
US 20140006543A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0006543 A1

Pitts (43) Pub. Date: Jan. 2, 2014

(54) DISTRIBUTED FILESYSTEM ATOMIC (52) U.S. Cl.
FLUSHTRANSACTIONS CPC G06F 15/167 (2013.01)

USPC .. 709/213

(71) Applicant: William M. Pitts, Los Altos, CA (US) (57) ABSTRACT

(72) Inventor: William M. Pitts, Los Altos, CA (US) Large scale high performance file proxy caching sites may be
configured to coalesce many client write operations into one
very large assemblage of modified file data. At some point the
caching site will flush all modified file data downstream
towards the origin file server. In some instances the amount of

(21) Appl. No.: 13/930,560

(22) Filed: Jun. 28, 2013 modified data being flushed may be more than can be trans
ferred in a single network request. When multiple network

Related U.S. Application Data requests are required, the consistency guarantee provided by
many filesystems requires that the file either be updated with

(60) Provisional application No. 61/666,597, filed on Jun. the data contained in all of the network requests or not be
29, 2012. modified at all. In addition, once the first flush request is

processed no other file read or write requests can be serviced
Publication Classification until the last flush request has been processed. This document

discloses methods for performing atomic multi-request flush
(51) Int. Cl. operations within a large geographically distributed filesys

G06F 5/67 (2006.01) tem environment.

public

private

10 Gb 10 Gb DDS Domain

Ethernet Ethernet

DDS Flat NetWork

Patent Application Publication Jan. 2, 2014 Sheet 1 of 11 US 2014/0006543 A1

1.

i

is
9

US 2014/0006543 A1 Jan. 2, 2014 Sheet 2 of 11 Patent Application Publication

s aaaa.

x2

aayaay

aayaay

awayaay

&

3.

:

3.

:

3.

:

§§§§§§§§§§§

US 2014/0006543 A1 Jan. 2, 2014 Sheet 3 of 11 Patent Application Publication

T

:NIVINOCl

Patent Application Publication Jan. 2, 2014 Sheet 4 of 11 US 2014/0006543 A1

g
i

Patent Application Publication Jan. 2, 2014 Sheet 5 of 11 US 2014/0006543 A1

i

US 2014/0006543 A1 Jan. 2, 2014 Sheet 6 of 11 Patent Application Publication

qualuno T,? OU|*
Z08

US 2014/0006543 A1 Jan. 2, 2014 Sheet 7 of 11 Patent Application Publication

ON

806/

US 2014/0006543 A1 Jan. 2, 2014 Sheet 9 of 11 Patent Application Publication

E LETCHWOOTV LVG pue pealæoe)

ON

US 2014/0006543 A1 Jan. 2, 2014 Sheet 10 of 11 Patent Application Publication

ZL aun61-I
NOI LOENNOO ETIH TVI LINI s|

0 | Z |

'SdouTu qualueJou!
ON

ZZZ ||

£I ?Inôl

US 2014/0006543 A1

ON

Jan. 2, 2014 Sheet 11 of 11

LOENNOOEHTSQG s|

ON
90$ |

Patent Application Publication

9 | 8 ||

US 2014/0006543 A1

DISTRIBUTED FILESYSTEM ATOMC
FLUSHTRANSACTIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims the benefit of and priority to
U.S. Provisional Patent Application Ser. No. 61/666,597 filed
on Jun. 29, 2012, which application is incorporated herein by
reference in its entirety.
0002 This application is related to co-pending U.S. appli
cation Ser. No. , filed on Jun. 28, 2013, and entitled,
RECURSIVE ASCENT NETWORK LINK FAILURE

NOTIFICATIONS''' (Attorney Docket No. 10284.14), which
application is incorporated herein by reference in its entirety.
0003. This application is related to co-pending U.S. appli
cation Ser. No. , filed on Jun. 28, 2013, and entitled,
USINGPROJECTED TIMESTAMPS TO CONTROL THE
SEQUENCING OF FILE MODIFICATIONS IN DISTRIB
UTED FILESYSTEMS (Attorney Docket No. 10284.16),
which application is incorporated herein by reference in its
entirety.
0004. This application is related to co-pending U.S. appli
cation Ser. No. , filed on Jun. 28, 2013, and entitled,
METHOD OF CREATING PATH SIGNATURES TO
FACILITATE THE RECOVERY FROM NETWORK LINK
FAILURES” (Attorney Docket No. 10284.17), which appli
cation is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

0005. The Distributed Data Service (DDS) architecture
provides a framework for highly distributed, hierarchical,
multi-protocol caching. DDS is a distributed caching layer
that spans an enterprise's network, encompassing multiple
LANs interconnected with WAN links. The caching layers
constituent parts are DDS modules installed on file servers,
client workstations, and intermediate nodes (routers,
switches, and computers). DDS employs TCP/IP for inter-site
communications and may therefore be incrementally
deployed. Non-DDS nodes appear as just part of the wire'.
0006 Conceptually, the DDS caching layer slices through
each DDS configured computer system at the Vinode interface
layer. File systems (UFS, VxFS, NTFS, EXT4) and other
devices such as video sources and shared memory plug into
the bottom of the caching layer and provide permanent file
storage or a data sourcing/sinking capability. Client systems
plug into the top of the caching layer to access “local data.
Distributed throughout the network, intermediate DDS nodes
(routers, Switches, and other computers) provide increased
Scalability and faster file access.
0007. The DDS layer implements an intelligent integrated
data streaming and caching mechanism to make file data
appear as "local as possible. When a client process accesses
a file, the file appears to be local (in terms of file access
performance) if it has been accessed before and has not been
modified since its last access. When file data must be fetched
from the origin server, DDS pre-fetches file data in advance of
the client's request stream. Of course, pre-fetching is only
performed for well-behaved clients. Write behind is also
implemented by DDS in a manner consistent with the fact that
users arent very tolerant of file systems that lose their data.

Jan. 2, 2014

0008 Data cached within the DDS layer is stored in a
protocol neutral format in a manner that requires no “trans
lation when the client is of the same type (Unix, Windows, .
. .) as the origin server.
0009. The DDS layer maintains “UFS consistency” (a
read always returns the most recently written data) on cached
images and provides several methods of handling and recov
ering from network partitioning events. To the maximum
extent possible, recovery and reconnection is performed auto
matically with no requirement for user or administrator inter
vention.
0010. This document discloses and explains the methods
and procedures employed by DDS to transparently overcome
network infrastructure failures. In this context, “transparent
means that when an intermediate network node or link fails
during a DDS file access operation, an alternate path to the
origin server is discovered and used to complete the operation
without the client or server ever even becoming aware of the
network failure.

BRIEF SUMMARY OF SOME EXAMPLE
EMBODIMENTS

0011. This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential characteristics of
the claimed Subject matter, nor is it intended to be used as an
aid in determining the scope of the claimed Subject matter.
0012. One example embodiment includes a computing
system where a data request has been passed between an
upstream site and a file service proxy cache node, the file
service proxy cache node being a network node located
between the upstream site and the origin file system node, a
non-transitory computer-readable storage medium including
instructions that, when executed by the file service proxy
cache node, performs the step receiving a flush request from
the upstream site. The flush request includes a request to save
flush data contained in the flush request to a stable memory.
The instructions also perform the steps storing the flush data
in a shadow extent and dispatching a downstream flush
request to a second file service proxy cache node. The instruc
tions further perform the step receiving a response to the
downstream flush request from the second file service proxy
cache node. The instructions additionally perform the step
sending a flush response that includes a status code that indi
cates the Successful completion of the request to the upstream
site.
0013 Another example embodiment includes a comput
ing system where a data request has been passed between an
upstream site and a file service proxy cache node, the file
service proxy cache node being a network node located
between the upstream site and the origin file system node, a
non-transitory computer-readable storage medium including
instructions that, when executed by the file service proxy
cache node, performs the step receiving a flush request from
the upstream site. The flush request includes a request to save
flush data contained in the flush request to a stable memory.
The instructions also perform the step storing the flush data in
a shadow extent. The instructions further perform the steps, if
the file service proxy cache node is not a server terminator
site, dispatching a downstream flush request to a second file
service proxy cache node and receiving a response to the
downstream flush request from the second file service proxy
cache node. The instructions additionally perform the step

US 2014/0006543 A1

sending a flush response that includes a status code that indi
cates the Successful completion of the request to the upstream
site.
0014) Another example embodiment includes a comput
ing system where a data request has been passed between an
upstream site and a file service proxy cache node, the file
service proxy cache node being a network node located
between the upstream site and the origin file system node, a
non-transitory computer-readable storage medium including
instructions that, when executed by the file service proxy
cache node, performs the step receiving a flush request from
the upstream site. The flush request includes a request to save
flush data contained in the flush request to a stable memory
and a flush level, wherein the flush level indicates how far the
data should be flushed. The instructions also perform the step
storing the flush data in a shadow extent. The instructions
further perform the steps, if the file service proxy cache node
is not a server terminator site, dispatching a downstream flush
request to a second file service proxy cache node and receiv
ing a response to the downstream flush request from the
second file service proxy cache node. If the downstream flush
request was successfully completed the instructions addition
ally perform the step promoting the shadow extents. The
instructions moreover perform the step sending a flush
response that includes a status code that indicates the Success
ful completion of the request to the upstream site.
0015 These and other objects and features of the present
invention will become more fully apparent from the following
description and appended claims, or may be learned by the
practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

0016 To further clarify various aspects of some example
embodiments of the present invention, a more particular
description of the invention will be rendered by reference to
specific embodiments thereof which are illustrated in the
appended drawings. It is appreciated that these drawings
depict only illustrated embodiments of the invention and are
therefore not to be considered limiting of its scope. The inven
tion will be described and explained with additional specific
ity and detail through the use of the accompanying drawings
in which:

0017 FIG. 1 illustrates a DDS virtual file server con
structed with a flat network topology;
0018 FIG. 2 depicts the flat network of FIG. 1 reconfig
ured to provide high availability access to the eng and sales
Sub-domains, and another node has been added to create
redundant network paths;
0019 FIG. 3 depicts the /etc/dds exports file (also
referred to as the site map file) for node 4, which exports the
eng Sub-domain;
0020 FIG. 4, illustrates the domain map file for node 1:
0021 FIG. 5 illustrates the export filesystem (site tree)
constructed by acme-4 by following the directions contained
in the site map file;
0022 FIG. 6, illustrates the domain tree for node 1:
0023 FIG. 7, depicts a simple hierarchy of DDS nodes
configured with multiple routes from node A to the origin
server node (node S);
0024 FIG. 8 is a flowchart illustrating an example of a
method 800 of recursive ascent failure notifications;
0025 FIG. 9 is a flowchart illustrating an example of a
method of atomic flush transactions;

Jan. 2, 2014

0026 FIG. 10 is a flowchart illustrating an example of a
method of validating a cached file image when a response
received at an upstream site contains the same version num
ber as the one associated with the cached file image:
0027 FIG. 11 is a flowchart illustrating an example of a
method offlushing modified file data downstreamtowards the
DDS server terminator site;
0028 FIG. 12 is a flowchart illustrating an example of a
method employed by a DDS node to load a path signature
when a connection is established; and
0029 FIG. 13 is a flowchart illustrating an example of a
method employed to reconnect an upstream DDS node.

DETAILED DESCRIPTION OF SOME EXAMPLE
EMBODIMENTS

0030 Reference will now be made to the figures wherein
like structures will be provided with like reference designa
tions. It is understood that the figures are diagrammatic and
schematic representations of some embodiments of the inven
tion, and are not limiting of the present invention.

DDS Domain Architecture

0031 ADDS network may be configured into either a flat
or hierarchical organization. Hierarchical topologies inher
ently provide more latitude for constructing networks incor
porating redundant paths. When network failures do occur,
DDS employs redundant network paths to transparently re
route file access traffic around the failure.

0032 FIG. 1 illustrates a DDS virtual file server con
structed with a flat network topology. The virtual file server
exports the acme domain, consisting of four Sub-domains:
corp, mrkt, Sales and eng. The virtual file server appears to be
a single multi-homed (multiple ip addresses) Windows or
Linux file server to client workstations. The public network
interfaces are DNS registered with the names acme-1, acme
2, acme-3 and acme-4. WorkStations may use any of the four
public interfaces and may switch to using a different interface
at any time.
0033. When all components of the virtual file server are
operating properly, the “view through any portal' is equiva
lent to the view through any other portal. DDS's distributed
consistency mechanism works behind the scenes to ensure
this consistency of views. However, when a network node
fails, a flat network topology does not provide the redundant
paths necessary to provide transparent uninterrupted access
to all file server data.

0034 FIG. 2 depicts the flat network of FIG. 1 reconfig
ured to provide high availability access to the eng and sales
Sub-domains, and another node has been added to create
redundant network paths.
0035 Nodes 3 and 4 have shared access to a storage area
network (SAN) containing the filesystems exported through
the eng and sales Sub-domains. These two nodes are config
ured such that if either node fails, the other node will notice
the failure and mount and export the failed node's filesystems.
This is a standard high availability file server mechanism and
products are available from several sources, both Supported
and freeware.

0036) Another node has been added to the configuration
depicted in FIG. 1. Node 5, named acme-5, does not export
any of its own filesystems. It is a domain manager providing

US 2014/0006543 A1

the same “portal view” as the other four nodes. However, it
also serves as the DDS gateway for remote clients and remote
DDS workgroup accelerators.
0037. DDS nodes operate independently and coopera

tively to create a hierarchical global namespace. During its
initialization phase a DDS node constructs a site tree as speci
fied by the /etc/dds exports file. FIG.3 depicts the /etc/dds
exports file (also referred to as the site map file) for node 4,
which exports the eng Sub-domain.
0038. After constructing the site tree, the DDS node con
structs a domain tree as specified by the /. dds f. site /.
control f. map file. FIG.4, illustrating the domain map file
for node 1, specifies:

0039 the domains name is acme,
0040 the domain has four domain managers: acme-1,
acme-2, acme-3 and acme-4,

0041 the domain has four sub-domains:
0042 n1 exporting the corp sub-domain,
0043 n2 exporting the mrkt sub-domain,
0044 n3 exporting the sales sub-domain, and
0045 na exporting the eng sub-domain.

0046. The names used in a domain map file may be public
names (registered with a network name service such as DNS)
or they may be private. In this example, n1 through n4 are
private names and acme-1 through acme-4 are public names.
The domain nodes communicate with each other using the
domains private names, and clients of the DDS virtual file
server use the domain's public names. A node's private name
and public name may resolve to the same IP address or to
different IP addresses.
0047 Once initialization is complete, the node exports
these two trees. The site tree is a single filesystem containing
all content exported by this node. The domain tree is a single
filesystem containing all content exported by all Sub-domain
nodes for which this node is a domain manager.
0048 ADDS Node May Host:

0049. An atomic domain The node has a fetc/dds
exports file but there is no /. dds f. site./. control /.
map . file. An atomic domain does not contain any Sub
domains. The node's site tree is also its domain tree (by
way of a symbolic link).

0050. A non-atomic domain The node has a f. dds
/... site f. control /. map . file which specifies the
domains name and the names of all Sub-domains. The
node might not have a fetc/dds exports file, in which
case the node does not contribute any content to the
domain for which it was a domain manager. Or, the node
might have a site tree (specified by the fetc/dds exports
file) that may or may not be included in its domain tree.

DDS Initialization

0051. The initialization process for a DDS node occurs in
two phases:

0052 Phase 1-Site initialization. (Refer to FIG.3 and
FIG. 5) The site map file (/etc/dds exports) is read to
determine the exported filesystems and the policy
attributes associated with each exported filesystem. On a
per filesystem basis, the policy attributes provide the
default policies associated with every file within the
filesystem. Default policies can be overridden by direc
tory level and/or file level policy attributes.

0053 FIG. 3, depicting the site map file for node 4,
specifies that the node will export a filesystem with the
branches /export/eng/hw and /export/eng/sw, both with

Jan. 2, 2014

the same policy attributes of “**(rw.sync.wdelay.root
squash). FIG. 5 illustrates the export filesystem (site
tree) constructed by acme-4 by following the directions
contained in the site map file. FIG. 5 also shows portions
of acme-4’s filesystem not being exported; they are
interconnected with dashed lines instead of solid lines.

0054 Phase 2 Domain initialization. (Refer to FIGS.
4 and 6) After DDS site initialization completes, DDS
checks for the presence of a domain map file (7. dds
/... site.f. control /. map). If present, this file informs
the DDS instance that it is a domain manager and it also
specifies the name of the domain, the names of all Sub
domains and the names of all Sub-domain managers.

0.055 FIG. 4 is the domain map file for the acme domain
depicted in FIG. 1 and FIG. 6 illustrates the acme
domain constructed by each node configured with that
domain map file.

0056 Having discovered their domain map files, each
DDS node constructs the acme domain tree by request
ing from each Sub-domain node the root of that node's
domain tree. The returned roots are then grafted onto the
root of the host node's domain tree.

0057 Referring to FIG. 6, the acme domain contains the
Sub-domains corp, mrkt, Sales and eng. The eng Sub
domain shows additional detail (the site tree exported by
node 4), but the respective site trees of the other nodes
are not depicted. The acme domain has four portals
(acme-1, acme-2, acme-3, acme-4 hosted respectively
on nodes 1 through 4), and each portal has a path to every
Sub-domain.

0.058 Note that the site map file specifies what is exported,
but not what it is called. The domain map file (FIG. 4) speci
fies that na (private name for node 4) Supplies the eng Sub
domain, but it is the site map file (FIG. 3) that defines what
node 4 will export under the name eng. So, the pathname
employed by a user on a client workstation to access an acme
hardware engineering document would look something like:
folds/acme/eng/hw/the document.doc.
0059. After each DDS node completes constructing its
domain tree it is open for business. The multi-homed virtual
file server acme may now be accessed through any of it four
network interfaces. The top level directory structure of the
acme's exported domain tree is:

0060 /dds/acme?corp?. . . .
0061 folds/acme/mrkt/...
0062 folds/acme/sales. . . .
0.063 folds/acme/eng/ . . .

0064 Clients may now direct their requests to any acme
portal and expect to receive the same response.
0065 During Phase 2, domain initialization, a DDS node
constructs a global namespace that includes its exported file
system and the exported filesystems of all of its Sub-domains.
Following initialization, the DDS node is a file access portal
to all files and directories contained within the domains
global namespace. The DDS node may also be bound into a
larger domain as a sub-domain of a higher level domain.
This process may be recursively repeated until there is a
single Internet domain that encompasses content from thou
sands or millions of origin servers distributed throughout the
world.

0066. Using the process described above to construct the
multi-homed acme domain, thousands of DDS nodes may
initialize to become Internet domain managers (portals). So,

US 2014/0006543 A1

a portal located anywhere in the world may provide access to
content distributed about the globe.

DDS Global File Services

0067. DDS employs extensive file level hierarchical cach
ing to make data appear to be here rather than there. From
a filesystem perspective, a phrase that encapsulates DDSS
primary focus is DDS removes the distinction between local
files and remote files.
0068. The distinctions removed are:

0069. Latency and Bandwidth an image of the file is
cached locally and therefore can be accessed al “local
speeds.

0070 Consistency read operations always return the
most recently written data.

0071. Security file data flowing and cached within
DDS networks is encrypted and the content owner main
tains complete control over its content throughout the
distribution network. All DDS portals faithfully follow
the content owners instructions (which are attached to
the content as policy attributes) with regard to providing
access to unencrypted content.

0072 Availability DDS may be used to construct
resilient networks and file servers.

0073 Redundancy can be woven into the DDS fabric to
create always-available networks, and redundancy incorpo
rated into file servers can ensure the continuous availability of
file data. DDS transparently overcomes network failures
whenever redundant paths make it possible to do so.

0074 Protocol DDS appears to be just another local
filesystem, using the same filesystem API as native local
filesystems. DDS extends the native filesystem API to
provide a remote file access capability that is almost
indistinguishable from the access capabilities afforded
to local files.

DDS Terminology
0075. The following list of words and phrases used
throughout this document have the following definitions:

0076 channel, integrated channel. In the context of a
single DDS node, a channel is DDS's main data struc
ture for representing a remote file and all information
related to that file. The channel data structure contains a
number of smaller data structures either directly or indi
rectly (by containing a reference to the Smaller data
structure). The file attributes data structure and the file
data extent structures are referenced by the channel
using memory address pointers.

0077. In the context of a client terminator site communi
cating across the network with a server terminator site (pos
sibly through several intermediate sites), channel refers to the
channels at the individual sites bound together by DDS Pro
tocol into a single integrated channel.

(0078 NOTE: When an application, executing on a DDS
configured origin server, is accessing a file within the
origin server the channel for that file will simultaneously
fulfill the roles of both client terminator site and server
terminator site. A channel does not always span multiple
DDS sites.

0079 file data extent—a contiguous memory segment
that holds file data. The size of the file data extent is set
following a negotiation with a downstream site when the
channel is created. The file data extent structure contains

Jan. 2, 2014

a shadow pointer, which is the memory address of a
contiguous memory segment (the shadow extent) of the
same size as the file data extent.

0080 policy attributes file attributes attached to a file
by a domain manager as the file's data is sent upstream
in the response to a file access request. At upstream sites,
these attributes, associated with the file in the same
manner as the file’s “normal' attributes, instruct the
upstream site on the procedures required for granting
access, performing decryption and all other file handling
operations. (Only the upstream sites that have been
authenticated by a downstream site will be trusted by the
downstream site.)

0081 external request—a file access request using a file
access protocol other that DDS. NFS, CIFS, UFS, EXT4
and NTFS are examples of external requests. Note that
NFS and CIFS are network protocols and the others are
“local protocols (used when DDS is installed on the
system generating the request).

0082 internal request—a file access request using the
DDS protocol. Internal requests are internal to DDS and
flow exclusively between DDS sites. Internal requests
use the DDS protocol.

0083 client terminator site or client terminator The
DDS site that receives an external request from a client.

0084 server terminator site or server terminator The
DDS site “closest” to the origin file server. When the
origin server is DDS configured the server terminator
site is the origin server. In other cases, the server termi
nator communicates with the origin server using a net
work protocol such as NFS or CIFS.

0085 intermediate site—A DDS site in the chain link
ing the client terminator site to the server terminator site.

I0086 client system, client computer or just client—In
the context of DDS processing a request, the client is the
computer system that dispatched the external request to
the DDS client terminator site.

0.087 upstream site When two DDS sites are commu
nicating, the site "closest to the client is the upstream
site.

0088 downstream site. When two DDS sites are com
municating, the site "closest to the origin server is the
downstream site.

0089 client-side With respect to any point along the
integrated channel path from server terminator to client
terminator, client-side refers to everything on the client
side of that point.

0090 server-side With respect to any point along the
integrated channel path from server terminator to client
terminator, server-side refers to everything on the server
side of that point.

0.091 origin file server or origin server The file server
exporting the filesystem containing the target file.

0092. DDS site or DDS node a DDS configured net
work node that provides a file proxy cache service.

DDS Operations

0093. A single DDS module contains client-side code for
requesting file data from an origin file server and server-side
code that receives and responds to requests from “upstream”
DDS sites. Within the DDS framework, “downstream' is
towards the origin server and “upstream' is towards the cli
ent.

US 2014/0006543 A1

0094. An overview of a typical DDS network operation is:
0.095 a client computer system issues an NFS file
access request targeting a DDS portal,

0096 the request is received at the portal (a DDS con
figured Linux system) and routed to an infs daemon (the
native NFS server code),

(0097 the NFS server code executes a read system call to
read file data,

0.098 the Linux Vfs layer routes the system call into the
DDS module (which has registered as a local filesys
tem),

0099 the call’s file identifier parameter is used to iden
tify and connect to a channel (DDS's main data structure
for representing a file and all information related to that
file),

0.100 the channel is examined to determine if all data
required to respond to the system call is cached within
the channel; if so, DDS responds to the system call; if
not, . . .

0101 the channel is examined to determine the origin
file server's identity,

0102 if the origin server is this node, DDS executes a
read system call to fetch whatever additional file data is
required from the underlying native filesystem to
respond to the request from the NFS server code,

0103 if the origin server is some other node, DDS gen
erates and dispatches a DDS LOAD request targeting a
downstream DDS site "closer to the origin server,

0104 the DDS LOAD request may ripple through mul
tiple DDS intermediate sites (executing essentially the
same procedure as outlined above) before arriving at the
DDS server terminator site,

0105 DDS executes a read system call to fetch what
ever additional file data is required from the underlying
native filesystem to respond to the request from an
upstream DDS site,

0106 the response propagates back upstream and even
tually arrives at the DDS client terminator site,

0107 the file data contained in the response is attached
to the channel structure,

0.108 all data required to respond to the NFS system
call is now cached within the channel, so DDS responds
to the call from the NFS server code,

0109 the NFS server code responds to the request from
the client computer system.

DDS Protocol

0110. The DDS protocol defines two remote procedures
for transporting file data: DDS LOAD and DDS FLUSH.
These two procedures are briefly described since recovery
operations are based upon variations of these procedures.
0111. DDS LOAD This operation loads data and meta
data from a downstream site. The request includes a file
identifier and the flags (DDS CC SITE READING, DDS
CC SITE WRITING) that inform the downstream site of the
types of operations that will be performed upon the file data
being loaded. These flags are used by the distributed consis
tency mechanism to keep track of the type of operations (read
VS. Write) being performed at upstream sites.
0112 A single load or flush request may specify multiple

file segments and each segment may be up to 4 gigabytes in
length.
0113. The response includes flags (DDS CC SUSTAIN
DIR PROJECTION, and DDS CC SUSTAIN FILE PRO

Jan. 2, 2014

JECTION) that indicate whether the returned file data and
metadata may be cached or whether it must be discarded
immediately after responding to the current client request.

0114 DDS FLUSH This operation flushes modified
file data/metadata to some form of stable memory. A
flush level specifies how far the flush propagates. The
currently defined levels are:

0115 DDS FLUSH TO STABLE MEMORY
Flush to client terminator's flash memory

0116 DDS FLUSH TO DISK Flush to client ter
minator's disk

0117 DDS FLUSH TO ORIGIN. Flush all the way
to the origin server

0118. In response to DDS LOAD requests, the DDS
server terminator site projects file data into remote DDS client
terminator sites. These projections are Sustained in the remote
DDS sites while the file is being accessed at those sites unless
a concurrent write sharing condition arises.
0119) An upstream DDS cache buffer is no different than
an internal origin file server buffer. After a write operation
modifies a file system buffer (either local or remote), perfor
mance is enhanced if the buffer is asynchronously written to
the server's disk. However, file modifications are safeguarded
when they are synchronously written to disk or some other
form of stable storage. Flush levels allow both the client and
the server to express their level of paranoia. The more para
noid of the two usually prevails.
0.120. As disclosed in this document, an upstream DDS
site flushes all of a channel's dirty data and metadata down
stream as an atomic unit. When the amount of dirty data is
more than can be accommodated in a single network opera
tion, the downstream site remains “committed to the
upstream site until the last batch of data (flagged with DDS
FLUSH DATA COMPLETE) is successfully received. This
means that the channel at the downstream site will not service
a request from any other upstream site until the flush has
completed.
I0121 This works fine as long as everything else works
fine. But, when two sites get partitioned in the midst of a
multi-transfer flush operation, the client-side and the server
side will both attempt to overcome the failure. But, at some
point the server-side may decide (based on its current poli
cies) to cut off the isolated upstream site and continue pro
viding file access services to its other client systems. In this
case, the flush operation is less than atomic. And this is
unacceptable because file modifications must be atomic at all
times and under all circumstances.
0.122 Within DDS each file extent structure contains a
pointer to a shadow extent, and each attribute structure con
tains a pointer to a set of shadow attributes. When a multi
transfer flush is processed at a downstream node, all incoming
data is routed into these shadow structures. Then, when all
dirty data (extents and attributes) has been received at the
downstream site, the shadow structures are promoted to real
ity in anatomic operation and the old structures are released.
Of course, when the multi-transfer flush does not complete
successfully, all shadow extents and the shadow attributes
must be discarded.
I0123. At an upstream node, when DDS flushes a channel,
each dirty extent (flagged with X. DIRTY) is flagged with
X FLUSHING. If the flush operation does not complete suc
cessfully, DDS resets all X FLUSHING flags. And, of
course, when the operation is successful both the X DIRTY
and X FLUSHING flags are reset.

US 2014/0006543 A1

0.124. The DDS client-side node processes a multi-transfer
flush operation in an atomic manner. Once the channel has
been acquired and the first batch has been accepted at the
downstream site (as opposed to rejected because of a consis
tency operation), it will not be released until the last batch has
been dispatched. And when released, the channel will either
be clean (successful flush) or it will be just as dirty as it ever
WaS.

0.125. In addition to the two remote procedures used to
move file data up and down the wire, DDS also defines:

(0.126 DDS CONNECT for establishing a connection
to a filesystem (equivalent to an NFS mount operation)
or a connection to a directory or a file,

0127. DDS NAME creates, modifies and deletes file/
directory names and links,

I0128 DDS CTRL provides various capabilities
required to actively monitor the health of DDS domain
nodes and to Support the DDS consistency mechanism.
The two DDS CTRL procedures that support DDS's
distributed consistency mechanism are:
I0129 fast ping dispatched frequently by a DDS cli

ent site to ensure that is still in communication with a
downstream site. The fast ping rate brackets the
amount of time that a client site can operate before
becoming aware that it is disconnected from its down
stream counterpart. This rate is typically set to about
one second, but could be much higher when DDS
nodes are interconnected with extremely fast links
and/or shared memory.

0.130. A downstream site is fast pinged only when
there has been no other communication with the site
for the amount of time specified by the fast ping rate.
Any successful message exchange with a downstream
site serves the purpose of a fast ping.

I0131 slow ping issued by a DDS client site as a
“self-addressed stamped envelope” (SASE) that the
DDS server-side node uses when it wants to deliver a
consistency notification message. The server-side
node will not respond to this request until it has a
notification it wants delivered to the DDS client node.
Thus, the name “slow ping.

I0132 slow ping is the means by which DDS imple
ments a callback mechanism for consistency control
operations.

0133. I. DDS Network Operations
0134. This section presents a simplified overview of DDS
network communications.
0135 DDS nodes communicate using multi-threaded
SUNRPC remote procedure calls over TCP/IP connections.
For every successful remote procedure call there is a client
making the call and a server responding to the call. SUNRPC
& TCP/IP have built in mechanisms to reliably transport
requests and responses across a network. DDS, layered on top
of the SUNRPC and TCP/IP combination, depends upon this
protocol stack for reliable message delivery.
0.136 Every DDS remote procedure call issued eventually
returns with an indication of the status of the call.

I0137 RPC SUCCESS indicates that both the request
and the response were successfully transported across
the wire.

I0138 RPC TIMEDOUT indicates that a response was
not received. This occurs when a network link or node
(including a DDS node) has gone offline or failed. When
alternate paths make it possible to still access the Source

Jan. 2, 2014

file, the upstream DDS node (client-side) re-routes and
re-issues the request to transparently overcome the net
work failure.

0.139. Other RPC XXXX error codes should not occur.
But, when they occur some administrative action is
probably required.

High Level View of Network Failures
0140 From a workstation or a DDS client node's perspec
tive a component failure manifests itself as a failure to
respond to a request. To the DDS client node it does not really
matter whether a router, switch, intermediate DDS node or a
server component failed. What does matter is that the client
issued a request and did not receive a response. An "industry
standard NFS client would, in this circumstance, keep re
issuing the same request until the server responded and then
the client would proceed as normal. (ADDS client is more
proactive in this situation, and this is described later.)
0.141. There is a class of failures referred to as a network
partition event, where both DDS client-side nodes and server
side nodes remain operational, but the failed component, has
isolated the client-side from the server-side. When a network
partition event occurs, the client-side and server-side compo
nents assume very different roles.
0142. The server-side's main priority is to ensure the
integrity of all file data and then to continue providing file
access services to clients still able to communicate with the
SeVe.

0143. The client-side’s priorities are: a) to safeguard file
modifications that have not yet been successfully flushed to
the origin server; b) to re-establish communication with the
server and immediately flush all files crossing the partition;
and c) to continue providing file access services if possible.
0144. So each side plays a different role during a partition
event. However, each role is tempered and shaped by DDS
domain policy attributes. These attributes provide instruc
tions for handling file data, processing file access requests,
and responding to failures. The following section, Central
ized Control over Distributed Operations, describes how
policy attributes are employed to exercise centralized control
over geographically distributed DDS overlay networks.
Centralized Control over Distributed Operations
0145 Whenever a DDS origin server responds to a file
access request, the file's policy attributes are fed into the DDS
distribution network as a class of metadata associated with the
file data throughout the network. Every DDS node faithfully
adheres to all policies specified by the file's policy attributes
under all circumstances. (Ofcourse, DDS nodes employ stan
dard authentication methods to ensure that secured data is
only sent to nodes that can be trusted.)
0146 File metadata, including policy attributes, is pro
vided with the same level of consistency as regular file data.
Therefore, a metadata read operation (to fetch file attributes
and/or policies) at any DDS site will return the most recently
written metadata. This means the policies for handling a file
or a group of files can be changed instantly throughout the
network.
0147 II. Network Failure Recovery

DDS Failure Recovery Building Blocks
0148 DDS network operations incorporate the following
features and characteristics designed to facilitate the trans
parent recovery from network component failures:

US 2014/0006543 A1

0149 1. Network Transactions
0150 ADDS node communicates with other DDS nodes
at the network transaction level. A network transaction, usu
ally consisting of a single request-response interaction, uses
whatever number or remote procedure calls are required to
complete an atomic DDS operation. For example, some
DDS FLUSH operations require multiple request-response
interactions to perform a flush as an atomic DDS operation.
0151. At the completion of any network transaction, the
server-side DDS channel targeted by the request either “steps
completely forward to a new state or it remains unchanged
from its original state.
0152. At the completion of any network transaction, the
client-side DDS channel issuing the request either “steps
completely forward to a new state or it remains unchanged
from its original state.
0153. 2. Idempotent Operations
0154 DDS servers incorporate a duplicate request cache
(DRC) that enables the server to receive the same request
multiple times and to ensure all responses will be the same as
the first response.
0155. Note that the network transaction feature ensures
that each DDS node either “does” or “completely does not
respond to a client request. But it is possible, even likely, that
the server can “do” while the client-side “completely does
not because a network failure prevented the delivery of the
response. DDS's idempotent operations feature provides a
graceful (and transparent) method for the client-side to catch
up with the server-side.
0156 3. Recursive Ascent Failure Notifications
(O157 FIG. 7, depicting a simple hierarchy 700 of DDS
nodes configured with multiple routes from node A to the
origin server node (node S), assumes the following scenario
for illustrative purposes:

0158 node A has dispatched a DDS LOAD request to
node C, causing

0159 node C to dispatch a DDS LOAD request to node
F. causing

0160 node F to dispatch a DDS LOAD request to node
S, but

0.161 the link to node S has failed.
0162 FIG. 8 is a flowchart illustrating an example of a
method 800 of recursive ascent failure notifications. The
method 800 can be used in a hierarchy 700 of FIG. 7. In the
method 800, a failure notification (DDS BAD LINK) per
colates up to a higher level only after the reconnect efforts at
the current level failed to re-establish a downstream connec
tion.
(0163 FIG. 8 shows that the method 800 can include
declaring 802 a network failure. I.e., the DDS client node
whose immediate downstream link has stopped responding is
the site that declares 802 a network failure. For example,
referring to FIG. 7, when the link from node F to node S fails
while node C is attempting to load data from node S, node F
will be the node that detects and declares 802 the network
failure.
0164 FIG. 8 also shows that the method 800 can include
determining 804 if an alternate route is available. Determin
ing 804 if an alternate route is available can include referenc
ing network configuration data stored at the node that is
declaring a network failure 802 or searching the directory tree
for connections by other nodes to the target node. Addition
ally or alternatively, determining 804 if an alternate route is
available can include communicating with other connected

Jan. 2, 2014

nodes to determine if a path to the target node exists. One of
skill in the art will appreciate that such a request does not
include a request to the originating node. I.e., node F of FIG.
7 will not search for an alternate path through node C, which
sent the data request to node F.
(0165 FIG. 8 further shows that the method 800 can
include reporting 806 an error code if an alternate route is not
available. E.g., since node F has no alternate routes to node S,
node F will respond to node C's DDS LOAD request with
and error code of DDS BAD LINK. Now, node Cattempts
to reconnect on an alternate path (node E in FIG. 7) and if it
fails to do so, node C will respond to node A with a status of
DDS BAD LINK. I.e., node C will complete the same
method 800 being utilized by node F. Finally, node A will
attempt to reconnect on an alternate path and if it fails to do so,
it will respond to its client with a status of DDS BAD LINK.
(0166 FIG. 8 additionally shows that the method 800 can
include re-establishing 808 the file connection over the alter
native route if found. I.e., since node F has no alternate
working route to node S, it responds to node C with DDS
BAD LINK. Node C then attempts to re-establish a file con
nection 808 to node S through node E.
0.167 Finally, FIG. 8 shows that when the attempt to re
establish a file connection 808 is successful, node C re-sends
810 the same DDS LOAD request to node E that was origi
nally sent to node F. If node E responds with DDS OK, node
C will respond to node A with DDS OK.
0168 One of skill in the art will appreciate that once node
C originally dispatched it's DDS LOAD request (which it
had generated in response to having received a DDS LOAD
request from node A), node C was willing to wait for node F
to respond because node C's fast pings kept reassuring it that
node F and the link to it were both operational.
0169. One skilled in the art will appreciate that, for this
and other processes and methods disclosed herein, the func
tions performed in the processes and methods may be imple
mented in differing order. Furthermore, the outlined steps and
operations are only provided as examples, and some of the
steps and operations may be optional, combined into fewer
steps and operations, or expanded into additional steps and
operations without detracting from the essence of the dis
closed embodiments.

(0170 4. Atomic Flush Transactions
(0171 For all DDS network requests except DDS FLUSH,
a DDS channel “steps forward one request-response cycle at
a time. At any point in time, the external view of a channels
state transitions from its state before a request is processed to
its state after the request is Successfully processed in an
atomic manner. The external view (as opposed to internal
view which is what the code processing requests 'sees') of a
channels state will never reflect a partially completed net
work request. It will reflect the channel's state either before or
after a request has been processed, and never anything in
between. A channel may be required to engage with its down
stream channel, but, if so, this communication constitutes a
separate request-response transaction.
0172. However, to maintain the highest levels of file con
sistency whereby each DDS request either “happens com
pletely” or “does not happen at all, DDS flushes are atomic
and synchronous from the DDS client terminator site all the
way through to the origin filesystem. For large multi-transfer
flushes, intermediate nodes may be simultaneously forward
ing transfer n while receiving transfer n+1.

US 2014/0006543 A1

0173 An upstream node does not considera flush success
ful until it receives a DDS OK response with the ALL
DATA RECEIVED response flag also set. Flush data is
maintained in shadow extents at upstream nodes until the
upstream node receives confirmation that the origin filesys
tem has successfully received all flush data. For large multi
transfer flushes, each transfer flows through intermediate
nodes independently of the other transfers. All nodes store the
received flush data in shadow extents. When the server ter
minator site receives the last flush transfer (DATA COM
PLETE request flag is set), it writes all received flush data to
the origin filesystem. After receiving confirmation that the
write was successful, the server terminator site replaces all
extents that have shadow extents with their shadows and then
dispatches a DDS OK response with the ALL DATA RE
CEIVED response flag also set back upstream. As the
response propagates through each intermediate node, each
node also promotes its shadow extents.
0.174 FIG. 9 is a flowchart illustrating an example of a
method 900 of atomic flush transactions. In the method 900
DDS flushes are atomic and synchronous from the client
terminator site to the server terminator site.
(0175 FIG. 9 shows that the method 900 can include
receiving 902 a flush request from an upstream node. I.e.,
modified file data/metadata is received 902 with the intent
that the modified file data/metadata is saved to some form of
stable memory, as described below.
(0176 FIG. 9 additionally shows that the method 900 can
include storing 904 the received flushed data in shadow
extents. I.e., the data received 902 in the flush request from the
upstream node is stored in shadow extents.
0177 FIG.9 also shows that the method 900 can include
determining 906 if this site is the server terminator site.
0.178 When this site is the server terminator site, FIG. 9
shows that the method 900 can include determining 908 if all
batches of the flush (multi-transfer flushes have more than
one) have been received and the DATA COMPLETE request
flag was set in one of the requests. (Note that it is not uncom
mon for network requests to be received and/or processed out
of sequence with respect to when they were dispatched by the
upstream node.)
0179 When all flush data has been received and the
DATA COMPLETE request flag is set, FIG.9 shows that the
method 900 can include determining 910 if synchronous
writes are enabled for the file identified in the flush request
and when synchronous writes are enabled, writing 912 all
received flush data to the origin filesystem.
0180 FIG. 9 then shows that the method 900 can include
determining 914 whether the filesystem write operation com
pleted successfully. When a write error occurs, FIG. 9 shows
that the method 900 can include responding 916 to the flush
request with a status that conveys the write error code.
0181. When a write error does not occur or synchronous
writes are not enabled for the file identified in the flush
request, FIG.9 shows that the method 900 can include setting
918 the ALL DATA RECEIVED response flag; promoting
920 the flushed data in the shadow extents; and responding
922 to the received flush request with a status code of DDS
OK. Furthermore, when the DATA COMPLETE request flag
is not set, FIG. 9 shows that the method 900 can include
simply responding 922 to the received flush request with a
status code of DDS OK.
0182. When this site is not the server terminator site, FIG.
9 shows that the method 900 can include forwarding 924 the

Jan. 2, 2014

flush request to a downstream node. I.e., the site forwards 924
the flush request to ensure that the flush request continues
until it reaches the server terminator site.
0183 FIG. 9 further shows that the method 900 can
include receiving 926 a response to the flush request from the
downstream node. I.e., because the flush) request was for
warded 924, the site waits for confirmation that the down
stream site (and all sites to which the downstream site for
warded the request) has responded to the flush request.
0.184 FIG. 9 further shows that the method 900 can
include determining 928 if the response status is DDS OK.
I.e., the site determines 928 that the downstream site (and all
sites to which the downstream site forwarded the request) has
Successfully completed the flush request.
0185. When the response status is not DDS OK (the flush
request was not successfully processed downstream), FIG.9
further shows that the method 900 can include decrementing
930 a retry count and, if the count is greater than Zero, re
forwarding 924 the flush request along the same route as the
previous request. However, if the retry count equals Zero,
FIG. 9 further shows that the method 900 can include declar
ing 932 a network failure, which will initiate a search for an
alternate route to the server terminator site.
0186. When the response status is DDS OK, FIG. 9 fur
ther shows that the method 900 can include determining 934
if the ALL DATA RECEIVED response flag is set, indicat
ing that the server terminator site has received and accepted
all flush data.
0187. When the ALL DATA RECEIVED response flag

is set, FIG. 9 further shows that the method 900 can include
promoting 920 the flushed data in the shadow extents. All
extents that have shadow extents are replaced with their shad
ows. I.e., the changes are made permanent and the data is no
longer stored within a shadow extent. Any further access of
the file will receive the updated file, rather than the pre-update
file.
0188 FIG. 9 additionally shows that the method 900 can
include responding 922 to the received flush request with a
code of DDS OK. As the response propagates through each
DDS node, each node also promotes its shadow extents if the
ALL, DATA RECEIVED response flag is also set. This
ensures that each node is working from the same concurrent
data. The response, therefore, propagates upstream until the
originating node receives it, thereby becoming aware that the
flush request has been completed Successfully.
(0189 5. Distributed Consistency Mechanism
0.190 DDS's consistency mechanism is woven into the
DDS Protocol. Every DDS file access request provides an
indication of whether the client intends to modify the returned
file data or just read it.
(0191) DDS implements an internal rule: a DDS client site
must first inform its downstream DDS site before it performs
a new type of activity (read/write) on a file. So, for example,
a client node that has previously fetched a complete file for
reading cannot begin writing without first informing the
downstream site that it intends to begin writing. This allows
the server-side to detect the onset of a concurrent write shar
ing (CWS) condition and take whatever steps are necessary to
maintain cache consistency before the client-side actually
performs the write operation.
0.192 The consistency mechanism ensures that, at any
instant, only a single DDS site is modifying a file. Therefore,
at the moment when a site with dirty data (modified data)
becomes partitioned from its downstream server-side coun

US 2014/0006543 A1

terpart, all other sites are guaranteed to not have any file
modifications. The isolated site holds the most recent file
modifications and all portals still connected to the server
terminator site provide a consistent view of the file just
before the latest (and now isolated) file write. The isolated
site can flush the file modifications to any DDS site providing
connectivity to the source file, including the server terminator
site itself.
0193 6. “Versioned File Modifications
0194 6.1. Validating a Cached File Image
0.195 Modern computer systems typically employ inter
nal clocks with nanosecond or microsecond resolutions.
When DDS code executes on any computer system other than
the origin server, the clock used by remote DDS nodes cannot
be synchronized with the clock used by the origin filesys
tems code to the level of precision required to Support stan
dard filesystem operations. So, filesystem timestamps may
only be set at the origin server site.
0196) DDS file access responses always include the target

file’s attributes, which are cached and stored in association
with the file's data. The file’s last modification timestamp, a
file attribute element, is used as a version number for cached
images. At DDS sites the cached image of a file’s last modi
fication timestamp may be referred to as the file's version
number. The two are the same. The differing nomenclature
relates to how the attribute is interpreted and used at DDS
sites.
0.197 Upstream DDS sites use a file's timestamp (a file
attribute), the timestamp arrival time and a delta time to
generate and maintain projected timestamps. Projected
timestamps, which enable DDS upstream sites to operate
autonomously (the main point of file caching), are temporary
timestamps that are replaced with (upgraded to) genuine file
system timestamps whenever a server terminator site
accesses file data in the origin filesystem.
0198 The elements of a projected timestamp are:
0199 timestamp—a cached image of a file timestamp
(for Unix-like systems: atime—time of last access,
mtime—time of last modification, ctime—time of last
status change),

0200 timestamp arrival time—the time at which a par
ticular timestamp is received in a response from a DDS
downstream site, and

0201 delta time—the difference between the current
time and the timestamp arrival time.

0202 Filesystems native to Unix-like systems typically
maintain three timestamps for each file:

0203 a time—time of last access,
0204 m time—time of last modification, and
0205 c time time of last status change.

DDS upstream sites generate projected timestamps for each
of these filesystem timestamps and therefore maintain three
arrival times and three delta times: a arrival/a delta, m ar
rival/m delta and c arrival/c delta. The description of pro
jected timestamps in the remainder of this document focuses
on the generation of projected timestamps for the time of last
modification. However, similar methods are used to generate
projected timestamps for a time and c time.
0206 When a response to a flush request with status DDS
OK is received and processed, the last modification times
tamp contained in the response becomes the version number,
them arrival time is set to the current time, and the m delta
time is set to zero. Whenever a response to any other type of
DDS file access request is received, the version number is

Jan. 2, 2014

compared with the cached one. When they differ, the client
knows the file has been modified at some other site and its
image is no longer valid.
0207 FIG. 10 is a flowchart illustrating an example of a
method 1000 of validating a cached file image when a
response received at an upstream site contains the same ver
sion number as the one associated with the cached file image:
and invalidating the cached file image, storing the new ver
sion number, setting the marrival time to the host systems
current time, and resetting the m delta time to Zero when a
response contains a different version number than the one
associated with the cached file image.
0208 FIG. 10 moreover shows that the method 1000 can
include dispatching 1002 a DDS file access request to the
downstream DDS site. I.e., the node sends a request to read,
write, save, etc. a file from a downstream site.
0209 FIG. 10 also shows that the method 1000 can
include receiving 1004 a response to the DDS downstream
request. I.e., the node receives any response from the down
stream site, regardless of whether the access was successful or
not.

0210 FIG. 10 further shows that the method 1000 can
include determining 1006 if the DDS request was processed
without any errors and the response status is therefore DDS
OK. And, when there is an error, that the request is repeated.
However, what is not depicted is that after a few unsuccessful
re-attempts the upstream site will declare a network failure
and may begin searching for an alternate route to the DDS
server terminator site.

0211 FIG. 10 further shows that the method 1000 can
include determining 1008 whether the received version num
ber is the same as the version number associated with the
cached file image. Note that the response to any successful
DDS file access request (response status is DDS OK) con
veys the file’s attributes, which include the version number
(m time, the last modification timestamp).
0212 FIG. 10 also shows that the method 1000 can
include continuing to use 1010 the current cached file image
(revalidating the current file image) when the received ver
sion number is the same as the version number associated
with the cached file image. I.e., because this site is using the
current version, the current file image is revalidated and is
continued to be used.

0213 FIG. 10 additionally shows that when the received
version number is not the same as the version number asso
ciated with the cached file image, the method 1000 can
include storing 1012 the new version number, setting the
m arrival time to the host system's current time, and resetting
the m delta time to Zero.
0214 FIG. 10 further shows that the method 1000 can
include determining 1014 whether the response is a flush
response. And when the response is not a flush response the
method 1000 can include discarding 1016 the current cached
file image. A DDS flush request flows through to the origin
file server in a single atomic operation and the response
returns the last modification timestamp as the file's version
number. So, a file's version number always changes when a
flush response with a status of DDS OK is received. (When
the version number changes on any other response, the file has
been modified at Some other site and the cache image at this
site is therefore not current and must be discarded.)
0215 FIG. 10 further shows that the method 1000 can
include determining 1018 if the response has the CACHING

US 2014/0006543 A1

ENABLED flag set and caching 1020 any new response data
and metadata when the CACHING ENABLED flag is set.
0216 6.2. Flushing a Modified File Image
0217 Upstream DDS sites provide better (faster) write
performance when client file modifications are captured at the
site and not immediately flushed downstream. “Collecting
many client file modifications before sending a “batch flush”
downstream employs the underlying network infrastructure
far more efficiently and provides a more responsive file access
service to the client. However, when a DDS client terminator
site acknowledges a client write request before the new data
has been successfully flushed downstream, the possibility
arises that a future network failure could cause the new data to
be lost.

0218 DDS provides a distributed file service and is there
fore always balancing performance against filesystem integ
rity. Performance is increased when DDS client terminator
sites operate autonomously, but the risk of losing file modi
fications is also increased. Both the administrator and the user
can set or adjust policies affecting this balancing act.
0219. The most risk adverse policy instructs client termi
nator sites to immediately forward file modifications on to the
server terminator site and to not respond to a client write
request until the origin server acknowledges the Successful
receipt of the new data. This mode, referred to as synchronous
writes, traverses the full network path from client application
to origin server on every write operation.
0220 More risky, performance oriented policies allow file
modifications to be aggregated and batch flushed. This mode
is often referred to as delayed writes. Generally, a timer,
controlled by policy, initiates batch flushes in this mode of
operation.
0221) When modified file data is flushed, the file data
flowing downstream includes the version number. It will be
the same as the version number at the DDS server terminator
site and all intermediate DDS nodes unless some previous
network partition event prevented consistency control mes
sages from being delivered.
0222. Once a DDS client site detects that it is isolated from

its server-side companion (it employs fast pings to detect this
quickly), it immediately invokes procedures to re-establish
communication with a DDS node still “connected to the
server terminator site. Once the isolated, and now paranoid,
node reconnects, it usually begins immediately flushing all
dirty file images.
0223. Each flush request is tagged with the cached file
image's version number. Whenever a DDS node processes a
flush request, it compares the version number in the flush
request with the version number associated with its cached
image of the file identified in the flush request. When there is
a mismatch the flush is rejected and sent back to the client
with an errorcode of OUT OF SEQUENCE. This error code
is then returned to the client application, which will have to
resolve this issue.

0224 Version numbers will usually match and the incom
ing file modifications will be accepted. However, when a
Substantial amount of time passes while the client node is
processing file requests using only cached file image data (no
communication with the downstream site), the likelihood of a
version mismatch increases. Of course, when a DDS site
processes file requests independently of its downstream site,
it is relying upon DDS's consistency callback mechanism for
immediate notification when a concurrent write sharing con

Jan. 2, 2014

dition arises and it is relying on fast pings to continually
reassure itself that the callback path is operational.
0225 FIG. 11 is a flowchart illustrating an example of a
method 1100 of flushing modified file data downstream
towards the DDS server terminator site; re-validating the
modified file data at each DDS site; and, when all flush data
has arrived at the server terminator site, possibly writing all
file modifications to the origin filesystem and then fetching
the file’s last modification timestamp.
0226 FIG. 11 shows that the method 1100 can include
receiving and servicing 1102 a request from a client applica
tion and updating the appropriate delta time, which is m delta
for write requests, a delta for read requests and c_delta for
requests that modify the file’s attributes.
0227 FIG. 11 also shows that the method 1100 can
include determining 1104 if it is time to flush file modifica
tions downstream. If it is not time to flush the file modifica
tions downstream, the site continues to service client file
access requests. When synchronous writes are being used for
the file identified in the request, it will always be time to flush
the modifications downstream. For delayed writes, flushes
may be initiated when a delay timer expires. The delay timer
may be reset on every write request or every file access
request. So, for example, a client terminator site might initiate
a batch flush operation 15 seconds after receiving the last of
many write requests.
0228 FIG. 11 further shows that the method 1100 can
include flushing 1106 all file modifications downstream. The
file’s version number accompanies the flush data.
0229 FIG. 11 additionally shows that the method 1100
can include a downstream DDS node receiving 1108 the flush
request and comparing the received version number with the
version number associated with the downstream node's
cached file image.
0230 FIG. 11 moreover shows that the method 1100 can
include determining 1110 if the version numbers differ. I.e.,
the version numbers are compared.
0231 FIG. 11 also shows that the method 1100 can
include the downstream DDS node responding 1112 OUT
OF SEQUENCE to the upstream node if the version numbers
differ.

0232. When the version numbers are the same, FIG. 11
then shows that the method 1100 can include the storing 1114
the received flush data in shadow extents.

0233 FIG. 11 further shows that the method 1100 can
include determining 1116 if the downstream DDS node is the
server terminator site. If the downstream DDS node is not the
server terminator site then the steps 1106-1116 are repeated
until the server terminator site is reached.

0234 FIG. 11 also shows that when the flush request is
processed at the server terminator site, the method 1100 can
include determining 1118 that all requests in this flush opera
tion have been received and that one of the requests had the
DATA COMPLETE request flag set.
0235. When not all requests in this flush operation have
been received with one of the requests having the DATA
COMPLETE request flag set, FIG. 11 shows that the method
1100 can include responding 1120 to the upstream node with
a status of DDS OK.
0236 FIG. 11 additionally shows that the method 1100
can include determining 1122 whether synchronous write
mode is being used for the file identified in the request. When
synchronous write mode is not being used, FIG.11 shows that

US 2014/0006543 A1

the method 1100 can include responding 1120 to the
upstream node with a status of DDS OK.
0237 When synchronous write mode is being used, FIG.
11 shows that the method 1100 can include writing 1124 all
file modifications to the underlying origin filesystem.
0238 FIG. 11 further shows that the method 1100 can
include determining 1126 whether the write to the origin
filesystem was successful. When the write to the origin file
system is not successful, FIG. 11 shows that the method 1100
can include responding 1128 to upstream node with a status
that indicates the type of error that occurred.
0239 When the write to the origin filesystem is successful,
FIG. 11 shows that the method 1100 can include setting 1130
the ALL DATA RECEIVED response flag and replacing all
extents that have shadow extents with their respective shadow
eXtentS.

0240 FIG. 11 then shows that the method 1100 can
include fetching the file’s last modification timestamp from
the origin filesystem. This timestamp, which conveys the time
(according to the origin filesystem clock) that the write 1124
was performed, will be interpreted at upstream sites as the
file’s version number.

0241 FIG. 11 finally shows that the method 1100 can
include responding 1120 to upstream node with a status of
DDS OK.
0242) 6.3. Generating Timestamps at Client Terminator
Sites

0243 When a client system (a workstation, for example)
receives a response to a file write request, the response
includes file’s attributes, an element of which is the file’s last
modification timestamp. For synchronous writes, this times
tamp will be the correct timestamp generated by the origin
filesystem when it received the new file modification. How
ever, when delayed writes are employed for faster perfor
mance and the DDS client terminator site is operating autono
mously, the DDS instance executing at the client terminator
site generates the response's last modification timestamp as
follows:

last modification timestamp=version number+m delta
time;

where:

m delta time=current time-marrival time.

0244. The version number is the origin server's last modi
fication timestamp and only the origin server updates it.
Upstream sites use the last modification timestamp as the
file's version number. Every file modification performed by
the origin server creates a new file version.
0245. The timestamp generated by the client terminator is
a temporary timestamp that is accurate enough to enable the
client application to believe it is accessing the most current
version of the file (which, in fact, it is). The timestamp mono
tonically increases by a reasonable amount on every file
modification request and it is periodically resynchronized
(whenever dirty file data is flushed downstream) with the
origin server's timestamp. This behavior helps to maintain the
illusion that the DDS service is provided by a single local
filesystem “within the computer where the client application
is executing.
0246 Similar procedures may also be used to project other
temporary filesystem timestamps such as a file's last access
timestamp and last change timestamp.

Jan. 2, 2014

0247 7. Path Signatures
0248. The path signature, included in some DDS
responses, defines the current route back to the origin server.
Path signatures have the following structure:

0249 typedef struct dds path signature {int in hops;
f/number of DDS hops to server site long node signa
ture|16); //4 byte node identifier of a DDS node DDS
PATH SIGNATURE;

0250 Whenever an upstream DDS node receives a suc
cessful connection response (DDS OK status and the INI
TIAL FILE CONNECTION response flag is set), the path
signature contained within the response is copied into the
channel.
0251 During the course of processing a request from an
upstream site currently not connected to the target file, the
downstream site will establish a connection to the upstream
site and then include in its request response a path signature
constructed by adding its signature to the channel's path
signature.
0252. At any instant, a channel's path signature reflects the
last Successful path used to access file data.
0253) When a network failure occurs DDS initiates proce
dures to re-establish a connection to a file. A client-side node
will Successively direct a reconnection request down each of
its alternate paths to the origin server, stopping as soon as one
of the reconnection attempts is successful. After trying all
paths without Successfully reconnecting to the file, the client
side node will return the DDS BAD LINK error code to the
client that was accessing the file when the failure was discov
ered.
0254. A reconnection request, which is a DDS request
with the DDS RECONNECT flag set, contains the channel's
path signature. The server-side node receiving and processing
the request uses the path signature to recognize the client as a
current client and to reconcile its consistency control data
structures. So, for example, when a writing client reconnects,
the server-side node does not 'see' a second writer and
declare a concurrent write sharing condition. It 'sees a client
that has been modifying a file now attempting to access the
file through a new path.
0255. A reconnection request propagates downstream
until a node recognizes that its signature is contained in the
path signature. If this node is more than one level lower in the
cache hierarchy, the upstream nodes along the previous path
must be informed so that the old paths consistency control
structures can be reconciled.

0256 A reconnection request may also be issued when
there is no network failure. An upstream node, deciding to
re-balance its downstream traffic, may issue a reconnection
request at any time.
0257 7.1. Path Signature Upstream Propagation
0258 FIG. 12 is a flowchart illustrating an example of a
method 1200 employed by a DDS node to load a path signa
ture whena connection is established; and for that node to add
its signature to the path signature that it sends upstream when
ever an upstream node establishes a file connection.
0259 FIG. 12 illustrates that the method 1200 can include
receiving 1202 a DDS request. I.e., a DDS request is received
from an upstream node.
0260 FIG. 12 also shows that the method 1200 can
include acquiring 1204 the channel for the file identified in the
request. When the channel does not already exist, a new
channel is created and assigned to the identified file.

US 2014/0006543 A1

0261 FIG. 12 further illustrates that the method 1200 can
include determining 1206 if it is possible to service the
request without communicating with the downstream node.
This would be the case when all required file data is cached
and valid at the site, and the channel at this site is already
“connected to a downstream site or this site is operating in
disconnected mode.
0262. When a downstream communication is required,
FIG. 12 also shows that the method 1200 can include dis
patching 1208 a request to a downstream site and then receiv
ing 1210 a response from the downstream site.
0263 FIG. 12 then shows that the method 1200 can
include determining 1212 if the response contained an indi
cation that the downstream site just established a file connec
tion to this site.
0264. When the downstream site indicates that it has just
established a file connection to this site, FIG. 12 shows that
the method 1200 can include copying 1214 the path signature
from the response to the channel.
0265. When 1206 determines that a downstream commu
nication is not required, FIG. 12 shows that the method 1200
can include servicing 1216 the request.
0266 Then FIG. 12 illustrates that the method 1200 can
include determining 1218 if the upstream site that sent the
request now being processed is establishing an initial file
connection.
0267. When the upstream site is establishing an initial file
connection, FIG. 12 shows that the method 1200 can include
copying 1220 the path signature from the channel to the
response, adding this node's signature to the response's path
signature, and then setting the INITIAL FILE CONNEC
TION flag in the response.
0268 Finally, FIG. 12 shows that the method 1200 can
include dispatching 1222 a response back to the upstream
DDS client.
0269. 7.2. Path Signature Based Reconnection
0270 FIG. 13 is a flowchart illustrating an example of a
method 1300 employed to reconnect an upstream DDS node.
0271 FIG. 13 illustrates that the method 1300 can include
receiving 1302 a DDS request from an upstream site.
0272 FIG. 13 also shows that the method 1300 can
include acquiring 1304 the channel for the file identified in the
request. When the channel does not already exist, a new
channel is created and assigned to the identified file.
0273 FIG. 13 further illustrates that the method 1300 can
include determining 1306 if the DDS RECONNECT flag is
set in the request. When the DDS RECONNECT flag is not
set, the procedure for reconciling the upstream site structures
at this site (and possibly sites above) is bypassed.
0274 FIG. 13 then shows that when the DDS RECON
NECT flag is set the method 1300 can include determining
1308 if the path signature contained in the request identifies
this node as a member of the “old” path. When the node is not
a member of the “old” path, FIG. 13 illustrates that the
method 1300 can include resetting 1310 the channels
attributes valid (ATTRS VALID) flag to force this node "go
downstream to fetch valid attributes.
0275 FIG. 13 shows that when this node is a member of
the “old” path the method 1300 can include sending 1312 a
DDS RECALL or INVALIDATE message to the “old”
upstream site identified in the path signature.
0276 FIG. 13 also shows that the method 1300 can
include determining 1314 if a response to the DDS RECALL
or INVALIDATE message is received.

Jan. 2, 2014

(0277 FIG. 13 shows that when a response is received the
method 1300 can include updating 1316 the upstream site
structure of the “old' upstream site identified in the path
signature.
(0278 FIG. 13 further illustrates that when a response is
not received the method 1300 can include declaring 1318 the
“old' upstream site identified in the path signature to be
OFFLINE and recording this status by setting the OFFLINE
flag in the upstream site structure of the “old” upstream site.
(0279 FIG. 13 finally shows that the method 1300 can
include servicing 1320 the DDS request and then dispatching
a response back to the upstream DDS node.
0280. Note that this procedure may be repeated at multiple
intermediate sites until a site on the “old” path is encountered.
Resetting the ATTRS VALID flag (step 1310 of FIG. 13)
continually pushes a DDS RECONNECT request further
downstream until a site currently connected to the origin
server is encountered. DDS RECONNECT requests contain
the full path signature of the upstream client node requesting
the reconnection.

(0281 8. Any Port in a Storm
0282. The DDS consistency mechanism ensures that all
DDS portals are equivalent. The any port in a storm feature
allows a DDS client node to switch to a new downstream node
at any time. So, whenever a client node feels isolated it can
elect to find a new partner.
0283. The new partner may be at the same hierarchical
level as the partitioned site, or it may be at any level closer to
the server terminator site. When the new partner is at the same
hierarchical level as the partitioned site, it must, in addition to
responding to the request, send a message downstream
informing that site that an upstream site has Switched part
ners. This allows the downstream site to revoke whatever
permissions it had granted the isolated site (isolated from the
client attempting to reconnect and possibly also isolated from
this site) and grant permissions along this new path.
0284. Note that the any port in a storm feature, which has
a downstream orientation, is only possible because of the
consistency feature that has an upstream orientation. These
two features work together to provide a highly consistent file
access service layered on top of inherently unreliable net
works such as the Internet.

0285. The any port in a storm feature provides the resil
iency required for extremely reliable communications.

0286 The DDS consistency mechanism is completely
dependent on extremely reliable communications.

0287. The any port in a storm feature is completely
dependent on the DDS consistency mechanism.

0288 Neither feature, the DDS consistency mechanism or
any port in a storm, can stand alone. But, when intertwined,
they provide the solid foundation required for providing very
strong consistency guarantees over highly distributed, unre
liable networks.

0289 9. Filehandles are Forever
0290 DDS filehandles, patterned after NFS filehandles,
are permanent filehandles. The file server generates an
opaque file identifier during the processing of a lookup
request and passes it back to a client. The client then uses this
filehandle as a reference point in future read/write requests.
0291. There is no timeout on the validity of a DDS (or
NFS) filehandle. It is valid forever. The client system may
present a filehandle received ten years ago (and not used

US 2014/0006543 A1

since) and the file server must connect to the same file or
return the error STALE FILEHANDLE if the file no longer
exists.
0292 U.S. patent application Ser. No. 12/558,482 (No
madic File Systems) discloses the construction of globally
unique permanent filehandles.

0293. However, a remote NFS client accessing the same
file would receive a file handle that uniquely identified
the file forever. An NFS client may present a file handle
that it received ten years ago and hasn't used since back
to the file server and that server must either establish a
connection with the original file or respond with an error
indicating that the file handle is no longer valid. (A file
handle is another type of object ID.)

0294. A method commonly used by Unix based NFS
file servers to create a permanent file id is to concatenate
two 32 bit numbers, the inode number and the inode
generation number, to create a 64bit file id. Since each
time an inode is assigned to a new file its generation
number is incremented, an inode would have to be re
used over 4 billion times before a file id of this type could
repeat. These 64bit file ids are essentially good forever.

0295 Permanent filehandles facilitate network error
recovery operations by reducing to a bare minimum the
amount of distributed state required for a disconnected DDS
client site to Successfully reconnect with the origin server. A
DDS client needs nothing more than a filehandle to reconnect
to a file. The DDS client does not need to know what direc
tory, what filesystem or even what file server.

Server-Side Operations
0296. When a concurrent write sharing condition arises,
DDS server nodes must RECALL a modified upstream image
projection (if there is one, and there can be only one) or
INVALIDATE all upstream image projections supporting
accelerated read operations.
0297. An INVALIDATE or RECALL operation proceeds
as follows:

0298. A concurrent write sharing condition (multiple
clients active on a file and at least one of them is writing)
is detected at the onset of processing a file access
request.

0299. Notifications are prepared for each upstream site
except the one that sent the request that precipitated this
CWS condition. Each note contains two elements: a) a
file identifier and b) an opcode (RECALL or INVALI
DATE).

0300 Each notification is dispatched to an upstream site
using a self addressed stamped envelope (SASE) that the
upstream site had previously sent to the downstream
site.

0301 The upstream site responds by dispatching a
DDS FLUSH request. At a minimum, this request con
tains a flag indicating that this request is an acknowl
edgement to the RECALL/INVALIDATE notification.
In the case of a RECALL, the request also contains all
file modifications.

0302. After all upstream sites have responded, the
downstream site proceeds with processing the original
request.

0303. When an upstream site is partitioned from its down
stream site, the upstream site never receives the notification.
So, the downstream site never receives confirmation that the
upstream site has invalidated its cached image of the file.

Jan. 2, 2014

0304. When this occurs the downstream site may decide
(depending on the currently established policies) to give up
on the isolated site and continue servicing other clients. So,
the downstream site may declare the upstream site OFFLINE
and record that status in the upstream site structure (uss)
associated with the upstream site. Then the downstream site,
based on the established policy, may do one of the following:

0305. The downstream site waits for communications
to be re-established, receives confirmation from all
upstream sites, and finally proceeds with processing the
original request.

0306 The downstream site proceeds with processing
the original request. In this case, the isolated site is
sidelined so that the server-side site can continue servic
ing the other client sites. The sidelined site will be dealt
with and re-integrated when communications are re
established.

0307 When communications are restored, the upstream
site will promptly send a SASE. If the downstream site had
chosen to wait it will quickly bounce the SASE back with the
same note it had sent earlier.
0308. During a network partition event, all DDS nodes on
the server-side of the partition have a primary responsibility
to protect and ensure the integrity of all DDS filesystem
content. DDS must never lose or mangle data once that data
has been successfully written to a DDS node.
(0309 The primary directive for DDS server-side nodes is
therefore:
0310 Never Take any Action that can Possibly Result in
the Loss or Corruption of Filesystem Data.
0311 So, during a network partition event, DDS server
side nodes act reflexively to ensure filesystem integrity. Then,
throughout the partition event, the server-side nodes continue
providing file services in conformance with the primary
directive. However, these server-side nodes are pledged to
filesystem integrity and have no real obligations to any client.
DDS server-side nodes will quickly refuse any request that is
not consistent with the PD.

Client-Side Operations
0312 Although the DDS server-side of a network partition

is not dedicated to servicing client systems, the other side of
the partition is completely focused providing the best client
service possible given the current circumstances. In particu
lar, DDS client-side nodes are responsible for ensuring that no
delayed write data (file modifications that have not yet been
flushed to the origin) is ever lost.
0313 The domain policy attributes in effect at each client
side node determine what actions the node performs when a
network partition is detected, but a client-side node will gen
erally safeguard its data first and then attempt to reconnect to
the server-side and flush all file modifications back to their
respective origin servers.
0314 DDS client nodes continuously monitor the health
and performance of all downstream paths, and for every path
the client node is aware of all alternate paths. The statistics
maintained for each path include:

0315 running average of bytes/second,
0316 average response time latency, and
0317 uptime percentage.

0318 When a DDS client node issues a request and fails to
receive a response within a timeout window (typically 2 or 3
seconds), the node retransmits the request several times
before declaring the downstream node OFFLINE.

US 2014/0006543 A1

0319. When the downstream site is declared OFFLINE,
the DDS client node simultaneously tries all alternate paths
and selects the path with the best performance.
0320. After all alternates have been tried, and none have
been successful, DDS syncs all modifications to files from the
disconnected downstream server to the site's stable memory
(hard disk or flash memory). When downstream communica
tions are restored, all file modifications are immediately
flushed downstream.
0321. Once all file modifications have been secured in
stable memory, DDS either:

0322 continues attempting to establish communication
along original path and all alternate paths; or

0323 returns an error indication to the client worksta
tion.

0324. In addition to performing whatever downstream p 9.
communications are required to support the file access Ser
vices the upstream site is providing, the upstream site also
pings the downstream site once a second (typically). This
enables the upstream site to quickly detect a partition event
and, depending on the established policies, possibly stop
providing access to cached files affected by the partition
event.

0325 When the upstream site fails to receive a reply to its
ping, it retransmits the request several times before declaring
the downstream node OFFLINE.
0326. The upstream site will continue to periodically ping
the downstream site. When a response is finally received, the
site is declared ONLINE and both sites may begin re-syn
chronizing.
0327 Site re-synchronization basically consists of
re-syncing a series of individual files. And this is a straight
forward process with one exception: an out of sequence write
(which is explained in the following section).

Out of Sequence Writes
0328. In the case where an upstream site has been modi
fying the file foo when a partition event occurs, it is possible
that:

0329 a CWS condition can arise, and
0330 the RECALL message is not delivered, and
0331 the upstream site modifies its image of foo before
0332 the upstream site has detected the partition event
via its fast ping polling.

0333. At some point, the downstream site:
0334 finally gives up on the upstreamer that has not
responded to the RECALL notification,

0335 marks the upstreamer OFFLINE, and
0336 moves on with providing other clients with access
to foo.

0337 Then another client modifies foo.
0338 Finally, the network is fixed and the upstreamer
comes back ONLINE. When the upstreamerattempts to flush
foo downstream: the downstream site MUST detect that the
modification performed at the upstream site did not use the
most current version of foo, and the request must be rejected
with error code OUT OF SEQUENCE.
0339 III. Recovery Procedures and Recovery Routines
0340 Server-side nodes assume a rather passive role dur
ing a network failure. These nodes must receive file modifi
cations that are being flushed downstream, but that is also
what they do when the network is not broken. The main
difference during a network failure is when a server-side node
receives a flush with a path signature indicating an upstream

Jan. 2, 2014

site is reconnecting, it executes a recovery routine to transfer
read/write permissions from the isolated upstream site to the
site that sent this flush.
0341 Client-side nodes bear almost the entire burden of
recovering from network failures because they have service
commitments to active clients that must be maintained. The
client-side node “closest to a failed network component will
be the node that detects the failure and declares the network
partitioned. The node will then execute a recovery procedure.
0342. The recovery procedure will sequentially call upon
various recovery routines, which are described in the follow
ing section.

Client-Side Recovery Routines
(0343 int dds monitor ds paths(CHANNEL *)
0344) This routine is continuously executed by a thread
dedicated to monitoring all downstream paths and maintain
ing performance statistics associated with each path. When a
failure occurs, the information gathered by dds monitor ds
paths() may be referenced to quickly determine the best
alternate path.
0345 dds monitor ds paths()maintains a path state
mini-database of all downstream paths emanating from this
node. This routine may also periodically send its current
path state to a node that maintains and presents a global view
of network operations.
(0346 int dds reconnect(CHANNEL *cp, intmx)
0347 This routine re-establishes a connection to the origin
server for the file identified by the filehandle contained within
the channel (cp->fh). dds reconnect() is optimized for the
speed of re-establishing a downstream connection because
DDS nodes really don’t like to be disconnected. This routine
may reference the path State mini-database to quickly select
the most appropriate alternate path for the reconnection
attempt.
0348. Adds reconnect() request always contains the issu
ing site's path signature and it always propagates through to
the first node that is common to both the 'old' and the ‘new’
paths.
0349 int dds flush(CHANNEL *cp)
0350 Adds flush() request flows from a DDS client
terminator site to a server terminator site as a single atomic
network transaction. For large multi-transfer flushes, inter
mediate nodes may be simultaneously forwarding transfer n
while receiving transfer n+1.
0351 DDS flushes are atomic and synchronous. A flush is
not considered successful until the client receives the server's
OK response. A shadow copy is kept until a node receives an
OK response from its immediate downstream site.
0352 For large multi-transfer flushes, each transfer flows
through intermediate nodes independently of the other trans
fers. All nodes store the flush data in shadow extents. When
the server terminator site receives the last flush, it moves all
shadow extents into the Sunlight and dispatches an OK
response back upstream. As the response propagates through
each intermediate node, each node also Sunlights its shadow
eXtentS.

Server-Side Recovery Routines
0353 int dds transfer permissions(CHANNEL *cp, int
to mX, int from mX)
0354) This routine RECALLS or INVALIDATES the file
image at the upstream node from mX and simultaneously

US 2014/0006543 A1

transfers whatever permissions node from mX had to node
to mx. Node from mx may respond to the RECALL/
INVALIDATE message or not. This server-side node does not
really care. It has marked node from mx OFFLINE (for this
file) and will handle all reintegration issues later when node
from mx' attempts to reconnect this file.
0355 int dds recall(CHANNEL *cp, intmx)
0356. This routine RECALLS or INVALIDATES the file
image at an upstream node.
0357 IV. DDS Failure Recovery Procedure
0358. When a network component fails client-side nodes
detect the failure and drive the transparent recovery proce
dure, during which the DDS filesystem client remains com
pletely unaware of the failure.
0359. The DDS failure recovery procedure operates in the
following manner:

0360) 1. A client-side node dispatches a request down
stream and is waiting for a response. If a response is not
received within a timeout period, control will be
returned to the thread that issued the request with an
indication that the downstream site failed to respond.

0361) 2. The request thread calls dds monitor ds paths
(cp) to determine whether the path to the downstream
site is operational. This routine, constantly fast pinging
the downstream site, is the authority with respect to
determining link status.

0362. 3. If the link is still good, the thread will just
re-issue the request again. This request will have the
same message identifier (Xid) as the original. If the
downstream site did respond to the previous request, the
response to this request is guaranteed to be the same
response (thanks to the duplicate request cache).

0363 4. If the link is down, the request thread refer
ences the path state mini-database and selects the best
alternate path and then calls dds reconnect(cp, mX) to
re-establish a connection to the DDS server-side net
work. (Or alternatively, this thread may spawn a bunch
of threads that would simultaneously attempt to re-es
tablish connections to the DDS server-side network.
Then, when several of the attempts are successful, one of
the paths would be selected and the others could be
disconnected or just allowed to atrophy.)

0364 5. If the reconnect attempt is not successful, the
request thread responds to the request (that it had origi
nally received from an upstream client) with an error
status of DDS BAD LINK. The upstream site will treat
this error status the same as a TIMEOUT. So, the request
thread at the upstream site will start executing step 2
above.

0365 6. If the reconnect attempt is successful, the
request thread immediately flushes all dirty data down
stream. This flush operates as previously described: it is
atomic and synchronous all the way to the server termi
nator site.

0366 7. Once all file modifications have been secured,
DDS operations switch into “normal” mode. The file
system client is still accessing the file, but the path has
been changed. The client remains unaware of the
change.

Reintegration of Isolated Nodes
0367. When an isolated network segment “comes back
online', isolated nodes automatically re-synchronize their
images of all files “crossing the link that had failed.
0368 Channels containing modified data have the highest

priority. Each is flushed downstream. The server-side will
accept or reject each flush on an individual basis. A flush will

Jan. 2, 2014

only be rejected if the file was modified somewhere else while
this client-side node was partitioned. The client-side node
must have a means of handling a flush rejection. This prob
ably includes a) saving the dirty data that was just rejected,
and b) notifying the user that there is a conflict that must be
resolved.
0369. The reintegration process is essentially complete
after all dirty files have been flushed. Files that were being
read before the partition event occurred can now be read
again. No special processing is required. Cached file images
will be updated on a demand basis if the source file has been
modified since the image was fetched.
0370. The present invention may be embodied in other
specific forms without departing from its spirit or essential
characteristics. The described embodiments are to be consid
ered in all respects only as illustrative and not restrictive. The
scope of the invention is, therefore, indicated by the appended
claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.
What is claimed is:
1. In a computing system where a data request has been

passed between an upstream site and a file service proxy
cache node, the file service proxy cache node being a network
node located between the upstream site and the origin file
system node, a non-transitory computer-readable storage
medium including instructions that, when executed by the file
service proxy cache node, performs the steps:

receiving a flush request from the upstream site, wherein
the flush request includes:
a request to save flush data contained in the flush request

to a stable memory;
storing the flush data in a shadow extent;
dispatching a downstream flush request to a second file

service proxy cache node:
receiving a response to the downstream flush request from

the second file service proxy cache node; and
if the response to the downstream flush request includes a

status code that indicates the Successful completion of
the request
sending a flush response that includes the status code

that indicates the Successful completion of the request
to the upstream site.

2. The system of claim 1, wherein the upstream site
includes a third file service proxy cache node.

3. The system of claim 1, wherein the second file service
proxy cache node includes the origin file system.

4. The system of claim 1, wherein the flush request includes
a flush level.

5. The system of claim 4, wherein the flush level specifies
the file service proxy cache node's flash memory as the flush
destination.

6. The system of claim 4, wherein the flush level specifies
the file service proxy cache node's disk as the flush destina
tion.

7. The system of claim 4, wherein the flush level specifies
the origin file system as the flush destination.

8. In a computing system where a data request has been
passed between an upstream site and a file service proxy
cache node, the file service proxy cache node being a network
node located between the upstream site and the origin file
system node, a non-transitory computer-readable storage
medium including instructions that, when executed by the file
service proxy cache node, performs the steps:

US 2014/0006543 A1

receiving a flush request from the upstream site, wherein
the flush request includes:
a request to save flush data contained in the flush request

to a stable memory;
storing the flush data in a shadow extent; and
if the file service proxy cache node is not a server termina

tor site:
dispatching a downstream flush request to a second file

service proxy cache node:
receiving a response to the downstream flush request

from the second file service proxy cache node; and
if the response to the downstream flush request includes

a status code that indicates the Successful completion
of the request
sending a flush response that includes the status code

that indicates the successful completion of the
request to the upstream site.

9. The system of claim 8 further comprising:
if the downstream flush request was not successfully com

pleted:
decrementing a retry count;
if the retry count is greater than Zero:

dispatching the downstream flush request to the sec
ond file service proxy cache node again;

if the retry count equals Zero:
declaring a network failure, which will initiate a

search for an alternate route to the server terminator
site.

10. The system of claim 8, wherein if the downstream flush
request was successfully completed further comprises:

if the ALL DATA RECEIVED response flag is set, indi
cating that the server terminator site has received and
accepted all flush data:
promoting the flushed data in the shadow extents.

11. The system of claim 8 further comprising:
the file service proxy cache node remaining committed to

the node when the amount of flushed data is higher than
can be accommodated in a single network operation
until the last batch of data is successfully received.

12. The system of claim 11, wherein the request containing
the last batch of data also includes a flag that indicates this is
the last batch.

13. In a computing system where a data request has been
passed between an upstream site and a file service proxy
cache node, the file service proxy cache node being a network
node located between the upstream site and the origin file
system node, a non-transitory computer-readable storage
medium including instructions that, when executed by the file
service proxy cache node, performs the steps:

receiving a flush request from the upstream site, wherein
the flush request includes:
a request to save flush data contained in the flush request

to a stable memory; and
a flush level, wherein the flush level indicates how far the

data should be flushed;
storing the flush data in a shadow extent;
if the file service proxy cache node is not a server termina

tor site:
dispatching a downstream flush request to a second file

service proxy cache node, wherein the downstream
flush request includes:
the flush data;

Jan. 2, 2014

receiving a response to the downstream flush request
from the second file service proxy cache node includ
19.

f E.response to the downstream flush request includes
a status code that indicates the Successful completion
of the request

sending a flush response that includes a status code that
indicates the Successful completion of the request to
the upstream site.

14. The system of claim 13, wherein if the downstream
flush request was successfully completed further comprises:

if the ALL DATA RECEIVED response flag is set, indi
cating that the server terminator site has received and
accepted all flush data:
promoting the flushed data in the shadow extents.

15. The system of claim 15, wherein promoting the shadow
extents includes making the flushed data permanent.

16. The system of claim 13, wherein the response to the
downstream flush request includes:

an error code if the downstream flush request was not
Successfully completed.

17. The system of claim 16, wherein the flush response to
the upstream site includes:

an error code if the flush request was not successfully
completed.

18. The system of claim 13 further comprising:
if the file service proxy cache node is the server terminator

site:
determining if

all batches of the flush have been received; and
a DATA COMPLETE request flag was set in one of

the requests.
19. The system of claim 18 further comprising:
if all batches of the flush have been received and the
DATA COMPLETE request flag was set in one of the
requests:
if synchronous filesystem writes are enabled for the file

identified in the flush request:
writing all data contained in shadow extents to the

origin filesystem
if the filesystem write operation did not complete

Successfully:
responding to the upstream site with a status that

conveys the write error code.
if the filesystem write operation did complete suc

cessfully:
setting the ALL DATA RECEIVED response

flag:
promoting the flushed data in the shadow extents;

and
responding to the received flush request with a sta

tus code that indicates the Successful completion
of the request.

20. The system of claim 19 further comprising:
if synchronous writes are not enabled for the file identified

in the flush request:
setting the ALL DATA RECEIVED response flag:
promoting the flushed data in the shadow extents; and
responding to the received flush request with a status

code that indicates the successful completion of the
request.

