastics.

The foregoing invention can now be practiced by those skilled in the art. Such skilled persons will know that the invention is not necessarily restricted to the particular embodiments presented herein. The scope of the invention is to be defined by the terms of the following claims as given meaning by the preceding description.

I claim:

1. A pressurized dispenser assembly having a pressurized container holding material to be dispensed under pressure, such as shaving cream, and an outlet to dispense such material, an adjoining open top container removably fixed to the pressurized container to form a single unit therewith, the open top container having a continuous side wall and a bottom wall, an elongated tube formed from heat conducting material, one end of the tube joined to the outlet of the pressurized container, the major portion of the tube having a descending branch, said descending branch being substantially coiled in repeating turns which substantially extend from the top of the continuous side wall to substantially the bottom wall, a minor portion of the tube having an ascending branch which extends from the final turn of the coil to an upper part of the side wall, and the end of said ascending branch extending out of the container and serving as a discharge for the heated and pressurized material, whereby the coiled descending branch provides a total length which is substantially greater than the distance from the top to the bottom of the open top container so that heating fluid which is freely introduced into the open container may heat the pressurized material dispensed from the container while it travels through the coiled descending branch and then out of the container.

2. A warmed lather dispenser assembly, said assembly including, in combination, a pressurized container holding material to be dispensed under pressure, such as shaving cream, said container having an outlet to dispense such material, an adjoining housing carried by the pressurized container to form a single unit therewith, the housing, when in use, having an inlet for the admission of hot water, an elongated conduit formed from heat conducting material, one end of the conduit being connectable to the pressurized container outlet, the major length of the conduit being substantially coiled, the periphery of the coiled conduit generally conforming to the configuration of the housing at locations adjacent thereto, the other end of the conduit forming an outlet for the heated material dispensed from the pressurized container, said housing having an outlet therefrom to thereby enable hot water admitted to the housing through the inlet to be removed therefrom, the major portion of said coiled conduit lying in the path of waterflow from the housing inlet to the housing outlet whereby the heating fluid which is admitted to the housing may contact the conduit, and thereby transfer heat thereto.

References Cited by the Examiner

UNITED STATES PATENTS

2,210,200 8/40 Brant 165—117
2,650,800 9/53 Taylor 165—117
2,835,781 5/58 Bashuk 219—39.3
2,873,351 2/59 Lannert 222—146 X
2,976,392 3/61 Wahnitz 239—133 X
3,043,484 7/62 Jolly,
3,069,528 12/62 Gardner 219—39.3
3,095,122 6/63 Lewiechi et al. 222—146
3,098,925 7/63 Fouts et al. 219—39.3

RAPHAEL M. LUPO, Primary Examiner.