Title: IBRUTINIB INTERMEDIATE COMPOUNDS, PREPARATION METHODS AND USES THEREOF

Abstract: The present invention relates to the technical field of ibrutinib, particularly to the technical field of ibrutinib intermediate compounds and preparation methods thereof. The intermediate compounds are represented by formula (A), wherein, the dotted line represents a double bond or a single bond between carbon and oxygen.
IBRUTINIB INTERMEDIATE COMPOUNDS, PREPARATION METHODS AND USES THEREOF

This application claims the priority of China Patent Application No. 201410313610.7, filed with the Patent Office of China on July 3, 2014, titled “Ibrutinib intermediate compounds, preparation methods and uses thereof”, the contents of which are incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to the technical field of ibrutinib, particularly to the technical field of ibrutinib intermediate compounds and preparation methods thereof.

BACKGROUND OF THE INVENTION

Ibrutinib has the following structure, with a chemical name of 1-[(3R)-3-[4-Amino-3-(4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl]piperidin-1-yl]prop-2-en-1-one

![Ibrutinib Structure](image)

Ibrutinib is the first in class of an oral Bruton’s tyrosine kinase (BTK) inhibitor for the treatment of chronic lymphocytic leukemia (CLL) and is one of the first medicines to file for FDA approval via the new Breakthrough Therapy Designation pathway. Ibrutinib forms a covalent bond with a cysteine residue (Cys-481), leading to irreversible inhibition of BTK, thus effectively blocking the transfer of cancer cell from B-cell to lymphoid tissue where is benefit for the growth of tumor.
The intermediate compound having the following structure is employed to synthesize ibrutinib.

The compound of formula VI can be used to produce ibrutinib according to the method disclosed in America patent US7514444, and its synthesis route is depicted as below:

The current methods for preparing the compound of formula VI are confined to two routes published in America patent US7514444, which can be represented by the following two routes:

Route 1:

Route 2:
Hence, it is necessary to develop new preparation methods for the industrial production.

SUMMARY OF THE INVENTION

To provide a new method for preparing the compound of formula VI, the present invention adopts the following technical proposal:

A compound of formula A has the following structure:

![Structure A](image)

Wherein, the dotted line represents a double bond or a single bond between carbon and oxygen.

The specific compound of formula A is selected from the followings:

![Structure III](image)

![Structure IV](image)
The following compound of formula I and the compound of formula II undergo nucleophilic addition reaction to produce the compound of formula III.

\[
\begin{array}{c}
\text{Cl} \\
\text{N} \\
\text{Cl} \\
\text{I} \\
\text{O} \\
\text{Cl} \\
\end{array}
\quad
\begin{array}{c}
\text{M} \\
\text{O} \\
\text{O} \\
\text{II} \\
\text{O} \\
\text{O} \\
\end{array}
\]

Wherein, M is Li, MgX or ZnX; X is Br or Cl; Preferably, X is Br.

The molar ratio of the compound of formula II to the compound of formula I is (1-2.5) to 1.

The preferred compound of formula has the following structures:

\[
\begin{array}{c}
\text{BrMg} \\
\text{II-1} \\
\end{array}
\quad
\begin{array}{c}
\text{BrZn} \\
\text{II-2} \\
\end{array}
\]

When M is MgX or ZnX, the compound of formula II was obtained by reacting the Mg or Zn with the compound of formula 2 in the present of initiator, the initiator is dibromoethane or I; the compound of formula II can be produced by the metal exchange reaction of the compound of formula 2 with organic metal salt, the preferred organic metal salt is isopropylmagnesium chloride or i-PrMgCl-LiCl.

When M is Li, the compound of formula II can be synthesized by reacting diphenyl ether with lithium alkylide, the preferred lithium alkylide is C\text{1,6} lithium alkylide.

The molar ratio of diphenyl ether to lithium alkylide is 1: (1.0-5.0).

The compound of formula III was subjected to oxidation reaction to afford the compound of formula IV, oxidizing agent utilized can be selected from CrO\text{3}, KMnO\text{4}, TEMPO (2,2,6,6-tetramethyl-4-oxopiperidinoxy), TMPO (2,2,6,6-tetramethylpiperidine)/[O], DMP (Dess-Martin Periodinane), IBX (2-iodoxybenzoicacid), dimethyl sulfoxide/triethylamine/oxalyl chloride (Swern Oxidation), active MnO\text{2} or MnO\text{2}.

Wherein [O] can be NCS (N-chlorosuccinimide), NBS (N-bromosuccinimide), NIS
(N-iodosuccinimide), IBX, 1,3-dibromo-5,5-dimethyl hydantoin, hydrogen peroxide, NaClO or Ca(ClO)₂.

The preferred oxidizing agent can be selected from TEMPO/NBS, TEMPO/NaClO.

The present invention provides a compound of formula V having the following structure:

![Structure V](image)

The compound of formula V is obtained by reacting the compound of formula IV with hydrazine hydrate.

The molar ratio of the compound of formula IV to hydrazine hydrate is 1: (1.0-5.0).

The preferred hydrazine hydrate is dissolved in water to form an aqueous solution.

The concentration of hydrazine hydrate aqueous solution is 10-95%.

The preferred concentration is 85%.

The reaction further comprises the step of the addition of diisopropylethylamine.

Further, the compound of formula V was reacted with ammonia to produce the compound of formula VI.

![Structure VI](image)

The preferred ammonia is ammonia aqueous solution or ammonia/organic solvent,
the organic solvent is selected from methanol, ethanol, isopropanol, tetrahydrofuran, toluene or a mixture of any two or more thereof.

The ammonia/organic solvent can be formed by bubbling ammonia gas into organic solvent directly.

The preferred ammonia/organic solvent is ammonia/toluene

DETAILED EMBODIMENTS

In order to better understand the present invention, it is illustrated in detail by the following examples. However, it should be understood that these descriptions are not to limit the claims of the present invention.

Example 1: The preparation of the compound of formula III

![Chemical Structure](image)

To a 250mL flask was added magnesium wire (1.28g, 53.5mmol) and magnetic stir bar. The original atmosphere was displaced with N₂. 4-bromodiphenyl ether (1.10g, 4.42mmol), 15 mL of anhydrous tetrahydrofuran were injected into the flask. A grain of iodine was added for activation under N₂ flow, subsequently, a solution of 4-bromodiphenyl ether in anhydrous THF (10.00g/35ml) was added dropwise at 40¬°C to 45°C. After the completion of the addition, the mixture was heated under reflux for 1h, and then cooled naturally, stored for next step. To a 250 ml reaction flask was added 4,6-dichloro-5-

2-pyrimidinecarboxaldehyde (1.10g, 4.42mmol) and 45 ml of anhydrous THF. The original atmosphere was displaced with N₂. To the mixture of 4,6-dichloro-5-

2-pyrimidinecarboxaldehyde and THF was added the obtained Grignard reagent after cooling to -78°C, and the temperature was maintained at -80 to -75°C. After addition, it was maintained at this temperature for 30 min and then cooled naturally to 20-25°C with stirring for another 30 min. the reaction was quenched by adding dropwise 50 ml water.
100ml DCM was added and the mixture was adjusted to pH 5-6 with concentrated hydrochloric acid. The organic layer was separated and the aqueous layer was extracted with 100ml DCM. The combined organic layers were washed with saturated 100ml NaHCO₃ and 100ml saturated brine successively, and dried over Na₂SO₄. The solvent was removed to provide 13.38 g product with a yield of 95.2%.

HNMR: δ8.78 (1H, s); 7.36 (2H, t); 7.26 (2H, d); 7.12 (1H, t); 7.02 (3H, m); 6.54 (1H, d); 3.12 (1H, d)
LC-MS(+ESI):347.0039

Example 2: The preparation of the compound of formula III

![Chemical Structure](image)

To a 250mL flask was added magnesium wire (1.28g, 53.5mmol) and magnetic stir bar. The original atmosphere was displaced with N₂. Dibromoethane was added for activation. A solution of 4-bromodiphenyl ether (11.1g, 44.6mmol) and anhydrous tetrahydrofuran 50ml were injected into the flask at 40-45°C. After addition, the mixture was heated under reflux for 1 h, cooled naturally and then stored for next step. To another 250 ml flask was added 4,6-dichloro-5-2-pyrimidinecarboxaldehyde (7.1g, 40.5mmol) and 45 THF. The original atmosphere was displaced with N₂. To the 4,6-dichloro-5-pyrimidinecarboxaldehyde was added the obtained Grignard reagent after cooling to -78°C, and the temperature was maintained at -80 to -75°C. After addition, it was maintained at this temperature for 30 min and then cooled naturally to 20-25°C with stirring for another 30 min. the reaction was quenched by adding dropwise 50 ml water. 100ml DCM was added and the mixture was adjusted to pH 5-6 with concentrated hydrochloric acid. The organic layer was separated and the aqueous layer was extracted with 100ml DCM. The combined organic layers were washed with saturated 100ml
NaHCO₃ and 100ml saturated brine successively, and dried over Na₂SO₄. The solvent was removed to provide 12.69 g product with a yield of 90.3%.

Example 3: The preparation of the compound of formula III

![Formula III](image)

To the solution of diphenyl ether in tetrahydrofuran (8.5g, 50mmol)/50ml was added a solution of n-butyllithium in n-hexane (32ml, 50mmol, 1.6M) at below -75°C under the protection of nitrogen. The reaction was stirred for 2 h, then 4,6-dichloro-5-pyrimidinecarboxaldehyde (8.8g, 50mmol) was added. The reaction mixture was maintained at -75°C for 5 h. after the completion of the reaction, it was quenched with water and tetrahydrofuran. The reaction mixture was extracted with dichloromethane. The residue was purified by chromatography over silica gel to afford 4.35g product with a yield of 82.7%.

Example 4: The preparation of the compound of formula III

![Formula III](image)

To the solution of 4-bromophenylphenylether and tetrahydrofuran (10g, 40.2mmol)/50ml was added dropwise i-PrMgCl-LiCl (41mL, 1.1 M in THF, 45.1mmol) at -70°C under the protection of nitrogen. After addition, the reaction mixture was stirred at -70°C for 4 h, then 4,6-dichloro-5-pyrimidinecarboxaldehyde was added. The reaction mixture was stirred at below -70°C for 5 h. after the completion of the reaction, it was quenched with 50 ml of saturated aqueous ammonium chloride. The reaction mixture was extracted with dichloromethane and then the combined dichloromethane layers were concentrated. The residue was purified chromatography over silica gel to afford 11.88 g product, with a yield
of 85.6%.

Example 5: The preparation of the compound of formula IV

\[
\begin{array}{c}
\text{Cl} \\
\text{O} \\
\text{N} \\
\text{Cl} \\
\text{O} \\
\text{N} \\
\text{Cl} \\
\text{O} \\
\text{N} \\
\text{Cl} \\
\end{array}
\]

IV

NaHCO₃ (0.49g, 4.62mmol), 5ml deionized water and magnetic stir bar were charged into a flask and then was stirred to form a clear solution. 10 ml dichloromethane, the compound of formula III (1.00g, 2.9mmol), TEMPO (0.0226g, 0.15mmol) and NBS (1.03g, 5.79mmol) were added at below 25°C, after addition, the mixture was stirred for 1 h. Upon completion, the layers were separated, and organic layer was purified by chromatography over silica gel to afford 0.879g product, with a yield of 87.9%.

HNMR: δ 8.89(1H,s); 7.78(2H,d); 7.42(2H,t); 7.26(1H,t); 7.12(2H,d); 7.03(2H,d).

LC-MS (+ESI): 345.0193.

Example 6: The preparation of the compound of formula IV

\[
\begin{array}{c}
\text{Cl} \\
\text{O} \\
\text{N} \\
\text{Cl} \\
\text{O} \\
\text{N} \\
\text{Cl} \\
\text{O} \\
\text{N} \\
\text{Cl} \\
\end{array}
\]

IV

10 ml of dichloromethane, the compound of formula III (1.00g, 2.9mmol) were charged into a flask and then was stirred to form a clear solution. TEMPO (0.47g, 3.0mmol) was added in batches at below 25°C. After the addition, the mixture was stirred at same temperature. Upon completion, it was washed with water. The layers were separated. The solvent was removed and the resulting residue was purified by chromatography over silica gel to afford 0.72 g product, with a yield of 72.0%.
Example 7: The preparation of the compound of formula IV

\[
\text{IV}
\]

A mixture of the compound of formula III (1.5g, 4.3mmol), acetonitrile 50ml and KMnO₄ (4.2g, 27mmol) was stirred at 0-105 °C for 7 h. Upon completion, the resulting mixture was filtrated, concentrated, and then purified by chromatography over silica gel to afford a product, with a yield of 80.5%.

Example 8: The preparation of the compound of formula IV

\[
\text{IV}
\]

A mixture of the compound of formula IV (1.5g, 4.3mmol), anhydrous acetone 50ml and CrO₃ (1.51g, 15.1mmol) were stirred at 0-105 °C for 7 h. upon completion, isopropanol (5ml) was added with stirring for 1 h. To the mixture was added 5% aqueous sodium bicarbonate (50 ml) with stirring for 5 min, was extracted with dichloromethane, concentrated and then purified by chromatography over silica gel to afford a product, with a yield of 76.2%.

Example 9: The preparation of the compound of formula IV

\[
\text{IV}
\]

KBr(0.863g, 0.725mmol), 5ml deionized water and magnetic stir bar were charged
into a flask and then was stirred to form a clear solution. 10 ml dichloromethane, the compound of formula III (1.00g, 2.9mmol), TEMPO (0.0226g, 0.15mmol) and NaClO (4g, 5.8mmol) were added at below 25°C and stirred for 1 h. Upon completion, the layers were separated, and organic layer was purified by chromatography over silica gel to afford 0.964 g product, with a yield of 96.4%.

Example 10: The preparation of the compound of formula V

\[\text{V} \]

To a flask was added the compound of formula IV (9.50g, 27.5mmol), DIPEA (7.11g, 55.1mmol) and 180 ml THF and then cooled to 0-5°C under the protection of N₂. 1.70 g hydrazine hydrate with the concentration of 85% was added dropwise at below 5°C. After the dropping, the mixture was warmed naturally to 20-25°C and then stirred for 4 h. Upon completion, it was purified by chromatography over silica gel to afford 8.2 g product, with a yield of 92.7%.

HNMR: δ11.8 (1H, s); 8.8(1H, s); 7.7(2H, d); 7.4(2H, t); 7.2(1H, t); 7.1(5H, m)

LC-MS (+ESI):323.0698

Example 11: The preparation of the compound of formula V

To a flask was added the compound of formula IV (9.50g, 27.5mmol), DIPEA (7.11g, 55.1mmol) and 180 ml THF and then cooled to 0-5°C under the protection of N₂. Hydrazine hydrate (1.5g, 30mmol) was added at below 5°C. After the addition, the mixture was warmed naturally to 20-25°C and then stirred for 4 h. Upon completion, it was purified by chromatography over silica gel to afford 7.32 g product, with a yield of 82.7%.
Example 12: The preparation of the compound of formula V

To a flask was added the compound of formula IV (9.50g, 27.5mmol) and 180 ml THF and then cooled to 0-5°C under the protection of N₂. 1.70 g hydrazine hydrate (1.5g, 30mmol) with the concentration of 85% was added at below 5°C. After the addition, the mixture was warmed naturally to 20-25°C and then stirred for 4 h. Upon completion, it was purified by chromatography over silica gel to afford 6.99 g product, with a yield of 78.9%.

Example 13: The preparation of the compound of formula V

To a flask was added the compound of formula IV (9.50g, 27.5mmol), DIPEA (7.11g, 55.1mmol) and 180 ml THF and then cooled to 0-5°C under the protection of N₂. 5 g hydrazine hydrate (1.5g, 30mmol) with the concentration of 40% was added at below 5°C. After the addition, the mixture was warmed naturally to 20-25°C and then stirred for 4 h. Upon completion, it was purified by chromatography over silica gel to afford 7.46 g product, with a yield of 84.3%.
Example 14: The preparation of the compound of formula VI

To a flask was added the compound of formula V (1.00 g, 3.1 mmol) and 10 ml of a solution of ammonia in methanol with a concentration of 10%, heated under reflux and then stirred for 12 h. Upon completion, the resulting mixture was purified by chromatography over silica gel to afford 0.89 g product, with a yield of 89.2%.

HNMR: δ 13.5 (1H, s); 8.2 (1H, s); 7.6 (2H, t); 7.4 (2H, t); 7.2 (1H, t); 7.1 (4H, m)

LC-MS (+ESI): 304.0938.

All the documents mentioned in the present invention are incorporated herein by reference, as if each of them is individually incorporated. Further, it would be appreciated that the foregoing description presents specific embodiments and generic principles of the invention. Having read the above described teaching of the invention, one skilled in the art could make various changes or modifications to the invention without departing from the spirit and scope of the invention. These equivalents would still be within the scope of the invention.
CLAIMS

1. A compound of formula A having the following structure:

 ![Chemical Structure A]

 wherein, the dotted line represents a double bond or a single bond between carbon and oxygen.

2. The compound according to claim 1 selected from the group consisting of:

 ![Chemical Structures III and IV]

3. A process for preparing the compound of formula III, comprising the compound of formula I and the compound of formula II undergoing nucleophilic addition reaction,

 ![Chemical Structures III, I, and II]

 Wherein, M is Li, MgX or ZnX; X is Br or Cl. Preferably, X is Br.

4. A process for preparing the compound of formula IV, comprising subjecting the compound of formula III to oxidation reaction,

 ![Chemical Structures IV and III]

5. The process according to claim 4, the oxidizing agent utilized is selected from CrO₃,
KMnO₄, TEMPO, TMPO/[O], DMP, IBX, dimethyl sulfoxide/ triethylamine/ oxalyl chloride, active MnO₂ or MnO₂, wherein [O] is NCS, NBS, NIS, IBX, 1,3-dibromo-5,5-dimethyl hydantoin, hydrogen peroxide, NaClO or Ca(ClO)₂.

6. A process according to claim 4, further comprising the step of, reacting the compound of formula IV with hydrazine hydrate to afford the compound of formula V,

![Chemical Structure](image)

7. The process according to claim 6, further comprising the step of the addition of diisopropylethylamine.

8. The process according to claim 6 or 7, further comprising the step of reacting the compound of formula V with ammonia to produce the compound of formula VI,

![Chemical Structures](image)

9. The process according to claim 8, the ammonia is ammonia aqueous solution or ammonia/organic solvent, the organic solvent is selected from methanol, ethanol, isopropanol, tetrahydrofuran, toluene or a mixture of any two or more thereof.

10. The process according to claim 9, the ammonia/organic solvent is ammonia/toluene.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
C07D 239/30(2006.01); C07D 487/04(2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
CNKI, CNABS, VEN, REGISTRY, CAPLUS(STN): ibritinib, hydrazine hydrate, intermediate, product+, prep+, synthesis??, structure search for formula A

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 7514444 B2 (PHARMACYCLICS INC) 07 April 2009 (2009-04-07) the whole document</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>CN 103626774 A (SUZHOU MINGRUI PHARMACEUTICAL TECHNOLOGY CO LTD ET AL) 12 March 2014 (2014-03-12) the whole document</td>
<td>1-10</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☑ See patent family annex.

* Special categories of cited documents:

“P” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search: 10 July 2015

Date of mailing of the international search report: 24 July 2015

Name and mailing address of the ISA/CN

STATE INTELLECTUAL PROPERTY OFFICE OF THE P.R.CHINA
6, Xitucheng Rd., Jining Bridge, Haidian District, Beijing 100088, China

Facsimile No. (86-10)62019451

Authorized officer

ZHOU, Yu

Telephone No. (86-10)62086359

Form PCT/ISA/210 (second sheet) (July 2009)
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date (day/month/year)</th>
<th>Patent family member(s)</th>
<th>Publication date (day/month/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 2443929 A1</td>
<td>25 April 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011184001 A1</td>
<td>28 July 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010041677 A1</td>
<td>18 February 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2525621 A1</td>
<td>05 December 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2530833 A1</td>
<td>05 December 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8952015 B2</td>
<td>10 February 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 197550 D0</td>
<td>24 December 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8748438 B2</td>
<td>10 June 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 212252821 A1</td>
<td>04 October 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20130027536 A</td>
<td>15 March 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 2201840 T3</td>
<td>20 February 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8501751 B2</td>
<td>06 August 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2201840 B1</td>
<td>02 November 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 2009003122 A</td>
<td>07 August 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014243355 A1</td>
<td>28 August 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 212252822 A1</td>
<td>04 October 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI 2201840 T1</td>
<td>29 June 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010235628 A</td>
<td>21 October 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014142123 A1</td>
<td>22 May 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014128413 A1</td>
<td>08 May 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 101464424 B1</td>
<td>27 November 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 020001 B1</td>
<td>30 July 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010504324 A</td>
<td>12 February 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008039218 A2</td>
<td>03 April 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 2526933 T3</td>
<td>18 May 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 575650 A</td>
<td>28 October 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010324050 A1</td>
<td>23 December 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008039218 A3</td>
<td>29 May 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR P0622054 A2</td>
<td>09 November 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8975266 B2</td>
<td>10 March 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2010201052 A1</td>
<td>08 April 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2006548662 B8</td>
<td>29 May 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014128414 A1</td>
<td>08 May 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8691546 B2</td>
<td>08 April 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010254905 A1</td>
<td>07 October 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011039868 A1</td>
<td>17 February 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 101315610 B1</td>
<td>10 October 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8399470 B2</td>
<td>19 March 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014039186 A1</td>
<td>06 February 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5635544 B2</td>
<td>03 December 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008139582 A1</td>
<td>12 June 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011281322 A1</td>
<td>17 November 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8735403 B2</td>
<td>27 May 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101805341 B</td>
<td>24 July 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 531263 T</td>
<td>15 November 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 601278 A</td>
<td>27 September 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2376424 T3</td>
<td>13 March 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103626774 A</td>
<td>12 March 2014</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date (day/month/year)</td>
<td>Patent family member(s)</td>
<td>Publication date (day/month/year)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------------------------------</td>
<td>-------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2013250726 A1</td>
<td>09 October 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2869954 A1</td>
<td>24 October 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104662018 A</td>
<td>27 May 2015</td>
</tr>
</tbody>
</table>