PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Burean

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

HO4L 29/06 Al

(11) International Publication Number:

(43) International Publication Date:

WO 95/17062

22 June 1995 (22.06.95)

(21) International Application Number: PCT/US94/03978

(22) International Filing Date: 11 April 1994 (11.04.94)

(30) Priority Data:

08/169,867 17 December 1993 (17.1293) US

(71) Applicant: TALIGENT, INC. [US/US}; 10201 N. De Anza
Boulevard, Cupertino, CA 95014 (US).

(72) Inventor: PETTUS, Christopher, E.; 1958 15th Street, San
Francisco, CA 94114 (US).

(74) Agent: STEPHENS, L., Keith; Taligent, Inc., 10201 N. De
Anza Boulevard, Cupertino, CA 95014 (US).

(81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CN,
CZ, DE, DK, ES, FI, GB, HU, JP, KP, KZ, LK, LU,
LV, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD,
SE, SK, UA, UZ, VN, European patent (AT, BE, CH, DE,
DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE,
SN, TD, TG).

Published

With international search report.

(54) Title: OBJECT-ORIENTED RULE-BASED PROTOCOL SYSTEM

(57) Abstract

On a multi-node client server network, a client node obtains access to remote services by means of a communications directory service
located in each node of the network. The communications directory service includes a tree structure to which existing directory services
and other network services can be added. The tree structure has a plurality of nodes each of which includes specific methods that query
and browse the associated directory service if such actions are supported by the underlying service. The communications directory service
further includes shared libraries which store a service object associated with each service offered on the network. The service object, in
turn, includes the service exchange address and communication link configuration information. A client desiring to access a remote service
retrieves the appropriate service object from the communications directory service and uses the service object to set up the communications

path.

applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ

BR
BY
CA

SATBEREQRR22°8839

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Cbte d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

France

Gabon

SEE8

United Kingdom
Georgia

Guinca

Greece

Hungary

Ireland

Ialy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

2835

NO
NZ
PL

3

RO
RU

SRGFH2dd%2R2HE

Mauritania

Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan

Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978
-1-

OBJECT-ORIENTED RULE-BASED PROTOCOL SYSTEM

COPYRIGHT NOTIFICATION
Portions of this patent application contain materials that are subject to copyright
protection. The copyright owner has no objection to the facsimile reproduction by
anyone of the patent document or the patent disclosure, as it appears in the Patent
and Trademark Office. All other rights are expressly reserved.

Field Of The Invention
This invention relates, in general, to distributed computer networks and more
specifically to rule-based protocol processing for distributed network directory and
naming services.

Background Of The Invention

With the tremendous growth of data processing by means of independent,
localized data processing devices, such as personal computers and mini computers,
data networks have evolved to connect together physically-separated devices and to
permit digital communication among the various devices connected to the network.

There are several types of networks, including local area networks (LANs) and
wide area networks (WANs). A LAN is a limited area network and data devices
connected to a LAN are generally located within the same building. The LAN typically
consists of a transmission medium, such as a coaxial cable or a twisted pair which
connects together various computers, servers, printers, modems and other digital
devices. Each of the devices, which are collectively referred to as ‘nodes", is
connected to the transmission medium at an address which uniquely identifies the
node and is used to route data from one node to another. A node which provides
resources and services is called a "server' node and a node which uses the resources
and services is called a "client" node. A WAN generally encompasses a much larger
area and may involve common carrier connections such as telephone lines.

LANs and WANs are often connected together in various configurations to form
‘enterprise" networks which may span different buildings or locations or extend across
an entire continent. Enterprise networks are convenient for several reasons: they
allow resource sharing - programs, data and equipment are available to all nodes
connected to the network without regard to the physical location of the resource and
the user. Enterprise networks may also provide reliability by making several
redundant sources of data available. For example, important data files can be
replicated on several storage devices so that, if one of the files is unavailable, for
example, due to equipment failure, the duplicate files are available.

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978
2-

One of the most important characteristics of enterprise networks is that they
have the capability of bringing a large and sophisticated set of services to all of the
attached users for a reasonable cost. However, for the users to exploit the network
potential, they must be able to identify, locate and access the network resources.
When a network is small, locating and accessing the available services is relatively
simple, but networks are growing larger and there are many networks that presently
very large. Thousand node networks are common and million node networks are on
the horizon.

An example of a very large network is the INTERNET network. which is used by
some of the largest public and private organizations. Much of the power of this type of
network goes unused simply because the users are either unaware of the facilities
available to them or they find the methods of accessing the facilities difficult or
confusing. Consequently, in order to assist users in locating and accessing network
resources, many existing networks today utilize network directory or naming services
which accept a resource identifier or name from a user and locate the network address
that corresponds to the desired network resource.

For example, the entered identifier or name can be "descriptive" and specify a
resource by describing enough of its attributes to distinguish it from other resources.
Such descriptive names are most useful to human users who are searching the
network for a resource that meets certain specified criteria, but they are also require
the most computing resources and are often difficult to distribute effectively. There
presently exist a number standards for such descriptive name services. For example,
the Consultative Committee on International Telephony and Telegraphy (CCITT) and
the International Standards Organization (ISO) have developed a standard for a
descriptive name service known as X.500

Naming and directory services (these will be referred to together as "directory
services" hereafter) are presently implemented in a variety of ways. The simplest
implementation is to use a single, centralized database contained in a local server
node to hold a list of names and corresponding network addresses. An example of
such a localized directory service is shown in Figure 1. Figure 1 illustrates a computer
network arranged in a "client-server" configuration comprising a plurality of client
nodes 106, 108, 120, 122 and 128 which may, for example. be workstations, personal
computers, minicomputers or other computing devices on which run application
programs that communicate over various network links including links 102, 110, 116,
126 and 136 with each other and with server nodes, such as nodes 100, 112, 124,
132 and 138. The server nodes may contain specialized hardware devices and
software programs that can provide a service or set of services to all or some of the

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978
-3-

client nodes. The client nodes are the users of the various network services which, in
turn, are provided by the server nodes

Typically, the centralized directory service database 104 is located in one of the
server nodes, such as node 100. A client node, such as client node 108, can access
the directory service by connecting to server node 100, entering a resource identifier
or name and retrieving the network address of the associated service. By means of
conventional database techniques, a client node may be able to search over the
database in order to locate a given resource. In addition, many directory services
support browsing by using partial name descriptions, "wild cards" and placeholders.
Such centralized directory services with single databases work well in small networks
where the number of network addresses is small. However, in larger networks, it is
often not feasible to store all the resource identifiers in one central location. Further, a
single database represents a single point of failure which can disable the entire
network. In addition, a centralized database often suffers from poor performance. For
example, while it may be relatively efficient for a local client, such as client 108, to
connect to server 100 and access database 104, a remote client, such as client 120,
which must link through several servers, 124 and 112, along with a "gateway" link 116,
will incur a significant amount of network overhead and the overall system "cost" of the
access will be high. With a large number of remote access attempts, directory service
provider 100 can quickly become both a processing and communication bottleneck for
the entire network.

In order to overcome these problems, additional prior art techniques have been
developed which distribute the database data over multiple locations. Such a system
is shown schematically in Figure 2. Figure 2 depicts a client-server type of network
which is similar to that shown in Figure 1. In particular, elements which correspond in
the two figures have corresponding numeral designations. For example, client 108 in
Figure 1 is similar to client 208 in Figure 2. The difference between the two networks
is that the directory service database has been replicated in a number of the server
nodes. For example, server node 200 contains a directory service database 204 as
do server nodes 212 (database 214), server node 232 (database 230) and server
node 224 (database 218). There are a number of prior art methods for replicating the
data in each of the databases. Some systems replicate each resource identifier
individually in each database, other systems replicate the entire database. Still other
systems replicate individual nodes or limit replication by partitioning the database in
some manner.

The distributed system shown in Figure 2 avoids the problems associated with
the centralized database. Since the data is replicated, there is no single point of

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978
-4-

failure and, since the data is usually available on a nearby server node, there are no
‘remote" client nodes and network overhead is greatly reduced.

However, the distributed system has its own problems. For example, some
method must be used to insure data consistency if multiple sources can update the
databases. Some systems force data consistency by keeping all copies of the data
tightly synchronized in a manner similar to a conventional database system. Other
system insure data integrity by means of conventional concurrency arbitration
schemes.

Such distributed naming and directory services are effective on homogeneous
networks in which the same access methods and protocols apply over the entire
network. In this case, a consistent set of names and rules can be developed to permit
location and access of various resources with relative ease. However, many large
networks are heterogeneous - not only do the networks comprise many types of
different computers, including work stations, personal computers, mini-computers,
super-computers and main frames, but the network itself is often composed of many
independent smaller networks which are connected together by interfaces called
"gateways". These smaller networks may have their own access methods and
protocols. Further, the heterogeneous construction and organization of these large
networks does not lend itself to central control and management which could dictate
common methods and protocols.

In many large networks which are comprised of a set of smaller networks which
are connected together, each of the underlying separate networks may have its own
different directory service utilizing a specific protocol. In this type of network a user
may have to be familiar with each network directory service protocol and may have to
shift from protocol to protocol as searches are performed from network to network.
Consequently, in such a heterogeneous network, one of the main difficulties in
accessing network resources arises from a lack of a consistent globally-accessible
directory of network resources which can operate over heterogeneous networks
without involving the user in the details and the protocol involved in accessing each of
these separate networks.

Today's networking services have various protocol systems. In the prior art,
applications must contain detailed information pertaining to protocol architectures for
networking. This requirement mandated application ties to particular protocols. This
prevented dynamic configuration of networks because applications could not support
protocol changes without a source code change.

Accordingly, it is an object of the present invention to allow applications to
specify a type and quality of service.

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978
-5-

Summary Of The Invention

The foregoing problems are solved and the foregoing objects are achieved in
one illustrative embodiment of the invention in which a rule based protocol selection
mechanism selects the appropriate protocol configuration based on the type and
quality of service. For each protocol family, a set of rules is defined to transl ate the
type and quality of service into a particular set of common protocols.

Brief Description Of The Drawings

The above and further advantages of the invention may be better understood by
referring to the following description in conjunction with the accompanying drawings,
in which:

Figure 1 is a block schematic diagram of a prior art client server network which
incorporates a local directory service.

Figure 2 is a block schematic diagram of a prior art client server network which
incorporates a distributed directory server.

Figure 3 is a block schematic diagram of a computer system, for example, a
personal computer system in which the inventive object oriented printing interface
operates.

Figure 4 is a block schematic diagram of a client server network which
incorporates the inventive communications directory service.

Figure 5 is a detailed block schematic diagram of a prior art protocol stack used
to transmit data between two nodes structure in accordance with the International
Standards Organization seven layer model.

Figure 6 is a block schematic diagram of the major components of the
communications directory service.

Figure 7 is a schematic diagram of an illustrative directory tree set up which
allows browsing over various directory services and other network services.

Figure 8 is a block schematic diagram of the main components of a server node
illustrating how a service program interacts with the communications directory service.

Figure 9 is a simplified flowchart of the steps involved in making a new service
available on the network.

Figure 10 is an expanded flowchart of the steps carried out by the service
program in order to activate a service object.

Figure 11 is a block schematic diagram of the main components of a client node
illustrating how an application program interacts with the communications directory
service to access a service.

Figure 12 is a simplified flowchart of the steps involved in accessing a service
available on the network.

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978

-6-

Figure 13 is an expanded flowchart of the steps carried out by the service
program in order to activate a service object.

Detailed Description Of lllustrative Embodiments

The invention is preferably practiced in the context of an operating system
resident on a personal computer such as the IBM™ PS/2™ or Apple™ Macintosh™
computer. A representative hardware environment is depicted in Figure 3, which
illustrates a typical hardware configuration of a computer 300 in accordance with the
subject invention. The computer 300 is controlled by a central processing unit 302,
which may be a conventional microprocessor; a number of other units, all
interconnected via a system bus 308, are provided to accomplish specific tasks.
Although a particular computer may only have some of the units illustrated in Figure 3
or may have additional components not shown, most computers will include at least
the units shown.

Specifically, computer 300 shown in Figure 3 includes a random access
memory (RAM) 306 for temporary storage of information, a read only memory (ROM)
304 for permanent storage of the computer's configuration and basic operating
commands and an input/output (I/O) adapter 310 for connecting peripheral devices
such as a disk unit 313 and printer 314 to the bus 308, via cables 315 and 312,
respectively. A user interface adapter 316 is also provided for connecting input
devices, such as a keyboard 320, and other known interface devices including mice,
speakers and microphones to the bus 308. Visual output is provided by a display
adapter 318 which connects the bus 308 to a display device 322 such as a video
monitor. The workstation has resident thereon and is controlled and coordinated by
operating system software such as the Apple System/7™ operating system.

In a preferred embodiment, the invention is implemented in the C++
programming language using object-oriented programming techniques. C++ is a
compiled language, that is, programs are written in a human-readable script and this
script is then provided to another program called a compiler which generates a
machine-readable numeric code that can be loaded into, and directly executed by, a
computer. As described below, the C++ language has certain characteristics which
allow a software developer to easily use programs written by others while still
providing a great deal of control over the reuse of programs to prevent their
destruction or improper use. The C++ language is well-known and many articles and
texts are available which describe the language in detail. In addition, C++ compilers
are commercially available from several vendors including Borland International, Inc.
and Microsoft Corporation. Accordingly, for reasons of clarity, the details of the C++

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978
-7-

language and the operation of the C++ compiler will not be discussed further in detail
herein.

As will be understood by those skilled in the art, Object-Oriented Programming
(OOP) techniques involve the definition, creation, use and destruction of "objects".
These objects are software entities comprising data elements and routines, or
functions, which manipulate the data elements. The data and related functions are
treated by the software as an entity and can be created, used and deleted as if they
were a single item. Together, the data and functions enable objects to model virtually
any real-world entity in terms of its characteristics, which can be represented by the
data elements, and its behavior, which can be represented by its data manipulation
functions. In this way, objects can model concrete things like people and computers,
and they can also model abstract concepts like numbers or geometrical designs.

Objects are defined by creating “classes" which are not objects themselves, but
which act as templates that instruct the compiler how to construct the actual object. A
class may, for example, specify the number and type of data variables and the steps
involved in the functions which manipulate the data. An object is actually created in
the program by means of a special function called a constructor which uses the
corresponding class definition and additional information, such as arguments
provided during object creation, to construct the object. Likewise objects are
destroyed by a special function called a destructor. Objects may be used by using
their data and invoking their functions.

The principle benefits of object-oriented programming techniques arise out of
three basic principles; encapsulation, polymorphism and inheritance. More
specifically, objects can be designed to hide, or encapsulate, all, or a portion of, the
internal data structure and the internal functions. More particularly, during program
design, a program developer can define objects in which all or some of the data
variables and all or some of the related functions are considered "private" or for use
only by the object itself. Other data or functions can be declared "public" or available
for use by other programs. Access to the private variables by other programs can be
controlled by defining public functions for an object which access the object's private
data. The public functions form a controlled and consistent interface between the
private data and the "outside" world. Any attempt to write program code which directly
accesses the private variables causes the compiler to generate an error during
program compilation which error stops the compilation process and prevents the
program from being run.

Polymorphism is a concept which allows objects and functions which have the
same overall format, but which work with different data, to function differently in order
to produce consistent results. For example, an addition function may be defined as

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978
-8-

variable A plus variable B (A+B) and this same format can be used whether the A and
B are numbers, characters or dollars and cents. However, the actual program code
which performs the addition may differ widely depending on the type of variables that
comprise A and B. Polymorphism aliows three separate function definitions to be
written, one for each type of variable (numbers, characters and dollars). After the
functions have been defined, a program can later refer to the addition function by its
common format (A+B) and, during compilation, the C++ compiler will determine which
of the three functions is actually being used by examining the variable types. The
compiler will then substitute the proper function code. Polymorphism allows similar
functions which produce analogous results to be "grouped" in the program source
code to produce a more logical and clear program fiow.

The third principle which underlies object-oriented programming is inheritance,
which allows program developers to easily reuse pre-existing programs and to avoid
creating software from scratch. The principle of inheritance allows a software
developer to declare classes (and the objects which are later created from them) as
related. Specifically, classes may be designated as subclasses of other base classes.
A subclass "inherits" and has access to all of the public functions of its base classes
just as if these function appeared in the subclass. Alternatively, a subclass can
override some or all of its inherited functions or may modify some or all of its inherited
functions merely by defining a new function with the same form (overriding or
modification does not alter the function in the base class, but merely modifies the use
of the function in the subclass). The creation of a new subclass which has some of the
functionality (with selective modification) of another class allows software developers
to easily customize existing code to meet their particular needs.

Although object-oriented programming offers significant improvements over
other programming concepts, program development still requires significant outlays of
time and effort, especially if no pre-existing software programs are available for
modification. Consequently, a prior art approach has been to provide a program
developer with a set of pre-defined, interconnected classes which create a set of
objects and additional miscellaneous routines that are all directed to performing
commonly-encountered tasks in a particular environment. Such pre-defined classes
and libraries are typically called "application frameworks" and essentially provide a
pre-fabricated structure for a working application.

For example, an application framework for a user interface might provide a set
of pre-defined graphic interface objects which create windows, scroll bars, menus, etc.
and provide the support and "default" behavior for these graphic interface objects.
Since application frameworks are based on object-oriented techniques, the pre-
defined classes can be used as base classes and the built-in default behavior can be

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978

-9-

inherited by developer-defined subclasses and either modified or overridden to allow
developers to extend the framework and create customized solutions in a particular
area of expertise. This object-oriented approach provides a major advantage over
traditional programming since the programmer is not changing the original program,
but rather extending the capabilities of the original program. In addition, developers
are not blindly working through layers of code because the framework provides
architectural guidance and modeling and, at the same time, frees the developers to
supply specific actions unique to the problem domain.

There are many kinds of application frameworks available, depending on the
level of the system involved and the kind of problem to be solved. The types of
frameworks range from high-level application frameworks that assist in developing a
user interface, to lower-level frameworks that provide basic system software services
such as communications, printing, file systems support, graphics, etc. Commercial
examples of application frameworks include MacApp (Apple), Bedrock (Symantec),
OWL (Borland), NeXT Step App Kit (NeXT), and Smalitalk-80 MVC (ParcPlace).

While the application framework approach utilizes all the principles of
encapsulation, polymorphism, and inheritance in the object layer, and is a substantial
improvement over other programming techniques, there are difficulties which arise.
These difficulties are caused by the fact that it is easy for developers to reuse their own
objects, but it is difficult for the developers to use objects generated by other programs.
Further, application frameworks generally consist of one or more object "layers" on top
of a monolithic operating system and even with the flexibility of the object layer, it is
still often necessary to directly interact with the underlying operating system by means
of awkward procedural calls.

In the same way that an application framework provides the developer with
prefab functionality for an application program, a system framework, such as that
included in a preferred embodiment, can provide a prefab functionality for system level
services which developers can modify or override to create customized solutions,
thereby avoiding the awkward procedural calls necessary with the prior art application
frameworks programs. For example, consider a printing framework which could
provide the foundation for automated pagination, pre-print processing and page
composition of printable information generated by an application program. An
application software developer who needed these capabilities would ordinarily have
to write specific routines to provide them. To do this with a framework, the developer
only needs to supply the characteristics and behavior of the finished output, while the
framework provides the actual routines which perform the tasks.

A preferred embodiment takes the concept of frameworks and applies it
throughout the entire system, including the application and the operating system. For

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978

-10-

the commercial or corporate developer, systems integrator. or OEM, this means all of
the advantages that have been illustrated for a framework such as MacApp can be
leveraged not only at the application level for such things as text and user interfaces,
but also at the system level, for services such as printing, graphics, multi-media, file
systems, 1/O, testing, etc.

Figure 4 shows a schematic overview of the illustrative client- server network
illustrated in Figures 1 and 2 which has now been provided with the inventive
communications directory service which is the subject of the present invention. A
comparison of Figures 2 and 4 indicates that, although the general network
configuration is the same for both networks, when the inventive communications
directory service is used as shown in Figure 4, all of the nodes now include a
communications directory service (CDS) module. In particular, server nodes 400, 412,
424, 432 and 438 now include the inventive communications directory service
modules 405, 413, 425, 430 and 439, respectively. In addition, any or all server nodes
may also include a conventional directory service 404, 414, 418 and 430, respectively.
These conventional directory services will be referred to as physical directory services
hereinafter to distinguish then from the communications directory service.

In addition to the server nodes, each of the client nodes 406, 408, 420, 422 and
428 (CDS 407, 409, 421, 423 and 429, respectively) also includes a communications
directory service. As will hereinafter be explained in detail, in enterprise networks
such as that shown in Figure 4, information to be sent from one node to another is
generally divided into discrete messages or "packets" and the packets are transmitted
between nodes in accordance with a predefined "protocol”. In this context a "protocol”
consists of a set of rules or procedures defining how the separate nodes are supposed
to interact with each other.

In order to reduce design complexity, most networks are organized as a series
of "layers" or "levels" so that information passing from one node to another is
transmitted from layer to layer. Within each layer, predetermined services or
operations are performed and the layers communicate with each other by means of
predefined protocols. The purpose for the layered design is to allow a given layer to
offer selected services to other layers by means of a standardized interface while
shielding those layers from the details of actual implementation within the layer. As
will hereinafter explained in detail, both the client and server nodes cooperate with the
communications directory service modules in order to structure the network layers
which, in turn, control the type and parameters of the connections between client and
servers in accordance with the type of service being offered.

In an attempt to standardize network architectures (the overall name for the sets
of layers and protocols used within a network), a generalized model has been

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978

-11-

proposed by the International Standards Organization (ISO) as a first step towards
international standardization of the various protocols now in use. The mocz! is called
the open systems interconnection (OSI) reference model because it deals with the
interconnection of systems that are "open" for communication with other systems. The
proposed OSI model has seven layers which are termed (in the order which they
interface with each other) the "physical", "data link", "network”, “transport”, "session",
‘presentation” and "application” layers. The purpose of the OSI model is to attempt to
standardize the processes conducted within each layer.

In accordance with the OSI model, the processes carried out in the physical
layer are concerned with the transmission of raw data bits over a communication
channel. The processes carried out in the data link layer manipulate the raw data bit
stream and transform it into a data stream that appears free of transmission errors.
The latter task is accomplished by breaking the transmitted data into data frames and
transmitting the frames sequentially accompanied with error correcting mechanisms
for detecting or correcting errors.

The network layer processes determine how data packets are routed from the
data source to the data destination by selecting one of many alternative paths through
the network. The function of the transport layer processes is to accept a data stream
from a session layer, split it up into smaller units (if necessary), pass these smaller
units to the network layer, and to provide appropriate mechanisms to ensure that the
units all arrive correctly at the destination, with no sequencing errors, duplicates or
missing data.

The session layer processes allow users on different machines to establish
"sessions" or "dialogues" between themselves. A session allows ordinary data
transport between the communicating nodes, but also provides enhanced services in
some applications, such as dialogue control, token management and synchronization.
The presentation layer performs certain common functions that are requested
sufficiently often to warrant finding a general solution for them, for example, encoding
data into a standard format, performing encryption and decryption and other functions.
Finally, the application protocol layer contains a variety of protocols that are commonly
needed, such as database access, file transfer, etc.

For example, Figure 5 is a diagram of a prior art protocol stack used to connect
two nodes in accordance with the OSI standard seven-layer architecture. In
accordance with the OSI standard, each protocol stack for a node consists of seven
layers. For example, stack 528 for Client node 408 comprises an application layer
500, a presentation layer 502, a session layer 504, a transport layer 506, a network
layer 508, a data link layer 510 and a physical layer 512. The operation and the
purpose of each of these layers has been previously discussed. Similarly, stack 532

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978

-12-

for Server node 432 consists of layers 514-526. Although the actual data
communication occurs between the two physical layers 512 and 526 over a data link
530, when the stack is arranged as shown in Figure 5, each layer can be thought of as
communicating with its "peer" which is a layer at the same level as a given layer. For
example, the application layers 500 and 514 can be thought of as communicating
directly even though information passes through ali of the layers 502-512, across data
link 530 and back through the layers 516-526. Similarly presentation layers 502 and
516 can communicate peer-to-peer.

The protocol stacks such as those shown in Figure 5 are typically implemented
using a plurality of data buffers. Each data buffer constitutes a protocol layer in which
processing is done. After processing is complete in a layer the data may be
transferred to another buffer for further processing in accordance with another layer.

In accordance with one aspect of the invention, the protocol stacks which
control peer-to-peer communications in the network are configured by stack definitions
stored in the communications directory service. these stack definitions are associated
with each service type available on the network so that the protocol stacks can be
dynamically configured in response to service requests from the application
programs.

A more detailed diagram of a communications directory service moduie is
shown in detail in Figure 6; the module includes three major components: a
hierarchical directory tree 602 which allows each of the physical directory services
and other services provided by the network to be located by means of a conventional
tree searching techniques; a set of stack definition objects 604 which are used to
program the dynamically reconfigurable stacks that allow a client to request data from
a remote server over a prespecified communication link and a set of "service objects"
606. Each service object is associated with one service available on the network and
contains the network address or exchange address at which the service is available
and a reference 608 to one or more of the stack definition objects 604. As will
hereinafter be explained in detail, a reference to one of these service objects is
obtained by an application program desiring to access the corresponding service.
The information in the object identified by this reference is then sent to the
reconfigurable stack in order to set up the communication path.

The stack definitions 604 each consist of a set of layer definitions that specify
the processing carried out in each layer and the interactions between the layers. The
stack definitions are defined at the time that the communications links are installed on
the network system. In particular a stack definition is provided for each different type of
communication link on the system.

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978
-13-

The communications directory service 600 has a number of other features
which make its operation particulariy convenient for users on the network. In
particular, the directory service stores information regarding the available services and
directory services in the directory tree as a series of objects. in addition, the stored
libraries in the communications directory service contain objects and, thus, both
application programs and service programs can communicate directly with the
communications directory service by means of objects. Since the communications
directory servnce is present on each of the nodes, a client need not connect with any
directory service server before using the directory service, instead the objects
themselves provide the interface.

Further, the use of predefined objects, such as the service objects 608, provides
a simple method to allow an application program to open communications with a
cesired service. The service objects can be sent directly to the networking service in
order to open a communications path without requiring the application program to
concern itself with the details of the actual path construction. In addition, because any
existing physical directory services are encapsulated in the node objects of the
directory tree 602, the physical directory services are completely hidden from the client
application allowing the client application to interact with the inventive
communications directory service with a consistent protocol and feature set.

A more detailed diagram of the directory tree 602 found in the communications
directory service is shown in Figure 7. As will hereinafter be explained, the directory
tree can be traversed by means of simple search commands and full browsing
capabilities are provided by using wild cards and placeholders. The directory tree is
designed so that objects are returned as the result of searches with the type of object
which is returned being determined by the implementation of the portion of the
directory which returns the object. Examples of objects which can be returned from a
directory tree search are references to the service objects 606 shown in Figure 6
which contain information used to connect to remote service: principle objects which
contain security and authentication information about users; "business cards" which
contain collections of information about users and other clacses which may be added
to the directory tree by program developers.

The directory tree is organized as a single hierarchical tree such as that shown
in Figure 7. It should be noted that the tree configuration shown in Figure 7 is for an
llustrative purposes only and an actual tree configuration can differ significantly from
the illustrated configuration without departing from the scope and principles of the
present invention. Each of the nodes in the tree is formed by a "namespace" object. A
namespace object can refer to other namespace objects or can refer directly to
services or other physical directory services. The ultimate root of the directory tree is

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978
-14-

the root namespace object 700; the root namespace object 700 and the other
namespace objects which form the nodes of the tree are inserted into a conventional
tree structure which can be traversed to find the node members.

Each node object, such as root namespace object 700, includes methods which
facilitate directory searches. In particular, these methods may include a search
method which returns an iterator over all entries in the directory, a method which
returns entries to which the namespace refers and a method which returns entries that
match a given property expression. Additional methods may be provided to obtain the
root namespace from lower level directory node.

In the tree directory shown in Figure 7, the ultimate nodes or "leaf* nodes are
the physical directory services and the other available network services. As these leaf
nodes are also namespace objects, they may include methods which return the
associated directory protocol and methods which can interact with the physical
directory to search or browse the directory. Since each of the leaf nodes contains
methods which are written specifically for the associated service, the methods deal
with the protocol issues involved with the associated service allowing the user to
interface with the communications directory service in a consistent manner no matter
what directory service is involved.

For example, in Figure 7, three nodes 704, 706 and 708 are shown which
interact with three separate physical directory services. A fourth node, 710, is also
provided, which node is called a "native" namespace node. This latter node contains
a reference to each of the services that are provided by the network. As will
hereinafter be explained, in order to make each service available to the users, it is
‘registered” in the native namespace 710. "Registration" in the namespace means to
insert a reference to the service into the directory where it can found by someone
traversing the directory. Essentially, registration consists of streaming the associated
service object into the native namespace where it can be discovered by queries.

In addition, to registering a service, it is also possible to “publish" a service in
the directory or in the physical directory services resident in the leaf nodes.

Publication differs from registration in that publication involves inserting a limited set of
information about the service into a directory node. This limited set of information may,
for example, consist of the service name, type of service and a connection address. In
a preferred form of the invention, the native namespace handles publications - when a
service entity is registered with the native namespace, the native name space
determines in which other namespaces the entity should be published and directs the
publication accordingly.

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978
-15-

In order to provide full branching capabilities. intermediate namespaces, such
as name space 702 may be inserted between the root namespace 700 and the leaf
nodes 704-710. The intermediate namespace refers to other namespaces.

As previously mentioned, the inventive communications directory service
interacts with both service programs and application programs to transparently set up
the necessary communication links between the client and server. This interaction
involves the creation of service objects in the communications directory service by the
service providers and the configuration of the protocol stacks in the server nodes. A
client desiring to access a service retrieves the associated service object and uses it to
configure the protocol stacks in the client node to set up the communication link.

Figures 8-10 describe the operations performed by a service program operating
in a server node in order to make a new service available on the network for use by
application programs running in the client nodes. Figure 8 is a schematic block
diagram of the portions of the server node programs that are involved in the creation
and activation of a new service. Figure 9 is an illustrative flow chart which describes
the interaction between the service program, the inventive communications directory
service and the node networking services in order to establish the new service and to
configure the networking service to operate over an appropriate communication fink.
Figure 10 is a more detailed block diagram illustrating the activation of the new service
by activating the associated service object.

More particularly, Figure 8 illustrates the basic configuration of a server node in
providing a service to a remote client. The server node is arranged with a common
area, or system address space, 800 which address space would include operating
system programs and various shared libraries that are used by the service
applications running on the system. In particular, the system address space 800
includes the communications directory service 804 and the networking service
programs and libraries 816.

Also in the server node is the service program which runs in its own address
space 810. As will be hereinafter explained, the service program 806 interacts with
the communications directory service 804 to create a service object which then
resides in the communications directory service 804. This service object is distributed
to all of the other nodes in this system and, thus, is available on a local basis to all of
the clients on the network. Because the service object includes the appropriate stack
definitions for configuring the networking service 816, the application program
together with the communications directory service can set up the communications
path using the previously stored definitions without involving a client application
program in the construction details.

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978
-16-

Referring to Figure 9, the creation of a new service begins in step 900 and
proceeds to step 902. In step 902, the developer of the service program enables the
creation of a new service object containing configuration parameters which are
appropriate to the new service. This may be done by subclassing the service object
classes located in the directory service. In particular, in order to create a new service
object class, the service program developer specifies a unique name for the service,
the type of service and, optionally, various communications link types which can be
used to access the service. In accordance with normal object-oriented programming
language operation, this subclassing information is included in the service program
code during compilation. Therefore, when the service program 806 is installed in the
service program address space 810 in the appropriate server node, the constructor of
the service object subclass can be called to construct a service object in the
communications directory service 804 as illustrated in step 904 (Figure 9). During the
process of calling the constructor, the type and quality of service information is passed
to the communications directory service as schematically indicated by arrow 802

As previously mentioned, the communications directory service 804 includes a
set of stack definitions in shared libraries. These stacks definitions are created when
the communications links are defined and are associated with a particular transport
mechanism. The stack definitions each consist of a set of layer definitions. The layer
definitions control the processing of the data in each layer and the interactions
between layers. Each stack definition completely defines the stack from the transport
layer through the physical layer (these layers are described in detail above).

In the process of creating a new service object, the communications directory
service 804 uses the type and quality of service information provided by the service
program to construct a session layer and include appropriate references to the stored
communications stack definitions as set forth in step 906. If more than one
communication link can be used to access the new service, appropriate stack
definitions are referenced in the new service object and the session layer is
constructed in order to select one of the communication links based on various criteria,
such as the quality of service desired and the availability of the communication link.

Thus, the newly-created service object contains a session layer and the
appropriate stack definitions which define the stack from the transport layer to the
physical layer. The service object is stored in the communications directory service.
However, at this time, no service address or exchange address is provided in the
service object because the service object, although created, is not active. Thus, a
service object can be created any point when the service program is installed in the
server node, but the service program however does not become activated until further
steps are taken as described below. '

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978
-17-

More particularly, in order to activate the new service, the service program
instructs the communications directory service 804 to send the stored service object to
the dynamically reconfigurable protocol stack (DRPS) 822 in networking service 816
as described in step 908. The manner in which the service object is transferred to the
DRPS is illustrated in Figure 8. More particularly, the service program 806 first creates
a service program interface 828 in its own address space 810. The communication
between the service program and the service program interface is schematically
indicated by arrow 808. The service program interface 828, in turn, creates a
configuration data stream 814 which can stream data to a server interface 818 which
is permanently available and located in the networking service 816.

The service program 806 then retrieves the service object including the network
configuration data. The configuration data passes from the communications directory
service to the service program interface 828 as indicated by arrow 812. The
configuration data is then streamed to the system address space 800 as indicated by
arrow 814.

Next, as illustrated in step 910, the service program activates the service object
which, in turn, causes the service exchange address to be returned to the
communications directory service 804. A more detailed description of the activation
sequence is illustrated in the flow chart shown in Figure 10. More particularly, the
activation sequence starts in step 1000 and proceeds to step 1002. In step 1002, the
communications directory service 804 makes the service available by publishing the
service on any underlying physical directory services if this is appropriate. This
publication consists of registering the name of the service and, in some cases, the
service address in the underlying directory services.

The routine next proceeds to step 1004 in which the service is registered with
the communications directory service. As previously mentioned, such registration
involves streaming the service object into the native namespace node of the
communications directory service. At this point, a reference to the service is added to
the CDS directory tree so that the service can be located by user traversing the tree.

Next, in step 1006, the stack definition references which have been passed to
the server interface 818 in networking service 816 by the service program 806 are
used to set up the stack definitions that will be used to reconfigure the DRPS 822. In
step 1008, the created stack definitions are passed to the DRPS (this operation is
shown schematically by arrow 820). At this time the information in the service object is
also used to set up the session layer 823.

In step 1010, the exchange address, or the network address, of the session
layer 823 in the DRPS 822 is returned to the communications directory service 804. In

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978
-18-

particular, the networking service 816 obtains the session layer address from the
DRPS 822 when the session layer is set up. This address is returned, via the service
interface 818, configuration data stream 814, to the service program interface 828.
Finally, the exchange address is returned. via the data stream 812, to the
communications directory service 804. The exchange address, as previously
mentioned, is stored in the associated service object located in the communications
directory service 804 so that it can later be retrieved by a client program. At this point,
activation is complete and the activation routine shown in Figure 10 ends in step 1012.
In step 912, the exchange address is returned to the communications directory service
and the service activation routine ends in step 914.

A separate data stream is also set up by the service program at this time so that,
at a subsequent time, when a client node requests service from the server node, the
incoming service requests can be received. In particular, service request data
arriving over the physical communication link 824 is passed through the configured
DRPS 822 via a separate request data stream 826 which links the session layer 823
to the service program interface 828. The service program interface 828, in turn,
forwards the request, via data stream 808, to the service program 806. Reply
information is returned by service program 806, via data stream 808, service program
interface 828, request data stream 826, DRPS 822, and physical communication link
824 to the client node.

After a new service has been added to the local communication directory
service, the copies on the other nodes must be updated. This updating is carried out
in a conventional fashion. For example, it is possible to periodically distribute copies
on removable disks to all nodes. However, a more preferred method of distributing
copies of the communications directory service would be for the local node which
received the update to broadcast the update information to all other nodes. In order to
accomplish this broadcast, the broadcast message includes a special header which
causes all of the protocol stacks to be set to a predetermined default protocol. In this
manner the broadcast message can be received at all nodes.

Figures 11 through 13 illustrate the steps involved when a client application
coordinates with the communications directory service to access a remote service. In
particular, Figure 11 illustrates the appropriate sections of the client node which are
involved in accessing a remote service. As in the server node, the client node
includes a system address space 1110 which, in turn, contains the inventive
communications directory service 1112 and a networking service 1118. The
application program 1100 runs in its own application address space 1104. The
interactions of the application program 1100, the directory service 1112 and the

10

15

20

25

30

35

WO 95/17062 PCT/US94/03978
-19-

networking service 1118 are described in more detail in the flow charts set forth in
Figures 12 and 13.

More particularly, the client service access routine starts in step 1200 and
proceeds to step 1202. As indicated in step 1202, the client interacts with the
communications directory service to get a reference to one of the service objects
stored in the communications directory service. This interaction is shown
schematically by arrow 1106 on Figure 11. As previously mentioned, this interaction
may involve a user directly if the user searches over the directory tree located in the
communications directory service 1112. Alternatively, this interaction may involve an
intervening application program which cooperates with the communications directory
service to select a service in a visual manner, such as, by dra_gging a document icon
onto a service icon.

In any case, in accordance with step 1204, a reference to the service object
identified by the communications directory service 1112 is returned to the application
program 1100 as shown schematically by arrow 1108. The application program, in
turn, creates a client interface object 1126 in preparation for sending the configuration
data to the network service 1118. The service object reference is passed by the
communications directory service 1112, via a configuration data stream 1114, to the
client interface 1126. From the client interface 1126 the configuration data is streamed
over configuration data stream 1116 to a server interface object 1120 located in the
networking service 1118. The service interface object 1120 is created when the
networking service 1118 is created during system boot up and is permanently resident
in the networking service.

In accordance with step 1206, application program 1100 then activates the
service object reference. Figure 13 indicates, in more detail, the steps involved in
activating the service object reference. More particularly, the activation routine starts
in step 1300 and proceeds to step 1302. In step 1302, the service object reference is
resolved in any of the underlying physical directory services, if appropriate. This
resolution is performed by using the service name located in the service object to
search over the underlying directory services and to obtain the network address.
Alternatively, if the service reference is registered in the native namespace of the
communications directory service 1112, then the service address or the service
exchange can be obtained directly from the service object reference.

In step 1304, the stack definitions contained in the service object are used by
the server interface 1120 and the networking service 1118 to set up protocol stack
layers for configuring the DRPS 1124. Next, in step 13086, the created stack definitions
are passed to the DRPS as indicated by arrow 1122. These stack definitions then set
up DRPS 1124 and configure the communication link in preparation for sending

10

15

20

WO 95/17062 PCT/US94/03978

-20-

request and reply data between the application program 1100 and the remote service
(not shown in Figure 11).

Next, in step 1308, the address of the session layer 1123 in the DRPS 1124 is
returned to the server interface 1120. The activation routine then finishes in step
1310. Returning to step 1208 of Figure 12, the server interface 1120 exchanges the
address of the session layer 1123 for the remote service exchange obtained from the
service object reference and returns the remote service exchange (as indicated in step
1208), via configuration data stream 1116, client interface 1126 and data path 1102
to the application program 1100. Thus, when the application program communicates
with the remote service, it uses the remote service address passed through the
communications directory service to the networking service.

As set forth in step 1210, a separate data path is set up to send service requests
from application program 1100 to the remote service. This separate data path
comprises data path 1102, client interface 1126 and the session layer 1123 of the
DRPS 1124. In accordance with step 1212, the request information then sent out over
physical communication link 1130 to the remote service location. Reply information
returns via DRPS 1124, data stream 1128, client interface 1126 and data path 1102 to
the application program 1100. The service request routine then finishes in step 1214.

The foregoing description has been limited to a specific embodiment of this
invention. It will be apparent, however, that variations and modifications may be made
to the invention, with the attainment of some or all of its advantages. Therefore, it is
the object of the appended claims to cover all such variations and modifications as
come within the true spirit and scope of the invention.

© @@ N O O 5 W NN -

- .a
—_= O

WO 95/17062 PCT/US94/03978

-21-

CLAIMS

Having thus described our invention, what we claim as new, and desire to

secure by Letters Patent is:

1.

A multi-node computer network system for connecting a client node to a server
node over a plurality of different communication links, the computer network
system, comprising:

a plurality of nodes;

at least one processor per node;

a memory attached to the at least one processor and under the processor's
control;

a network for connecting the plurality of nodes;

determining the type and quality of service based on information stored in the
memory; and

identifying at least one protocol based on the type and quality of service.

R - S S B \V

O W 00 N o w»

12
13
14
15
16
17
18
19
20
21
22
23

WO 95/17062 PCT/US94/03978

-20.

An apparatus for implementing a client node of a client-server system with
remote procedure call (RPC) services over a distributed computer rietwork, the
client node interconnected with a server node via a communications medium to
form the client-server network, the client node comprising:

an application program for generating service request packets, the application
program stored in a memory of the client node;

a network adapter for transmitting and receiving the packets over the
communications éhannel;

a processor operating to forward the packets between the application program
and the adapter;

an object-oriented operating system, stored in the memory, for controlling the
operations of the processor;

a caller object created by the application program from data and functions
stored in the operating system, the caller object instructing the processor to
issue the packets in accordance with a RPC protocol by calling an associated
service residing in a dispatcher object of the server;

a plurality of vertically-linked protocol layer objects organized to provide a
dynamically-configurable protocol stack configured to interact with the network
adapter to move the packets to and from the adapter; and

a remote stream object for establishing synchronous data stream transactions
between the application program and the protocol stack, the remote stream
object and protocol stack operating to complete a communications data path

within the client node.

[S2 I S N ¢S B \V]

g A~ W N

WO 95/17062 PCT/US94/03978

10.

.23

Apparatus as recited in Claim 2, wherein the plurality of vertically-linked
protocol layer objects include upper protocol layer objects that are unique to the
application program executing in the client node and lower protocol layer
objects that are shared among other application programs executing in the

node.

Apparatus as recited in Claim 3, wherein the upper protocol layers include an
application layer object for exchanging the packets with the application

program.

Apparatus as recited n Claim 4, wherein the upper protocol layers include a
presentation layer object for presenting the packets in a predetermined format

to the lower protocol layer objects.

Apparatus as recited in Claim 5, wherein the application layer and presentation

layer objects reside in a process address space of the client node.

Apparatus as recited in Claim 6, wherein the caller object and the application

program further reside in the process address space.

Apparatus as recited in Claim 7, wherein the lower protocol layer objects and

the operating system reside in a system address space of the client node.

Apparatus as recited in Claim 8, wherein the remote stream object ensures a
consistent format for the presentation of the packets between the process

address space and the system address space.

Apparatus as recited in Claim 9, wherein the remote stream object comprises
one of a request/reply model object for establishing short-term synchronous
transactions between the client and server nodes and a partial remote
operation service element model object for binding the nodes over long-term
synchronous transactions.

N OO g A~ W

WO 95/17062 PCT/US94/03978

11.

-24-

A method for enabling a multi-node computer network system for connecting a
client node to a server node over a plurality of different communication links
connecting a plurality of nodes, with at least one processor per node,
comprising the steps of:

connecting the plurality of nodes to the communication links to form a network:
determining the type and quality of service based on stored information; and
identifying at least one protocol based on the type and quality of service.

o © o N o g h~A W N

RN D N N 2 4 a4 aah A e 4 s o
W N =2 O © 0O N OO U WO -

WO 95/17062 PCT/US94/03978

12.

-25.

Ah apparatus for implementing a client node of a client-server system with
remote procedure call (RPC) services over a distributed computer network, the
client node interconnected with a server node via a communications medium to
form the client-server network. the client node comprising:

an application program for generating service request packets, the application
program stored in a memory of the client node;

a network adapter for transmitting and receiving the packets over the
communications ‘channel;

a processor operating to forward the packets between the application program
and the adapter;

an object-oriented operating system, stored in the memory, for controlling the
operations of the processor;

a caller object created by the application program from data and functions
stored in the operating system, the caller object instructing the processor to
issue the packets in accordance with a RPC protocol by calling an associated
service residing in a dispatcher object of the server:

a plurality of vertically-linked protocol layer objects organized to provide a
dynamically-configurable protocol stack configured to interact with the network
adapter to move the packets to and from the adapter; and

a remote stream object for establishing synchronous data stream transactions
between the application program and the protocol stack. the remote stream
object and protocol stack operating to complete a communications data path

within the client node.

WO 95/17062 PCT/US94/03978

13.

14.

15.

16.

17,

18.

19.

20.

-26-

A method as recited in Claim 12, wherein the plurality of vertically-linked
protocol layer objects include upper protocol layer objects that are unique to the
application program executing in the cl}ent node and lower protocol layer
objects that are shared among other application programs executing in the

node.

A method as recited in Claim 13, wherein the upper protocol layers include an
application layer object for exchanging the packets with the application

program.

A method as recited n Claim 14, wherein the upper protocol layers include a
presentation layer object for presenting the packets in a predetermined format

to the lower protocol layer objects.

A method as recited in Claim 15, wherein the application layer and presentation

layer objects reside in a process address space of the client node.

A method as recited in Claim 16, wherein the caller object and the application

program further reside in the process address space.

A method as recited in Claim 17, wherein the lower protocol layer objects and

the operating system reside in a system address space of the client node.

A method as recited in Claim 18, wherein the remote stream object ensures a
consistent format for the presentation of the packets between the process

address space and the system address space.

A method as recited in Claim 19, wherein the remote stream object comprises
one of a request/reply model object for establishing short-term synchronous
transactions between the client and server nodes and a partial remote
operation service element model object for binding the nodes over long-term

synchronous transactions.

PCT/US94/03978

WO 95/17062

1712

8t 1/

(Ldv Hol"d) I O]

ozl
v IN3IIO
9t
HIAHIS 2L
|._ SEINER HIAHIS
oel
/! oL}
vel I\
9zl | IN3ND
} LN3ITD | IN3D ‘ X
IN3O * s A N %01
P N e \
|\ 801
821 o
asvaviva, |+
30IAY3S
—— HIAHIS AHO1O3HIq | o
Vel I\ H3IAHIS 4/ 201
Ly

cel

PCT/US94/03978

WO 95/17062

2/12

82 .
(L4dv Hoidd) Z "9
022
k Y
AN 812 912 vig
H3AYIS \ / 212
3svaviva ¥ uw<m§m<a
— 30IAY3S 30IAL3S
AHO1D3HIa AHO1D3HIa
4\ H3AH3S H3AH3S
eYore ~ o1z
vmmmmm IN3IO
IN3MD IN3IO X
LN A L
N3O A o2z \ 902
Pl 802
8ee - 02
| —
02 HSYav.LVa mmmw_mww,\wo =
30IAH3S
AHOLO3HIQ AHO123HIa
HIAHIS HIAAHTS /
yee |\< \I 00¢ 20¢e
2z

PCT/US94/03978

WO 95/17062

3/12

£ DIA

oce

AVdSIa advodgAad
7
zze
pie - N o
sie _—| u3ildvav Haildvav
AVdSia JOV4H31NI
R
S1E]
Haldvav
2Ie ol
p—— N)
ETNE (o \ 80€
v_m_ow oLE
// e1e
INVH INOYH Ndo
. 4 4
00€ |\ \ \ \
90¢ _/ v0€e _/ 20€ /

PCT/US94/03978

WO 95/17062

4712

8ty

(51314 1/

ey —

\| Ocv

v OIA

8Ly
N sao 18
Sa9 IN3NO piy
H3AH3S . \I
3Svaviva ¥ asvaviva }/]
30IAH3S 30IAH3S Ly
AHOLO3HIA AHOLO3HIa e
d
| y30IAH3S 30IA43s ¥| o
LT AdO 103410 AHOLO3HIq
sep — | IWWOD WINOD 0¥
ey | — a /-
\
SEICER) Y3AH3S
var — | sao
9zy IN3MO
2 [sao Jed— czv sao A
sao
o INano N IN3D N
6 —1 1IN3NO _ 60P 90v
\4 P4 4 /
8zp I\ 80p
, — 3svaviva rov
oev > 30IAH3S Jombas 1
AHOLO3HIQ AHO1D3HId
30IAH3S 30IAH3S o *
0103410 AHO1D3HIQ / /
vey WWOD WNOD
oer — N— sov 20
Ly
HIAHIS H3AHIS
cEV |.\ ~__ 00b

WO 95/17062 PCT/US94/03978

5/12
Client Node Se""jg;“e
408
/— 500 514
Application f Application /
/— 502 516
Presentation b(Presentation/
. 518
/— 504
Session / Session /
L/~ 506 — 520
Transport / Transport /
522
Ve 508
Network / Network /
524
S 510
Data Link / Data Link /
/— 517— 530 526
Physical / ¢ P Physical /

‘X 528 \— 532

FIG. 5 (Prior Art)

WO 95/17062

PCT/US94/03978
6/ 12
600 N\ 602 ~\
604 —
7)
L \
/=
o8 — \
FIG. 6 606
ROOT
NAMESPACE ¥ 700
702
INTERMEDIATE
NAMESPACE
DIRECTORY DIRECTORY DIRECTORY NATIVE
SERVICE }, SERVICE § SERVIGE 3 DIRECTORY

704 \— 706

FIG. 7

\— 708

\— 710

PCT/US94/03978

WO 95/17062

7/712

8¢8 —

7

JOVJHILNI
WVHOOHd 30IAH3S

\| 9¢8

8 OIA

— SdHd

Wv3adis viva >._n_mm\.rwm30mm7 NOISS3S f/

AN

7 FOVAHILNIN

A4 \4 A
W.r<0 NOIL IDOEZOO‘K HIAHIS /

N

JOIAHIS ONINHOMLIN

Wv3HLS
|~ _ vi8
o018 —
808 — ~— 218
V1va NOILVYHNDIINOD \
98 —— " WvYD04d _ | Y
IDIAHIAS Z
O=NI 103rg0 30IAHIS 4
4

30VdS SS3HAQV ADIAHIS

208 .\

30IAH3S >m05mm7

SNOILVYIINNWINOOD

S S LS

/

” ves

~— ¢cs8
~— €28
— 0c8

~— 818

N— 98

~— v08

30VdS SS3HAAY WALSAS

e

WO 95/17062 PCT/US94/03978

8/12

200
(START 3/

/— 902

Service Program Developer
Subclasses Service Object A/
Class

904

Service Program Creates |
Service Object In CDS

CDS Uses Type & Quality of /
Service To Build Session
Layer

_— 908

Service Program Sends /
Service Object To DRPS

/— 910

Serice Program Activates /
Service Object

| /— 912

Service Exchange Address /
Returned To CDS

(FINISH

FIG. 9

914

WO 95/17062

9/12

PCT/US94/03978

1000
(START 3/

Y

Publish Service on
Underlying Physical &
Directories

NN

K
Register Service With CDS

y

Set Up Stack Definitions &

N

y

Pass Stack Definitions to
DRPS 'y

y

X
Return Exchange Address

y

C FINISH

FIG. 10

NN

&

1002

1004

1006

1008

1010

1012

PCT/US94/03978

WO 95/17062

10712

0ElLl

Il "OIAd

JOV4H3LINI IN3INO

/

v SdHa —| ,
v
\ NOISS3S [WvaHls viva A1d34/1S3NO3Y
vell l\\
€2l —
zzir 7
kmwﬁmm»z_ WV3d1s
\ HIAHIS V.vQ NOLLYHNOIANOD _
0z1l I\\
ot —/
_ ADIAHIS ONIMHOMLIN
8Ll I\
T Y p—
/A V1va NOILVHNDIINOD
\&Emmégomm_o N _
2l —t+] SNOILYOINNWINOD
103r80 JOINHAS _y
P \
otE — 3OVdS SS3IHAQY WIALSAS 904 —A

~— 9¢it

AN
N— POLL
L Z011
WvHDOHd || 001
NOLLVDITddV

30OVdS §S3HAAV NOILYOIlddY

WO 95/17062 PCT/US94/03978

1112

1200
{ START E,
/— 1202

Client Program or User‘(
Interacts With CDS To Get
Service Object Reference

I 1204

Application Program Sends /_
Service Object Reference Tg/

DRPS

Application Program 206
Activates Service Object‘k//_f

Reference

y

Network Service Exchanges | ~— 1208
Service Exchange For Log;l/
Exchange

y

1210
Application Program /_

Establishes Separate Data
Path To Service Exchang

/— 1212
Application Program Sends
Service Request and
Receives Reply
1214

FINISH

FIG. 12

WO 95/17062

12/ 12

1300
(START)/
/— 1302

]
Resolve Service Reference

/" 1304

Set Up Stack Definitions*]

: Pl

Pass Stack Definitions &

1308
Retur Service Exchange_ /_

| 1310
(FINISH 3/

FIG. 13

PCT/US94/03978

Interr; al Application No

PCT/US 94/03978

INTERNATIONAL SEARCH REPORT

. CLASSIFICATION OF SUBJECT MATTER

ToC 8 HOAL29/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 HO4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Relevant to claim No.

Category °

Citation of document, with indication, where appropriate, of the relevant passages

COMPUTING MACHINERY.,

pages 77 - 98

column, line 24
see figure 6

pages 197 - 205, XP234937

see paragraph 2

A.SINHA 'CLIENT-SERVER COMPUTING'
see page 88, line 56 - page 89, middle

COMPUTER COMMUNICATION REVIEW.,
vol.21, no.4, September 1991, NEW YORK US

vol.35, no.7, July 1992, NEW YORK US

C.TSCHUDIN 'FLEXIBLE PROTOCOL STACKS'

COMMUNICATIONS OF THE ASSOCIATION FOR 2,12

1,3-11,
13-20

2,12

D Further documents are listed in the continuation of box C.

D Patent family members are listed in annex.

* Special categories of cited documents :

e

document defining the general state of the art which is not
considered to be of particular relevance

carlier document but published on or after the international
filing date

document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

document referring to an oral disclosure, use, exhibition or
other means

document published prior to the international filing date but
later than the priority date claimed

T

"y

T

later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention -

* document of particular relevance; the claimed invention

cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
mc'rjxlts, such combination being obvious to a person skilled
in the art.

document member of the same patent family

Date of the actual completion of the international scarch

21 September 1994

Date of mailing of the international search report

30. 08 94

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Canosa Areste, C

Form PCT/ISA/210 (second sheet) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

