The method includes a sequence of images generated by a facial recognition module.

FIG. 1

Abstract: A video telephony system includes an electronic device (10) having communications circuitry (46) to establish a communication with a second electronic device (10a). The second electronic device may include an image generating device (20) for generating a sequence of images of a user of the second electronic device. The first electronic device may receive the sequence of images as part of the communication. Based on the sequence of images, a lip reading module (43a) within the first electronic device analyzes changes in the second user's facial features to generate text corresponding to a communication portion of the second user. The text is then displayed on a display (14) of the first electronic device so that the first user may follow along with the conversation in a text format without the need to employ a speaker telephone function. The sequence of images may be displayed with the text for enhanced video telephony.
The present invention relates to portable electronic devices having a telephone calling capability, and more particularly to a system and methods for video telephony by analyzing facial motions (motions of the eyes, ears, face, nose, etc) to generate communication text.

Portable electronic devices, such as mobile telephones, media players, personal digital assistants (PDAs), and others, are ever increasing in popularity. To avoid having to carry multiple devices, portable electronic devices are now being configured to provide a wide variety of functions. For example, a mobile telephone may no longer be used simply to make and receive telephone calls. A mobile telephone may also be a camera (still and/or video), an Internet browser for accessing news and information, an audiovisual media player, a messaging device (text, audio, and/or visual messages), a gaming device, a personal organizer, and have other functions as well.

In this vein, advancements have been made in the video capabilities of portable electronic devices. For example, video capability advances for portable electronic devices include enhanced image generating and analysis features, whether for still photography or video images. Such enhanced features may include face detection capabilities, which may detect the presence of desirable facial features, such as smiles or open eyes, to be photographed or videoed.

Another image enhancement is video telephony. For example, a mobile telephone may have a video telephony capability that permits video calling between users. Such mobile telephones may include a camera lens that faces the user when the user makes a call. A user at the other end of the call may receive a video transmission of the image of the caller, and vice versa providing both user devices have the video telephony capability.

Video telephony has an advantage over standard telephony in that users can see each other during a call, which adds to the emotional enjoyment of a call.
Telephone calling devices, however, typically have been of limited use for those with hearing deficiencies or disabilities. For users with a diminished, but still viable hearing capability, volume adjustments may provide some usage improvement. Video telephony also may provide some improvement in that a user can see the face of the other call participant, as well as hear the other participant. Typically, however, to employ video telephony, a user must hold the device well in front of himself or herself, and operate the device in a "speaker telephone" mode. If the volume is commensurately increased to provide for improved hearing, there may be added disturbances to those nearby. Indeed, there may be situations in which any speaker telephone usage may generate disturbances, regardless of the volume. In addition, for users with more pronounced or a total hearing deficiency, even video telephony may be insufficient for supporting a meaningful telephone conversation.

To date, therefore, video telephony and image generating/analysis technology have not been used to their utmost potential, and in particular have not been employed to improve telephone calling in portable electronic devices to the fullest extent.

SUMMARY

Accordingly, there is a need in the art for an improved system and methods for enhanced telephone calling in a portable electronic device. In particular, there is a need in the art for an improved system and methods for video telephony that provide enhanced video telephony suitable for users with hearing deficiencies, or in situations in which audible or speaker telephone calling may be difficult or inappropriate.

Therefore, a video telephony system includes a first electronic device having communications circuitry to establish a communication with a second electronic device. The second electronic device may include an image generating device for generating a sequence of images of a user of the second electronic device. The first electronic device may receive the sequence of images of the user of the second electronic device as part of the communication. Based on the sequence of images, a lip reading module within the first electronic device may analyze changes in the second user's facial features to generate text corresponding to communications of the second user. The text is then displayed on a display of the first electronic device so that the first user may follow along with the conversation in a text format without the need to employ an audible or speaker telephone
function. The sequence of images may be displayed along with the text to provide enhanced video telephony.

In another embodiment, a lip reading module may be contained within the second electronic device. Based on the sequence of images, the lip reading module in the second electronic device may analyze the changes in the second user’s facial features to generate text corresponding to communicated speech of the second user. The text may then be transmitted from the second electronic device to the first electronic device for display on the first electronic device, as described above.

Therefore, according to an aspect of the invention, a first electronic device for a first user comprises communications circuitry for establishing a communication with another electronic device of a second user. A conversion module receives a sequence of images of the second user communicating as part of the communication, and analyzes the sequence of images to generate text corresponding to a communication portion of the second user. A display is provided for displaying the text to the first user.

According to an embodiment of the first electronic device, the conversion module comprises a lip reading module and the sequence of images is a sequence of images of the second user’s facial features, wherein the lip reading module analyzes the sequence of images of the second user’s facial features to generate the text.

According to an embodiment of the first electronic device, the lip reading module detects at least one of an orientation of a facial feature, velocity of movement of a facial feature, or optical flow changes over consecutive images of the sequence of images to analyze the sequence of images to generate the text.

According to an embodiment of the first electronic device, the display displays the text in real time during the communication.

According to an embodiment of the first electronic device, the display displays the sequence of images along with the text.

According to an embodiment of the first electronic device, the electronic device is a mobile telephone.

According to another aspect of the invention, a second electronic device for a first user comprises communications circuitry for establishing a communication with another electronic device of a second user. A user image generating device generates a sequence of images of the first user communicating as part of the communication, and a conversion
module analyzes the sequence of images of the first user to generate text corresponding to a communication portion of the first user. As part of the communication, the communication circuitry transmits the text to the electronic device of the second user for display on the other electronic device.

According to an embodiment of the second electronic device, the conversion module comprises a lip reading module and the sequence of images is a sequence of motion of the first user's facial features, wherein the lip reading module analyzes the motion of the first user's facial features to generate the text.

According to an embodiment of the second electronic device, the conversion module detects at least one of an orientation of a facial feature, velocity of movement of a facial feature, or optical flow changes over consecutive images of the sequence of images to analyze the sequence of images to generate the text.

According to an embodiment of the second electronic device, the communications circuitry transmits the text in real time as part of the communication.

According to an embodiment of the second electronic device, the communications circuitry transmits the text in real time as part of the communication.

According to an embodiment of the second electronic device, the user image generating device comprises a camera assembly having a lens that faces the first user during the communication.

According to an embodiment of the second electronic device, the electronic device is a mobile telephone.

According to another aspect of the invention, a method of video telephony comprises the steps of establishing a communication, receiving a sequence of images of a participant communicating in the communication, analyzing the sequence of images and generating text corresponding to a communication portion of the participant, and displaying the text on a display on an electronic device.

According to an embodiment of the method, the sequence of images is a sequence of images of the participant's facial features, and the analyzing step comprises analyzing the sequence of images of the participant's facial features to generate the text.

According to an embodiment of the method, the analyzing step further comprises detecting at least one of an orientation of a facial feature, velocity of movement of a facial feature, or optical flow changes over consecutive images of the sequence of images to analyze the sequence of images to generate the text.
According to an embodiment of the method, the analyzing step further comprises lip reading to analyze the sequence of images to generate the text.

According to an embodiment of the method, the text is displayed in real time during the communication.

According to an embodiment of the method, the method further comprises displaying the sequence of images along with the text.

According to an embodiment of the method, the method further comprises generating the sequence of images in a first electronic device, transmitting the sequence of images to a second electronic device as part of the communication, analyzing the sequence of images within the second electronic device to generate text corresponding to the communication portion of the participant, and displaying the text on a display on the second electronic device.

According to an embodiment of the method, the method further comprises generating the sequence of images in a first electronic device, analyzing the sequence of images within the first electronic device to generate text corresponding to the communication portion of the participant, transmitting the text to a second electronic device as part of the communication, and displaying the text on a display on the second electronic device.

These and further features of the present invention will be apparent with reference to the following description and attached drawings. In the description and drawings, particular embodiments of the invention have been disclosed in detail as being indicative of some of the ways in which the principles of the invention may be employed, but it is understood that the invention is not limited correspondingly in scope. Rather, the invention includes all changes, modifications and equivalents coming within the spirit and terms of the claims appended hereto.

Features that are described and/or illustrated with respect to one embodiment may be used in the same way or in a similar way in one or more other embodiments and/or in combination with or instead of the features of the other embodiments.

It should be emphasized that the terms "comprises" and "comprising," when used in this specification, are taken to specify the presence of stated features, integers, steps or components but do not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a schematic diagram of a manner by which an exemplary first electronic device and an exemplary second electronic device may participate in a video telephone call.

FIG. 2 is a schematic view of a mobile telephone as an exemplary electronic device for use in connection with a video telephone call.

FIG. 3 is a schematic block diagram of operative portions of the mobile telephone of FIG. 2.

FIG. 4 is a schematic diagram of a communications system in which the mobile telephone of FIG. 2 may operate.

FIGs. 5A-5C are schematic diagrams depicting a first exemplary manner of executing a video telephone call.

FIG. 6 represents an exemplary sequence of images that may represent changes in the configuration of a user's facial features as may occur during mouthing speech.

FIG. 7 is a flow chart depicting an exemplary method of executing a video telephone call.

FIGs. 8A-8C are schematic diagrams depicting a second exemplary manner of executing a video telephone call.

DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the present invention will now be described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. It will be understood that the figures are not necessarily to scale.

The following description is made in the context of a conventional mobile telephone. It will be appreciated that the invention is not intended to be limited to the context of a mobile telephone and may relate to any type of appropriate electronic device with a telephone calling function. Such devices may include any portable radio communication equipment or mobile radio terminal, including mobile telephones, pagers,
communicators, electronic organizers, personal digital assistants (PDAs), smartphones, and any communication apparatus or the like.

Referring to FIG. 1, exemplary mobile telephones 10/10a may be used as exemplary electronic devices in the present invention. FIG. 1 depicts generally how a first mobile telephone 10 may participate in a video telephone call with a second mobile telephone 10a, and vice versa. Mobile telephone 10 may have a video telephony function by which a camera assembly 20 generates an image of a first user communicating during a telephone call, as indicated by the straight arrows in the figure. A moving image of the user of mobile telephone 10 communicating may be transmitted during the call and reproduced in real time on a display of the called mobile telephone 10a. Similarly, in this example the called mobile telephone 10a also may have a video telephony function by which a camera assembly 20 generates an image of the called user communicating during the telephone call, as indicated by the straight arrows in the figure. A moving image of the user of mobile telephone 10a communicating may be transmitted during the call and reproduced in real time on a display of the calling mobile telephone 10. It will be appreciated that it does not matter which mobile telephone represents the called versus the calling device, and thus mobile telephone 10a may be the calling device and mobile telephone 10 may be the called device. Furthermore, both mobile telephones need not have full video telephony functionality. For example, if only mobile telephone 10 has a camera assembly 20, then only the user of mobile telephone 10a would perceive a video component of the call, and vice versa.

FIG. 2 depicts various external components of an exemplary mobile telephone 10 (or 10a) in more detail, and FIG. 3 represents a functional block diagram of operative portions of the mobile telephone 10 (or 10a). The mobile telephone may be a clamshell phone with a flip-open cover 15 movable between an open and a closed position. In FIG. 2, the cover is shown in the open position. It will be appreciated that mobile telephone 10/10a may have other configurations, such as a "block" or "brick" configuration.

Mobile telephone 10/10a may include a primary control circuit 41 that is configured to carry out overall control of the functions and operations of the mobile telephone. The control circuit 41 may include a processing device 42, such as a CPU, microcontroller or microprocessor. Among their functions, to implement the features of
the present invention, the control circuit 41 and/or processing device 42 may comprise a
controller that may execute program code embodied as the video telephony application 43.
It will be apparent to a person having ordinary skill in the art of computer programming,
and specifically in application programming for cameras, mobile telephones or other
electronic devices, how to program a mobile telephone to operate and carry out logical
functions associated with application 43. Accordingly, details as to specific programming
code have been left out for the sake of brevity. Also, while the code may be executed by
control circuit 41 in accordance with an exemplary embodiment, such controller
functionality could also be carried out via dedicated hardware, firmware, software, or
combinations thereof, without departing from the scope of the invention.

Mobile telephone 10/10a also may include a camera assembly 20. The camera
assembly 20 constitutes a user image generating device for generating a sequence of
images of a user of the mobile telephone 10/10a. As shown in FIG. 2, camera assembly
20 may include an inward facing lens 21 that faces toward the user when the clamshell is
in the open position. In this manner, camera assembly 20 may provide a video telephony
function that generates a sequence of images of a user communicating while the user is
participating in a telephone call. As further described below, the generated images of the
user communicating may be employed for face detection, and particularly for a text reading
function, in accordance with embodiments of the present invention. It will be appreciated
that camera assembly 20 also may include and outward facing lens (not shown) for taking
still photographs or moving video images of subject matter opposite the user. In an
alternative embodiment, the ordinary photography and video functions may be provided
by a second camera assembly distinct or apart from the video telephony camera assembly
20.

Mobile telephone 10/10a has a display 14 viewable when the clamshell telephone
is in the open position. The display 14 displays information to a user regarding the
various features and operating state of the mobile telephone, and displays visual content
received by the mobile telephone and/or retrieved from a memory 45. Display 14 may be
used to display pictures, video, and the video portion of multimedia content. For ordinary
photograph or video functions, the display 14 may be used as an electronic viewfinder for
the camera assembly 20. The display 14 may be coupled to the control circuit 41 by a
video processing circuit 54 that converts video data to a video signal used to drive the
various displays. The video processing circuit 54 may include any appropriate buffers, decoders, video data processors and so forth. The video data may be generated by the control circuit 41, retrieved from a video file that is stored in the memory 45, derived from an incoming video data stream or obtained by any other suitable method. In accordance with embodiments of the present invention, as part of the video telephony function, display 14 also may display the other participant during a video telephone call.

Mobile telephone 10/1Oa also may include a keypad 18 that provides for a variety of user input operations. For example, keypad 18 typically includes alphanumeric keys for allowing entry of alphanumeric information such as telephone numbers, phone lists, contact information, notes, etc. In addition, keypad 18 typically includes special function keys such as a "send" key for initiating or answering a call, and others. Some or all of the keys may be used in conjunction with the display as soft keys. Keys or key-like functionality also may be embodied as a touch screen associated with the display 14.

The mobile telephone 10/1Oa includes communications circuitry 46 that enables the mobile telephone to establish a communication by exchanging signals with a called/calling device, typically another mobile telephone or landline telephone, or another electronic device. The communication may be any type of communication, which would include a telephone call (including a video telephone call). The mobile telephone 10/1Oa also may be configured to transmit, receive, and/or process data such as text messages (e.g., colloquially referred to by some as "an SMS," which stands for short message service), electronic mail messages, multimedia messages (e.g., colloquially referred to by some as "an MMS," which stands for multimedia message service), image files, video files, audio files, ring tones, streaming audio, streaming video, data feeds (including podcasts) and so forth. Processing such data may include storing the data in the memory 45, executing applications to allow user interaction with data, displaying video and/or image content associated with the data, outputting audio sounds associated with the data and so forth.

The mobile telephone 10/1Oa may include an antenna 44 coupled to the communications circuitry 46. The communications circuitry 46 may include a radio circuit having a radio frequency transmitter and receiver for transmitting and receiving signals via the antenna 44 as is conventional. The mobile telephone 10/1Oa further
includes a sound signal processing circuit 48 for processing audio signals transmitted by and received from the communications circuitry 46. Coupled to the sound processing circuit 48 are a speaker 50 and microphone 52 that enable a user to listen and speak via the mobile telephone as is conventional.

Referring to FIG. 4, the mobile telephone 10/10a may be configured to operate as part of a communications system 68. The system 68 may include a communications network 70 having a server 72 (or servers) for managing calls placed by and destined to the mobile telephone 10/10a, transmitting data to the mobile telephone 10/10a and carrying out any other support functions. The server 72 communicates with the mobile telephone via a transmission medium. The transmission medium may be any appropriate device or assembly, including, for example, a communications tower (e.g., a cell tower), another mobile telephone, a wireless access point, a satellite, etc. Portions of the network may include wireless transmission pathways. The network 70 may support the communications activity of multiple mobile telephones and other types of end user devices. As will be appreciated, the server 72 may be configured as a typical computer system used to carry out server functions and may include a processor configured to execute software containing logical instructions that embody the functions of the server 72 and a memory to store such software.

FIGs. 5A-5C depict an exemplary manner of executing a video telephone call. In this example, a first user Jane initiates the call with a calling mobile telephone 10, and a second user John receives the telephone call with a called mobile telephone 10a. It is also presumed that Jane does not wish to rely on audible speaker telephone capabilities. For example, Jane may have a hearing deficiency that may render solely audio calls difficult, or she may be in a situation in which the use of a speaker telephone function may be overly disturbing to others or is otherwise inappropriate.

FIG. 5A depicts an exemplary display of Jane's mobile telephone 10 as she initiates the call. For example, Jane may enter a telephone number using the keypad 18, by selection from a menu of contacts, or by any other conventional means. In this example, a selection for "Video" is displayed for initiating a video call, which may also be selected by any conventional means. For example, a video call may be selected from a menu, by pressing a dedicated key, directly from the display as a touch screen input, etc.
FIG. 5B depicts an exemplary display of John's mobile telephone 10a in response to the initiating of the call. For example, mobile telephone 10a may display the identity of the caller (Jane), and that a video call has been requested. An option to accept or decline the video call ("Yes" or "No"), likewise selectable by any conventional means, may be provided. It will be appreciated that the precise display and graphical user interface (GUI) depicted in the figures represent an example, and the format, configuration, and content may be varied.

The jagged arrow linking FIGs. 5B and 5C indicates that John has accepted the video call and that a video call has been established. As described above with reference to FIG. 1, a camera assembly of 20 on mobile telephone 10a may generate a moving video image of John communicating as a sequence of images, and transmit such sequence of images to Jane's mobile telephone 10 as part of the call. An image of John may now be displayed in real time on mobile telephone 10 as part of the communication. Optionally, although not shown in this particular figure, a sequence of images of Jane may similarly be transmitted to the mobile telephone 10a of John. It is not necessary, however, that video be transmitted in both calling directions. As is further described below, Jane, as the hearing impaired participant (or the participant who otherwise does not want to use the speaker telephone capability), may view the sequence of images of participant John as generated by the mobile telephone 10a.

In particular, as seen in FIG. 5C, the image of John is displayed along with an exemplary text "Hey Jane." The text represents an exemplary item or communication portion associated with John. In other words, John has spoken the words "Hey Jane" as a portion of the communication, and this speech item is displayed substantially simultaneously or in real time with John's image as he speaks during the communication. In this manner, Jane may read along with John's portion of the conversation, and Jane, therefore, does not have to employ any of the speaker features of the mobile telephone 10. It will be appreciated that as used herein, the term "text" may include any readable or viewable character or set of characters, including letters, syllables, whole words and phrases, digits and numbers, symbols, and the like.

In FIG. 5C, for explanatory purposes the image of John is highlighted with a box and slash marks. In actuality, such highlighting may not be displayed to the user, but is
indicated in FIG. 5C to indicate the functioning of a conversion module that receives the
sequence of images of a user (John) communicating, and analyzes the sequence of images
to generate text corresponding to a communication portion (speech) of the user.
Specifically, referring again to FIG. 3, the video telephony application 43 may include a
conversion module in the form of a lip reading module 43a. As further described in more
detail below, the lip reading module 43a may employ face detection techniques to analyze
the visual configuration and movement of a speaker's facial features, such as the mouth
and lips, and generate text corresponding to the communication portion.

For example, Jane is a first user of the first mobile telephone 10 who has
transmitted a video call request to a second user John of the second mobile telephone 10a.
In FIG. 5B, if the user of the second mobile telephone 10a (John) accepts the video call,
the video telephony application is activated. The camera assembly 20 of mobile telephone
10a may begin to generate John's image via the lens 21 as a sequence of images. In one
embodiment, the sequence of images may be transmitted to the first mobile telephone 10.

As part of the video telephony application 43 of the first mobile telephone 10, the
sequence of images may be passed to the conversion module or lip reading module 43a,
which interprets the motion and configuration of the sequence of images as communicated
speech text. The motion and configuration detection may be interpreted by means of
object recognition, edge detection, silhouette recognition, velocity determinations, or other
means for detecting motion as are known in the art. For example, FIG. 6 represents a
sequence of images 52a-c that may represent changes in the configuration of a user's lips
and mouth as may occur during mouthing speech. As indicated by the arrows in the
figure, a change in the position, configuration, and movement of the mouth and lips
represent both a change in orientation and a change in velocity of these facial features.
There may also be changes in the optical flow in that subtle differences in shadowing and
light balance, caused by the changes in feature orientation, may result in gray value
changes over consecutive images in the sequence. The changes in feature orientation,
feature velocity, and/or optical flow may be analyzed by the lip reading module 43a for
the generation of speech text corresponding to communicated speech of the second user
(John). The text may then be outputted for rendering on the display 14 of the first mobile
telephone (Jane's telephone) 10.
In the above example, images of the second user of mobile telephone 10a are transmitted to the first mobile telephone 10, and mobile telephone 10 (via the video telephony application 43 and lip reading module 43a) analyzes the images to generate the communication portions or speech text. In an alternative embodiment, the second mobile telephone 10a has the lip reading module 43a. In this embodiment, the lip reading and text generation are performed in the second mobile telephone 10a. The generated text may then be transmitted from the mobile telephone 10a to the first mobile telephone 10 for display. In addition, although it is preferred that mobile telephone 10 displays both the sequence of images and the associated text, the text may alternatively be displayed in real time by itself and without the user images. In another embodiment, both mobile telephones have a user-facing camera assembly 20 and lip reading module 43a. In this manner, the call is fully text enhanced, in that the mouthed speech of each user will be converted to text for display on the other's device, and vice versa.

In accordance with the above, FIG. 7 is a flow chart depicting an exemplary method of executing a video telephone call. Although the exemplary method is described as a specific order of executing functional logic steps, the order of executing the steps may be changed relative to the order described. Also, two or more steps described in succession may be executed concurrently or with partial concurrence. It is understood that all such variations are within the scope of the present invention.

The method may begin at step 100, in which a user may initiate a telephone call. For example, a first mobile telephone 10 may initiate a telephone call with a second mobile telephone 10a. At step 110, the first mobile telephone 10 may transmit a video call request to the second mobile telephone 10a. At step 120, a determination may be made as to whether the video call request has been accepted. If the request is denied, the method essentially ends until a subsequent telephone call. If the video call request is accepted, the method may proceed to step 130 at which a sequence of images of a call participant communicating, such as the user of mobile telephone 10a, may be received. At step 140, the user images may be analyzed for the generation of speech text corresponding to a communication portion or speech of the second user.

As described above, the receiving and text generation steps 130 and 140 may proceed in a variety of ways. For example, the user images may be received by the
generating of the images by the second mobile telephone 10a. The sequence of images may then be transmitted to the mobile telephone 10 and analyzed to generate the speech text. Alternatively, the image generation and text generation steps may both be performed by the second mobile telephone 10a, and the resultant speech text may be transmitted to the mobile telephone 10. In addition, images of both participants communicating may be generated and analyzed to generate speech text in one of the ways described above. Regardless of the manner by which user images are received and analyzed to generate the communication portions or speech text, at step 150 the speech text is displayed on one or both of the mobile telephones.

Referring again to step 100 of FIG. 7, note also that it does not matter which user device initiates the call. FIGs. 8A-8C therefore depict a second exemplary manner of executing a video telephone call. FIGs. 8A-8C are comparable to FIGs. 5A-5C except that in the example of FIGs. 8A-8C, the user of the second mobile telephone 10a (John) initiates the call with the first mobile telephone 10 (Jane). As before, it will be appreciated that the precise display and graphical user interface (GUI) depicted in the figures represent an example, and the format, configuration, and content may be varied.

It is once more (similar to the example of FIGs. 5A-5C) presumed that Jane does not wish to rely on audible speaker telephone capabilities. For example, Jane may have a hearing deficiency that may render solely audio calls difficult, or she may be in a situation in which the use of a speaker telephone function may be overly disturbing to others. FIG. 8A depicts an exemplary display of Jane's mobile telephone 10 as she receives a call initiated by John. A text indication "Call From John" may be displayed to inform Jane that a call is being received. Because Jane may have a hearing deficiency, the text display may be accompanied by a non-audible alert. Examples of such alerts may include a vibration indication, blinking lights, or other forms of physical or visual indications of a call (or combinations thereof) as are known in the art.

In this example, a selection for "Video" is displayed on the mobile telephone 10 for requesting that the received call be executed as a video call, which may also be selected by any conventional means. FIG. 8B depicts an exemplary display of John's mobile telephone 10a in response to the request for converting the call into a video call. For example, mobile telephone 10a may display that a video call has been requested. An
option to accept or decline the video call ("Yes" or "No"), likewise selectable by any conventional means, may be provided. The jagged arrow linking FIGs. 8B and 8C indicates that John has accepted the video request, and the call may then proceed as a video call.

John's sequence of images may then be generated and his communication portions converted into text in any of the ways described above. As seen in FIG. 8C, for example, the image of John communicating is displayed along with an exemplary text "Hey Jane" as an exemplary communication portion. In other words, John has spoken the words "Hey Jane" as part of the conversation, and this conversation portion is displayed in real time substantially simultaneously with John's image as he speaks. In this manner, regardless of which party initiates a call, Jane may read along with John's portion of the conversation, and Jane, therefore, does not have to employ any of the speaker features of the mobile telephone.

Video telephony thus may be employed in a manner that is enhanced for users with a hearing deficiency. The hearing deficiency may be a physical characteristic of a user, or the result of being in a situation in which speaker telephone calling may be difficult or inappropriate. A conversion module may employ face detection, and lip reading in particular, to analyze a user's facial movements and configuration while communicating to generate speech text, thereby obviating the need for the speaker to user audible device capabilities. At the other end of the call, the speech text may be displayed in real time, thereby obviating the need of the receiving participant to employ an audible speaker telephone capability as is conventional for video telephony. In addition, the text enhanced video telephony features may be employed by both users to provide for essentially a silent, video telephone call from the standpoint of both participants.

Although the invention has been shown and described with respect to certain preferred embodiments, it is understood that equivalents and modifications will occur to others skilled in the art upon the reading and understanding of the specification. The present invention includes all such equivalents and modifications, and is limited only by the scope of the following claims.
CLAIMS:

1. An electronic device (10) for a first user comprising:
 communications circuitry (46) for establishing a communication with another
 electronic device (10a) of a second user;
 a conversion module (43) for receiving a sequence of images of the second user
 communicating as part of the communication, and for analyzing the sequence of images to
 generate text corresponding to a communication portion of the second user; and
 a display (14) for displaying the text to the first user.

2. The electronic device (10) of claim 1, wherein the conversion module (43)
 comprises a lip reading module (43a) and the sequence of images is a sequence of images
 of the second user's facial features, wherein the lip reading module analyzes the sequence
 of images of the second user's facial features to generate the text.

3. The electronic device (10) of claim 2, wherein the lip reading module (43a)
 detects at least one of an orientation of a facial feature, velocity of movement of a facial
 feature, or optical flow changes over consecutive images of the sequence of images to
 analyze the sequence of images to generate the text.

4. The electronic device (10) of any of claims 1-3, wherein the display (14)
 displays the text in real time during the communication.

5. The electronic device (10) of any of claims 1-4, wherein the display (14)
 displays the sequence of images along with the text.

6. The electronic device (10) of any of claims 1-5, wherein the electronic
 device is a mobile telephone.
7. An electronic device (10a) for a first user comprising:
communications circuitry (46) for establishing a communication with another
electronic device (10) of a second user;
a user image generating device (20) for generating a sequence of images of the first
user communicating as part of the communication; and
a conversion module (43) for analyzing the sequence of images of the first user to
generate text corresponding to a communication portion of the first user;
wherein as part of the communication, the communication circuitry transmits the
text to the electronic device of the second user for display on the another electronic device.

8. The electronic device (10a) of claim 7, wherein the conversion module (43) comprises a lip reading module (43a) and the sequence of images is a sequence of motion of the first user's facial features, wherein the lip reading module analyzes the motion of the first user's facial features to generate the text.

9. The electronic device (10a) of claim 8, wherein the lip reading module (43a) detects at least one of an orientation of a facial feature, velocity of movement of a facial feature, or optical flow changes over consecutive images of the sequence of images to analyze the sequence of images to generate the text.

10. The electronic device (10a) of any of claims 7-9, wherein the communications circuitry (46) transmits the text in real time as part of the communication.

11. The electronic device (10a) of any of claims 7-10, wherein the user image generating device (20) comprises a camera assembly having a lens (21) that faces the first user during the communication.

12. The electronic device (10a) of any of claims 7-11, wherein the electronic device is a mobile telephone.
13. A method of video telephony comprising the steps of:
 establishing a communication;
 receiving a sequence of images of a participant communicating in the communication;
 analyzing the sequence of images and generating text corresponding to a communication portion of the participant; and
 displaying the text on a display (14) on an electronic device (10).

14. The method of claim 13, wherein the sequence of images is a sequence of images of the participant's facial features, and the analyzing step comprises analyzing the sequence of images of the participant's facial features to generate the text.

15. The method claim 14, wherein the analyzing step further comprises detecting at least one of an orientation of a facial feature, velocity of movement of a facial feature, or optical flow changes over consecutive images of the sequence of images to analyze the sequence of images to generate the text.

16. The method of claim 15, wherein the analyzing step further comprises lip reading to analyze the sequence of images to generate the text.

17. The method of any of claims 13-16, wherein the text is displayed in real time during the communication.

18. The method of any of claims 13-17, further comprising displaying the sequence of images along with the text.

19. The method of claim any of claims 13-18, further comprising:
 generating the sequence of images in a first electronic device (10a);
 transmitting the sequence of images to a second electronic device (10) as part of the communication;
 analyzing the sequence of images within the second electronic device to generate text corresponding to the communication portion of the participant; and
displaying the text on a display (14) on the second electronic device.

20. The method of any of claims 13-18, further comprising:
 generating the sequence of images in a first electronic device (10a);
 analyzing the sequence of images within the first electronic device to generate text corresponding to the communication portion of the participant;
 transmitting the text to a second electronic device (10) as part of the communication; and
 displaying the text on a display (14) on the second electronic device.
FIG. 3

Electronic Equipment/Mobile Telephone 10/10a

Communications Circuitry 46

Sound Signal Processing Circuit 48

Speaker 50

Microphone 52

Control Circuit 41

Memory 45

Processing Device 42

Video Telephony Application 43

Lip Reading Module 43a

Video Processing Circuit 54

Keypad 18

Display 14

Camera Assembly 20

FIG. 4

Communications Network 70

Server(s) 72
Initiate Call/
Receive Call 100

Transmit
Video Call
Request 110

Request
Accepted? 120

Receive Images of
User Communicating
130

Analyze User
Images To Generate
Speech Text 140

Display Speech
Text 150

FIG. 7
A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INV.</th>
<th>Classification (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H04M</td>
<td>H04M1/725</td>
</tr>
<tr>
<td></td>
<td>H04N7/14</td>
</tr>
<tr>
<td></td>
<td>G09B21/00</td>
</tr>
<tr>
<td></td>
<td>G10L15/24</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- H04M
- H04N
- G09B
- GIOL

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

- EPO-Internal
- WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

- Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

- "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X1" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "N" document member of the same patent family

Date of the actual completion of the international search: 17 June 2009

Date of mailing of the international search report: 26/06/2009

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2 NL- 2280 HV RUSWICK
Tel: (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Pohl, Martin
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 806 036 A (STORK DAVID G [US]) 8 September 1998 (1998-09-08) abstract column 4, line 25 - column 6, line 33</td>
<td>1-20</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>JP 2004015250 A</td>
<td>15-01-2004</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2006204033 A1</td>
<td>14-09-2006</td>
<td>CN 1943212 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005109830 A1</td>
</tr>
<tr>
<td>US 2004117191 A1</td>
<td>17-06-2004</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2411507 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004095421 A1</td>
</tr>
</tbody>
</table>