(43) International Publication Date

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2014/133595 Al

4 September 2014 (04.09.2014) WIPOIPCT

(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
GO6F 9/52 (2006.01) GO6F 9/54 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
. L] DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
PCT/US2013/067108 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(22) International Filing Date: MG» MK, MN» MW, MX» MY» MZ» NA» NG» NI, NO» NZ»
28 October 2013 (28.10.2013) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
.) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
(25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,

(26) Publication Language: English ZW.
(30) Priority Data: (84) Designated States (uniess otherwise indicated, for every
13/781.493 28 February 2013 (28022013) Us kind Of regional protection available): ARIPO (BW, GH,
’ GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(71) Applicant: ORACLE INTERNATIONAL CORPORA- UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TION [US/US]; 500 Oracle Parkway, M/S Sop7, Redwood TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
Shores, California 94065 (US). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
)) - MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
72) ;‘g:ﬁg’;égﬁg‘é% g‘lgk(sgg‘)lr’ 24 Bathurst Road, Win TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,

’ KM, ML, MR, NE, SN, TD, TG).
(74) Agents: MEYER, Sheldon R. et al.; Fliesler Meyer LLP, Published:

31

410 Pacitic Avenue, San Francisco, California 94133 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

with international search report (Art. 21(3))

(54) Title: SYSTEM AND METHOD FOR USING A SEQUENCER IN A CONCURRENT PRIORITY QUEUE

600

Deserializer A
611

N

., "\

-, Ticket A \

"’ Priority Queue
601
RequestB

Request A
621

631 \

)

Calendar Ring

622

602

Outlier List 603

Sequencer
604

wo 2014/133595 A1 [N N0 Y O

Deserializer B
612

FIGURE 6

(57) Abstract: A system and method can support a concurrent priority queue. The concurrent priority queue allows a plurality of
threads to interact with the priority queue. The priority queue can use a sequencer to detect and order a plurality of threads that con-
tend for one or more requests in the priority queue. Furthermore, the priority queue operates to reduce the contention among the
plurality of threads.

10

15

20

25

30

35

40

WO 2014/133595 PCT/US2013/067108

SYSTEM AND METHOD FOR USING A SEQUENCER
IN A CONCURRENT PRIORITY QUEUE

Copyright Notice:
[0001] A portion of the disclosure of this patent document contains material which is subject

to copyright protection. The copyright owner has no objection to the facsimile reproduction by
anyone of the patent document or the patent disclosure, as it appears in the Patent and

Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.

Field of Invention:

[0002] The present invention is generally related to computer systems and software such as
middleware, and is particularly related to systems and methods for supporting queue in a

middleware machine environment.

Background:

[0003] Within any large organization, over the span of many years, the organization often
finds itself with a sprawling IT infrastructure that encompasses a variety of different computer
hardware, operating systems, and application software. Although each individual component of
such infrastructure might itself be well-engineered and well-maintained, when attempts are
made to interconnect such components, or to share common resources, it is often a difficult
administrative task. In recent years, organizations have turned their attention to technologies
such as virtualization and centralized storage, and even more recently cloud computing, which
can provide the basis for a shared infrastructure. However, there are few all-in-one platforms
that are particularly suited for use in such environments. These are the general areas that

embodiments of the invention are intended to address.

Summary:
[0004] Systems and methods are provided for supporting a concurrent priority queue. The

concurrent priority queue allows a plurality of threads to interact with the priority queue. The
priority queue can use a sequencer to detect and order a plurality of threads that contend for
one or more requests in the priority queue. Furthermore, the priority queue operates to reduce
the contention among the plurality of threads.

[0005] Other objects and advantages of the present invention will become apparent to those
skilled in the art from the following detailed description of the various embodiments, when read

in light of the accompanying drawings.

5

10

15

20

25

30

35

40

WO 2014/133595 PCT/US2013/067108

Brief Description of the Figures:

[0006] Figure 1 shows an illustration of a middleware machine environment 100, in
accordance with an embodiment of the invention.

[0007] Figure 2 shows another illustration of a middleware machine platform or
environment, in accordance with an embodiment of the invention.

[0008] Figure 3 shows an illustration of using a priority queue for handling requests in a
middleware machine environment, in accordance with various embodiments of the invention.
[0009] Figure 4 shows an illustration of supporting a non-blocking queue in a middleware
machine environment.

[0010] Figure 5 shows an illustration of supporting a concurrent priority queue in
accordance with various embodiments of the invention.

[0011] Figure 6 shows an illustration of guaranteeing a first-in-first-out (FIFO) order for the
outlier list in accordance with various embodiments of the invention.

[0012] Figure 7 illustrates an exemplary interactive chart for adding multiple requests into
an outlier list in a concurrent priority queue in accordance with an embodiment of the invention.
[0013] Figure 8 shows an illustration of detecting contention among different consumers of
a concurrent priority queue in accordance with various embodiments of the invention.

[0014] Figure 9 is an exemplary interactive chart for illustrating interaction between a victim
and a contender when a contention is detected in accordance with an embodiment of the
invention.

[0015] Figure 10 is an exemplary interactive chart for illustrating interaction between a
victim and a contender when no contention is detected in accordance with an embodiment of
the invention.

[0016] Figure 11 illustrates an exemplary flow chart for supporting cooperative concurrency

in a priority queue in accordance with an embodiment of the invention.

Detailed Description:

[0017] Described herein are systems and methods that can support work sharing muxing in
a cluster.

[0018] Figure 1 shows an illustration of a middleware machine environment 100, in
accordance with an embodiment of the invention. As shown in Figure 1, each middleware
machine system 102 includes several middleware machine rack components 104, each of which
includes a combination of high-performance middleware machine hardware nodes 106 (e.g., 64-
bit processors, high performance large memory, and redundant InfiniBand and Ethernet
networking), and a middleware machine software environment 108. The result is a complete

application server environment which can be provisioned in minutes rather than days or months,

10

15

20

25

30

35

40

WO 2014/133595 PCT/US2013/067108

and which can scale on demand. In accordance with an embodiment, each middleware machine
system can be deployed as a full, half, or quarter rack, or other configuration of rack
components, and several middleware machine systems can be coupled together, again using
InfiniBand, to create larger environments. Each middleware machine software environment can
be provisioned with several application server or other software instances. For example as
shown in Figure 1, an application server instance 109 could comprise a virtual machine 116,
operating system 120, virtualization layer 124, and application server layer 128 (e.g. WebLogic,
including servlet 132, EJB 134, and Gridlink 136 containers). Another application server
instance 110 could comprise a virtual machine 118, operating system 122, virtualization layer
126, and data grid layer 140 (e.g. Coherence, including an active cache 142). Each of the
instances can communicate with one another, and with both its middleware machine hardware
node, and other nodes, using a middleware machine integration component 150, such as an
Exalogic integration pack, which itself provides several optimization features, such as support
for InfiniBand and other features, as described in further detail below.

[0019] Figure 2 shows another illustration of a middleware machine platform or
environment, in accordance with an embodiment of the invention. As shown in Figure 2, each
application server instance can act as a sender and/or receiver 160, 161 within the middleware
machine environment. Each application server instance is also associated with a muxer 162,
163, that allows the application servers to communicate with one another via an InfiniBand
network 164. In the example shown in Figure 2, an application server instance can include a
kernel space 165, user space 167, and application server (e.g. WebLogic space) 166, which in
turn can be associated with a sockets direct protocol 168, a JVM (e.g. JRockit/Hotspot layer)
170, a WLS core 172, a servlet container 174, and a JSP compiler 176. In accordance with
other examples, other combinations of middleware-type software can be included. In
accordance with various embodiments, the machine integration component can provide features
180 such as Zero Buffer Copies, Scatter/Gather 1/O, T3 Connections, Lazy Deserialization, and
GridLink DataSource, to provide the basis for, and improve performance within, the shared

infrastructure.

Priority Queue

[0020] In accordance with various embodiments of the invention, a concurrent system can
use a priority queue to prioritize incoming requests in order to provide service with an
appropriate service level agreement (SLA).

[0021] Figure 3 shows an illustration of using a priority queue for handling requests in a
middleware machine environment, in accordance with various embodiments of the invention. As
shown in Figure 3, one or more threads, e.g. deserializing threads A-B 311-312, can deserialize

the incoming network traffic 310 that contains one or more requests 320. The deserializing

-3-

10

15

20

25

30

35

40

WO 2014/133595 PCT/US2013/067108

threads A-B 311-312 can place the requests 320 in a priority queue 301, e.g. using add()
methods. Then, a plurality of worker threads, e.g. worker threads A-C 321-323, can access the
priority queue 301 concurrently and can claim the requests 320, e.g. using delete_min()
methods.

[0022] The priority queue 301 can be designed to meet demanding concurrency criteria, so
that the interaction between the contenders does not cause degradation in the throughput of the
system as a whole. Additionally, the priority queue 301 can be implemented to have a fixed
memory footprint, so that the JVM is able to better optimize its operations on fixed-size arrays of
primitives, and can achieve substantial cache efficiency.

[0023] In accordance with various embodiments of the invention, the priority queue 301 can
be implemented based on a calendar queue, e.g. the calendar queue provided in the WebLogic
Application Server. The calendar queue can include a calendar with multiple buckets, each of
which can store events that fall within a particular slice of time. For example, the multiple
buckets can be sorted and arranged by comparing the target service time with a current time. If
the difference in time is in the first byte, then the request can be stored in a bucket in the first
256 buckets. The specific bucket can be chosen using the actual value of the target time for
executing the request. Furthermore, if the difference in time is in the second byte, then the
request can be stored in a bucket in the second 256 buckets.

[0024] When a consumer, e.g. via one of the worker threads A-C 321-323, tries to remove
the next request that is configured to be execute the earliest, the system can scan the calendar
for the first bucket that is not empty. If this bucket is not one of the first 256 buckets, then the
calendar queue can use a loop and promote method to move the requests to the buckets "one
level down" toward the first 256 buckets. Eventually, some requests can be promoted to one or
more buckets in the first 256 buckets, and the consumer can claim a request and proceed
accordingly.

[0025] The above promotion process can involve logarithmic cost, which may have an
impact on the overall performance of the system. Additionally, there can be other designs for the
calendar queue, the performance of which may be limited to a choice between “O(1) add,
O(logN) delete_min,” and “O(logN) add, O(1) delete_min.”

[0026] Figure 4 shows an illustration of supporting a non-blocking queue in a middleware
machine environment. As shown in Figure 4, a plurality of consumers, e.g. consumers A-B 411-
412, can concurrently access a priority queue 401 in a middleware machine environment 400.
The priority queue 401 can be implemented as a non-blocking queue and can be accessed via a
request manager 402.

[0027] The request manager 402, which manages a thread pool 403, can have a separate
logic for associating different threads with different requests. For example, the request manager

402 can serialize all thread pool method calls by wrapping the calls to the priority queue 401 in a

-4-

10

15

20

25

30

35

40

WO 2014/133595 PCT/US2013/067108

synchronized statement, or a synchronized block 410, using a lock mechanism.
[0028] Thus, the operations on the priority queue 401 may be limited by the single-threaded

design since the serialization is done outside the non-blocking priority queue 401.

Concurrent Priority Queue

[0029] Figure 5 shows an illustration of supporting a concurrent priority queue in
accordance with various embodiments of the invention. As shown in Figure 5, a plurality of
consumers, e.g. consumer A-C 511-513 can concurrently access a concurrent priority queue
501 in a middleware machine environment 500.

[0030] The concurrent priority queue 501 can include a calendar, e.g. a calendar ring 502,
which is capable of prioritizing and storing incoming requests. The calendar ring 502, the size of
which is limited, can be configured to store requests that have a target response time within a
preconfigured time limit. Within the calendar ring 502, a request can be stored, or placed,
directly in the ring buffer at a position that matches Quality of Service (QoS) of the request, e.g.
the target service time.

[0031] Thus, the system can achieve a much cheaper lookup for requests without changing
the memory footprint of a calendar queue. Furthermore, the system can reduce the logarithmic
complexity of the delete_min operation of the calendar queue to mostly a linear cache efficient
search, while keeping the adding of elements to the calendar queue as O(1) operations.
[0032] Additionally, a request with a target service time higher than the preconfigured time
limit can be added to a list of outliers, e.g. the outlier list 504. Since the scheduling of these
requests may not be time critical, the system permits the slower addition to a sorted list of
outliers 504. Furthermore, the concurrent priority queue 501 can use a sequencer, e.g.
outliers_seq, to enforce a first-in-first-out (FIFO) order for the outlier list with the same QoS.
[0033] For example, the calendar ring 502 can be configured to store requests with a target
response time (or QoS) below 2 seconds, since the requests with the QoS higher than 2
seconds can be considered rare. Furthermore, the requests with the QoS below 2 seconds can
be placed in the calendar ring 502 that matches QoS, while the requests with the QoS higher
than 2 seconds can be placed into the list of outliers 504.

[0034] Unlike the calendar queue as shown in Figure 4, the request manager 510 does not
need to put every call to the calendar queue 501 in a synchronized statement. The synchronized
block 506, which supports continuation-passing 507, can be implemented within the scope of
the concurrent priority queue 501. The consumers, e.g. consumers A-C 511-513, may not need
to access the thread pool 520 from outside the concurrent priority queue 501.

[0035] Using continuation-passing, the system can transform the calendar queue 501 from
non-blocking to blocking. The continuation-passing 507 can enable the consumers A-C 511-513

to manage the idle workers, or Threads 530, in the thread pool 520, so that the threads 530,

-5-

10

15

20

25

30

35

40

WO 2014/133595 PCT/US2013/067108

which may be waiting in the thread pool 520, can be reused.

[0036] Additionally, the concurrent priority queue 501 can include a sequencer 503 that
enables the concurrent priority queue 501 to detect contention and can use a fast lane 505 to
support cooperative concurrency. Thus, the concurrent priority queue 501 can be aware of and
handle the contention properly, without a need for the locks to expose knowledge about

contention.

Maintain FIFO for the Outlier List

[0037] Figure 6 shows an illustration of guaranteeing a first-in-first-out (FIFO) order for the
outlier list in accordance with various embodiments of the invention. As shown in Figure 6, a
priority gueue 601 in a middleware machine environment 600 can include a calendar ring 602
and an outlier list 603.

[0038] A plurality of callers, e.g. deserializers A-B 611-612 on different threads, may try to
access the priority queue 601 concurrently. The priority queue 601 can use a sequencer 604,
which is based on a ticket mechanism, to guarantee the first-in-first-out (FIFO) order for the
outlier list 603.

[0039] For example, before a caller, e.g. deserializer A 611, is allowed to add a request A
621 into the outlier list 603, the deserializer A 611 can first send a message to the sequencer
604 requesting a ticket. The sequencer 604 can issue a ticket, e.g. ticket A 631, to the
deserializer A 611 if there is no contention.

[0040] Furthermore, another caller, e.g. deserializer B 612, may be trying to add another
request, e.g. request B 622, into the outlier list 603. The sequencer 604 may receive another
request for a ticket from the deserializer B 612. Since, at this time, the deserializer A 611 is
adding the request A 621 into the outlier list 603, the sequencer 604 can block the deserializer B
612.

[0041] After the deserializer A 611 finishes adding the request A 621 into the outlier list 603,
the deserializer A 611 can advance the sequencer 604. Then, the sequencer 604 can issue a
ticket, e.g. ticket B 632, to the deserializer B 612, which allows the deserializer B 612 to add the
request B 622 into the outlier list 603 after the request A 621.

[0042] Figure 7 illustrates an exemplary interactive chart for adding multiple requests into
an outlier list in a concurrent priority queue in accordance with an embodiment of the invention.
As shown in Figure 7, a sequencer 710 can coordinate multiple callers or threads, e.g.
deserializers A-B 711-722, which may try to access a priority queue concurrently.

[0043] At step 701, the deserializer A 711 can try to obtain a ticket from the sequencer 710.
Then, at step 702, the sequencer 710 can check with the ticket mechanism. If this succeeds,
then there is no other caller that is trying to access the priority queue. Otherwise, the

deserializer A 711 may be blocked until someone releases it.

-6-

10

15

20

25

30

35

40

WO 2014/133595 PCT/US2013/067108

[0044] Then, at step 703, another caller, the deserializer B 712, can successfully add a
request into the outlier list, while the deserializer A 711 is blocked. At step 704, the deserializer
B can try to advance the sequencer 710.

[0045] At step 705, after the sequencer 710 receives the message to advance, the
sequencer 710 can create and issue a ticket to the deserializer A 711, which is waiting.
Consequently, at step 706, the deserializer A 711 receives the ticket, and, at step 707, the
deserializer A 711 can proceed to add another request into the outlier list.

[0046] Thus, using the sequencer 710, the FIFO order of the outlier list can be preserved

without a need for implementing a synchronization or lock mechanism.

Detect and Handle Contention among Different Consumers

[0047] Figure 8 shows an illustration of detecting contention among different consumers of
a concurrent priority qgueue in accordance with various embodiments of the invention. As shown
in Figure 8, different consumers, e.g. consumers A-B 811-812, can concurrently access a
priority queue 801 in the middleware machine environment 800. The priority queue 801 can
include a calendar ring 802, an outlier list 803, and a fast lane 804.

[0048] Each consumer can take advantage of a list of stolen requests to further reduce
concurrency. For example, consumer A 811 can use a list of stolen requests 807, which can
appear as a local list to the consumer A 811. Additionally, each of the consumers A-B 811-812
can send a message to a sequencer 805, requesting for a ticket before it is allowed for
accessing the priority queue 801.

[0049] The sequencer 805 can maintain a reader count 806, which is the current count of
the total number of readers that have requested for a ticket from the sequencer 805. The
sequencer 805 can increase the reader count 806 every time when it receives a ticket request.
Furthermore, this reader count 806 can be used to detect contention.

[0050] For example, consumer A 811 can obtain a ticket, e.g. ticket A 831, from the
sequencer 805, before it is allowed for accessing the priority queue 801. Then, another
consumer B 812 can send a request for a ticket, e.g. ticket B 832, to the sequencer 805. The
sequencer 805 can increase the reader count 806 and block the consumer B 812 until
consumer A 811 finishes its operation.

[0051] On the other hand, consumer A 811 can detect a contention from consumer B 812,
when it detects that the current reader count 806, t, at the sequencer 805 exceeds the ticket
number that it holds (t>ticket number). Then, the consumer A 811 can reduce the contention by
placing a request into the fast lane 804 and allowing it to be consumed by consumer B 812,
which can be referred as a cooperative concurrency strategy.

[0052] Thus, using the sequencer 805, the priority queue can be optimized for handling

contention among multiple consumers by allowing consumers to access the fast lane 804 and

-7-

10

15

20

25

30

35

40

WO 2014/133595 PCT/US2013/067108

the list of stolen requests 807 in addition to the calendar ring 802, without a need for a lock or
synchronization mechanism.

[0053] Figure 9 is an exemplary interactive chart for illustrating interaction between a victim
and a contender when a contention is detected in accordance with an embodiment of the
invention. As shown in Figure 9, a sequencer 920 can be used to detect and handle contentions
among different consumers of a concurrent priority queue, e.g. a victim 922 and a contender
921.

[0054] At step 901, the contender 921 can send a message to the sequencer 920 indicating
that it is waiting for a ticket. Since the victim 922 is currently accessing the priority queue, at
step 902, the sequencer 920 can block the contender 921 and increase the reader count,
readers.

[0055] At steps 903-905, the victim 922 can pick up a request from the concurrent priority
gueue, and check with the sequencer 920 for the current readers. (The steps 903-904 can also
be referred to as a non-temporal transition 913, which will be discussed in a later section.)
[0056] Then, at step 906, the victim 922 can compare the obtained reader count, t, with the
ticket number, ticket number, that it holds. Since the sequencer 920 have already increased the
reader count, the victim 922 can detect the contention when it finds out t > ticket number.
[0057] Subsequently, at steps 907-908, the victim 922 can place the request into the fast
lane and update the request count, fastLane _w, in the fast lane, before the victim 922 tries to
advance the reader sequencer, at step 909. (The steps 907-908 can also be referred to as a
non-temporal transition 914, which will be discussed in a later section.)

[0058] After receiving the message from the victim 922 to advance the reader sequencer, at
step 910, the sequencer 920 can proceed to issue a ticket to the contender 921, which releases
the the contender 921.

[0059] Eventually, at step 911, the contender 921 can receive the ticket and, at step 912,
the contender 921 can proceed to claim a request from the fast lane.

[0060] Figure 10 is an exemplary interactive chart for illustrating interaction between a
victim and a contender when no contention is detected in accordance with an embodiment of
the invention. As shown in Figure 10, a victim 1022 may not always be able to detect contention
from a contender 1021, due to the concurrent nature of accessing the priority queue.

[0061] At steps 1001-1003, the victim 1022 can pick up a request from the concurrent
priority queue, and the victim 1022 can check with the sequencer 1020 for the current reader
count, readers. (The steps 1001-1002 can also be referred to as a non-temporal transition 1011,
which will be discussed in a later section.)

[0062] Furthermore, at step 1004, the sequencer 1020 may receive a request for a ticket
from the contender 1021, and, at step 1005, the sequencer 1020 can increase the reader count,

readers.

10

15

20

25

30

35

40

WO 2014/133595 PCT/US2013/067108

[0063] At step 1006, the victim 1022 may not be able to detect the contention from a
contender 1021, since the sequencer 1020 increased the reader count after the contender 1021
returned the current readers to the victim 1022.

[0064] At step 1007, the victim 1022 can claim the request and advance the the reader
sequencer, which in turn, at step 1008, can issue a ticket to the contender 1021.

[0065] Then, at step 1009, the contender 1021 can receive the ticket and, at step 1010, the
contender 1021 can proceed to claim a request from the priority queue, e.g. from the fast lane.
[0066] Figure 11 illustrates an exemplary flow chart for supporting cooperative concurrency
in a priority queue in accordance with an embodiment of the invention. As shown in Figure 11, at
step 1101, the system allows a plurality of threads to interact with the concurrent priority queue.
Then, at step 1102, the system can use a sequencer to detect a plurality threads that contend
for one or more requests in the priority queue. Furthermore, at step 1103, the system can

reduce the contention among the plurality threads in the priority queue.

Temporal and Non-temporal Transitions

[0067] In accordance with an embodiment of the invention, a concurrent programming
model can support different kinds of transitions: such as temporal transitions and non-temporal
transitions.

[0068] The non-temporal transition steps, which include the usual program order steps, can
be freely reordered by the compiler and processor. For example, Figure 9 includes non-temporal
transition steps 913 and 914, and Figure 10 includes non-temporal transition step 1011. Within
each of these non-temporal transition steps, it can be ensured that reordering does not break
the logic intended by program order.

[0069] On the other hand, there are restrictions on reordering for the temporal transitions,
which may also appear in program order. The temporal transitions can include deliberate design
choices in concurrent algorithms, and the temporal transitions can be implemented as compiler
and processor barriers. For example, a temporal transition in delete_min can indicate that any
data loads, e.g. reading fastLane_w, cannot go ahead of data loads, e.g. the load of fastLane_r.
[0070] The use of temporal transitions and non-temporal transitions allows the caller to
collect information about the progress of other parts of the concurrent algorithm in order to make
consistent mutation of the states.

[0071] In the example as shown in Figure 9, after the victim 922 detects a contender at step
906, the readers can change when more contenders arrives. Even though the victim 922 may
not know the exact value of readers, it remains true that the reader count may only increases.
Thus, it is safe to place the request in the fast lane ring.

[0072] On the other hand, in the example as shown in Figure 10, after the victim 1022

10

15

20

25

30

35

40

WO 2014/133595 PCT/US2013/067108

determines that there is no contender (readers == ticket number) at step 1006, the true value of
readers can actually be higher than what is returned previously, since the contender 1021
arrives. It can be assumed that such occurrence is rare, and the cost for determining the exact
value of readers is higher than the gain from knowing it. Additionally, the cost of having a wrong
guess here can be considered low, since the victim 1022 proceeds almost immediately to
advance the reader sequencer at step 1007, which can unblock any contenders fairly quickly.
[0073] Furthermore, in the example as shown in Figure 8, the adding of a request, e.g.
request A 821, into the fast lane 804 by consumer A 811 can be implemented as non-temporal
transitions, while the claiming of the request A 821 from the fast lane 804 by consumer B 812
can be implemented as temporal transitions.

[0074] In this example, the contender, consumer B 812, may observe the value of
fastLane_w before the requests are actually stored to the fast lane ring 804. Here, only one
contender is allowed to access the fast lane 804, after the victim, consumer A 811, advances
the readers sequencer. It follows that there can be no more contenders accessing the fast lane
804 than the number of requests that can be observed.

[0075] Thus, even though the contenders 811 may observe that the request count for the
fast lane 804, fastLane_w, is ahead of the actual filled part of the fast lane 804, the contenders
can only access the values using an index, fastLane_r, which is updated only once by each
contender. In other words, the victim, consumer A 811, can control the accessibility of requests
in fast lane 804 by controlling the maximum number of contenders that may be released, since
the value of fastLane_r can reach fastLane_w, only when enough contenders are released by
the victim 812.

[0076] In some embodiments, a computer program for implementing one of the above-
mentioned methods is provided. In accordance with an embodiment of the invention, the
computer program causes a system to perform the steps comprising: allowing a plurality of
threads to interact with the concurrent priority queue; detecting, via a sequencer, a plurality of
threads that contend for one or more requests in the priority queue, reducing, via the priority
queue, the contention among the plurality of threads.

[0077] In one embodiment, there is provided for a system for supporting a concurrent
priority gueue. The system comprises means for allowing a plurality of threads to interact with
the concurrent priority queue, means for detecting, via a sequencer, a plurality of threads that
contend for one or more requests in the priority queue, and means for reducing, via the priority
queue, the contention among the plurality of threads.

[0078] In one embodiment, the system further comprises means for containing a calendar
ring in the priority queue, wherein the calendar ring operates to store various requests with a
target response time less than a pre-configured quality of service (QoS).

[0079] In one embodiment, the system further comprises means for specifying the pre-

-10-

10

15

20

25

30

35

40

WO 2014/133595 PCT/US2013/067108

configured quality of service (QoS) to be about two seconds.

[0080] In one embodiment, the system further comprises means for using a bit map updated
in synchronization with the calendar ring for faster scanning.

[0081] In one embodiment, the system further comprises means for Associating, with the
priority queue, a list of stolen requests that can be used to reduce contention on the calendar
ring when workload is intensive, wherein the list of stolen requests contains one or more
requests that land on a same calendar entry.

[0082] In one embodiment, the system further comprises means for containing a fast lane in
the priority queue that can be used to support cooperative concurrency.

[0083] In one embodiment, the system further comprises means for using, via the
sequencer, a ticket mechanism that can order the plurality of threads.

[0084] In one embodiment, the system further comprises means for keeping, via the ticket
mechanism, a reader count that is increased everytime when a consumer try to access the
priority queue.

[0085] In one embodiment, the system further comprises means for issuing, via the
sequencer, a ticket to a contending thread, wherein the ticket allows the contending thread to
access the priority queue.

[0086] The present invention may be conveniently implemented using one or more
conventional general purpose or specialized digital computer, computing device, machine, or
microprocessor, including one or more processors, memory and/or computer readable storage
media programmed according to the teachings of the present disclosure. Appropriate software
coding can readily be prepared by skilled programmers based on the teachings of the present
disclosure, as will be apparent to those skilled in the software art.

[0087] In some embodiments, the present invention includes a computer program product
which is a storage medium or computer readable medium (media) having instructions stored
thereon/in which can be used to program a computer to perform any of the processes of the
present invention. The storage medium can include, but is not limited to, any type of disk
including floppy disks, optical discs, DVD, CD-ROMs, microdrive, and magneto-optical disks,
ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMSs, flash memory devices, magnetic or
optical cards, nanosystems (including molecular memory ICs), or any type of media or device
suitable for storing instructions and/or data.

[0088] The foregoing description of the present invention has been provided for the
purposes of illustration and description. It is not intended to be exhaustive or to limit the
invention to the precise forms disclosed. Many modifications and variations will be apparent to
the practitioner skilled in the art. The embodiments were chosen and described in order to best
explain the principles of the invention and its practical application, thereby enabling others

skilled in the art to understand the invention for various embodiments and with various

-11-

WO 2014/133595 PCT/US2013/067108

5 modifications that are suited to the particular use contemplated. Itis intended that the scope of

the invention be defined by the following claims and their equivalence.

-12-

10

15

20

25

30

35

40

WO 2014/133595 PCT/US2013/067108

Claims:

What is claimed is:

1. A system for supporting a concurrent priority queue, comprising:

one or more Microprocessors;

a priority queue that allows a plurality of threads to interact with the priority queue; and

a sequencer, running on the one or more microprocessors, wherein the sequencer
operates to detect a plurality of threads that contend for one or more requests in the priority
queue, and

wherein the priority queue operates to reduce the contention among the plurality of
threads.

2. The system according to Claim 1, wherein:
the priority queue contains a calendar ring, wherein the calendar ring operates to store

various requests with a target response time less than a pre-configured quality of service (Qo0S).

3. The system according to Claim 2, wherein:

the pre-configured quality of service (QoS) is specified to be about two seconds.

4. The system according to Claim 2 or 3, wherein:

a bit map updated in synchronization with the calendar ring is used for faster scanning.

5. The system according to any of Claims 2 to 4, wherein:
the priority queue contains a list of stolen requests that can be used to reduce contention
on the calendar ring when workload is intensive, wherein the list of stolen requests contains one

or more requests that land on a same calendar entry.

6. The system according to any of Claims 2 to 5, wherein:

the priority queue contains a fast lane that is used to support cooperative concurrency.

7. The system according to any preceding Claim, wherein:

the sequencer uses a ticket mechanism that can order the plurality of threads.

8. The system according to Claim 7, wherein:
the ticket mechanism keeps a reader count that is increased every time when a

consumer tries to access the priority queue.

-13-

10

15

20

25

30

35

40

WO 2014/133595 PCT/US2013/067108

9. The system according to Claim 7 or 8, wherein:
the sequencer operates to issue a ticket to a contending thread, wherein the ticket allows

the contending thread to access the priority queue.

10. The system according to any preceding Claim, wherein:
the sequencer operates to preserve a first-in-first-out (FIFO) order of a outlier list in the

priority queue.

1. A method for supporting a concurrent priority queue, comprising:

allowing a plurality of threads to interact with the concurrent priority queue;

detecting, via a sequencer, a plurality of threads that contend for one or more requests in
the priority queue,

reducing, via the priority queue, the contention among the plurality of threads.

12. The method according to Claim 11, further comprising:

containing a calendar ring in the priority queue, wherein the calendar ring operates to
store various requests with a target response time less than a pre-configured quality of service
(QoS).

13. The method according to Claim 12, further comprising:

specifying the pre-configured quality of service (QoS) to be about two seconds.

14. The method according to Claim 12 or 13, further comprising:

using a bit map updated in synchronization with the calendar ring for faster scanning.

15. The method according to any of Claims 12 to 14, further comprising:
associating, with the priority queue, a list of stolen requests that can be used to reduce
contention on the calendar ring when workload is intensive, wherein the list of stolen requests

contains one or more requests that land on a same calendar entry.
16. The method according to any of Claims 12 to 15, further comprising:
containing a fast lane in the priority queue that is used to support cooperative

concurrency.

17. The method according to any of Claims 11 to 16, further comprising:

using, via the sequencer, a ticket mechanism that can order the plurality of threads.

-14-

10

15

20

WO 2014/133595 PCT/US2013/067108

18. The method according to Claim 17, further comprising:
keeping, via the ticket mechanism, a reader count that is increased every time when a

consumer tries to access the priority queue.

19. The method according to Claim 17 or 18, further comprising:
issuing, via the sequencer, a ticket to a contending thread, wherein the ticket allows the

contending thread to access the priority queue.

20. A computer program comprising machine-readable instructions that when executed

cause a system to perform the method according to any of Claims 11 to 19.

21. A computer program product comprising a machine readable storage medium storing the

computer program of claim 20.

22. A non-transitory machine readable storage medium having instructions stored thereon
that when executed cause a system to perform the steps comprising:

allowing a plurality of threads to interact with the concurrent priority queue;

detecting, via a sequencer, a plurality of threads that contend for one or more requests in
the priority queue,

reducing, via the priority queue, the contention among the plurality of threads.

-15-

PCT/US2013/067108

WO 2014/133595

111

¥01 Jusuodwon

Moey sulyoey a1ema|ppIN

0\

L 34N9OI4

001 SSPON aJempleH sulyoel a1ems|ppIA

(INA @101 "B'9)
811 sulyoe [enuiA

(xnui -6-9)
z21 (S/0) weysAg BuesedO

(xpooyr 68)
0z S|00]J9AeT uolezienuiA

0¥l (sousiayo) "6°9) puo ejeg

vl
8o AIIOY

(oed uoneibayu| oibotexg "H9)
051 Jusuodwos uonelbsiul sulyoey S1ems|ppi

(INA @101 "B'9)
Ol | sulyoe [enuiA

(xnui -6-9)
021 (S/0) waysAg Bunesedo

(xpooyr -68)
¥Z1 Joke uonezienuip

8zl (S1M "B 9) Janiag uoneslddy

ocl 1295 cel
AUIFPHO ar3 BIMSS

801 JUSWUOIIAUT 81em)os sulyoe|y SIema|ppIN

2ol
we)sAg
auIyoe
SJeM3|PPIN

\\\\\s\\

G \\\\\\\\\

\\\\\\

\N\

PCT/US2013/067108

WO 2014/133595

2/11

w
891 [090j01d 280
10811 S}19%00S Na m
0Z1 1odsjoH/ o0

&
¢/l 3100 STIM @
= w

[¢2)
(o} o
51 3
V.1 JBUlejuo) 19|AIeg m. ®
O —
N (@]
o E

D

9.1 Jo|idwood 4sr

€91 Jaxn|py

¢ 34N9iI4

Y9l SHOMISN puegiulju]

O 291 Jaxn|py

19| JoAIBd9Y/Iepuss

081
sainjes

JUSWUOIIAUT
alem)osg
sulyoe

alema|ppIN

w
891 1000101 280
10811 S}19%00S Na m
0Z1 1odsjoH/ o0

&
¢/l 3100 STIM @
= w

[¢2)
(o} o
51 3
V.1 JBUlejuo) 19|AIeg m. ®
O —
N (@]
o E

D

9.1 Jo|idwood 4sr

09| JoAlooay/Iepusg

PCT/US2013/067108

WO 2014/133595

3/11

€ J4NSOI4
(HAN
0
pesiyl IS)OoM
(Quiw~sy19p
10€
anan® Ajuoud
FAAS _
g Ouiw s)8j9p 0z¢e
peaiyl Jo)OA sjsanbay
Ouiw s)8j9p
[
Y
pesiyl IS)OoM

o%L

4%

g pesiyl
Buizijessag

0lLe
oujel]
}JOMIBN
Buiwoou|

o%l

LLE

V pesiyL
Buizijessag

PCT/US2013/067108

WO 2014/133595

4/11

454

4
Jswnsuo)

vy 34N9Id4

€0
jood pealyL

<0y
Jbeuely 1senbay

Ly

v
Jswnsuo)

LO¥
anan® Ajuoud
(Bunjoolg-uoN)

r47
sjsenbay

oLy
300|g POZIUCIYDUAS

<

PCT/US2013/067108

WO 2014/133595

5/11

cLs

4
Jswnsuo)

S 34NOI4

0LS
Jebeuey

1senbay

’ 208 N

‘. mc_wwma-co:m:c:coo\\w

Z0gG Bury Jepusje)

¥0§ G0S

187 J81NO aueT jsed

\

£0G Joousnbag

LOG enanp) Alliold Jus1Inouo))

0gs
spesyl

0zs
jood pealyL

PCT/US2013/067108

WO 2014/133595

6/11

09
Jaousnbag

Wy,

-I
' b
-
-
-
[}
L}
[}

-

-

-

-

9 34N9I4

Zl9
g lezileussaq

2€9 ’

g1l
€09 1817 J8IpnO
209
ﬁ Bury Jepusjen
\/ 229
ﬁww g1senbay

-~ v 1sanbay 109

1€9 anan® Ajuoud

vVisydlL .

119
V Jozijelssag

PCT/US2013/067108

WO 2014/133595

711

70/
Jaousanbes

8] 8oUBAPY

4 34N9I4

L0L
sl
Jaipno sy} ul 3senbay
puo2SSs € ppyY

G0.
1921} B anss|

€0.
181l Ja1jino ayy
ul1senbal jsil e ppy

Jazijeussaq

904
190N B 8AI909Y

c0.
wisiueyosw

19%01 B Y1 %08yD

O0LL
Jaoduanbag

102
19301} B Joj JIepp

LLL

Y
Jazijeussaq

PCT/US2013/067108

WO 2014/133595

8/11

\.

G08
Jaousnbag

JONOLL 10} HeAA

Juonuauon

-

~
S

ze8
g 1911

8 F4N9OId

1€8 \

v 1senbay

¥08
sue jse4 / €08

187 J81NO

128

208
/ Bury Jepusjen

108
anan® Ajuoud

VISXoLL

o~

A Y
’

-
L7277,

LN

,
’
|
\
A ’

""\\

208 sisanbay us(o]S JO 1SIT

118V Jawnsuo)

P U T TN
L b

-

\

PCT/US2013/067108

WO 2014/133595

9/11

606

Jaousanbes
Japeal ay) 9oUeApY

6 34N9OI4

Zl6
sueT i1se4 ay)
woJj1senbay e wien

806
M ouepse) ayepdn

106
aue| 1sed ay)
ol 1senbal e soe|d

16 Uolisuel) [ejodwa)-UoN

906

(J8quinu 19x01<1)
Japusjuo) e 10818

€06

1s8anbal e dn yoid

J

¥06
(s1opeal=})
siapeal Jualind ay} 199

€16 Uolisuel) [ejodwa)-UoN

¢C6
WIOIA

0L6
1921} B anss|

+

L16
1900 B 9AI9909Y

G06
slopeal uinjey

c06
slopeal asealou|

-

0¢6
Jaoduanbag

106
19%01) € 10} Jlepn

+

16
Japusjuo)n

PCT/US2013/067108

WO 2014/133595

10/11

010l
ananb Ajioud ay) wody

1senbal e wiep o) A1

8001
1921} B anss|

q

6001
1900 B 9AI9909Y

GoolL
slopeal asealou|

¥001
19%01) € 10} Jlepn

€001
slopeal uinjey

0L 34N9Id

_

_

_

_

|

L2001
Jaousanbes >
Japeal ay} adueApy
9001
(Jaguinu 19x01==1)
Japuajuod oN
- == H IIIIIIII ™~
_ _
_ 2001 _
1001 (sispeal=}) o

_ 1s8anbal e dn yoid sJspeal I
| us1Ino 8y) 199 |
_ _
L L 10} uoilisued} [eljodwal}-UON)

220l
WIIA

020l
Jaoduanbag

120l
Japusjuo)n

PCT/US2013/067108

WO 2014/133595

11/11

LL 34NOI4

mo:\/\

speaiy) Aljelnid syi Buowe uonusjuoo ay) ‘ensanb Aold sy) ein ‘Buionpay

coLl

ananb Aliold ayj ui sjsenbal
8JOW JO BUO JO} pUSU0D Jey} spealy} Alfelnid e ‘Jeouanbas e eia ‘Buijosjag

L0l

snanb Ajoud WauNouo2 sy} Yim 1oeisjul 0] spealy Jo Aljelnid e Buimoly

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/067108

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/52 GO6F9/54
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

PACHECO GARY ADAM [CA])

24 May 2007 (2007-05-24)
paragraphs [0005] - [0008]
paragraphs [0018] - [0057]
figures 1-8

paragraphs [0005] - [0009]
paragraphs [0022] - [0048]
figures 1-9

paragraphs [0002] - [0008]
paragraphs [0016] - [0031]
figures 1-4

X US 2007/118601 Al (PACHECO GARY A [CA]

X US 2005/283577 Al (SIVARAM RAJEEV [US] ET
AL) 22 December 2005 (2005-12-22)

A US 2012/158684 Al (LOWENSTEIN RAFAEL [IL]
ET AL) 21 June 2012 (2012-06-21)

1-22

1-22

1-22

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

27 February 2014

Date of mailing of the international search report

14/03/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Noll, Joachim

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/067108

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

19 January 2006 (2006-01-19)
paragraphs [0003] - [0009]
paragraphs [0014] - [0045]
figures 1-3

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2011/153992 Al (SRINIVAS SURESH [US] ET 1-22
AL) 23 June 2011 (2011-06-23)
paragraphs [0013] - [0044]
figures 1-10
A US 2006/015700 Al (BURKA PETER W [CA]) 1-22

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/067108
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2007118601 Al 24-05-2007 US 2007118601 Al 24-05-2007
WO 2007062510 Al 07-06-2007
US 2005283577 Al 22-12-2005 (N 1713151 A 28-12-2005
W 1391818 B 01-04-2013
US 2005283577 Al 22-12-2005

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - wo-search-report
	Page 29 - wo-search-report
	Page 30 - wo-search-report

