woO 2009/082384 A1 |00 00 OO0 0 0O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
2 July 2009 (02.07.2009)

lﬂb A0 OO0

(10) International Publication Number

WO 2009/082384 Al

(51) International Patent Classification:
GO6Q 50/00 (2006.01) GO6Q 10/00 (2006.01)

(21) International Application Number:
PCT/US2007/088331

(22) International Filing Date:
20 December 2007 (20.12.2007)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant (for all designated States except US):
HEWLETT-PACKARD DEVELOPMENT COM-
PANY, L.P. [US/US]; 11445 Compaq Center Drive West,
Houston, TX 77070 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WILCOCK,
Lawrence [GB/GB]; Bristol Filton B1 (BUKO1) 1 M25,
Mail Stop HPLB, Filton Rd Stoke Gifford, Bristol Bristol
BS34 8QZ (GB). EDWARDS, Nigel [GB/GB]; Bristol
Filton B3 (BUKO03) 1 M138, Mail Stop M36, Filton
Rd. Stoke Gifford, Bristol Bristol BS34 8QZ (GB).

(74)

(81)

(34)

GRAUPNER, Sven [DE/US]J; 1501 Page Mill Rd., Palo
Alto, CA 94304-1100 (US). ROLIA, Jerome [CA/CA];
100 Herzberg Road, Kanata, Ontario K2K 2A6 (CA).
STEPHENSON, Bryan [US/US]; 1501 Page Mill Rd.,
Palo Alto, CA 94304-1100 (US).

Agents: HEWLETT-PACKARD COMPANY et al.; In-
tellectual Property Administration, Mail Stop 35, P.O. Box
272400, Fort Collins, CO 80527-2400 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: MODELLING COMPUTER BASED BUSINESS PROCESS AND SIMULATING OPERATION

FIG 1
INFRASTRUCTURE
MANAGEMENT
OPERATOR 200
A
MODELS
BUSINESS
MANAGEMENT » PROCESS2 | ——---
SYSTEM 210 220
BUSINESS .
¢! PROCESS 1
230
INITIAL
DESIGN i I
TOOLS
211 DESIGN OF
APPLICATION Y
[» COMPONENTS | | DESIGN OF
TO APPLICATION
IMPLEMENT COMPONENTS | ==--
DESIGN BP1 250 || 1O
CHANGE r — IMPLEMENT
TOOLS » BP2 240
213 Y Y 4 1
INFRA-
lép| STRUCTURE v o
DESIGN FOR
BPI 270 INFRA-
STRUCTURE
DESIGN FOR
« » BP2 260 | ——--
DEPLOYMENT
TOOLS 215
[T 280 ADAPTIVE CUSTOMERS
T INFRASTRUCTURE le—p| 290
MONITORING, INET [
MANAGEMNT
TOOLS . 217 F—-’ 283 MANAGEMENT | |* 7] EgN%LEL 200
INFRASTRUCTURE

(57) Abstract: Modelling a computer based business process having
a number of functional steps, involves providing software candidate
models (740) of the business process, each specifying the functional
steps (750), an arrangement of software application components (770)
for carrying out the functional steps, and a design of computing infra-
structure (780), for running the software application components, to
meet given non functional requirements, and suitable for automated
deployment. For each of the candidate models, operation of the busi-
ness process is simulated (730) according to the respective candidate
model and their simulated operation is evaluated against the non-func-
tional requirements. The simulation can help the search for a suitable
or optimum deployment to be more efficient and can lead to more ef-
ficient usage of shared resources.

WO 2009/082384 A1 |00 0T 00010000000 0

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, — as to applicant’s entitlement to apply for and be granted a
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), patent (Rule 4.17(ii))

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB,GR,HU, IE, IS, IT, LT, LU, LV, MC, MT,NL, PL, Published:

PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, — with international search report

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— as io the identity of the inventor (Rule 4.17(i))

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

1
MODELLING COMPUTER BASED BUSINESS PROCESS AND SIMULATING
OPERATION

Related applications

This application relates to copending US applications of even date titled “MODEL
BASED DEPLOYMENT OF COMPUTER BASED BUSINESS PROCESS ON
DEDICATED HARDWARE” (applicant reference number 200702144), titled
“VISUAL INTERFACE FOR SYSTEM FOR DEPLOYING COMPUTER BASED
PROCESS ON SHARED INFRASTRUCTURE” (applicant reference number
200702356), titled “MODELLING COMPUTER BASED BUSINESS PROCESS
FOR CUSTOMISATION AND DELIVERY” (applicant reference number
200702363), titled “SETTING UP DEVELOPMENT ENVIRONMENT FOR
COMPUTER BASED BUSINESS PROCESS” (applicant reference number
200702145), titled “AUTOMATED MODEL GENERATION FOR COMPUTER
BASED BUSINESS PROCESS”, (applicant reference number 200702600), and titled
“INCORPORATING DEVELOPMENT TOOLS IN SYSTEM FOR DEPLOYING
COMPUTER BASED PROCESS ON SHARED INFRASTRUCTURE”, (applicant
reference number 200702601), and previously filed US application. titled
“DERIVING GROUNDED MODEL OF BUSINESS PROCESS SUITABLE FOR
AUTOMATIC DEPLOYMENT” (serial number 11/741878) all of which arec hereby

incorporated by reference in their entirety.

Field of the Invention

The invention relates to methods of modelling a process such as a business process
having a number of computer implemented steps using software application
components, to enable automatic deployment on computing infrastructure, and to

corresponding systems and software.

Background

Physical IT (information technology) infrastructures are difficult to manage.
Changing the network configuration, adding a new machine or storage device are
typically complicated and error prone manual tasks. In most physical IT

infrastructure, resource utilization is very low: 15% is not an uncommon utilization

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

2
for a server, 5% for a desktop. To address this, modern computer infrastructures are
becoming increasingly (re)-configurable and more use is made of shared
infrastructure in the form of data centres provided by service providers.
Hewlett Packard's UDC (Utility Data Centre) is an example which has been applied
commercially and allows automatic reconfiguration of physical infrastructure:
processing machines such as servers, storage devices such as disks, and networks
coupling the parts. Reconfiguration can involve moving or starting software
applications, changing allocations of storage space, or changing allocation of
processing time to different processes for example. Another way of contributing more
reconfigurability, is by allowing many "virtual" computers to be hosted on a single
physical machine. The term “virtual” usually means the opposite of real or physical,
and is used where there is a level of indirection, or some mediation between the
resource user and the physical resource.
In addition some computing fabrics allow the underlying hardware to be reconfigured.
In once instance the fabric might be configured to provide a number of four-way
computers. In another instance it might be re-configured to provide four times as
many single processor computers.
It is extremely complex to model the full reconfigurability of the above. Models of
higher level entities need to be recursive in the sense of containing or referring to
lower level entities used or required to implement them (for example a virtual
machine VM, may operate faster or slower depending on what underlying
infrastructure is currently used to implement it (for example hardware partition nPAR
or virtual partition VPAR, as will be described in more detail below). This means a
model needs to expose the underlying configurability of the next generation computer
fabrics - an nPAR consists of a particular hardware partition. This makes the models
so complex that it becomes increasingly difficult for automated tools (and humans) to
understand and process the models, to enable design and management of: a) the
business process, b) the application and application configuration, and c) the
infrastructure and infrastructure configuration.
The need to model the full reconfigurability and recursive nature of a system is
exemplified in the DMTF's profile for "System Virtualization, Partitioning and
Clustering": http://www.dmtf.org/apps/org/workgroup/redundancy/

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

3

Another example of difficulties in modelling is WO2004090684 which relates to
modeling systems in order to perform processing functions. It says “The potentially
large number of components may render the approach impractical. For example, an IT
system with all of its hardware components, hosts, switches, routers, desktops,
operating systems, applications, business processes, etc. may include millions of
objects. It may be difficult to employ any manual or automated method to create a
monolithic model of such a large number of components and their relationships. This
problem is compounded by the typical dynamic nature of IT systems having frequent
adds/moves/changes. Secondly, there is no abstraction or hiding of details, to allow a
processing function to focus on the details of a particular set of relevant components
while hiding less relevant component details. Thirdly, it may be impractical to
perform any processing on the overall system because of the number of components
involved.”

There have been attempts to automatically and rapidly provide computing
mfrastructures: HP's Utility Data Center, HP Lab's SoftUDC, HP's Caveo and
Amazon's Elastic Compute Cloud (which can be seen at
http://www.amazon.com/gp/browse.html?node=201590011). All of these provide
computing infrastructures of one form or another, and some have been targeted at
testers and developers, e.g. HP's Utility Data Center.

Aris from IDS-Scheer is a known business process modelling platform having a
model repository containing information on the structure and intended behaviour of
the system. In particular, the business processes are modelled in detail. It is intended
to tie together all aspects of system implementation and documentation.

Aris UML designer is a component of the Aris platform, which combines
conventional business process modelling with software development to develop
business applications from process analysis to system design. Users access process
model data and UML content via a Web browser, thereby enabling processing and
change management within a multi-user environment. It can provide for creation and
communication of development documentation, and can link object-oriented design
and code generation (CASE tools). It does not model computing infrastructure of the

shared infrastructure in a datacentre.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

Summary of the Invention

An object is to provide improved apparatus or methods. In one aspect the invention
provides:

A method of modelling a computer based business process having a number of
functional steps, the method having the steps of:

providing a plurality of software candidate models of the business process, the models
each specifying the functional steps, specifying an arrangement of software
application components for carrying out the functional steps, and specifying a design
of computing infrastructure, for running the software application components, to meet
given non functional requirements, and suitable for automated deployment,

for each of the candidate models, simulating operation of the business process if
implemented according to the respective candidate model and

evaluating for each of the candidate models how well their operation meets the non-
functional requirements.

By evaluating the simulated operation of the candidate models, the search for a
suitable or optimum candidate can be shorter or more efficient than evaluating
operation of actual deployments on physical infrastructure. Furthermore, it can enable
evaluation of configurations which are not yet available to test in the physical
infrastructure. More effective searches for a better or best configuration of the
adaptive infrastructure can lead to more efficient usage of available resources for live
deployments, and hence lower costs. This is particularly useful for the common
situation where many business processes share the available computing resources.
Embodiments of the invention can have any additional features, without departing
from the scope of the claims, and some such additional features are set out in
dependent claims and in embodiments described below.

Another aspect provides software on a machine readable medium which when
executed carries out the above method.

Another aspect provides a system for modelling a computer based business process
having a number of functional steps, the system having:

a store arranged to store a plurality of software candidate models of the business
process, the models each specifying the functional steps, specifying an arrangement of
software application components for carrying out the functional steps, and specifying

a design of computing infrastructure, for running the software application

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

5
components, to meet given non functional requirements, and suitable for automated
deployment,
a simulator arranged to simulate, for each of the candidate models, operation of the
business process if deployed according to the respective candidate model and
an evaluation part coupled to the simulator for evaluating for each of the candidate

models how well their operation meets the non-functional requirements.

Other aspects can encompass corresponding steps by human operators using the
system, to enable direct infringement or inducing of direct infringement in cases
where the infringers system is partly or largely located remotely and outside the
jurisdiction covered by the patent, as is feasible with many such systems, yet the
human operator is using the system and gaining the benefit, from within the
jurisdiction. Other advantages will be apparent to those skilled in the art, particularly
over other prior art. Any of the additional features can be combined together, and
combined with any of the aspects, as would be apparent to those skilled in the art. The
embodiments are examples only, the scope is not limited by these examples, and

many other examples can be conceived within the scope of the claims.

Brief Description of the Figures

Specific embodiments of the invention will now be described, by way of example,
with reference to the accompanying Figures, in which:

Figure 1 shows a schematic view of an embodiment showing models, adaptive
infrastructure and a management system,

Figure 2 shows a schematic view of some operation steps by an operator and by the
management system, according to an embodiment,

Figure 3 shows a schematic view of some of the principal actions and models
according to an embodiment,

Figure 4 shows a schematic view of a sequence of steps from business process to
deployed model in the form of a model information flow, MIF, according to another
embodiment,

Figure 5 shows a sequence of steps and models according to another embodiment,

Figure 6 shows steps in deriving a grounded model according to an embodiment,

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

6
Figure 7 shows an arrangement of master and slave application servers for a
distributed design, according to an embodiment,
Figure 8 shows parts of a master application server for the embodiment of figure 7,
Figure 9 shows an arrangement of virtual entities on a server, for use in an
embodiment,
Figure 10 shows an example of a sales and distribution business process (SD)
Benchmark Dialog Steps and Transactions,
Figure 11 shows an example Custom Model Instance for SD Benchmark,
Figure 12 shows a class diagram for an Unbound Model Class,
Figure 13 shows an example of a template suitable for a decentralised SD example,
Figure 14 shows a Grounded Model instance for a decentralized SD,
Figure 15 shows another example of a template, suitable for a centralised secure SD
example,
Figure 16 shows an overview of an embodiment of a system,
Figure 17 shows another embodiment,
Figure 18 shows a system according to another embodiment,
Figures 19, 20, and 21 show method steps according to embodiments, and

Figures 22, 23 and 24 show systems according to further embodiments.

Description of Specific Embodiments

Definitions:

“non-functional requirements” can be regarded as how well the functional steps are
achieved, in terms such as performance, security properties, cost, and others. It is
explained in Wikipedia (http://en.wikipedia.org/wiki/Non-functional requirements)
for non-functional requirements as follows— “In systems engineering and
requirements engineering, non-functional requirements are requirements which
specify criteria that can be used to judge the operation of a system, rather than specific
behaviors. This should be contrasted with functional requirements that specify
specific behavior or functions. Typical non-functional requirements are reliability,
scalability, and cost. Non-functional requirements are often called the ilities of a
system. Other terms for non-functional requirements are "constraints", "quality

1 >

attributes” and "quality of service requirements".

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

7
Functional steps can encompass any type of function of the business process, for any
purpose, such as interacting with an operator receiving inputs, retrieving stored data,
processing data, passing data or commands to other entities, and so on, typically but
not necessarily, expressed in human readable form....
“Deployed” is intended to encompass a modelled business process for which the
computing infrastructure has been allocated and configured, and the software
application components have been installed and configured ready to become
operational. According to the context it can also encompass a business process which
has started running.
“suitable for automated deployment” can encompass models which provide machine
readable information to enable the infrastructure design to be deployed, and to enable
the software application components to be installed and configured by a deployment
service, either autonomously or with some human input guided by the deployment
service. '
“business process” is intended to encompass any process involving computer
implemented steps and optionally other steps such as human input or input from a
sensor or monitor for example, for any type of business purpose such as service
oriented applications, for sales and distribution, inventory control, control or
scheduling of manufacturing processes for example. It can also encompass any other
process involving computer implemented steps for non business applications such as
educational tools, entertainment applications, scientific applications, any type of
information processing including batch processing, grid computing, and so on. One or
more business process steps can be combined in sequences, loops, recursions and
branches to form a complete Business Process. Business process can also encompass
business administration processes such as CRM, sales support, inventory
management, budgeting, production scheduling and so on, and any other process for
commercial or scientific purposes such as modelling climate, modelling structures, or
modelling nuclear reactions.
“application components™ is intended to encompass any type of software element such
as modules, subroutines, code of any amount usable individually or in combinations
to implement the computer implemented steps of the business process. It can be data
or code that can be manipulated to deliver a business process step (BPStep) such as a

transaction or a database table. The Sales and Distribution (SD) product produced by

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

8
SAP is made up of a number of transactions each having a number of application
components for example.
“unbound model” is intended to encompass software specifying in any way, directly
or indirectly, at least the application components to be used for each of the computer
implemented steps of the business process, without a complete design of the
computing infrastructure, and may optionally be used to calculate infrastructure
resource demands of the business process, and may optionally be spread across or
consist of two or more sub-models.
“grounded model” is intended to encompass software specifying in any way, directly
or indirectly, at least a complete design of the computing infrastructure suitable for
automatic deployment of the business process. It can be a complete specification of a
computing infrastructure and the application components to be deployed on the
infrastructure.
“bound model” encompasses any model having a binding of the Grounded Model to
physical resources. The binding can be in the form of associations between
ComputerSystems, Disks, StorageSystems, Networks, NICS that are in the Grounded
Model to real physical parts that are available in the actual computing infrastructure.
“infrastructure design template” is intended to encompass software of any type which
determines design choices by indicating in any way at least some parts of the
computing infrastructure, and indicating predetermined relationships between the
parts. This will leave a limited number of options to be completed, to create a
grounded model. These templates can indicate an allowable range of choices or an
allowable range of changes for example. They can determine design choices by
having instructions for how to create the grounded model, or how to change an
existing grounded model.
“computing infrastructure” is intended to encompass any type of resource such as
hardware and software for processing, for storage such as disks or chip memory, and
for communications such as networking, and including for example servers, operating
systems, virtual entities, and management infrastructure such as monitors, for
monitoring hardware, software and applications. All of these can be “designed” in the
sense of configuring and/or allocating resources such as processing time or processor
hardware configuration or operating system configuration or disk space, and

instantiating software or links between the various resources for example. The

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

9
resources may or may not be shared between multiple business processes. The
configuring or allocating of resources can also encompass changing existing
configurations or allocations of resources. Computing infrastructure can encompass
all physical entities or all virtualized entities, or a mixture of virtualized entities,
physical entities for hosting the virtualized entities and physical entities for running
the software application components without a virtualized layer.
“parts of the computing infrastructure” is intended to encompass parts such as
servers, disks, networking hardware and software for example.
“server’ can mean a hardware processor for running application software such as
services available to external clients, or a software element forming a virtual server
able to be hosted by a hosting entity such as another server, and ultimately hosted by a
hardware processor.
“AlService” is an information service that users consume. It implements a business
process.
“Application Constraints Model” can mean arbitrary constraints on components in
the Customized Process, Application Packaging and Component Performance
Models. These constraints can be used by tools to generate additional models as the
MIF progresses from left to right.
“ApplicationExecutionComponent™ is for example a (worker) process, thread or
servlet that executes an Application component. An example would be a Dialog Work
Process, as provided by SAP.
“ApplicationExecutionService” means a service which can manage the execution of
ApplicationExecutionComponents such as Work Processes, servlets or data-base
processes. An example would be an Application Server as provided by SAP. Such an
application server includes the collection of dialog work processes and other
processes such as update and enqueue processes as shown in the diagram of the
master application server. (figure 8).
“Application Packaging Model” is any model which describes the internal structure of
the software: what products are needed and what modules are required from the
product, and is typically contained by an unbound model.
“Application Performance Model” means any model which has the purpose of
defining the resource demands, direct and indirect, for each Business process (BP)

step. It can be contained in the unbound model.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

10
“Component Performance Model” can mean any model containing the generic
performance characteristics for an Application Component. This can be used to derive
the Application Performance Model (which can be contained in the unbound model),
by using the specific Business process steps and data characteristics specified in the
Custom Model together with constraints specified in the Application Constraints
Model.
“Custom Model” means a customized general model of a business process to reflect
specific business requirements.
“Deployed Model” means a bound model with the binding information for the
management services running in the system.
“Candidate Grounded Model” can be an intermediate model that may be generated by
a tool as it transforms the Unbound Model into the Grounded Model.
“Grounded Component” can contain the installation and configuration information for
both Grounded Execution Components and Grounded Execution Services, as well as
information about policies and start/stop dependencies.
“Grounded Execution Component” can be a representation in the Grounded Model of
a (worker) process, thread or servlet that executes an Application Component.
“Grounded Execution Service” is a representation in the Grounded Model of the
entity that manages the execution of execution components such as Work Processes,
servlets or database processes.
“Infrastructure Capability Model” can be a catalogue of resources that can be
configured by the utility such as different computer types and devices such as
firewalls and load balancers.
MIF (Model Information Flow) is a collection of models used to manage a business

process through its entire lifecycle.

The present invention can be applied to many areas, the embodiments described in
detail can only cover some of those areas. It can encompass modeling dynamic or
static systems, such as enterprise management systems, networked information
technology systems, utility computing systems, systems for managing complex
systems such as telecommunications networks, cellular networks, electric power
grids, biological systems, medical systems, weather forecasting systems, financial

analysis systems, search engines, and so on. The details modelled will generally

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

11

depend on the use or purpose of the model. So a model of a computer system may
represent components such as servers, processors, memory, network links, disks, each
of which has associated attributes such as processor speed, storage capacity, disk
response time and so on. Relationships between components, such as containment,
connectivity, and so on can also be represented.

An object-oriented paradigm can be used, in which the system components are
modeled using objects, and relationships between components of the system are
modeled either as attributes of an object, or objects themselves. Other paradigms can
be used, in which the model focuses on what the system does rather than how it
operates, or describes how the system operates. A database paradigm may specify
entities and relationships. Formal languages for system modelling include text based
DMTF Common InformationModel (CIM), Varilog, NS, C++, C, SQL, or graphically

expressed based schemes.

Additional features

Some examples of additional features for dependent claims are as follows:

A model manager can be coupled to the simulator and the evaluation part, to select
one of the candidate models according to the evaluations and cause the selected
candidate model to be deployed on physical infrastructure. The model manager can be
arranged to select one or more of the candidate models for deployment under test
conditions, and measure how well the test deployments of the candidate models meet
the non functional requirements. The use of test deployments in addition to
simulations can help make up for inaccuracies in the simulation and so produce more
realistic evaluations.

The model manager can be arranged to choose one of the candidate models for a
deployment under live production conditions. Such a choice can be made either on the
basis of simulations or test deployments. The live production deployment means real
inputs rather than test inputs for example, and means the outputs or results are used
for their intended purpose, not merely for evaluation of the deployment.

The system can be arranged to deploy multiple different candidate models of the same
business process on the physical infrastructure simultaneously.

The model manager can be arranged to manage the models in the model store.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

12
The model manager can be ananged to adapt the models or generate one or more new
candidate models according to the evaluations of any of test deployments and
simulations of the candidate models. This feedback can help improve the search for an
optimum candidate model, and make the search more rapid.
The model manager can be arranged to generate new candidate models by using a
model template, and selecting values for a number of parameters to complete the new
candidate model. The use of a template can help reduce the number of options and
thus reduce the search space to more manageable levels.
The evaluation part can be arranged to evaluate any one or more of: throughput,
security, cost, latency and reliability.
The simulator can have a set of estimated performance parameters for parts of the
software and for parts of the infrastructure, the simulation comprising running the
candidate model using the estimated performance parameters. The need for estimated
parameters often arises because there are too many variables to enable more precision.
The model manager can be arranged to adapt the estimated performance parameters
according to the measurements of the test deployment. Such adaptation can improve
the quality of the simulations and so improve the efficiency and rapidity of future
searches for optimum candidate models.
Where the enterprise desires to deploy on dedicated hardware local to the enterprise,
yet have the benefits of management by a service provider, then this can add another
layer of complexity. Reference is made to above referenced copending application
number 200702144 for more details of examples of this. In these circumstances, a
quicker search for an optimum candidate model can become all the more important.
Setting up of a development environment can be facilitated by providing a
predetermined mapping of which tools are appropriate for a given development
purpose and given part of the model, or by including models of tools to be deployed
with the model. Reference is made to above referenced copending application
numbers 200702145, and 200702601 for more details of examples of this. A quicker
search for an optimum candidate model can become all the more valuable if such
setting up is easier.
Where a 3-D visual interface is provided with a game server to enable multiple
developers to work on the same model and see each others’ changes, developers can

navigate complex models more quickly. Reference is made to above referenced

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

13

copending application number 200702356 for more details of examples of this.
Combining this with a quicker search for an optimum candidate model can enable the
advantages of both to be enhanced.

Where an enterprise interface is provided to enable the enterprise to customise the non
functional requirements independently of each other, then the service provider may
need more development effort to meet the customised requirements. Reference is
made to above referenced copending application number 200702363 for more details
of examples of this. Combining this with a quicker search for an optimum candidate
model can enable the advantages of both to be enhanced.

Where annotations are inserted in the source code to assist in modelling or in
documentation, then documenting the history of changes, and generating a model can
be made easier. Reference is made to above referenced copending application number
200702600 for more details of examples of this. Combining this with a quicker search

for an optimum candidate model can enable the advantages of both to be enhanced.

Model based approach

A general aim of this model based approach is to enable development and
management to provide matched changes to three main layers: the functional steps of
the process, the applications used to implement the functional steps of the process,
and configuration of the computing infrastructure used by the applications. Such
changes are to be carried out automatically by use of appropriate software tools
interacting with models modelling the above mentioned parts. Until now there has
not been any attempt to link together tools that integrate business process, application
and infrastructure management through the entire system lifecycle.

Model-Based technologies to automatically design and manage Enterprise Systems —
see “Adaptive Infrastructure meets Adaptive Applications”, by Brand et al, published
as an external HP Labs Tech Report:
http://www.hpl.hp.com/techreports/2007/HPL-2007-138.html

and incorporated herein by reference, can provide the capability to automatically
design, deploy, modify, monitor, and manage a running System to implement a

business process, while minimizing the requirement for human involvement.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

14
A model-based approach for management of such complex computer based processes
will be described. Such models can have structured data models in CIM/UML to
model the following three layers:
o Infrastructure elements, such as physical machines, VMs, operating systems,
network links.
e Application elements, such as Databases, application servers.
e Business level elements, such as functional steps of business processes
running in the application servers.
A model is an organized collection of elements modelled in UML for example. A goal
of some embodiments is to use these data models for the automated on-demand

provision of enterprise applications following a Software as a service (SaaS)

paradigm.

Problem statement

The design of the hardware infrastructure and software landscape for large business
processes such as enterprise applications is an extremely complex task, requiring
human experts to design the software and hardware landscape. Once the enterprise
application has been deployed, there is an ongoing requirement to modify the
hardware and software landscape in response to changing workloads and
requirements. This manual design task is costly, time-consuming, error-prone, and
unresponsive to fast-changing workloads functional requirements, and non-functional
requirements. The embodiments describe mechanisms to automatically create an
optimised design for an enterprise application, monitor the running deployed system,
and dynamically modify the design to best meet the non-functional requirements.
There are two basic inputs to the design process:
- Specification of functional requirements. Typically, this is in the form of a set
of Business steps that the application is to support. These describe what the
system is intended to do from the perspective of end users. The specification
will specify the set of standard business steps required from a standard
catalogue, and any system-specific customisations of these steps. This
specification will determine the set of products and optional components that
must be included in the design of a suitable software landscape for the enterprise

application.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

15
- Specification of non-functional requirements. This defines the requirements
that the design must meet, such as performance, security, reliability, cost, and
maintainability. Examples of performance could include the total and concurrent
number of users to be supported, transaction throughput, or response times.
The design process involves the creation of a specification of the hardware and
software landscape of the enterprise application that will meet the functional and non-
functional requirements described above. This consists of:
* A sct of physical hardware resources, selected from an available pool. The
mfrastructure would consist of computers, memory, disks, networks, storage, and
other appliances such as firewalls.
- A virtual infrastructure to be deployed onto the physical resources, together with an
assigned mapping of virtual infrastructure to physical infrastructure. The virtual
infrastructure must be configured in such a way to best take advantage of the physical
infrastructure and support the requirements of the software running on it. For
example, the amount of virtual memory or priority assigned to a virtual machine.
- A selection of appropriately configured software components and services,
distributed across the virtual and physical infrastructure. The software must be
configured to meet the system specific functional requirements, such as
customisations of standard business processes. Additionally, the software must be
configured to best make use of the infrastructure it is deployed on, while meeting both
the functional and non-functional requirements. Configuration parameters could
include the level of threading in a database, the set of internal processes started in an
application server, or the amount of memory reserved for use by various internal
operations of an application server.
A design for the Enterprise application consists of:
- Selection of appropriate quantities and types of physical and virtual infrastructure
and software components
- Configuration parameters for the infrastructure and software components and
services.
The embodiments described below are concerned with an automated mechanism to
create an optimised design for an enterprise application by modelling the enterprise
application in order to simulate the effect of various design parameters, such that the

most appropriate selections and configurations can be made. A model manager in the

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

16
form of a Model-Based Design Service (MBDS) is responsible for the creation of a
set of models of the system, each with slightly different parameters for selection,
configuration, and evaluation possibilities. The design process can be simply regarded
as a search for and selection of the best model, usually in terms of finding the least
expensive model which meets the functional and non-functional requirements of the
system.

Figures 16- 21, embodiments of the invention.

Figure 16 shows an embodiment having a model store 720. A candidate model 740 of
a business process is stored there, and has a number of constituents. Functional steps
750 are shown, and non functional requirements 760, which could be stored external
to the model. A model of software entities 770 for implementing the functional steps,
and a model of computing infrastructure 780 for running the sofiware entities are
shown. A number of such candidate models, each for different implementations of the
same business process are shown. A simulator 730 is provided which takes estimated
performance parameters 715, and calculates behaviour and performance of each
model. The behaviour and performance can be compared to the non functional
requirements and an evaluation of how well each model meets these requirements can
be produced. This can be used by a model manager 790 to take appropriate action
such as amending the models or selecting which of the candidates to deploy under test
conditions or live production conditions for example. Deployed software 700 and a
deployed design of infrastructure 710 are shown.

Figure 19 shows some of the steps carried out by an embodiment such as the
embodiment of fig 16. A candidate model is generated in a preliminary step 870,
representing a deployment of a business process. At step 880, the simulator simulates
the operation of the model as if it were deployed. There are various ways of
implementing this step. Test inputs typically need to be generated. Performance
parameters for each software entity and the infrastructure used to run the software
according to the model, may be based on measurements or estimates. At step 890, the
simulated operation is evaluated against the non functional requirements of the
business process. This may involve evaluating simulated performance at the business
step level, or at other levels, depending on the non functional requirements. This is
made possible by the model having a representation of not only the software entities

but also the underlying computing infrastructure used to run the software.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

17
At step 897, further action may be taken depending on the outcome of the evaluation,
such as selecting which candidate model to deploy, or other action.
Figure 17 shows another embodiment. In this case, the model manager 790 is used to
manage test deployments. 820 is a test deployment of software entities and 830 is a
test deployment of computing infrastructure for use in running the software entities
820. Both are set up by the model manager based on a candidate model in the model
store. A number of different candidate models may be deployed in this way either
simultaneously or at different times. The model manager manages test inputs to the
test deployment, and receives measurements from appropriate monitoring points set
up in the software or the computing infrastructure. This enables the various test
deployments to be evaluated against the non functional requirements and enables the
model manager to make changes or generate new models based on the measurements,
to reach a better implementation.
Figure 18 shows another embodiment. In this case the model manager 790 is arranged
to alter performance parameters used by the simulator. Measurements of component
performance from test deployments are fed to the model manager. These can be from
software or infrastructure components or both. Measurements from outputs from test
deployments are also fed into the model manager. Performance inference is carried
out by part 860 in the model manager, to infer performance of components that cannot
be directly measured for example. This part could be implemented in the form of a
software module for example. A performance parameter estimation correction part
850, which again could be implemented as a software function, takes the measured
and inferred performance information and determines corrections to the estimates
used by the simulator. These corrections are then used to update the estimated
component performance parameters 840.
Figure 20 shows steps according to another embodiment. In this case, multiple
different candidate models representing different ways of deploying the same business
process are deployed at step 902. Test inputs are applied at step 922. Measurements
are made of the outputs and of selected components of these test deployments at step
932. These are used to evaluate the operation of the different ways, to see how well

they meet the non functional requirements of the business process, at step 942. At step

952, the results of the evaluation can be used to take appropriate action, such as for

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

18

example to select a candidate model, or generate a new one, on the basis of
simulations and test deployments.

Figure 21 shows another embodiment. In this case, a development process by an
operator or developer is shown to refine a grounded model using a template. More
details of examples of grounded models and templates will be discussed below with
reference to figure 1 onwards. A candidate model is generated at step 926. It is
deployed or its operation is simulated at step 986. Its performance is evaluated at step
996, and at step 998, the remaining parameters are adapted as allowed by the
template. This adaptation is fed back to step 926. Step 926 involves a number of sub
steps as follows. Step 936 shows choosing a general process model (GP) from a
catalogue by an operator. This is a high level model only. It is customized at step 946
to complete the required functional steps without non functional requirements. At
step 956 non-functional requirements are input by the operator. A template for the
design of the computing infrastructure is selected at step 966. This may be done by
the operator with automated guidance from the model manager which may assess the
options and show a ranking of the best options. The remaining parameters left open by
the template are then selected at step 976 by the operator again optionally with
automated guidance from the model manager showing a ranking of the best options.
The feedback from the evaluation of the last iteration can be added to this step 976, to

speed up the development process.

Figs 22-24, Embodiments of the invention

A schematic view of an embodiment of the invention, following a model-based
approach applied to a single enterprise application, is shown in figure 22.

This figure shows an example of a business process in the form of an enterprise
application A which can be seen as having 4 interconnected layers:

- Physical Infrastructure

- Virtual Infrastructure

- Software Landscape

- Business Processes

Physical infrastructure and Virtual infrastructure can be regarded as subsets of
computing infrastructure. A model based design service MBDS has a model store

(model pool A) which has a number of candidate models of the same business

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

19
process. Each candidate model comprises sub models corresponding to the four layers
of the enterprise application. At each layer, the models can in some embodiments
consist of both a Static Model and an Operational Model. The Static Model describes
the static structure of the system — the selection and configuration options of candidate
designs of the enterprise application. Additionally, the model includes detailed
Operational Models of the internal structure, run-time operation, and performance
demands (such as CPU, memory, disk, or network I/O) of the infrastructure and
software. It is these Operational Models that allow the Simulator to evaluate how well
a candidate design will meet the non-functional requirements of the System.
An enterprise application can typically consist of multiple Deployment Modules,
corresponding to deployable, distributable consistent sub-sets of the complete
functionality of the deployed software. These deployment modules would form part of
the Software Landscape Model. A key decision of the Design and modelling process
is how to carve up the Application into these distributed parts and where to locate the
Deployment Modules.
The figure shows there are functional and non functional requirements for the
Enterprise application, entered by an operator or obtained from a store. A monitoring
part is shown which can measure behaviour and /or performance of some or all of the
layers of the Enterprise application when deployed. The MBDS has a simulator part
and a model simulation manager. An evaluation part for evaluating the simulation
results can be a separate part or incorporated in either the manager or the simulator.
The figure also shows automated deployment services and a resource pool of physical
infrastructure, on which the Enterprise application and at least some of the monitoring
part will be deployed. Optionally the MBDS can also use the same physical
infrastructure, or it can have its own dedicated physical infrastructure.
Some of the main steps of the system shown are as follows, and the numbers indicate
where in figure 22 the actions are occurring:

0. The functional and non-functional requirements of the Enterprise System are
submitted to the MBDS. The MBDS is also given the number and types of
currently available physical and virtual resources in the Resource Pool.

1. The MBDS creates a population of candidate models in the Model Pool that
may meet the set of requirements. Each model has different values for the

various selection, configuration, and operational parameters. The generation of

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

20
initial candidate models may be driven from templates that describe the best
practise design patterns for the Enterprise System.

2. The Simulator uses the Operational Model to simulate and evaluate each of the
models in the Model Pool against the requirements, and the Model Simulation
Manager selects the most appropriate.

3. The selected model, embodying the design of the System, is submitted to a set
of Automated Deployment Services.

4. The Automated Deployment Services acquire, create, and configure the
infrastructure, monitoring, and software specified in the design model.

5. Monitored values from the running system for each of the 4 layers, and/or
modifications to the requirements, is fed back to the MBDS. The Model
Simulation Manager is able to compare the measured values with those
predicted by the simulation.

6. If the discrepancy between the predicted and measured values exceeds a
threshold, the Model Simulation Manager can either select a different Model
from the pool, or cause new models to be created in the Model Pool with
updated parameters in the Operational Model, to better predict the behaviour
of the system. Additionally, if the requirements have changed then a new
model can be selected or a new set of candidate models generated. A new
selected model may be given to the Automated Deployment Services to cause
the corresponding changes to be applied to the running System.

Various mechanisms can be used for the creation, modification, and selection of
models in the Model Pool:

* Many models can be managed in the Model Pool, each of which is simulated and
evaluated against the requirements. The models in the Model Pool form a candidate
population set.

- Models can be randomly mutated to vary the parameters of selection, configuration,
and evaluation parameters. The degree and rate of modification may be affected by
the discrepancy with the measured results.

- Models can be categorised into related sets to create clusters of models, based on
criteria such as giving similar results. Various heuristics and selection criteria can be

applied to these clusters. For example, if many models in a cluster predict similar

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

21
results, then this may be used as a way to increase the confidence in the predictions of
those models.
- The sensitivity of the predicted behaviour of the system to the model parameters may
be used to drive the degree and rate of modification of model parameters.
- Optimise the internal parameters of the Operational Model to improve the
predictability and confidence of the models. This is achieved by comparison of
predicted results with measured values and analysis of the sensitivity of model
parameters.
- The predicted system behaviour of candidate models, together with the associated
selection and configuration parameters may be visualised and presented to human
experts, who can then not only make selections of candidate designs but also direct
the model mutation process. The scheme described above for a single enterprise
application A can be applied, largely independently, to any number of additional
services, all of which would run on the same shared Resource Pool.
Obviously, the interactions and resource contention caused by Enterprise Services
running on the same physical machines would be taken into account in the multi-
service scenario. This scenario is shown in Figure 23. enterprise applications A, B,
and C, and their models, are independent of each other. Each may have the same
constituents as shown in figure 22, but are not shown in detail for the sake of clarity.
A notable feature of at least some of the embodiments of the invention, is to extend
the notion of deployment and management of multiple independent enterprise
applications to deployment and management of multiple parallel versions of the same
enterprise application. Here, the notion of simultaneously generating, evolving and
simulating multiple variations of the models of the System in the Model Pool, in order
to find the most appropriate configuration of the System, is extended from the virtual
world to the physical world. A subset of the most promising models in the Model
Pool, perhaps organised into clusters, would be deployed in parallel to the ‘real’
system, and the actual performance and other non-functional characteristics assessed
by direct measurement. This would allow much greater confidence in the design
before either creating or modifying the enterprise application actually used. The idea
is illustrated in Figure 24. This shows three deployments A’, A’’ and A’’’ of the same
Enterprise application. The same MBDS manages all three, providing for each a

corresponding model, a corresponding monitoring part, simulator and model

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

22
simulation manager. This arrangement has a number of uses.For example one may
want to:
- Initiate the deployment of a system multiple times, and continue with the one that
completes its configuration first.
- Create multiple instances of a service and select the service that completes first or
that best meets the requirements.
- Deploy development/test/debug tools using common infrastructure services (e.g., db)
that differ via copy on write technologies. This may make it easier to set up test/qa
environments.
This idea of running multiple parallel systems, each associated with a subset of the
models in the Model Pool can be applied throughout the lifecycle of the System, not
just to the initial design and Application creation. As the requirements and workloads
change, the selection of the most appropriate modification to the live system can be
tested on a parallel physical system. Similarly, the set of parallel systems deployed in
the physical world can evolve over the life of the system.
The technique can additionally be applied to accelerate the dynamic refinement of the
models themselves. The monitored results derived from the parallel systems can be
used, as described above, to modify the parameters of the models themselves in order
to better simulate the system in the future.
Comparison with related work:
Automated techniques to achieve optimised designs are well known; examples
include genetic algorithms and simulated annealing. Modelling of systems to predict
their behaviour is also well known, and has been applied in many domains; examples
include aircraft wings, integrated circuits, and weather systems. Similarly, notions of
clustering of related models to improve confidence in the models and modify model
parameters has been used before, for example in recent simulations of global
warming,
A key feature of some embodiments of the invention is the application of these
techniques to an integrated set of models for an Enterprise System, in which the
System is modelled at each of the 4 layers described. The integrated approach of the
embodiments described can address the resource selection, requirements satisfaction,
and configuration optimisation problems inherent in the design of such Enterprise

Systems. A key differentiator of some of the embodiments is to integrate the notion of

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

23
generation of a population of candidate models in the virtual world (the Model Pool)
with the creation of parallel Enterprise Systems in the physical world, to not only
mncrease the confidence of the behaviour of a deployed system, but also accelerate the

refinement of the models themselves.

Model-Based technologies to automatically design and manage Enterprise Systems —
can provide the capability to automatically design, deploy, modify, monitor, and
manage a running System to implement a business process, while minimizing the
requirement for human involvement.

The models can have concepts, such as Business Process, Business Process Steps,
Business Object, and Software Component, together with the relationships between
them.

The models should not be confused with the source content of the software of an
enterprise application. There can be various kinds of Source Content. Typically the
Source Content is owned by the enterprise application Vendor. There may be several
forms of Source Content such as:

- Program Code written in languages such as Java, or ABAP. This code may be
created directly by humans, or automatically generated from other Program Models or
tools.

- Program Models describe an aspect of the system, such as its static structure, or run-
time behaviour. Program Models are themselves expressed in some form of mark-up
language, such as XML. Examples might be:

+ State and Action diagrams for the behaviour of software components.

- Business Process diagrams describing the set of business process steps.

- Structure diagrams describing the static packaging of the software into deployable
units, executables and products.

Program Code or Program Models may be generated via tools, such as graphical
editors, or directly by humans. The syntax and language used to describe Source

Content may vary widely.

More details of an example of using a series of models for such purposes will now be
described. If starting from scratch, a business process is designed using a business

process modeling tool. The business process is selected from a catalog of available

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

24
business processes and is customized by the business process modeling tool. An
available business process is one that can be built and run. There will be
corresponding templates for these as described below. Then non-functional
characteristics such as reliability and performance requirements are specified.
Next the software entities such as products and components required to implement the
business process are selected. This is done typically by searching through a catalog of
product models in which the model for each product specifies what business process
is implemented. This model is provided by an application expert or the product
vendor.
Next the computing infrastructure such as virtual machines, operating systems, and
underlying hardware, is designed. This can use templates as described in more detail
below, and in above referenced previously filed application serial number "Using
templates in automated model-based system design" incorporated herein by reference.
A template is a model that has parameters and options, by filing in the parameters and
selecting options a design tool transforms the template into a complete model of a
deployable system. This application shows a method of modelling a business process
having a number of computer implemented steps using software application
components, to enable automatic deployment on a computing infrastructure, the
method having the steps of:
automatically deriving a grounded model of the business process from an unbound
model of the business process, the unbound model specifying the application
components to be used for each of the computer implemented steps of the business
process, without a complete design of the computing infrastructure, and the grounded
model specifying a complete design of the computing infrastructure suitable for
automatic deployment of the business process,
the deriving of the grounded model having the steps of providing an infrastructure
design template having predetermined parts of the computing infrastructure,
predetermined relationships between the parts, and having a limited number of
options to be completed, generating a candidate grounded model by generating a
completed candidate infrastructure design based on the infrastructure design template,
and generating a candidate configuration of the software application components used
by the unbound model, and evaluating the candidate grounded model, to determine if

it can be used as the grounded model.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

25
Next the physical resources from the shared resource pool in the data center are
identified and allocated. Finally the physical resources are configured and deployed
and ongoing management of the system can be carried out.
All of this can use SAP R/3 as an example, but is also applicable to other SAP
systems and non-SAP systems. Templates as discussed below can include not only the
components needed to implement the business process and the management
components required to manage that business process, but also designs for computing
infrastructure.
The model generation part can be implemented in various ways. One way is based on
a six stage model flow called the Model Information Flow (MIF). This involves the
model being developed in stages or phases which capture the lifecycle of the process
from business requirements all the way to a complete running system. The six phases
are shown in figure 4 described below and each has a corresponding type of model
which can be summarised as follows:

® General Model: The starting point, for example a high level description of
business steps based on the “out-of-the-box™ functionalities of software
packages the user can choose from.

e Custom Process Model: defined above, and for example a specialization of the
previous model (General Model) with choices made by the enterprise. This
model captures non-functional requirements such as response time, throughput
and levels of security. Additionally, it can specify modifications to the generic
business processes for the enterprise.

e Unbound Model: defined above, and for example an abstract logical
description of a system capable of running the business process with the
requirements as specified by the enterprise.

e Grounded Model: defined above and for example can be a transformation of
the previous model (Unbound Model) to specify infrastructure choices, such as
the types of hardware and virtualization techniques to use, and also the
structure and configuration of the software to run the business process.

e Bound Model: a grounded model for which resources in the data centre have

been reserved.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

26
e Deployed Model: a grounded model where the infrastructure and the software
components have been deployed and configured. At this point, the service is

up and running.

Each stage of the flow has corresponding types of model which are stored in a Model
Repository. Management services consume the models provided by the Model
Repository and execute management actions to realize the transitions between phases,
to generate the next model in the MIF. Those services can be for example :
e Template-based Design Service (TDS) (and an example of a model based
design service): translates non-functional requirements into design choices for
a Grounded Model based on the template.
® Resource Acquisition Service (RAS): its purpose is to allocate physical
resources prior to the deployment of virtual resources, such as vms.
e Resource Configuration Service (RCS): its role is to create/update the virtual
and physical infrastructure.
e Software Deployment Service (SDS): installs and configures the applications
needed to run the business processes and potentially other software.
e Monitoring Services (MS) deploys Probes to monitor behaviour of a Deployed
Model. This can include monitoring at any one or more of these three levels:

o Infrastructure: e.g. to monitor CPU, RAM, network I/O usage
regardless of which application or functional step is executing.

o Application: e.g. to monitor time taken or CPU consumption of a given
application such as a DB process on the operating system, regardless of
which particular infrastructure component is used.

o Business process: e.g. count the number of sales order per hour,

regardless of which infrastructure components or applications are used.

Templates for the computing infrastructure design

Templates are used to capture designs that are known to instantiate successfully
(using the management services mentioned above). An example of template describes
a SAP module running on a Linux virtual machine (vm) with a certain amount of
memory. The templates also capture management operations that it is known can be

executed, for instance migration of v of a certain kind, increasing the memory of a

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

27
vm, deploying additional application server to respond to high load, etc... If a change
management service refers to the templates, then the templates can be used to restrict
the types of change (deltas) that can be applied to the models.
Templates sometimes have been used in specific tools to restrict choices. Another
approach is to use constraints which provide the tool and user more freedom. In this
approach constraints or rules are specified that the solution must satisfy. One example
might be that there has to be at least one application server and at least one database in
the application configuration. These constraints on their own do not reduce the
complexity sufficiently for typical business processes, because if there are few
constraints, then there are a large number of possible designs (also called a large
solution space). If there are a large number of constraints (needed to characterize a
solution), then searching and resolving all the constraints is really hard — a huge
solution space to explore. Also it will take a long time to find which of the constraints
invalidates a given possible design from the large list of constraints.
Templates might also contain instructions for managing change. For example they can
contain reconfiguration instructions that need to be issued to the application
components to add a new virtual machine with a new slave application server.
The deriving of the grounded model can involve specifying all servers needed for the
application components. This is part of the design of the adaptive infrastructure and
one of the principal determinants of performance of the deployed business process.
The template may limit the number or type of servers, to reduce the number of
options, to reduce complexity for example.
The deriving of the grounded model can involve specifying a mapping of each of the
application components to a server. This is part of configuring the application
components to suit the design of adaptive infrastructure. The template may limit the
range of possible mappings, to reduce the number of options, to reduce complexity of
finding an optimised solution for example.
The deriving of the grounded model from the unbound Model can involve specifying
a configuration of management infrastructure for monitoring of the deployed business
process in use. This monitoring can be at one or more different levels, such as
monitoring the software application components, or the underlying adaptive
infrastructure, such as software operating systems, or processing hardware, storage or

communications.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

28
More than one grounded model can be derived, each for deployment of the same
business process at different times. This can enable more efficient use of resources for
business processes which have time varying demand for those resources for example.
Which of the grounded models is deployed at a given time can be switched over any
time duration, such as hourly, daily, nightly, weekly, monthly, seasonally and so on.
The switching can be at predetermined times, or switching can be arranged according
to monitored demand, detected changes in resources such as hardware failures or any
other factor.
Where the computing infrastructure has virtualized entities, the deriving of the
grounded model can be arranged to specify one or more virtualized entities without
indicating how the virtualised entities are hosted. It has now been appreciated that the
models and the deriving of them can be simplified by hiding such hosting, since the
hosting can involve arbitrary recursion, in the sense of a virtual entity being hosted by
another virtual entity, itself hosted by another virtual entity and so on. The template
can specify virtual entities, and map application components to such virtual entities, to
limit the number of options to be selected, again to reduce complexity. Such templates
will be simpler if it does not need to specify the hosting of the virtual entities. The
hosting can be defined at some time before deployment, by a separate resource
allocation service for example.
The grounded model can be converted to a bound model, by reserving resources in the
adaptive infrastructure for deploying the bound model. At this point, the amount of
resources needed is known, so it can be more efficient to reserve resources at this time
than reserving earlier, though other possibilities can be conceived. If the grounded
model is for a change in an existing deployment, the method can have the step of
determining differences to the existing deployed model, and reserving only the
additional resources needed.
The bound model can be deployed by installing and starting the application
components of the bound model. This enables the business process to be used. If the
grounded model is for a change in an existing deployment, the differences to the
existing deployed model can be determined, and only the additional application
components need be installed and started.
Two notable points in the modelling philosophy are the use of templates to present a

finite catalogue of resources that can be instantiated, and not exposing the hosting

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

29
relationship for virtualized resources. Either or both can help reduce the complexity of
the models and thus enable more efficient processing of the models for deployment or
changing after deployment.
Some embodiments can use an infrastructure capability model to present the possible
types of resources that can be provided by a computing fabric. An instance of an
infrastructure capability model contains one instance for each type of Computer
System or Device that can be deployed and configured by the underlying utility
computing fabric. Each time the utility deploys and configures one of these types, the
configuration will always be the same. For a Computer System this can mean the
following for example.
Same memory, CPU, Operating System
Same number of NICs with same I/O capacity
Same number of disks with the same characteristics
The templates can map the application components to computers, while the range of
both application components and computers is allowed to vary. In addition the
templates can also include some or all of the network design, including for example
whether firewalls and subnets separate the computers in the solution. In embodiments
described below in more detail, the Application Packaging Model together with the
Custom Process model show how the various application components can implement
the business process, and are packaged within the Grounded Model.
The template selected can also be used to limit changes to the system, such as changes
to the business process, changes to the application components, or changes to the
infrastructure, or consequential changes from any of these. This can make the ongoing
management of the adaptive infrastructure a more tractable computing problem, and
therefore allow more automation and thus reduced costs. In some example templates
certain properties have a range: for example 0 to n, or 2 to n. A change management
tool (or wizard, or set of tools or wizards) only allows changes to be made to the
system that are consistent with template. The template is used by this change
management tool to compute the set of allowable changes, it only permits allowable
changes. This can help avoid the above mentioned difficulties in computing
differences between models of current and next state, if there are no templates to limit
the otherwise almost infinite numbers of possible configurations.

Some of the advantages or consequences of these features are as follows:

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

30
1. Simplicity: by using templates it becomes computationally tractable to build a
linked tool set to integrate business process, application and infrastructure design and
management through the entire lifecycle of design, deployment and change.
2. By limiting the number of possible configurations of the adaptive infrastructure, the
particular computing problem of having to compute the differences between earlier
and later states of complex models is eased or avoided. This can help enable a
management system for the adaptive infrastructure which can determine automatically
how to evolve the system from an arbitrary existing state to an arbitrary desired
changed state. Instead templates fix the set of allowable changes and are used as
configuration for a change management tool.
3. The template models formally relate the business process, application components
and infrastructure design. This means that designs, or changes, to any one of these can
be made dependent on the others for example, so that designs or changes which are

inconsistent with the others are avoided.

Fig 1 overview

Fig 1 shows an overview of infrastructure, applications, and management tools and
models according to an embodiment. Adaptive infrastructure 280 is coupled typically
over the internet to customers 290, optionally via a business process BP call centre
300. A management system 210 has tools and services for managing design and
deployment and ongoing changes to deployed business processes, using a number of
models. For example as shown, the management system has initial design tools 211,
design change tools 213, deployment tools 215, and monitoring and management
tools 217. These may be in the form of software tools such as the monitor part, the
simulator and the model manager described above, running on conventional
processing hardware, which may be distributed. Examples of initial design tools and
design change tools are shown by the services illustrated in fig 5 described below.

A high level schematic view of some of the models is shown, for two business
processes, there can be many more. Typically the management system belongs to a
service provider, contracted to provide IT services to enterprises who control their
own business processes for their customers. A model 230 of business process 1 is
used to develop a design 250 of software application components. This is used to

create and infrastructure design 270 for running the application components to

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

31

implement the business process. This design can then be deployed by the management
system to run on the actual adaptive infrastructure, where it can be used for example
by customers, a call centre and suppliers (not shown for clarity). Similarly, item 220
shows a model of a second business process, used to develop a design 240 of software
application components. This is used to create and infrastructure design 260 for
running the application components to implement the second business process. This
design can then also be deployed by the management system to run on the actual
adaptive infrastructure.

The adaptive infrastructure can include management infrastructure 283, for coupling
to the monitoring and management tools 217 of the management system. The models
need not be held all together in a single repository: in principle they can be stored

anywhere.

Fig 2 operation

Figure 2 shows a schematic view of some operation steps by an operator and by the
management system, according to an embodiment. Human operator actions are shown
in a left hand column, and actions of the management system are shown in the right
hand column. At step 500 the human operator designs and inputs a business process
(BP). At step 510 the management system creates an unbound model of the BP. At
step 520, the operator selects a template for the design of the computing
infrastructure. At step 530, the system uses the selected template to create a grounded
model of the BP from the unbound model and the selected template. In principle the
selection of the template might be automated or guided by the system. The human
operator of the service provider then causes the grounded model to be deployed, either
as a live business process with real customers, or as a test deployment under
controlled or simulated conditions. The suitability of the grounded model can be
evaluated before being deployed as a live business process: an example of how to do
this is described below with reference to figure 3.

At step 550, the system deploys the grounded model of the BP in the adaptive
infrastructure. The deployed BP is monitored by a monitoring means of any type, and
monitoring results are passed to the human operator. Following review of the
monitoring results at step 570, the operator of the enterprise can design changes to the

BP or the operator of the service provider can design changes to the infrastructure at

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

32

step 575. These are input to the system, and at step 580 the system decides if changes
are allowed by the same template. If no, at step 585, the operator decides either for a
new template, involving a return to step 520, or for a redesign within the limitations of
the same template, involving at step 587 the system creating a grounded model of the
changes, based on the same template.

At step 590 the operator of the service provider causes deployment of the grounded
model for test or live deployment. At step 595 the system deploys the grounded model
of the changes. In principle the changes could be derived later, by generating a
complete grounded model, and later determining the differences, but this is likely to

be more difficult.

Fig 3 operation

Fig 3 shows an overview of an embodiment showing some of the steps and models
involved in taking a business process to automated deployment. These steps can be
carried out by the management system of figure 1, or can be used in other
embodiments.

A business process model 15 has a specification of steps 1-N. There can be many
loops and conditional branches for example as is well known. It can be a mixture of
human and computer implemented steps, the human input being by customers or
suppliers or third parties for example. At step 65, application components arc
specified for each of the computer implemented steps of the business process. At step
75, a complete design of computing infrastructure is specified automatically, based on
an unbound model 25. This can involve at step 85 taking an infrastructure design
template 35, and selecting options allowed by the template to create a candidate
infrastructure design. This can include design of software and hardware parts. At step
95, a candidate configuration of software application components allowed by the
template is created, to fit the candidate infrastructure design. Together these form a
candidate grounded model.

At step 105, the candidate grounded model is evaluated. If necessary, further
candidate grounded models are created and evaluated. Which of the candidates is a
best fit to the requirements of the business process and the available resources is

identified. There are many possible ways of evaluating, and many possible criteria,

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

33

which can be arranged to suit the type of business process. The criteria can be
incorporated in the unbound model for example.

There can be several grounded models each for different times or different conditions.
For example, time varying non-functional requirements can lead to different physical
resources or even a reconfiguration: a VM might have memory removed out-of-office
hours because fewer people will be using it. One might even shutdown an underused
slave application server VM. The different grounded models would usually but not
necessarily come from the same template with different parameters being applied to
generate the different grounded models.

The template, grounded and subsequent models can contain configuration information
for management infrastructure and instructions for the management infrastructure, for
monitoring the business process when deployed. An example is placing monitors in
each newly deployed virtual machine which raise alarms when the CPU utilization

rises above a certain level — e.g. 60%.

Fig 4 MIF

Figure 4 shows some of the principal elements of the MIF involved in the
transition from a custom model to a deployed instance. For simplicity, it does not
show the many cycles and iterations that would be involved in a typical application
lifecycle — these can be assumed. The general model 15 of the business process is the
starting point and it is assumed that the enterprise or consultant has designed a
customized business process. That can be represented in various ways, so a
preliminary step in many embodiments is customising it. A custom model 18 is a
customization of a general model. So it is likely that a General Model could be
modelled using techniques similar to the ones demonstrated for modelling the Custom
Model: there would be different business process steps. A custom model differs from
the general model in the following respects. It will include non-functional
requirements such as number of users, response time, security and availability
requirements. In addition it can optionally involve rearranging the business process
steps: new branches, new loops, new steps, different/replacement steps, steps
involving legacy or external systems.
The custom model is converted to an unbound model 25 with inputs such as

application performance 31, application packaging 21, and application constraints 27.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

34

The unbound model can specify at least the application components to be used for
each of the computer implemented steps of the business process, without a complete
design of the computing infrastructure. The unbound model is converted to a
grounded mode] 55 with input from models of infrastructure capability 33, and an
infrastructure design template 35.

Deployment of the grounded model can involve conversion to a bound model 57, then
conversion of the bound model to a deployed model 63. The bound model can have
resources reserved, and the deployed model involves the applications being installed

and started.

Fig 5 MIF

Figure 5 shows a sequence of steps and models according to another embodiment.
This shows a model repository 310 which can have models such as templates (TMP),
an unbound model (UM), a bound model (BM), a partially deployed model (PDM), a
fully deployed model (FDM). The figure also shows various services such as a service
320 for generating a grounded model from an unbound model using a template.
Another service is a resource acquisition service 330 for reserving resources using a
resources directory 340, to create a bound model.

An adaptive infrastructure management service 350 can configure and ignite virtual
machines in the adaptive infrastructure 280, according to the bound model, to create a
partially deployed model. Finally a software deployment service 360 can be used to
take a partially deployed model and install and start application components to start

the business process, and create a fully deployed model.

Figure 6 deriving erounded model

Figure 6 shows steps in deriving a grounded model according to an embodiment. At
step 400, a template is selected from examples such as centralised or decentralised
arrangements. A centralised arrangement implies all is hosted on a single server or
virtual server. Other template choices may be for example high or low security,
depending for example on what firewalls or other security features are provided.
Other template choices may be for example high or low availability, which can imply

redundancy being provided for some or all parts.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

35

At step 410, remaining options in the selected template are filled in. This can involve
selecting for example disk sizes, numbers of dialog processes, number of servers,
server memory, network bandwidth, server memory, network bandwidth, database
time allowed and so on. At step 420, a candidate grounded model is created by the
selections. Step 430 involves evaluating the candidate grounded model e.g. by
building a queuing network, with resources represented, and with sync points
representing processing delays, db delays and so on. Alternatively the evaluation can
involve deploying the model in an isolated network with simulated inputs and
conditions.

At step 440, the evaluation or simulation results are compared with goals for the
unbound model. These can be performance goals such as maximum number of
simultaneous users with a given response time, or maximum response time, for a
given number of users. At step 450, another candidate grounded model can be created
and tested with different options allowed by the template. At step 460 the process is
repeated for one or more different templates. At step 470, results are compared to
identify which candidate or candidates provides the best fit. More than one grounded
model may be selected, if for example the goals or requirements are different at
different times for example. In this case, the second or subsequent grounded model

can be created in the form of changes to the first grounded model.

Fig 7 Master and Slave application servers

Figure 7 shows an arrangement of master and slave application servers for a
decentralised or distributed design of computing infrastructure, according to an
embodiment. A master application server 50 is provided coupled by a network to a
database 60, and to a number of slave application servers 70. Some of the slaves can
be implemented as virtual slave application servers 72. Each slave can have a number
of dialog worker processes 80. The master application server is also coupled to remote
users using client software 10. These can each have a graphical user interface GUI on
a desktop PC 20 coupled over the internet for example. The slaves can be used

directly by the clients once the clients have logged on using the master.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

36
Fig 8 Master Application Server

Figure 8 shows parts of a master application server for the embodiment of figure 7.
An enqueue process 110 is provided to manage locks on the database. A message
server 120 is provided to manage login of users and assignment of users to slave
application servers for example. An update server 130 is provided for managing
committing work to persistent storage in a database. A print server 140 can be
provided if needed. A spool server 150 can be provided to run batch tasks such as
reports. At 160 dialog worker processes arc shown for running instances of the

application components.

Fig 9 Virtual entities

Figure 9 shows an arrangement of virtual entities on a server, for use in an
embodiment. A hierarchy of virtual entities is shown. At an operating system level
there are many virtual machines VM. Some are hosted on other VMs. Some are
hosted on virtual partitions VPARs 610 representing a reconfigurable partition of a
hardware processing entity, for example by time sharing or by parallel processing
circuitry. A number of these may be hosted by a hard partitioned entity nPAR 620
representing for example a circuit board mounting a number of the hardware
processing entities. Multiple nPARs make up a physical computer 630 which is
typically coupled to a network by network interface 650, and coupled to storage such
as via a storage area network SAN interface 640.

There are many commercial storage virtualization products on the market from HP,
IBM, EMC and others. These products are focused on managing the storage available
to physical machines and increasing the utilization of storage. Virtual machine
technology is a known mechanism to run operating system instances on one physical
machine independently of other operating system instances. It is known, within a
single physical machine, to have two virtual machines connected by a virtual network
on this machine. VMware is a known example of virtual machine technology, and can
provide isolated environments for different operating system instances running on the
same physical machine.

There are also many levels at which virtualization can occur. For example HP's
cellular architecture allows a single physical computer to be divided into a number of

hard partitions or nPARs. Each nPAR appears to the operating system and

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

37
applications as a separate physical machine. Similarly each nPAR can be divided into
a number of virtual parititions or vPARs and each vPAR can be divided into a number

of virtual machines (e.g. HPVM, Xen, VMware).

Figures 10to 15

The next part of this document describes in more detail with reference to figs 10 to 15
examples of models that can be used within the Model Information Flow (MIF)
shown in figs 1 to 9, particularly fig 4. These models can be used to manage an SAP
application or other business process through its entire lifecycle within a utility
infrastructure. The diagrams are shown using the well known UML (Unified
Modelling Language) that uses a CIM (common information model) style. The
implementation can be in Java or other software languages.

A custom model can have a 1-1 correspondence between an instance of an AlService
and a BusinessProcess. The AlService is the information service that implements the
business process.

A business process can be decomposed into a number of business process
steps (BPsteps), so instances of a BusinessProcess class can contain 1 or more
BPSteps. An instance of a BPStep may be broken into multiple smaller BPSteps
involving sequences, branches, recursions and loops for example. Once the
BusinessProcess step is decomposed into sufficient detail, each of the lowest level
BPSteps can be matched to an ApplicationComponent. An ApplicationComponent is
the program or function that implements the BPStep. For SAP, an example would be
the SAP transaction named VAO1 in the SD (Sales and Distribution package) of SAP
R/3 Enterprise. Another example could be a specific Web Service (running in an
Application Server).

BPStep can have stepType and stepParams fields to describe not only
execution and branching concepts like higher-level sequences of steps, but also the
steps themselves. The stepType field is used to define sequential or parallel execution,
loops, and if-then-else statements. The stepParams field is used to define associated
data. For example, in the case of a loop, the stepParams field can be the loop count or
a termination criterion. The set of BPSteps essentially describes a graph of steps with

various controls such as loops, if-then-else statements, branching probabilities, etc.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

38

The relation BPStepsToApplicationComponentMapping is a complex
mapping that details how the BPStep is mapped to the ApplicationComponent. It
represents, in a condensed form, a potentially complex mix of invocations on an
Application Component by the BPStep, such as the specific dialog steps or functions
invoked within the ApplicationComponent or set of method calls on a Web Service,
and provided details of parameters, such as the average number of line items in a sales
order.

A BPStep may have a set of non-functional requirements
(NonFunctionalRequirements) associated with it: performance; availability, security
and others. In the current version availability and security requirements are modelled
by a string: “high”, “medium”, “low”. Performance requirements are specified in
terms of for example a number of registered users (NoUsersReq), numbers of
concurrent users of the system, the response time in seconds and throughput
requirement for the number of transactions per second. Many BPSteps may share the
same set of non-functional requirements. A time function can be denoted by a string.
This specifies when the non-functional requirements apply, so different requirements
can apply during office-hours to outside of normal office hours. Richer time varying

functions are also possible to capture end of months peaks and the like.

Figs 10, 11 Custom Model
For an example of a Custom Model the well-known Sales and Distribution

(SD) Benchmark will be discussed. This is software produced by the well known

German company SAP. It is part of the SAP R/3 system, which is a collection of
software that performs standard business functions for corporations, such as
manufacturing, accounting, financial management, and human resources. The SAP
R/3 system is a client server system able to run on virtually any hardware/software
platform and able to use many different database management systems. For example it
can use an IBM AS/400 server running operating system OS/400 using database
system DB2; or a Sun Solaris (a dialect of Unix) using an Oracle database system; or
an IBM PC running Windows NT using SQL Server.

SAP R/3 is designed to allow enterprises to choose their own set of business
functions, and to customize to add new database entities or new functionality. The SD

Benchmark simulates many concurrent users using the SD (Sales and Distribution)

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

39

application to assess the performance capabilities of hardware. For each user the
Interaction consists of 16 separate steps (Dialog Steps) that are repeated over and
over. The steps and their mapping to SAP transactions are shown in Figure 10. A
transaction here is an example of an Application Component. Each transaction is
shown as a number of boxes in a row. A first box in each row represents a user
invoking the transaction e.g. by typing /nva0l to start transaction VAO1. As shown in
figure 10, transaction VAO1 in the top row involves the business process steps of
invoking the create sales order transaction, then filling order details, then saving the
sold-to party, and completing with the “back” function F3 which saves the data.

A next transaction VLOIN is shown in the second row, and involves steps as follows
to create an outbound delivery. The transaction is invoked, shipping information is
filled in, and saved. A next transaction VAO3 is shown in the third row for displaying
a customer sales order. This involves invoking the transaction, and filling subsequent
documents. A fourth transaction is VLO2N in the fourth row, for changing an
outbound delivery. After invoking this transaction, the next box shows saving the
outbound delivery. A next transaction shown in the fifth row is VAOS5, for listing sales
orders. After invoking this transaction, the next box shows prompting the user to fill
in dates and then a third box shows listing sales orders for the given dates. Finally, in
a sixth row, the transaction VFO01 is for creating a billing document, and shows filling
a form and saving the filled form.

Figure 11 shows an example of a custom model instance for the SD
Benchmark. The top two boxes indicate that the business process “BPModel” contains
one top level BPStep: “SD Benchmark”, with stepType=Sequence. Two lines are
shown leading from this box, one to the non-functional requirements associated with
this top-level BPStep, and shown by the boxes at the left hand side. In this particular
case only performance requirements have been specified — one for 9am-5pm and the
other for Spm-9am. Other types of non-functional requirements not shown could
include security or availability requirements for example. In each case the
performance requirements such as number of users, number of concurrent users,
response time required, and throughput required, can be specified as shown. These are
only examples: other requirements can be specified to suit the type of business

process. A box representing the respective time function is coupled to each

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

40

performance requirement box as shown. One indicates 9am to 5pm, and the other
indicates Spm to 9am in this example.

On the right hand side a line leads from the SD Benchmark BPStep to the functional
requirements shown as six BPSteps, with stepType=Step — one for each SAP
transaction shown in Figure 10 (VAO1, VLOIN, etc). For convenience the name of the
first dialog step for each transaction shown in Figure 10 is used as the name of the
corresponding BPStep shown in Figure 11 (“Create sales order”, “Create outbound
delivery”, “Display customer sales order”, “Change outbound delivery”, “List sales
order”’, and “Create delivery document”). For each of these steps the
BPStepToApplicationComponentMapping relation specifies the details of the dialog
steps involved. For example in the case of CreateSalesOrder, Figure 10 shows that the
BPStepToApplicationComponentMapping needs to specify the following dialog steps
are executed in order: “Create Sales Order”, “Fill Order Details”, “Sold to Party” and
“Back”. In addition it might specify the number of line items needed for “Fill Order
Details”. At the right hand side of the figure, each BP step is coupled to an instance of
its corresponding ApplicationComponent via the respective mapping. So BPstep
“Create Sales order” is coupled to ApplicationComponent VAO1, via mapping having
ID:001. BPstep “Create outbound delivery” is coupled to ApplicationComponent
VLOIN via mapping having ID:002. BPstep “Display customer sales order” is
coupled via mapping having ID:003 to ApplicationComponent VAO03. BPstep
“Change outbound delivery” is coupled via mapping having ID:004 to
ApplicationComponent VLO2N. BPstep “List sales order” is coupled via mapping
having ID:005 to ApplicationComponent VAOS5. BPstep “Create delivery document”
is coupled via mapping having ID:006 to ApplicationComponent VFO1.

Fig 12, The Unbound Model

The Unbound Model is used to calculate resource demands. As shown in
Figure 12 this model can be made up of four models: the Custom Model (labelled
CustomizedProcessingModel), Application Packaging, Application Constraints and
Application Performance models, an example of each of which will be described
below (other than the Custom Model, an example of which has been described above
with respect to Figure 11). Other arrangements can be envisaged. No new information

is introduced that is not already contained in these four models.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

41

Fig 12. Application packaging model

The Application Packaging Model describes the internal structure of the software:
what products are needed and what modules are required from the product. An
ApplicationComponent can be contained in an ApplicationModule. An
ApplicationModule might correspond to a JAR (Java archive) file for an application
server, or a table in a database. In the case of SAP it might be the module to be loaded
from a specific product into an application server such as SD or FI (Financials). The
application packaging model can have a DiskFootPrint to indicate the amount of disk
storage required by the ApplicationModule. In the case of the ApplicationComponent
VAO1 in Figure 10, it is from SD with a DiskFootPrint of 2MB for example.

One or more ApplicationModules are contained within a product. So for example SAP
R/3 Enterprise contains SD. ApplicationModules can be dependent on other
ApplicationModules. For example the SD Code for the Application Server depends on
both the SD Data and the SD Executable code being loaded into the database.

The custom model can have an ApplicationExecutionComponent for executing an
ApplicationComponent. This could be a servlet running in an application server or a
web server. It could also be a thread of a specific component or a process. In the case
of SD’s VAOI transaction it is a Dialog Work Process. When it executes, the
ApplicationComponent may indirectly use or invoke other Application-Components
to run: a servlet may need to access a database process; SD transactions need to access
other ApplicationComponents such as the Enquene Work Process and the Update
Work Process, as well as the Database ApplicationExecutionComponent. The
ApplicationExecutionComponent can be contained by and executed in the context of
an ApplicationExecutionService (SAP application server) which loads or contains
ApplicationModules (SD) and manages the execution of
ApplicationExecutionComponents (Dialog WP) which, in turn, execute the

ApplicationComponent (VAO1) to deliver a BPStep.

Fig 12, Application Constraints model

The Application Constraints Model expresses arbitrary constraints on

components in the Customized Process, Application Packaging and Component

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

42
Performance Models. These constraints are used by tools to generate additional
models as the MIF progresses from left to right. Examples of constraints include:
. How to scale up an application server — what
ApplicationExecutionComponents are replicated and what are not. For example, to
scale up an SAP application server to deal with more users one cannot simply
replicate the first instance — the master application server 50 of figs 7 and 8,
commonly known as the Central Instance. Instead a subset of the components within
the Central Instance is needed. This is also an example of design practice: there may
be other constraints encoding best design practice.
. Installation and configuration information for ApplicationComponents,
ApplicationExecutionComponents and ApplicationExecutionServices
. Performance constraints on ApplicationExecutionServices — e.g. do not run an
application server on a machine with greater than 60% CPU utilization
Other examples of constraints include ordering: the database needs to be started
before the application server. Further constraints might be used to encode deployment
and configuration information. The constraints can be contained all in the templates,
or provided in addition to the templates, to further limit the number of options for the

grounded model.

Fig 12, Application performance model

The purpose of the Application Performance Model is to define the resource demands
for each BPStep. There are two types of resource demand to consider.

1. The demand for resources generated directly by the
ApplicationExecutionComponent (e.g. Dialog WP) using CPU, storage I/O, network
I/O and memory when it executes the BPStep — the ComponentResourceDemand

2. The demand for resources generated by components that the above
ApplicationExecutionComponent causes when it uses, calls or invokes other
components (e.g. a Dialog WP using an Update WP) — the
IndirectComponentResourceDemand
The IndirectComponentResourceDemand is recursive. So there will be a tree like a
call-graph or activity-graph.

A complete Application Performance Model would contain similar information for all

the BPSteps shown in Figure 11. For example the set of dialog steps in the

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

43

BPStep “Create Sales Order” might consume 0.2 SAPS. Further it consists of 4
separate invocations (or in SAP terminology Dialog Steps). The calls are
synchronous.

The following are some examples of attributes that can appear in
IndirectComponentResourceDemands and ComponentResourceDemands.
. delayProperties: Any delay (e.g. wait or sleep) associated with the
component’s activity which does not consume any CPU, NetIOProperties and

DiskIOProperties.

. NumlInvocation: The number of times the component is called during the
execution of the BPStep.
. InvocationType: synchronous if the caller is blocked; asynchronous if the

caller can immediately continue activity.

. BPStepToAppCompID: This is the ID attribute of the
BPStepToApplicationComponent-Mapping. The reason for this is that a particular
ApplicationExecutionComponent is likely to be involved in several different BPSteps.
. ApplicationEntryPoint: This is the program or function being executed. In the
case of “Create Sales Order” this is VAO1 for the DialogWP. It could also be a
method of a Web Service.

CPUProperties can be expressed in SAPs or in other units. There are various ways to

express MemProperties, NetlOProperties and DiskIOProperties.

Fig 12, Component Performance Model

There 1s one instance of an Application Performance Model for each instance
of a Custom Model. This is because, in the general case, each business process will
have unique characteristics: a unique ordering of BPSteps and/ or a unique set of data
characteristics for each BPStep. The DirectComponentResourceDemands and
IndirectComponentResourceDemands associations specify the unique resource
demands for each BPStep. These demands need to be calculated from known
characteristics of each ApplicationComponent derived from benchmarks and also
traces of installed systems. _

The Component Performance Model contains known performance
characteristics of each ApplicationComponent. A specific Application Performance

Model is calculated by combining the following:

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

44
. The information contained in the BPStepToApplicationComponentMapping
associations in the Custom Model
. Any performance related constraints in the Application Constraints Model
. The Component Performance Model

Taken together, the models of the Unbound Model specify not only the non-functional
requirements of a system, but also a recipe for how to generate and evaluate possible
software and hardware configurations that meet those requirements. The generation of
possible hardware configurations is constrained by the choice of infrastructure
available from a specific Infrastructure Provider, using information in an
Infrastructure Capability Model, and by the selected template.

A general principle that applies to deployable software elements described in
the Unbound Model, such as the ApplicationExecutionComponent or
ApplicationExecutionService, is that the model contains only the minimum number of
instances of each type of element necessary to describe the structure of the application
topology. For example, in the case of SD only a single instance of a Dialog Work
Process ApplicationExecutionComponent associated with a single instance of an
Application Server ApplicationExecutionService is needed in the Unbound Model to
describe the myriad of possible ways of instantiating the grounded equivalents of both
elements in the Grounded Model. It is the template and packaging information that

determines exactly how these entities can be replicated and co-located.

The Infrastructure Capability Model

As discussed above, two notable features of the modelling philosophy described are:

1. Present a template having a finite catalogue of resources that can be
instantiated, so that there are a fixed and finite number of choices. For example,
small-xen-vm 1-disk, medium-xen-vm 2-disk, large-xen-vm 3-disk, physical-hpux-
machine etc. This makes the selection of resource type by any capacity planning tool
simpler. It also makes the infrastructure management easier as there is less complexity
in resource configuration — standard templates can be used.

2. Do not expose the hosting relationship for virtualized resources. The DMTF
Virtualization System Profile models hosting relationship as a “HostedDependency”

association. This does not seem to be required if there is only a need to model a finite

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

45

number of resource types, so it does not appear in any of the models discussed here.
This keeps the models simpler since there is no need to deal with arbitrary recursion.
It does not mean that tools that process these models can’t use the DMTF approach
internally if that is convenient. It may well be convenient for a Resource Directory
Service and Resource Assignment Service to use this relationship in their internal
models.

An instance of an infrastructure capability model contains one instance for each type
of ComputerSystem or Device that can be deployed and configured by the underlying
utility computing fabric. Each time the utility deploys and configures one of these

types the configuration will always be the same. For a ComputerSystem this means

the following.

. Same memory, CPU, Operating System

. Same number of NICs with same 1/O capacity

. Same number of disks with the same characteristics

Fig 13 template example

Fig 13 shows an example of an infrastructure design template having predetermined
parts of the computing infrastructure, predetermined relationships between the parts,
and having a limited number of options to be completed. In this case it is suitable for a
decentralised SD business process, without security or availability features. The
figure shows three computer systems coupled by a network labelled “Al network”,
the right hand of the three systems corresponding to a master application server, and
the central one corresponds to slave application servers as shown in figure 7. Hence it
is decentralized. Al is an abbreviation of Adaptive Infrastructure. The left hand one of
the computer systems is for a database. The type of each computer system is
specified, in this case as a BL20/Xen. The central one, corresponding to slave
application servers has an attribute “range =0..n”. This means the template allows any
number of these slave application servers.

The master application server is coupled to a box labelled
AJ_GroundedExecutionService:AppServer, indicating it can be used to run such a
software element. It has an associated AlDeploymentSetting box which contains
configuration information and deployment information sufficient to allow the

Al_GroundedExecutionService to be automatically installed, deployed and managed.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

46
The Al GroundedExecutionService:AppServer is shown as containing three
components, labelled AI_GroundedExecutionComponents, and each having an
associated AIDeploymentSetting box. A first of these components is a dialog work
process, for executing the application components of steps of the business process,
another is an update process, responsible for committing work to persistent storage,
and another is an enqueue process, for managing locks on a database. As shown, the
range attribute is 2..n for the update and the dialog work process, meaning multiple
instances of these parts are allowed.
The slave application server has a GroundedExecutionService having only one type of
Al GroundedExecutionComponent for any number of dialog work processes. The
slave application server is shown having a rangePolicy = Time function, meaning it is
allowed to be active at given times. Again the service and the execution component
each have an associated AIDeploymentSetting box.
The master and slave application servers and the database computer system have an
operating system shown as Al disk: OSDisk. The master application server is shown
with an AI Disk: CIDisk as storage for use by the application components. For the
network, each computer system has a network interface shown as AI Nicl, coupled to
the network shown by AI Network :subnet].
The database computer system is coupled to a box labelled
Al GroundedExecutionService: Database, which has only one type of
Al_GroundedExecutionComponent, SD DB for the database. Again the service and
the execution component each have an associated AlIDeploymentSetting box.
AlDeploymentSetting carries the configuration and management information used to
deploy, configure, start, manage and change the component. Further details of an
example of this are described below with reference to figure 14. This computer
system is coupled to storage for the database labelled AI_Disk: DBDisk.
Optionally the template can have commands to be invoked by the tools, when
generating the grounded model, or generating a changed grounded model to change an
existing grounded model. Such commands can be arranged to limit the options
available, and can use as inputs, parts of the template specifying some of the

infrastructure design. They can also use parts of the unbound model as inputs.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

47
Fig 14 Grounded Model

The Grounded Model may be generated by a design tool as it transforms the
Unbound Model into the Grounded Model. It can be regarded as a candidate
Grounded Model until evaluated and selected as the chosen Grounded Model. The
following are some of the characteristics of the example Grounded Model of figure 14

compared to the template shown in Fig 13, from which it is derived.

. The number of instances of GroundedExecutionComponent has been
specified.
. The GroundedExecutionComponents are executed by a GroundedExecution-

Service. The execution relationship is consistent with that expressed in the
Application Packaging Model.

. The GroundedExecutionServices are run on a ComputerSystem whose type
has been selected from the Infrastructure Capability Model.

. There are two update components, Updatel and Update2. There are two
DialogWorkProcesses, DialogWorkProcess1 and DialogWorkProcess2.

. The number of slave application servers has been set at zero.

The management system is arranged to make these choices to derive the Grounded
Model from the template using the Unbound Model. In the example shown, the
criteria used for the choice includes the total capacity of the system, which must
satisfy the time varying Performance Requirements in the Custom Model. The
required capacity is determined by combining these Performance Requirements with
the aggregated ResourceDemands [Direct and Indirect] of the Application
Performance Model. If the first choice proves to provide too little capacity, or perhaps
too much, then other choices can be made and evaluated. Other examples can have
different criteria and different ways of evaluating how close the candidate grounded
model is to being a best fit.

In some examples the server may only have an OS disk attached; that is because the
convention in such installations is to NFS mount the CI disk to get its SAP executable
files. Other example templates could have selectable details or options such as details
of the CIDisk and the DBDisk being 100 GB, 20MB/sec, non Raid, and so on. The
OS disks can be of type EVAZ00. The master and slave application servers can have 2
to 5 dialog work processes. Computer systems are specified as having 3 GB storage,

2.6 GHz CPUs and SLES 10-Xen operating system for example. Different parameters

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

48
can be tried to form candidate Grounded Models which can be evaluated to find the
best fit for the desired performance or capacity or other criteria.

The Grounded Model therefore specifies the precise number and types of
required instances of software and hardware deployable entities, such as
GroundedExecutionComponent, GroundedExecutionService, and
AlComputerSystem. AlDeploymentSettings can include for example:

. InfrastructureSettings such as threshold information for infrastructure
management components, for example MaxCPUUtilization — if it rises above the set
figure, say 60%, an alarm should be triggered.

. Management policy can specify further policy information for the
management components — e.g. flex up if utilization rises above 60%

. GroundedDeploymentSettings which can include all command line and
configuration information so that the system can be installed, configured and started
in a fully functional state.

. SettingData which can provide additional configuration information that can
override information provided in the GroundedDeploymentSettings. This allows many
GroundedComponents to share the same GroundedDeploymentSettings (c.f. a notion
of typing) with specific parameters or overrides provided by SettingData. Both the
GroundedDeploymentSettings and SettingData are interpreted by the Deployment
Service during deployment.

. Data related to possible changes to the component such as instructions to be
carried out when managing changes to the component, to enable more automation of
changes.

Not all attributes are set in the Grounded Model. For example, it does not make sense
to set MAC addresses in the Grounded Model, since there is not yet any assigned

physical resource.

Fig 15, an alternative adaptive infrastructure design template

Figure 15 shows an alternative adaptive infrastructure design template, in a form
suitable for a centralised secure SD business process. Compared to fig 13, this has
only one computer system, hence it is centralised. It shows security features in the
form of a connection of the network to an external subnet via a firewall. This is shown

by an interface Al Nic:nicFW, and a firewall shown by ATl Appliance: FireWall.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

49
Other templates can be envisaged having any configuration. Other examples can
include a decentralised secure SD template, a decentralised highly available SD

template, and a decentralised, secure and highly available SD template.

Bound Model

A Bound Model Instance for a SD system example could have in addition to
the physical resource assignment, other parameters set such as subnet masks and
MAC addresses. A Deployed Model could differ from the Bound Model in only one
respect. It shows the binding information for the management services running in the
system. All the entities would have management infrastructure in the form of for
example a management service. The implementation mechanism used for the interface
to the management services is not defined here, but could be a reference to a Web
Service or a SmartFrog component for example. The management service can be used
to change state and observe the current state. Neither the state information made
available by the management service, nor the operations performed by it, are
necessarily defined in the core of the model, but can be defined in associated models.

One example of this could be to manage a virtual machine migration. The
application managing the migration would use the management service running on the
PhysicalComputerSystem to do the migration. Once the migration is completed, the
management application would update the deployed model and bound models to show
the new physical system. Care needs to be taken to maintain consistency of models.
All previous model instances are kept in the model repository, so when the migration
is complete, there would be a new instance (version) of the bound and deployed

models.

Information Hiding and the Model Information Flow
It is not always the case that for the MIF all tools and every actor can see all

the information in the model. In particular it is not the case for deployment services
having a security model which requires strong separation between actors. For
example, there can be a very strong separation between the utility management plane
and farms of virtual machines. If a grounded model is fed to the deployment services
of the management plane for an enterprise, it will not return any binding information

showing the binding of virtual to physical machines, that information will be kept

10

15

20

25

WO 2009/082384 PCT/US2007/088331

50
mside the management plane. That means there is no way of telling to what hardware
that farm is bound or what two farms might be sharing. What is returned from the
management plane could is likely to include the IP address of the virtual machines in
the farms (it only deals with virtual machines) and the login credentials for those
machines in a given farm. The management plane is trusted to manage a farm so that
it gets the requested resources. Once the deployment service has finished working,
one could use application installation and management services to install, start and
manage the applications. In general different tools will see projections of the MIF. It
is possible to extract from the MIF models the information these tools require and
populate the models with the results the tools return. It will be possible to transform

between the MIF models and the data format that the various tools use.

Implementation:

The software parts such as the models, the model repository, and the tools or services
for manipulating the models, can be implemented using any conventional
programming language, including languages such as Java, or C compiled following
established practice. The servers and network elements can be implemented using
conventional hardware with conventional processors. The processing elements need
not be identical, but should be able to communicate with each other, e.g. by exchange
of IP messages.

The foregoing description of embodiments of the invention has been presented for
purposes of illustration and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed, and modifications and variations are
possible in light of the above teachings or may be acquired from practice of the
invention. The embodiments were chosen and described in order to explain the
principles behind the invention and its practical applications to enable one skilled in
the art to utilize the invention in various embodiments and with various modifications
as are suited to the particular use contemplated. Other variations can be conceived

within the scope of the claims.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

51
CLAIMS
1. A method of modelling a computer based business process having a number of
functional steps, the method having the steps of:
providing a plurality of candidate models of the business process, the models each
specifying the functional steps, specifying an arrangement of software application
components for carrying out the functional steps, and specifying a design of
computing infrastructure, for running the software application components, to meet
given non functional requirements, and suitable for automated deployment,
for each of the candidate models, simulating operation of the business process if
implemented according to the respective candidate model and
evaluating for each of the candidate models how well their simulated operation meets

the non-functional requirements.

2. The method of claim 1, and having the steps of selecting one of the candidate
models according to the evaluations and causing the selected candidate model to be

deployed on physical infrastructure.

3. The method of claim 2 having the steps of deploying one or more selected
candidate models under test conditions, and measuring how well the test deployments

of the candidate models meet the non functional requirements.

4. The method of claim 3 having the step of choosing one of the candidate models for

a deployment under live production conditions.

5. The method of claim 3, having the step of deploying multiple different candidate

models of the same business process under test conditions simultaneously.

6. The method of claim 1, having the step of using a model manager to manage the
models in a model store according to the evaluations of any of test deployments and

simulations of the candidate models.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

52
7. The method of claim 6 having the step of using the model manager to generate new
candidate models by using a model template, and selecting values for a number of

parameters to complete the new candidate models.

8. The method of claim 1, the evaluating comprising evaluating any one or more of:

throughput, security, cost, latency and reliability.

9. The method of claim 1, the simulating comprising calculating the behaviour and
performance of a candidate model with test inputs, and using a set of estimated

performance parameters for parts of the software and for parts of the infrastructure.

10. The method of claim 9, having the step of adapting the estimated performance
parameters according to measurements from a deployment on physical infrastructure.
Such adaptation can improve the quality of the simulations and so improve the

efficiency and rapidity of future searches for optimum candidate models.

11. Software on a machine readable medium which when executed carries out the

method of claim 1.

12. A method having steps by an operator using a system for modelling a computer
based business process having a number of functional steps, the system having a store
arranged to store a plurality of candidate models of the business process, the models
each specifying the functional steps, specifying an arrangement of software
application components for carrying out the functional steps, and specifying a design
of computing infrastructure, for running the software application components, to meet
given non functional requirements, and suitable for automated deployment, the system
also having a simulator

the method having the steps of:

for at least one of the candidate models, causing the simulator to simulate operation of
the business process if implemented according to the respective candidate model and
receiving from the system, an evaluation for each of the candidate models of how well

their simulated operation meets the non-functional requirements.

10

15

20

25

30

WO 2009/082384 PCT/US2007/088331

53
13. A system for modelling a computer based business process having a number of
functional steps, the system having:
a store arranged to store a plurality of software candidate models of the business
process, the models each specifying the functional steps, specifying an arrangement of
software application components for carrying out the functional steps, and specifying
a design of computing infrastructure, for running the software application
components, to meet given non functional requirements, and suitable for automated
deployment,
a simulator arranged to simulate, for each of the candidate models, operation of the
business process if deployed according to the respective candidate model and
an evaluation part coupled to the simulator for evaluating for each of the candidate

models how well their operation meets the non-functional requirements.

14. The system of claim 13, having a model manager coupled to the evaluation part,
to select one of the candidate models according to the evaluations and cause the

selected candidate model to be deployed on physical infrastructure.

15. The system of claim 14, the model manager being arranged to select one or more
of the candidate models for deployment under test conditions, and measure how well

the test deployments of the candidate models meet the non functional requirements.

16. The system of claim 15 the model manager being arranged to choose one of the

candidate models for a deployment under live production conditions.

17. The system of claim 15, arranged to deploy multiple different candidate models of

the same business process under test conditions simultaneously.

18. The system of claim 14, having a model manager arranged to manage the models

in the model store according to the evaluations.

19. The system of claim 18, the model manager being arranged to generate new
candidate models by using a model template, and selecting values for a number of

parameters to complete the new candidate model.

10

WO 2009/082384 PCT/US2007/088331

54

20. The system of claim 14, the evaluation part being arranged to evaluate any one or

more of: throughput, security, cost, latency and reliability.

21. The system of claim 14, the simulator having a set of estimated performance
parameters for parts of the software and for parts of the infrastructure, the simulation
comprising calculating the behaviour and performance of a candidate model with test

inputs and using the estimated performance parameters.

22. The system of claim 21, arranged to adapt the estimated performance parameters

according to the measurements from a deployment.

WO 2009/082384 PCT/US2007/088331
1/24
FIG 1
INFRASTRUCTURE
MANAGEMENT
OPERATOR 200
i MODELS ~~ [—— |
; BUSINESS 3
MANAGEMENT |4 » PROCESS2 | -—--- 5
SYSTEM 210 i 220 5
i | BUSINESS A A i
&»| PROCESS 1 |
i 230 i
INITIAL ; ;
DESIGN 5 I I ;
TOOLS ! ;
211 ! | DESIGN OF !
| | APPLICATION vV :
«» COMPONENTS | | DESIGN OF 5
i | TO APPLICATION ;
\ | IMPLEMENT COMPONENTS | ===~ !
i | BP1 250 || TO '
DESIGN ! !
213 v i
{ | INFRA-
¢»| STRUCTURE :
+ | DESIGN FOR i
| BP1 270 INFRA.- :
: STRUCTURE i
: DESIGN FOR :
< p{ BP2 260 | ——--
DEPLOYMENT
TOOLS 215
T 280 ADAPTIVE CUSTOMERS
T INFRASTRUCTURE DI 290
MONITORING, NET *
MANAGEMNT P
TOOLS 217 [T 283 MANAGEMENT]ggNCTfI\{LEL -
INFRASTRUCTURE

WO 2009/082384 PCT/US2007/088331

2/24

FIG 2
aoneal : MANAGEMENT SYSTEM
OPERATOR : ACTIONS
____ACTIONS !
500 DESIGN BUSINESS | |
PROCESS (BP) \ 510 CREATE UNBOUND MODEL
7 i A OF BP
520 SELECT /
TEMPLATE \
X ! | 530 CREATE GROUNDED
{ | MODEL OF BP BASED ON
DEPLOYMENT, | i
TESTORLIVE [, | 550 DEPLOY GROUNDED
i ™ MODEL OF BP IN ADAPTIVE
i INFRASTRUCTURE
{ | 560 MONITOR DEPLOYED BP
STOREVIEW |+
MONITORS ;
575 DESIGN
CHANGES TO :
BP OR \ 580 DECIDE IF CHANGES
INFRASTR. { | ALLOWED BY SAME TEMPLATE
M YES
585 DECIDE NEW 5
TEMPLATE OR g
REDESIGN WITHIN L,
SAME TEMPLATE | ™ 587 CREATE GROUNDED
\ | MODEL OF CHANGES, BASED
++ | ON SAME TEMPLATE
590 CAUSE !
DEPLOYMENT, TEST =
OR LIVE \ 595 DEPLOY GROUNDED
| MODEL OF CHANGES

PCT/US2007/088331

WO 2009/082384
324
i MODELS i MANAGEMENT SYSTEM
bl 15 5 ACTIONS
{ | BUSINESS |{_
\ | PROCESS >~.4| 65 SPECIFY APPLICATION
' | speC. : COMPONENTS FOR EACH OF THE
L | sTEPS 1) | COMPUTER IMPLEMENTED STEPS
; ! OF THE BUSINESS PROCESS
i | 25 UNBOUND |:
i | MODEL ®| 75 CREATE CANDIDATE GROUNDED
; | MODEL
i | 35 INFRA- 85 SELECT OPTIONS ALLOWED BY
i| STRUCTURE [+» | TEMPLATE TO CREATE CANDIDATE
' | DESIGN : INFRASTRUCTURE DESIGN,
1| TEMPLATE i
i 5 95 SELECT OPTIONS ALLOWED BY
; ; TEMPLATE TO CREATE CANDIDATE
: : CONFIGURATION OF APPLICATIONS,
| 45 i
i | CANDIDATE | !
i | GROUNDED [~%=--o____
{ | MODEL LT TRY
105 EVALUATE CANDIDATE
! ; GROUNDED MODEL
| 55 E
1| GROUNDED 5
' | MODEL =
i| READY FOR |igq-—-—"""""" BEST
| AUTOMATIC |! FIT FIG 3
i | DEPLOYMENT |
1R i

WO 2009/082384

Infrastructure

Capability 33

Application
Performance
31

PCT/US2007/088331

4/24

Deployed model 43

FIG 4

Bound model 57

Grounded
model 55

Template 35
for Infra-

>4 < structure
design
Unbound
Model 25 Applicatio
Constraints

Business
Process 15

WO 2009/082384

FIG 5

TEMPLATES
(TMP),

UNBOUND
MODEL
(UM),

GROUNDED
MODEL
(GM),

BOUND
MODEL
(BM),

PARTIAL
DEPLOYED
MODEL
(PDM),

FULLY
DEPLOYED
MODEL
(FDM)

PCT/US2007/088331

5/24

SERVICE FOR
GENERATING
GROUNDED
MODEL USING
TEMPLATE
320

SOURCE
DIRECTORY
340

SERVICE
RESERVES

RESOURCES
330

ADAPTIVE
| BM ™/ [NFRASTRUCTURY
MGMT SERVICE

CONFIGURES &
IGNITES VIRTUAL

4&— _ MACHINES
350 ADAPTIVE
INFRASTRUCTURE
280
PDM /<
T gw
DEPLOYMENT
SERVICE
4% 360

WO 2009/082384 PCT/US2007/088331

6/24

FIG 6

y

SELECT TEMPLATE FROM

E.G. CENTRALISED/DECENTRALISED
HIGH/LOW SECURITY
HIGH/LOW AVAILABILITY 400

!

SELECT REMAINING OPTIONS

E.G. DISK SIZE, NUMBER OF DIALOG PROCESSES,
—» SERVERS, SERVER MEMORY, NETWORK BAND-
WIDTH, DB TIME 410

I

BUILD CANDIDATE GROUNDED MODEL 420

I

EVALUATE CANDIDATE E.G. BY BUILDING QUEUING
NETWORK, WITH RESOURCES REPRESENTED, AND
WITH SYNC POINTS REPRESENTING PROCESSING
DELAYS, DB DELAYS 430

I

COMPARE SIM WITH GOALS, E.G. MAX USERS WITH
GIVEN RESPONSE TIME? OR MAX RESPONSE TIME FOR
GIVEN NO. OF USERS?

v

REPEAT WITH DIFFERENT OPTIONS 450

v

REPEAT WITH DIFFERENT TEMPLATE 460

v

COMPARE TO FIND BEST FIT TO GOALS 470

440

WO 2009/082384

724

FIG 7

PCT/US2007/088331

CLIENT S/W
G.U.L ON
DESKTOP | lg—p| MASTER
50 60
10 NETWORK
SLAVE
CLIENT S/W APP
10 {4 SERVER <
DIALOG
0 WORKER
PROCESSES 80
CLIENT S/W
n
10 ,\
! 5 SLAVE
' ' APP DIALOG
SERVER | WORKER <
PROCESSES 80
70
VIRTUAL
SLAVE
APP DIALOG
SERVER | WORKER <
PROCESSES 80
72

WO 2009/082384 PCT/US2007/088331

8/24

FIG 8

MASTER APP SERVER 50

ENQUEUE PROCESS (MANAGES LOCKS ON DB)
110

MESSAGE SERVER (MANAGES LOGIN AND
ASSIGNMENT OF USER TO WORKER PROCESSES)
120

UPDATE SERVER (MANAGES LOCKS ON
TRANSACTIONS ON DATABASE) 130

PRINT SERVER 140

SPOOL SERVER(S) (RUNS BATCH APPS E.G.
REPORTS) 150

DIALOG WORKER PROCESSES (RUNNING
INSTANCES OF THE APP COMPONENTS) 160

WO 2009/082384 PCT/US2007/088331

9/24
FIG9
“
VM| VM VMVM [VMVM
OPERATING SYSTEM
vM | vMm | v ” LEVEL 600
VM VM
J
VPAR = uPROC
LEVEL VPAR VPAR | VPAR | VPAR
PARTITION 610 610 610 610 610
nPAR= HARD PARTITION
E.G. ELEC. ISOLATED nPAR 620
BOARD 620
PHYSICAL COMPUTER 630
NETWORK SAN I/Fs

I/Fs 650 640

WO 2009/082384 PCT/US2007/088331
10/24
Transections
e Oreq tream Siis Otz | POz Daits |] ST REY sl macen]_ vAOL

- -._.-._._..-.-,_.-.-,-.-.-.-.-._.-.-_.(.S;_) * _____ l;nlg; i%z:l:nl-ﬁ;lédu;‘éym;” v ;';“;
S SV RSO I. ;;?‘];r‘;.;;-l_ I_F;i_:;“‘;; 3_
e b s e m et et e g;;b;imsd;i:;];;y;-::;nlé:];’.‘;%’;m;-, v ;D_m;
————————
- -

WO 2009/082384

SD Benchmark: At_BPStep
name : String

stepType : String
|stepParams : String

—
ISQ Benchmark Req: Al Nonfuugionglﬂggu'cemgng[——
I |

erformal -5 ; erformanceRequirements|

NoUsersReq : Integer
NoConcUsersReq : Integer
RespTimeReq: Double

ThroughputReq: Integer

| TimeFuction9-5: Al TimeFungtion |
ftime_fn : String = 9am to 5pm]

—

9 : Al_PerformanceRequirements

PerformanceRe

NoUsersReq: Integer
NoConcUsersReq: integer
RespTimeReq: Double
ThroughputReq: Integer

{ TimeFundion5-9: Al TimeFuncion]
[ime_fn : String = 5pm to9am]

FIG 11

Create Sales Order; Al_BPStep

11/24

PCT/US2007/088331

[ALBPStepToApplicationComponentMappink
[YD : Integer = 001 |

Create Outbound Defivery: Al BPStep

ST Jva01 : Al_Applicati |
name : String —
stepTypa : String [name: String |
stepParams : String

|ALBPStepToARF - piny

D : Integer = 002

[vLon; AI_ApplicationCompapent]

name : String
stepType : String
stepParams : String

| : String]

[AI_BPstepToAppIicationComponentMappinb
D : Integer =003

Display Customer Sales Order ; A BPStep [

= [VA3 : Al_ApplicationCompanent
name : String =
stepType : String name : String
stepParams : String Al_BPStepToApplicati P
L PE P |:]
1D : Integer = 004 |
Change Outbound Delivery : Al BPStep I B " I
: | MLO2N Al ApplicationComponent
name : String ———
stepType : String]name. Sting |
{stepParams : String |AI_BPS!epToAppIica!ionComponentMappinb

D : Integer = 005

[_I

=
=]

ne

List of Sales Order : Al_BPStep
name : String
stepType : String

|stepParams : String

: String

—

[ALBPStepToApplicationComponentMapping

D : Integer = 006

|L___|Create Defivery Docyment: Al_BPStep

h[i——{w:m - Al_ApplicationComponent]

name : String
stepType : String
stepParams : String

[name: String]

WO 2009/082384

12/24

Unbound Mode

CustomizedProcessModel

PCT/US2007/088331

intsModej

ApplicationPerformanceMode

FIG 12

Used to deduce the application
performance model from the business
step to application mapping and
constraints.,

PCT/US2007/088331

WO 2009/082384

13/24

wmanisia | staso ysia] [row: oy

o

uay/0z1g : weysAgRndwios [y _

Bumaswawhoidaq)y

l.atwma% : 90IAIBGUONNIAXI PapuUNoIS) |y
!
) ¢

Burpaguawiodaq)y

Burpaguawfodeqly

p3ouans : omBN Iy

ol oIN Y

ASIQSO - NsIa IV

uofoun Jawil) = <paiyosdsuns : Aajodsbuer
u"p = <paypadsuns : sbuer

wxNZ1d : wasAgiainduoy |y

Janegddy : asimaguonnasxgpapunoigy |y

¢

ug = <poypadsuns : sbuer

ug = <pagoadsuns : abuel-

ssasoipopmboleiq : Jusuodwoguoinosxgpapunols v

ss3901gHomboeiq : Juauodwoguonndexgpapunolsy |y

U} = <payoadsuns : abues

a)epdn : jusuodwoguonoaxgpopunols) |y

I_rozo__c:m : ﬁmcoasoog_sumxmumuczo._o|_<_|l_ Burpagyuawiojdaqpy

yam oIy | |stama : ysa1v| [¥e1080 DRIV

uay/0z19 : washgndwo iy

Buipagiuewfoldaqy

aseqeje : 99IAI9SUOINAXIPOPUN0IS |y

4
|
|

i
i
i
i

gaas ;5:8:.8:832%%: noJg Y

FIG 13

PCT/US2007/088331

WO 2009/082384

14/24

¥sIa10 ¥sia 1v| [¥siaso s iv] [ow: o

P

uax/0z 1 | weysAgteinduiog Ty |

Bupesiuawiodeqy

_._mtwwa% : 89IAI8gUONNDAXIPApUNOCID [_

[2K) oo

: _Nmmmuo._n_fo;mo_a_n : EmSmsoocouzomxmn%::ohwui

i ssas0igiopmboelq : Juauodwonuognosxgapapunolsy |y

i

Zayepdn : JusuodwonuognaaxIpapunoisy [y

_ Laepdn : wauodwonuognaex gpapunoisy |y

llli?iw__o:v:m : JuduodwoguognNIAXIPOpUNoIsy |y

| peuqns : ompaN T |

Buipaguowiodaqiy
Buipegewioldeqiy

Bumsgyuswhodaqny

Buipesuawordeqry

BuipesuawAoldeqy

v taN"Iy| |wsiaga: wsia v | [¥siaso: wsia T

I

| wex0z18 : wapshgienduioy iy

Buipesawordaqly

9sEqeIEe(: 991AI05UOGNIOXTPEPUNOID Iy

80 ds : uauodwonuolnIaxIPapunols [y

Buigagiuswiojdeqrv

FIG 14

PCT/US2007/088331

WO 2009/082384

15/24

[reuansiewexa : women"iv| L

FEE u‘_ lieAedld : esuenddy Ty

»
-
»

]

»

3

_ sAgues:weisAsigndwon |y

3SIASO : Asia IV

ASIQI0 : %SIATIV

3

b

1L sfeme
S sfues awnsse ‘passaiddns s1-abuel assuan
‘uBiisap aly Ui UB|g Y3} D18 SSINGLNE BWoS

3

*

eseqejeq : 9]A18SU0IINIeXIPEPUNCID [Tle_ Aa as : 3ueuodwioHUORNIeXT PepunoID Iy

fojodabuel

s

8

. UrZ = <pajoadsuns : abuel-
ssesosdopBorelq : Jueuodiionuoindexy pepunosd |y

Aoljodabuer
u''g = <payadsuns> : abuer

1eniegddy © 991AI8SUCIINOOXTPOPLNOID Y

3

%

L aepdn :jusuodwojuonnosxgpspunols) [y

_o___a_.v:m < JusuodwoNUORNIIXIPEPUNOIONY

FIG 15

WO 2009/082384

16/24

PCT/US2007/088331

FIG 16 o T
\
ESTIMATED MODEL STORE 720
PERFORMANCE
PARAMETERS CANDIDATE MODEL OF BUSINESS
715 PROCESS 740
NON-
FUNCTIONAL | | FUNCITIONAL
STEPS 750 REQUIREMENTS
760
SIMULATOR MODEL OF S/W
CONFIG 770
¢
MODEL OF COMPUTING
730 P INFRA-STRUCTURE 780
EVALUATIONS
OF SIMULATED
OPERATION OF
CANDIDATE
MODELS
YVY
MODEL ENERATE,
MANAGER |& MANAG !/
790 MODELS —
S/W CONFIG DEPLOYED
FORBUSINESS | SOFTWARE 700
PROCESS
DEPLOYED DESIGN OF
INFRASTRUCTURE INFRASTRUCTURE 710
CONFIG FOR
BUSINESS

PROCESS

WO 2009/082384 PCT/US2007/088331

17/24

>

MODEL
STORE 720

FIG 17

MODEL MANAGER N~
A

790 ADAPT MODEL OR GENERATE NEW
MODELS BASED ON MEASUREMENT

>
¢
>
MODELS FOR MEASUREMENTS
TEST TEST OF THE
INPUTS OPERATIONS OF
DEPLOYMENTS DIFFERENT
MODELS
h 4
TEST DEPLOYMENT OF
»/ SOFTWARE — >
>
820
>
TEST DEPLOYMENT OF
COMPUTING —»
» INFRASTRUCTURE R
830

WO 2009/082384

FIG 18

18/24

.

PARAMETER
ESTIMATION
CORRECTOR
850

PERFORMANCE

PCT/US2007/088331

/’—_—x
L‘/
MODEL STORE 720
ESTIMATED
COMPONENT
) PERFORMANCE

PARAMETERS

840

SIMULATOR

730

MEASUREMENTS

INFERRED
PERFORMANCE
PARAMETERS

PERFORMANCE
INFERENCE FOR
COMPONENTS
NOT MEASURED
DIRECTLY

360

OF COMPONENTS
FROM TEST
DEPLOYMENTS

MEASUREMENTS

MODEL MANAGER 790

v

OF OUTPUTS
FROM TEST
DEPLOYMENTS

WO 2009/082384 PCT/US2007/088331

19/24

FIG 19

GENERATE CANDIDATE MODEL REPRESENTING A
DEPLOYMENT OF BUSINESS PROCESS

870

SIMULATE OPERATION OF DEPLOYMENT ACCORDING TO
CANDIDATE MODEL

880

EVALUATE SIMULATED OPERATION AGAINST NON -
FUNCTIONAL REQUIREMENTS OF BUSINESS PROCESS

890

DEPLOY BUSINESS PROCESS ACCORDING TO SELECTED
CANDIDATE MODEL, ON ADAPTIVE INFRASTRUCTURE
897

WO 2009/082384 PCT/US2007/088331

20/24

FIG 20

DEPLOY MULTIPLE DIFFERENT CANDIDATE MODELS
REPRESENTING DIFFERENT DEPLOYMENTS OF THE SAME
BUSINESS PROCESS UNDER TEST CONDITIONS ON COMPUTING
INFRASTRUCTURE

902
APPLY TEST INPUTS TO THE DEPLOYED MODELS

922
v

MEASURE OUTPUTS AND SELECTED COMPONENTS OF THE TEST
DEPLOYMENTS

932
EVALUATE OPERATION OF THE DIFFERENT DEPLOYMENTS

942
SELECT OR GENERATE A CANDIDATE MODEL FOR LIVE
DEPLOYMENT ON THE BASIS OF EVALUATIONS OF SIMULATIONS

AND/OR TEST DEPLOYMENTS
952

WO 2009/082384 PCT/US2007/088331

21/24

FI1G 21

GENERATE CANDIDATE MODEL 926
CHOOSE GENERAL PROCESS MODEL (GP) FROM
CATALOGUE 936
CUSTOMIZE GP 946

I

SPECIFY NON-FUNCTIONAL REQUIREMENT TO CREATE
CANDIDATE UNBOUND MODEL
956

|

CHOOSE TEMPLATE FOR CONFIG OF COMPUTING
INFRASTRUCTURE, FROM CATALOGUE 966

I

SELECT REMAINING PARAMETERS ALLOWED BY
» TEMPLATE TO CREATE CANDIDATE GROUNDED
MODEL 976

\ 4
SIMULATE OR DEPLOY CANDIDATE MODEL 986

!

EVALUATE PERFORMANCE 996

v

ADAPT SELECTION OF REMAINING PARAMETERS TO
GENERATE NEW CANDIDATE GROUNDED MODEL
998

WO 2009/082384

22/24

PCT/US2007/088331

Model -based
management of
Enterprise
Application
A

deploymant

Model Pool A

Model-Based Design Service

Resource Pool

FIG 22

WO 2009/082384 PCT/US2007/088331

FIG 23

WO 2009/082384 PCT/US2007/088331

24/24

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2007/088331

A. CLASSIFICATION OF SUBJECT MATTER

G06Q 50/00(2006.01)i, GO6Q 10/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8 : GOSB 19/418, GOGF 17/50, GO6F 15/173, GO6T 15/00, GO6T 17/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models since 1975
Japanese Utility models and applications for Utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
¢KIPASS "BUSINESS PROCESS, MODEL, SOFTWARE, HARDWARE, SIMULATION, EVALUATION, INFRASTRUCTURE,
ARRANGEMENT"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 5870588 A (KARL VAN ROMPAEY et al.) 09 February 1999 1-22
See the Abstract, Claims 1, 27, 34 and Figures 1,2, 9-11, 18

A US 2007-0179828 A1 (ALEX ELKIN et al.) 02 August 2007 1-22
See the Abstract, Claims 1,15,26,27 and Figures 1-21

A US 7239311 B2 (RICHARD S. DUNN et al.) 03 July 2007 1-22
See the Abstract and Figure 1

A US 2004-19688 A1 (RAND B. NICKERSON et al.) 29 January 2004 1-22
See the Abstract
|:| Further documents are listed in the continuation of Box C. & See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international ~ "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
22 AUGUST 2008 (22.08.2008) 25 AUGUST 2008 (25082008)
Name and mailing address of the ISA/KR Authorized officer i
' Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonsa-ro, Seo- LEE, Joon Sung
gu, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8544

Form PCT/ISA/210 (second sheet) (July 2008)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2007/088331
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5870588 A 09.02. 1999 NONE
US 2007-0179828 A1 02.08.2007 NONE
US 7239311 B2 03.07.2007 US 2006-146053 AA 06.07.2006
US 2004-19688 A1l 29.01.2004 NONE

Form PCT/ISA/210 (patent family annex) (July 2008)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - wo-search-report
	Page 82 - wo-search-report

