DEMANDE DE BREVET D’INVENTION

- **Date de dépôt :** 19.11.14.
- **Priorité :**
- **Date de mise à la disposition du public de la demande :** 20.05.16 Bulletin 16/20.
- **Liste des documents cités dans le rapport de recherche préliminaire :** Se reporter à la fin du présent fascicule.
- **Références à d’autres documents nationaux apparentés :**
- **Demande(s) d’extension :**
- **Demandeur(s) :** VALEO SYSTEMES THERMIQUES Société par actions simplifiée — FR.
- **Inventeur(s) :** PIERRON FREDERIC, TELLIER LAURENT et LEBORGNE JOSE.
- **Titulaire(s) :** VALEO SYSTEMES THERMIQUES Société par actions simplifiée.
- **Mandataire(s) :** VALEO SYSTEMES THERMIQUES.

DISPOSITIF DE CHAUFFAGE ELECTRIQUE DE FLUIDE.

La présente invention concerne un dispositif de chauffage (1) électrique d’un fluide comportant:

- au moins un boîtier de chauffage (3) comprenant une entrée (5a) et une sortie (5b) du fluide et définissant une enceinte de circulation du fluide,
- au moins un thermoplongeur électrique (7) disposé, au contact du fluide, au sein dudit boîtier de chauffage (3), et
- un circuit électronique de gestion (9) du ou des thermoplongeurs électriques (7),

le circuit électronique de gestion (9) étant disposé contre une paroi de l'eau moins un boîtier de chauffage (3), à l'extérieur de l'enceinte de circulation du fluide.
Dispositif de chauffage électrique de fluide.

La présente invention concerne le domaine des dispositifs de chauffage électrique de fluide et plus particulièrement des dispositifs de chauffage électrique dans le domaine des véhicules automobiles électriques ou hybrides.

Dans le domaine des véhicules électriques ou hybrides, il est connu de compenser l'apport thermique d'un moteur à combustion pour le chauffage du véhicule, notamment de l'habitacle, par l'ajout d'un ou plusieurs dispositifs de chauffage électriques. Un tel dispositif de chauffage électrique peut être inclus dans un circuit de gestion thermique afin de réchauffer un fluide caloporteur pouvant être utilisé pour réchauffer l'air destiné à l'habitacle ou bien même des organes du véhicule électrique tels que les batteries pour aider à ce qu'elles atteignent leur température optimale de fonctionnement par temps froid.

Les dispositifs de chauffage électrique peuvent comporter un ou plusieurs thermoplongeurs, notamment céramiques, placés au contact du fluide au sein d'une enceinte. Ces thermoplongeurs sont généralement connectés à un circuit électronique de gestion comportant des composants permettant la gestion de la puissance électrique fournie aux thermoplongeurs, en particulier leur mise en route ou leur arrêt. Ces composants génèrent par effet joule de la chaleur qui peut nuire à leur bon fonctionnement ainsi qu'à leur durée de vie et par conséquence à celle du dispositif de chauffage électrique.

Un des buts de la présente invention est de remédier au moins partiellement aux inconvénients de l'art antérieur et de proposer un dispositif de chauffage électrique amélioré.

La présente invention concerne donc un dispositif de chauffage électrique d'un fluide comportant :

- au moins un boîtier de chauffage comprenant une entrée et une sortie du fluide et définissant une enceinte de circulation du fluide,
- au moins un thermoplongeur électrique disposé, au contact du fluide, au sein dudit boîtier de chauffage, et
un circuit électronique de gestion du ou des thermoplongeurs électriques, le circuit électronique de gestion étant disposé contre une paroi de l'au moins un boîtier de chauffage, à l'extérieur de l'enceinte de circulation du fluide.

Le fait que le circuit électronique de gestion soit disposé contre la paroi du boîtier de chauffage permet que ledit circuit soit refroidit par le fluide au travers de ladite paroi.

Selon un aspect de l'invention, la température de fonctionnement du circuit électronique de gestion est supérieure à la température du fluide en sortie du ou des boîtiers de chauffage.

Les composants du circuit électronique de gestion pouvant avoir une température de fonctionnement supérieure à celle du fluide permet que ces derniers soient refroidis efficacement.

Selon un autre aspect de l'invention, au moins un boîtier de chauffage est réalisé en matière plastique.

Selon un autre aspect de l'invention, au moins un boîtier de chauffage est réalisé en matière métallique.

Selon un autre aspect de l'invention, le dispositif de chauffage comporte une couche supplémentaire en matériau isolant électriquement disposée entre le circuit électronique de gestion et la paroi de l'au moins un boîtier de chauffage.

Selon un autre aspect de l'invention, le dispositif de chauffage comporte des turbulateurs du flux de fluide, disposés sur la paroi d'au moins un dudit au moins un boîtier de chauffage, à l'intérieur de l'enceinte de circulation du fluide.

La présence de ces turbulateurs permet une meilleure homogénéisation du flux de fluide et également une augmentation de la surface d'échange à l'aplomb du circuit électronique de gestion.

Selon un autre aspect de l'invention, le dispositif de chauffage comporte des turbulateurs du flux de fluide, disposés sur la paroi externe d'au moins un thermoplongeur électrique.

Selon un autre aspect de l'invention, le dispositif de chauffage comporte un unique boîtier de chauffage dans lequel est disposé un thermoplongeur électrique.
Selon un autre aspect de l'invention, le dispositif de chauffage comporte un premier et un deuxième boîtier de chauffage, un thermoplongeur électrique étant disposé dans chacun d'entre-eux, le premier et le deuxième boîtier de chauffage étant reliés par un orifice de communication de sorte que le fluide puisse passer d'une enceinte de chauffage à l'autre, le premier boîtier de chauffage comportant l'entrée de fluide et le deuxième boîtier de chauffage comportant la sortie de fluide.

Selon un autre aspect de l'invention, les thermoplongeurs électriques sont reliés à un même circuit électronique de gestion disposé contre une paroi d'un des boîtiers de chauffage, à l'extérieur des enceintes de circulation du fluide.

Selon un autre aspect de l'invention, le circuit électronique de gestion est disposé sur la paroi du premier boîtier de chauffage comportant l'entrée de fluide.

Selon un autre aspect de l'invention, la paroi du boîtier de chauffage comporte un amincissement de son épaisseur au niveau de sa zone de contact avec le circuit électronique de gestion.

D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante, donnée à titre d'exemple illustratif et non limitatif, et des dessins annexés parmi lesquels :

- la figure 1 montre une représentation schématique d'un dispositif de chauffage électrique selon un premier mode de réalisation,

- la figure 2 montre une représentation schématique d'un dispositif de chauffage électrique selon un deuxième mode de réalisation,

- la figure 3 montre une représentation schématique d'un dispositif de chauffage électrique selon un troisième mode de réalisation,

Sur les différentes figures, les éléments identiques portent les mêmes numéros de référence.

Comme le montre la figure 1 représentant un dispositif de chauffage électrique, ce dernier comporte :

- au moins un boîtier de chauffage 3 dans lequel circule un fluide. Ledit boîtier de chauffage 3 comporte une entrée 5a et une sortie 5b dudit fluide, formant une enceinte de circulation du fluide.
- au moins un thermoplongeur électrique 7, disposée au sein de l'au moins un boîtier de chauffage 3 au contact du fluide, et
- un circuit électronique de gestion 9 du ou des thermoplongeurs électriques 7.

Le dispositif de chauffage électrique 1 comporte également un caisson 20 entourant les différents organes le composant et permettant également une arrivée et une sortie du fluide à chauffer.

Le thermoplongeur électrique 7, par exemple en céramique, comporte une portion traversant le boîtier de chauffage 3, inséré dans l'enceinte de circulation du fluide, et une portion ressortant du boîtier de chauffage 3 au niveau d'une ouverture prévue à cet effet. Au niveau de cette ouverture, l'étanchéité est par exemple réalisée au moyen d'un joint ou par d'autre moyens connus tels qu'une soudure au niveau du contact entre le thermoplongeur électrique 7 et le boîtier de chauffage 3.

Le thermoplongeur électrique 7 est connecté au circuit électronique de gestion 9 au moyen d'un connecteur 11 et d'un dispositif de connexion 13 tel que des câbles ou encore un circuit de connexion souple.

Le circuit électronique de gestion 9 est quant à lui disposé contre une paroi d'au moins un boîtier de chauffage 3, à l'extérieur de l'enceinte de circulation du fluide. Le fluide traversant le dispositif de chauffage électrique 1 pouvant être inférieure à la température de fonctionnement des composants électroniques du circuit électronique de gestion 9, ledit fluide peut donc refroidir ledit circuit électronique de gestion 9 au travers de la paroi du boîtier de chauffage 3.

Le boîtier de chauffage 3 peut notamment être réalisé en matière plastique ou bien encore en matière métallique. Dans ce dernier cas, lorsque le boîtier de chauffage 3 est en matière métallique, une couche supplémentaire (non représentée) en matériau isolant électriquement est disposée entre le circuit électronique de gestion 9 et ladite paroi du boîtier de chauffage 3 de sorte à éviter les risques de courts-circuits.

Comme illustré sur la figure 2, le dispositif de chauffage 1 peut comporter des turbulateurs 15 du flux de fluide. Ces turbulateurs 15 sont placés sur la paroi du boîtier de chauffage 3, à l'intérieur de l'enceinte de circulation du fluide et ont
un double intérêt. Ils permettent une meilleure homogénéisation du flux de fluide et donc un meilleur chauffage de ce dernier. Ils augmentent également la surface de contact à l'aplomb du circuit électronique de gestion 9 améliorant son refroidissement par le fluide.

Selon une alternative de réalisation (non représentée), les turbulateurs 15 du flux de fluide sont placés sur la paroi externe du thermoplongeur électrique 7, c'est-à-dire sur la paroi en contact avec le fluide.

Ces turbulateurs 15 peuvent également servir de guide du flux de fluide. Afin d'améliorer encore plus les échanges de chaleur entre le circuit de gestion thermique 9 et le fluide, la paroi du boîtier de chauffage 3 peut également comporter un amincissement de son épaisseur au niveau de sa zone de contact avec le circuit électronique de gestion 9 comme cela est illustré sur la figure 2.

Selon un premier mode de réalisation illustré aux figures 1 et 2, le dispositif de chauffage 1 électrique comporte un unique boîtier de chauffage 3 dans lequel est disposé un thermoplongeur électrique 7.

Selon un second mode de réalisation illustré à la figure 3, le dispositif de chauffage 3 comporte un premier 3a et un deuxième boîtier 3b de chauffage. Le premier boîtier de chauffage 3a comporte l'entrée 5a de fluide et le deuxième boîtier de chauffage 3b comporte la sortie 5b de fluide. Les enceintes de circulation des premier 3a et deuxième 3b boîtier de chauffage 3a, 3b sont reliées l'une à l'autre par un orifice de communication 17 de sorte que le fluide puisse passer d'un boîtier de chauffage à l'autre. Chacun des boîtiers de chauffage 3a, 3b comporte également un thermoplongeur électrique 7.

Le premier 3a et le deuxième 3b boîtier de chauffage peuvent être par exemple deux boîtiers indépendants accolés l'un à l'autre et reliés par un orifice de communication 17 commun. Le premier 3a et le deuxième 3b boîtier de chauffage peuvent également être formés à partir d'un boîtier global et séparé en deux au moyen d'une paroi interne comportant l'orifice de communication 17 de sorte à former deux enceintes de circulation de fluide.
Dans ce second mode de réalisation, les thermoplongeurs électriques 7 sont reliés à un même circuit électronique de gestion 9. Ce dernier est disposé contre une paroi d'un des premier ou deuxième boîtier de chauffage 3a, 3b, à l'extérieur des enceintes de circulation de fluide. De préférence et pour faciliter son refroidissement, le circuit électronique de gestion 9 est disposé sur la paroi du premier boîtier de chauffage 3a comportant l'entrée 5a de fluide, à l'extérieur de son enceinte de circulation du fluide. De part ce positionnement, le fluide plus frais en entrée de l'enceinte de circulation du premier boîtier de chauffage 3a est utilisé pour refroidir le circuit électronique de gestion 9.

Ainsi, on voit bien que de part le positionnement du circuit électronique de gestion 9 il est possible de maintenir ce dernier à une température de fonctionnement optimale et ainsi de prolonger la durée de vie du dispositif de chauffage 1.
REVENDICATIONS

1. Dispositif de chauffage (1) électrique d'un fluide comportant :
 - au moins un boîtier de chauffage (3) comprenant une entrée (5a) et une
 sortie (5b) du fluide et définissant une enceinte de circulation du fluide,
 - au moins un thermoplongeur électrique (7) disposé, au contact du fluide,
 au sein dudit boîtier de chauffage (3), et
 - un circuit électronique de gestion (9) du ou des thermoplongeurs
 électriques (7),
 caractérisé en ce que le circuit électronique de gestion (9) est disposé contre une
 paroi de l'au moins un boîtier de chauffage (3), à l'extérieur de l'enceinte de
 circulation du fluide.

2. Dispositif de chauffage (1) selon la revendication 1, caractérisé en ce que la
 température de fonctionnement du circuit électronique de gestion (9) est
 supérieure à la température du fluide en sortie du ou des boîtiers de chauffage
 (3).

3. Dispositif de chauffage (1) selon l'une des revendications 1 ou 2, caractérisé en
 ce que au moins un dudit au moins un boîtier de chauffage (3) est réalisé en
 matière plastique.

4. Dispositif de chauffage (1) selon l'une des revendications 1 ou 2, caractérisé en
 ce que au moins un dudit au moins un boîtier de chauffage (3) est réalisé en
 matière métallique.

5. Dispositif de chauffage (1) selon la revendication précédente, caractérisé en ce
 qu'il comporte une couche supplémentaire en matériau isolant électriquement
 disposée entre le circuit électronique de gestion (9) et la paroi d'au moins un
 boîtier de chauffage (3).
6. Dispositif de chauffage (1) selon l'une quelconques des revendications précédentes, caractérisé en ce qu'il comporte des turbulateurs (15) du flux de fluide, disposés sur la paroi d'au moins un boîtier de chauffage (3), à l'intérieur de l'enceinte de circulation du fluide.

7. Dispositif de chauffage (1) selon l'une quelconques des revendications précédentes, caractérisé en ce qu'il comporte un unique boîtier de chauffage (3) dans lequel est disposé un thermoplongeur électrique (7).

8. Dispositif de chauffage (1) selon l'une quelconques des revendications 1 à 6, caractérisé en ce qu'il comporte un premier (3a) et un deuxième (3b) boîtier de chauffage, un thermoplongeur électrique (7) étant disposé dans chacun d'entre-eux, le premier (3a) et le deuxième (3b) boîtier de chauffage étant reliée par un orifice de communication (17) de sorte que le fluide puisse passer d'une enceinte de chauffage à l'autre, le premier boîtier de chauffage (3a) comportant l'entrée (5a) de fluide et le deuxième boîtier de chauffage (3b) comportant la sortie (5b) de fluide.

9. Dispositif de chauffage (1) selon la revendication précédente, caractérisé en ce que les thermoplongeurs électriques (7) sont reliés à un même circuit électronique de gestion (9) disposé contre une paroi d'un des boîtiers de chauffage (3a, 3b), à l'extérieur des enceintes de circulation du fluide.

10. Dispositif de chauffage (1) selon l'une des revendications 8 ou 7, caractérisé en ce que le circuit électronique de gestion (9) est disposé sur la paroi du premier boîtier de chauffage (3) comportant l'entrée (5a) de fluide.

11. Dispositif de chauffage (1) selon l'une quelconques des revendications précédentes, caractérisé en ce que la paroi boîtier de chauffage (3) comporte un
amincissement de son épaisseur au niveau de sa zone de contact avec ledit circuit électronique de gestion (9).
Fig. 3
RAPPORT DE RECHERCHE PRÉLIMINAIRE

établissement sur la base des dernières revendications déposées avant le commencement de la recherche

DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l’invention par l’INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* page 1, ligne 1 - page 11, ligne 24; figures 1-2 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* colonne 1, alinéa 1 - colonne 4, alinéa 31; revendication 1; figures 1-3 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 1, alinéa 1 - page 6, alinéa 38; figures 1-6 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>DE 10 2010 060446 A1 (DBK DAVID & BAADER GMBH [DE]) 12 mai 2011 (2011-05-12)</td>
<td>1-7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 4, alinéa 43 - page 8, alinéa 67; figures 1-17 *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DOMAINES TECHNIQUES RECHERCHÉS (IPC)

- F24H
- B60H
- H05K
- F24D

Date d’achèvement de la recherche: 24 juillet 2015

Examinateur: Hoffmann, Stéphanie

CATEGORIE DES DOCUMENTS CITES

- X : particulièrement pertinent à lui seul
- Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie
- A : arrière-plan technologique
- O : divulgation non-entière
- P : document intermédiaire

Signification des codes:

- T : théorie ou principe à la base de l’invention
- E : document de brevet bénéficiant d’une date antérieure à la date de dépôt et qui n’a pas été publié qu’à cette date de dépôt ou qu’à une date postérieure.
- D : cité dans la demande
- L : cité pour d’autres raisons

& : membre de la même famille, document correspondant
La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 24-07-2015
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française.

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2014005708 A1</td>
<td>09-01-2014</td>
<td>CN 104412045 A</td>
<td>11-03-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102012013346 A1</td>
<td>23-01-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2014005708 A1</td>
<td>09-01-2014</td>
</tr>
<tr>
<td>DE 102099905 A1</td>
<td>18-09-2003</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>DE 102012207301 A1</td>
<td>07-11-2013</td>
<td>CN 104285109 A</td>
<td>14-01-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102012207301 A1</td>
<td>07-11-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015518450 A</td>
<td>02-07-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20150004381 A</td>
<td>12-01-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015117847 A1</td>
<td>30-04-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013164313 A1</td>
<td>07-11-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2499436 A2</td>
<td>19-09-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012315024 A1</td>
<td>13-12-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011054970 A2</td>
<td>12-05-2011</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82