Title: COLD FORMING OF COMPLEXLY CURVED GLASS ARTICLES

Abstract: The principles and embodiments of the present disclosure relate generally to complexly curved glass articles and methods of cold forming complexly curved glass articles, such as complexly curved glass articles having a first bend region with a set of first bend line segments, and a second bend region with a set of second bend line segments, wherein the first bend line segments and the second bend line segments are independent, are not parallel, and do not intersect.
Published:

— with international search report (Art. 21(3))
COLD FORMING OF COMPLEXLY CURVED GLASS ARTICLES

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Serial No. 62/328,165 filed on April 27, 2016 and U.S. Provisional Application Serial No. 62/305,795 filed on March 9, 2016, the contents of each are relied upon and incorporated herein by reference in their entirety.

TECHNICAL FIELD

[0002] Principles and embodiments of the present disclosure relate generally to complexly curved glass articles and methods of cold forming complexly curved glass articles.

BACKGROUND

[0003] Vehicle manufactures are creating interiors that better connect, protect and safely inform today’s drivers and passengers. As the industry moves towards autonomous driving, there is a need for creating large format appealing displays. There is already a trend towards larger displays including touch functionality in the new models from several OEMs. However, most of these displays consist of two dimensional plastic cover lens.

[0004] Due to these emerging trends in the automotive interior industry and related industries, there is a need to develop a low cost technology to make three-dimensional transparent surfaces. Of further interest is the development of automotive interior parts that includes bends in different directions, while maintaining complete independence between the bends.

[0005] One of the approaches that could be utilized to make three-dimensional automotive interior display surfaces is by utilizing plastics. Plastic materials could be shaped in a three-dimensional mold including multi-axis bends; however, glass is advantaged compared to plastics in several respects. In particular, plastics materials are prone to permanent damage during blunt impact, general wear, and UV exposure.

[0006] Three-dimensional glass surfaces are conventionally formed via hot forming process. The process also is capable for forming three-dimensional automotive
interior displays that are curved in more than one direction. Such glass bending methods involve heating the glass sheet and forming the sheet while it is still in a high temperature state at or near the softening temperature of the glass. [0007] However, hot forming processes are energy intensive due to the high temperatures involved and such processes add significant cost to the product. Furthermore, there is a need to provide anti-reflective coatings or other coatings on automotive interior display surfaces. Providing such coatings uniformly on a three-dimensional surface utilizing vapor deposition techniques is very challenging and further adds to the cost of the process. [0008] Cold forming processes, which may also be referred to as cold bending has been utilized to address some of the aforementioned issues. However, cold bending has been limited to bends or curvatures along one axis only. The anticlastic glass configuration that involves having opposite curvatures at one point is severely limited to large bend radius (1 m or higher) and mostly finds use for architectural or building applications. Cold bending procedure induces a permanent strain, and consequently a permanent stress, in the glass pane. [0009] Therefore, there is a need for new complexly curved glass articles and methods of making the same that can be used in automotive interiors and other applications.

SUMMARY [0010] A solution to at least one of the above issues involves glass articles having complexly curved shapes formed by cold forming. One aspect of the disclosure pertains to a complexly curved glass article that has been formed by a cold forming process. A second aspect of the disclosure pertains to a method for forming a complexly curved glass article using a cold forming process. According to one or more embodiments, the cold forming process is a cold bending process utilizing a preform with a first bend region having a set of first bend line segments, and a second bend region having a set of second bend line segments, wherein the first bend line segments and the second bend line segments are independent, are not parallel, and do not intersect. In various embodiments, the glass article is a laminate comprising at least two substrates, and the cold forming process is performed at a temperature below the glass transition temperature of either of the substrates that are used to form the
laminate. Accordingly, the methods described herein do not require heating to at or near the glass transition temperature of the glass, thus reducing manufacturing time and cost by avoiding heating operations for the glass substrate.

[0011] Another aspect of the disclosure pertains to a vehicle interior component comprising the complexly curved glass article. Yet another aspect of the disclosure pertains to a vehicle comprising the vehicle interior component.

[0012] Various embodiments are listed below. It will be understood that the embodiments listed below may be combined not only as listed below, but in other suitable combinations in accordance with the scope of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Further features of embodiment of the present disclosure, their nature and various advantages will become more apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, which are also illustrative of the best mode contemplated by the applicants, and in which like reference characters refer to like parts throughout, where:

[0014] FIG. 1A is a perspective view of a preform and a glass article having multiple bend regions;

[0015] FIG. 1B is another perspective view of the preform and glass article having multiple bend regions shown in FIG. 1A;

[0016] FIG. 1C is a front view of the preform and glass article having multiple bend regions shown in FIG. 1A;

[0017] FIG. 1D is a top view of the preform and glass article having multiple bend regions shown in FIG. 1A;

[0018] FIG. 1E is a side view of the preform and glass article having multiple bend regions shown in FIG. 1A;

[0019] FIG. 1F is a rear perspective view of the preform and glass article having multiple bend regions shown in FIG. 1A;

[0020] FIG. 1G is a rear view of the preform and glass article having multiple bend regions shown in FIG. 1A;

[0021] FIG. 2A is a perspective view of another exemplary embodiment of a preform and glass article having multiple bend regions;

[0022] FIG. 2B is a front view of the preform and glass article having multiple bend regions shown in FIG. 2A;
FIG. 2C is a side view of the preform and glass article having multiple bend regions shown in FIG. 2A;

FIG. 2D is a top perspective view of the preform and glass article having multiple bend regions shown in FIG. 2A; and

FIGS. 3A-F illustrate various exemplary embodiments of glass sheets before bending along different bend axes to provide multiple bend regions.

DETAILED DESCRIPTION

Before describing several exemplary embodiments of the disclosure, it is to be understood that the disclosure is not limited to the details of construction or process steps set forth in the following description. The descriptions in the disclosure are capable of other embodiments and of being practiced or being carried out in various ways.

Reference throughout this specification to "one embodiment," "certain embodiments," "various embodiments," "one or more embodiments" or "an embodiment" means that a particular feature, structure, material, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. Thus, the appearances of the phrases such as "in one or more embodiments," "in certain embodiments," "in various embodiments," "in one embodiment" or "in an embodiment" in various places throughout this specification are not necessarily referring to the same embodiment of the disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments.

It has been found that cold forming processes such as cold bending can be used to prepare complexly curved glass articles by use of a preform configuration in which one bend in a first direction is independent of a second bend in a second direction. Each of the cold bends can be either single curvature or double curvature. In one or more embodiments, the cold bend is a single curvature bend and does not have any cross curvature.

As used herein, "cold forming" refers to a process in which glass is shaped to have a curved or three-dimensional shape at a temperature below the glass transition temperature of the glass. Thus, according to one or more embodiments, in a cold forming process, the temperature is at least 200°C below the glass transition temperature of the glass. In this disclosure, a glass article refers to a glass sheet that
has been shaped to have multiple bend regions, as will be described herein. In one or more embodiments, a glass article includes a glass sheet that is subjected to cold forming or that is cold-formed. A cold formed glass sheet includes a first major surface comprising a first compressive stress and an opposing second major surface comprising a second compressive stress, wherein the first major surface is greater than the second compressive stress.

[0030] As used herein, "single curvature" bending is bending in at least a partial cylindrical-type shape that has a single radius of curvature. The axis running through the center of the cylindrical-type bend and perpendicular to the radius of curvature is designated herein as the "bend axis." Line segments that are located on the surface of the bend region of the article and that run parallel to the bend axis are designated herein as "bend line segments." As bend line segments are parallel to the associated bend axis, bend regions that have parallel or non-parallel bend axes will have parallel or non-parallel bend line segments, respectively.

[0031] As used herein, "double curvature" or "cross curvature" bending results from two interacting single curvatures that have overlapping bend axes, with each single curvature having its own bend axis and radius of curvature. Such configurations include synclastic and anticlastic configurations. In a synclastic configuration, all normal sections of the bend region are concave shaped or convex shaped, such as for a shell- or dome-shaped configuration. In an anticlastic configuration, some normal sections of the bend region will have a convex shape whereas others will have a concave shape, such as for a saddle-shaped configuration. The bend line segments for an article having double curvature will be curved due to the interaction of the two curvatures. Accordingly, the bend line segments for the two interacting curvatures in a double curvature are dependent and not independent.

[0032] As used herein, a "bend region" refers to a portion of an article that is curved in one or more directions. The bend region has non-zero curvature throughout the entire region. Bend regions can have single curvature or double curvature. In one or more embodiments, the bend region has single curvature and does not have any cross curvature. A bend region may be adjacent to another bend region or may be adjacent to a flat region.

[0033] As used herein, a "flat region" refers to a portion of an article that has substantially zero or zero curvature. As used herein, "substantially zero curvature"
means a radius of curvature greater than about 1 m. A flat region can be located between two or more bend regions. In one or more embodiments, the minimum distance between two non-adjacent bend regions is at least 10 millimeters, and thus the flat region spans a distance of at least 10 millimeters. Exemplary flat regions can span distances including the following values or ranges defined therefrom: 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 or 950 millimeters, or 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.5, 3, 3.5, 4, 4.5 or 5 meters.

[0034] FIGS. 1A-G illustrate various views of an exemplary embodiment of a preform 200 and a glass article 100 having multiple bend regions. Glass article 100 includes first portion 105 and second portion 110. First portion 105 has a flat region 115, bend region 120, bend region 125, and flat region 130. Second portion 110 has a flat region 135, bend region 140 and flat region 145. Bend regions 120 and 125 have parallel bend axes (not shown), but these bend axes are not parallel to the bend axis of bend region 140. Similarly, the bend line segments (not shown) of bend regions 120 and 125 are parallel to each other, but the bend line segments of bend regions 120 and 125 are not parallel to the bend line segments of bend region 140. The bend line segments of bend regions 120 and 125 also are independent of and do not intersect with the bend line segments of bend region 140. Bend regions 120 and 125 form an "S" shape due to the curvature of these two regions being in opposite directions. Preform 200 also has bend regions and flat regions corresponding to the bend regions and flat regions of glass article 100. Clips (not shown) can be used to ensure that the glass article 100 bends to adopt the shape of the preform 200. Alternatively, a complementary preform (not shown) can be placed on top of the glass article 100 on the preform 200 to ensure that the glass article bends to adopt the shape of the preforms. Other techniques for cold forming of the glass article are discussed below.

[0035] FIGS. 2A-D illustrate various views of another exemplary embodiment of a preform 400 and glass article 300 having multiple bend regions. Glass article 300 includes first portion 305, second portion 310 and third portion 370. First portion 305 has a flat region 315, bend region 320, bend region 325, and flat region 330. Second portion 310 has a bend region 335, flat region 340, bend region 345, flat region 350, bend region 355 and flat region 360. Third portion 370 has a flat region 375, bend
region 380, bend region 385, and flat region 390. Bend regions 320, 325, 380 and 385 have parallel bend axes (not shown) and bend regions 335, 345 and 355 have parallel bend axes, but the bend axes of bend regions 320, 325, 380 and 385 are not parallel to the bend axes of bend regions 335, 345 and 355. Similarly, the bend line segments (not shown) of bend regions 320, 325, 380 and 385 are parallel and the bend line segments of bend regions 335, 345 and 355 are parallel, but the bend line segments of bend regions 320, 325, 380 and 385 are not parallel to the bend line segments of bend regions 335, 345 and 355. The bend line segments of bend regions 320, 325, 380 and 385 also are independent of and do not intersect with the bend line segments of bend regions 335, 345 and 355. Bend regions 320 and 325 form an "S" shape in the first portion 305 due to the curvature of these two regions being in opposite directions. Similarly, bend regions 380 and 385 also form an "S" shape in the third portion 370. The second portion 310 also has an "S" shape because the curvature of bend region 355 is in an opposite direction from the curvature of bend regions 335 and 345, even though the bend regions are separated by flat regions 340 and 350. Preform 400 also has bend regions and flat regions corresponding to the bend regions and flat regions of glass article 300. Techniques for bending the glass article 300 to adopt the shape of preform 400 are discussed in further detail below.

[0036] FIGS. 3A-F illustrate various exemplary embodiments of glass sheets before bending along different bend axes to provide multiple bend regions. In each of FIGS. 3A-F, dashed lines indicate bend axes and the arrows represent the direction of bend. As can be seen from FIG. 3A, the glass sheet can be bent around two non-parallel bend axes of a substrate having two portions providing an L-shaped sheet. As can be seen from FIG. 3B, the glass sheet can be bent around two parallel bend axes on a first portion and a third bend axis that is not parallel to the first two axes in a second portion of the substrate, the two portions providing a T-shaped substrate. As can be seen from FIG. 3C, the glass sheet can be bent around two parallel bend axes in one portion, and another bend axis in a second portion, and two parallel bend axes in a third portion, the first, second and third portions providing a substantially I-shaped substrate. In FIG. 3C, the bend axis in the second portion is not parallel to the bend axes in either the first portion or the second portion. As can be seen from FIG. 3D, the glass sheet can be bent around two parallel bend axes and a third bend axis that is not parallel to the first two axes on first and second portion of the substrate providing
an asymmetrical T-shape. Also, FIG. 3D shows that the glass sheet does not have to be symmetric prior to bending. As can be seen from FIG. 3E, the glass sheet can be bent around two parallel bend axes in a first portion of the substrate and a third bend axis that is not parallel to the first two axes in a second portion of the substrate, the first and second portions providing a T-shaped substrate. As can be seen from FIG. 3F, the glass sheet can be bent around three non-parallel bend axes. It will be understood that the configurations shown in FIGS3A-3F are exemplary only and non-limiting, and the scope of the disclosure includes any substrate having two portions with multiple bend regions.

Accordingly, one aspect of the disclosure pertains to a glass article comprising a cold-formed, complexly-curved continuous glass sheet having a first bend in a first portion of the sheet defining a first bend region and having a set of first bend line segments, and a second bend in a second portion of the sheet defining a second bend region and having a set of second bend line segments, wherein the first bend line segments and the second bend line segments are independent, are not parallel, and do not intersect.

In one or more embodiments, the glass sheet may have a thickness of 7 millimeters or less, such as in the range of 25 micrometers and 5 millimeters. Exemplary thicknesses of the glass sheet include the following values or ranges defined therefrom: 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 or 950 micrometers, or 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.5, 3, 3.5, 4, 4.5 or 5 millimeters.

In one or more embodiments, the radius of curvature for one or more of the bends is greater than 20 millimeters, such as in the range of greater than 25 millimeters and less than 5 meters. Exemplary bend radii include the following values or ranges defined therefrom: 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 or 950 millimeters, or 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.5, 3, 3.5, 4, 4.5 or 5 meters. Each bend can have the same or different radius of curvature as another bend.

In one or more embodiments, the glass article has a first bend stress magnitude at the first bend region, a second bend stress magnitude at the second bend region, and
a flat region stress magnitude, and the flat region stress magnitude differs from the first bend stress magnitude and the second bend stress magnitude by at least 1 MPa. Exemplary differentials for the stress magnitude between bend regions and flat regions include the following values or ranges defined therefrom: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90 or 100 MPa. The difference in stress magnitudes between bend regions and flat regions can be the same or different for each bend.

[0041] In one or more embodiments, the glass article may include a glass sheet that is strengthened (prior to being shaped into the embodiments of the glass article described herein). For example, the glass sheet may be heat strengthened, tempered glass, chemically strengthened or strengthened by a combination thereof. In one or more embodiments, strengthened glass sheets have a compressive stress (CS) layer extending from a surface thereof to a compressive stress depth of layer (DOL). As used herein, "thermally strengthened" refers to articles that are heat treated to improve the strength of the article, and "thermally strengthened" includes tempered articles and heat-strengthened articles, for example tempered glass and heat-strengthened glass. Tempered glass involves an accelerated cooling process, which creates higher surface compression and/or edge compression in the glass. Factors that impact the degree of surface compression include the air-quench temperature, volume, and other variables that create a surface compression of at least 10,000 pounds per square inch (psi). Heat-strengthened glass is produced by a slower cooling than tempered glass, which results in a lower compression strength at the surface and heat-strengthened glass is approximately twice as strong as annealed, or untreated, glass.

[0042] In chemically strengthened glass sheets, the replacement of smaller ions by larger ions at a temperature below that at which the glass network can relax produces a distribution of ions across the surface of the glass that results in a stress profile. The larger volume of the incoming ion produces a CS extending from a surface and tension (central tension, or CT) in the center of the glass. T

[0043] In strengthened glass sheets, the depth of the compressive stress is related to the central tension by the following approximate relationship (Equation 1)

\[
CT \approx \frac{CS \times DOL}{\text{thickness} - 2 \times DOL}
\]
where thickness is the total thickness of the strengthened glass sheet and compressive depth of layer (DOL) is the depth of the compressive stress. Unless otherwise specified, central tension CT and compressive stress CS are expressed herein in megaPascals (MPa), whereas thickness and depth of layer DOL are expressed in millimeters or microns.

[0044] In one or more embodiments, a strengthened glass sheet can have a surface CS of 300 MPa or greater, e.g., 400 MPa or greater, 450 MPa or greater, 500 MPa or greater, 550 MPa or greater, 600 MPa or greater, 650 MPa or greater, 700 MPa or greater, 750 MPa or greater or 800 MPa or greater. The strengthened glass sheet may have a compressive depth of layer 15 micrometers or greater, 20 micrometers or greater (e.g., 25, 30, 35, 40, 45, 50 micrometers or greater) and/or a central tension of 10 MPa or greater, 20 MPa or greater, 30 MPa or greater, 40 MPa or greater (e.g., 42 MPa, 45 MPa, or 50 MPa or greater) but less than 100 MPa (e.g., 95, 90, 85, 80, 75, 70, 65, 60, 55 MPa or less). In one or more specific embodiments, the strengthened glass sheet has one or more of the following: a surface compressive stress greater than 500 MPa, a depth of compressive layer greater than 15 micrometers, and a central tension greater than 18 MPa.

[0045] The strengthened glass sheets described herein may be chemically strengthened by an ion exchange process. In the ion-exchange process, typically by immersion of a glass sheet into a molten salt bath for a predetermined period of time, ions at or near the surface(s) of the glass sheet are exchanged for larger metal ions from the salt bath. In one embodiment, the temperature of the molten salt bath is from about 375 °C to about 450 °C and the predetermined time period is in the range from about four to about eight hours. In one example, sodium ions in a glass sheet are replaced by potassium ions from the molten bath, such as a potassium nitrate salt bath, though other alkali metal ions having larger atomic radii, such as rubidium or cesium, can replace smaller alkali metal ions in the glass. In another example, lithium ions in a glass sheet are replaced by potassium and/or sodium ions from the molten bath that may include potassium nitrate, sodium nitrate or a combination thereof, although other alkali metal ions having larger atomic radii, such as rubidium or cesium, can replace smaller alkali metal ions in the glass. According to particular embodiments, smaller alkali metal ions in the glass sheet can be replaced by Ag+ ions. Similarly,
other alkali metal salts such as, but not limited to, sulfates, phosphates, halides, and the like may be used in the ion exchange process.

[0046] In chemically strengthened substrates, CS and DOL are determined by surface stress meter (FSM) using commercially available instruments such as the FSM-6000, manufactured by Luceo Co., Ltd. (Tokyo, Japan), or the like, and methods of measuring CS and depth of layer are described in ASTM 1422C-99, entitled "Standard Specification for Chemically Strengthened Flat Glass," and ASTM 1279 (1979) "Standard Test Method for Non-Destructive Photoelastic Measurement of Edge and Surface Stresses in Annealed, Heat-Strengthened, and Fully-Tempered Flat Glass," the contents of which are incorporated herein by reference in their entirety. Surface stress measurements rely upon the accurate measurement of the stress optical coefficient (SOC), which is related to the birefringence of the glass. SOC in turn is measured by those methods that are known in the art, such as fiber and four point bend methods, both of which are described in ASTM standard C770-98 (2008), entitled "Standard Test Method for Measurement of Glass Stress-Optical Coefficient," the contents of which are incorporated herein by reference in their entirety, and a bulk cylinder method.

[0047] The materials for the glass articles may be varied. The glass sheets used to form the glass articles can be amorphous articles or crystalline articles. Amorphous glass sheets according to one or more embodiments can be selected from soda lime glass, alkali alumino silicate glass, alkali containing borosilicate glass and alkali aluminoborosilicate glass. Examples of crystalline glass sheets can include glass-ceramics, sapphire or spinel. Examples of glass-ceramics include Li₂O-Al₂O₃-SiO₂ system (i.e. LAS-System) glass ceramics, MgO-Al₂O₃-SiO₂ System (i.e. MAS-System) glass ceramics, glass ceramics including crystalline phases of any one or more of mullite, spinel, α-quartz, β-quartz solid solution, petalite, lithium disilicate, β-spodumene, nepheline, and alumina.

[0048] Glass sheets may be provided using a variety of different processes. For example, exemplary glass sheet forming methods include float glass processes and down-draw processes such as fusion draw and slot draw. A glass sheet prepared by a float glass process may be characterized by smooth surfaces and uniform thickness is made by floating molten glass on a bed of molten metal, typically tin. In an example process, molten glass that is fed onto the surface of the molten tin bed forms a floating
glass ribbon. As the glass ribbon flows along the tin bath, the temperature is gradually decreased until the glass ribbon solidifies into a solid glass sheet that can be lifted from the tin onto rollers. Once off the bath, the glass sheet can be cooled further and annealed to reduce internal stress.

[0049] Down-draw processes produce glass sheet having a uniform thickness that possess relatively pristine surfaces. Because the average flexural strength of the glass sheet is controlled by the amount and size of surface flaws, a pristine surface that has had minimal contact has a higher initial strength. When this high strength glass sheet is then further strengthened (e.g., chemically), the resultant strength can be higher than that of a glass sheet with a surface that has been lapped and polished. Down-drawn glass sheet may be drawn to a thickness of less than about 2 millimeters. In addition, down drawn glass sheet have a very flat, smooth surface that can be used in its final application without costly grinding and polishing.

[0050] The fusion draw process, for example, uses a drawing tank that has a channel for accepting molten glass raw material. The channel has weirs that are open at the top along the length of the channel on both sides of the channel. When the channel fills with molten material, the molten glass overflows the weirs. Due to gravity, the molten glass flows down the outside surfaces of the drawing tank as two flowing glass films. These outside surfaces of the drawing tank extend down and inwardly so that they join at an edge below the drawing tank. The two flowing glass films join at this edge to fuse and form a single flowing glass sheet. The fusion draw method offers the advantage that, because the two glass films flowing over the channel fuse together, neither of the outside surfaces of the resulting glass sheet comes in contact with any part of the apparatus. Thus, the surface properties of the fusion drawn glass sheet are not affected by such contact.

[0051] The slot draw process is distinct from the fusion draw method. In slow draw processes, the molten raw material glass is provided to a drawing tank. The bottom of the drawing tank has an open slot with a nozzle that extends the length of the slot. The molten glass flows through the slot/nozzle and is drawn downward as a continuous sheet and into an annealing region.

[0052] Exemplary compositions for use in the glass sheets will now be described. One example glass composition comprises SiO₂, B₂O₃ and Na₂O, where (SiO₂ + B₂O₃) ≥ 66 mol. %, and Na₂O ≥ 9 mol. %. Suitable glass compositions, in some
embodiments, further comprise at least one of K₂O, MgO, and CaO. In a particular embodiment, the glass compositions can comprise 61-75 mol.% SiO₂; 7-15 mol.% Al₂O₃; 0-12 mol.% B₂O₃; 9-21 mol.% Na₂O; 0-4 mol.% K₂O; 0-7 mol.% MgO; and 0-3 mol.% CaO.

[0053] A further example glass composition comprises: 60-70 mol.% SiO₂; 6-14 mol.% Al₂O₃; 0-15 mol.% B₂O₃; 0-15 mol.% Li₂O; 0-20 mol.% Na₂O; 0-10 mol.% K₂O; 0-8 mol.% MgO; 0-10 mol.% CaO; 0-5 mol.% ZrO₂; 0-1 mol.% SnO₂; 0-1 mol.% CeO₂; less than 50 ppm As₂O₃; and less than 50 ppm Sb₂O₃; where 12 mol.% < (Li₂O + Na₂O + K₂O) ≤ 20 mol.% and 0 mol.% ≤ (MgO + CaO) ≤ 10 mol.%. A still further example glass composition comprises: 63.5-66.5 mol.% SiO₂; 8-12 mol.% Al₂O₃; 0-3 mol.% B₂O₃; 0-5 mol.% Li₂O; 8-18 mol.% Na₂O; 0-5 mol.% K₂O; 1-7 mol.% MgO; 0-2.5 mol.% CaO; 0-3 mol.% ZrO₂; 0-0.25 mol.% SnO₂; 0.05-0.5 mol.% CeO₂; less than 50 ppm As₂O₃; and less than 50 ppm Sb₂O₃; where 14 mol.% ≤ (Li₂O + Na₂O + K₂O) ≤ 18 mol.% and 2 mol.% ≤ (MgO + CaO) ≤ 7 mol.%.

[0055] In a particular embodiment, an alkali aluminosilicate glass composition comprises aluminas, at least one alkali metal and, in some embodiments, greater than 50 mol.% SiO₂, in other embodiments at least 58 mol.% SiO₂, and in still other embodiments at least 60 mol.% SiO₂, wherein the ratio ((Al₂O₃ + B₂O₃)/Σ modifiers)>1, where in the ratio the components are expressed in mol.% and the modifiers are alkali metal oxides. This glass composition, in particular embodiments, comprises: 58-72 mol.% SiO₂; 9-17 mol.% Al₂O₃; 2-12 mol.% B₂O₃; 8-16 mol.% Na₂O; and 0-4 mol.% K₂O, wherein the ratio((Al₂O₃ + B₂O₃)/Σ modifiers)>1.

[0056] In still another embodiment, the glass article may include an alkali aluminosilicate glass composition comprising: 64-68 mol.% SiO₂; 12-16 mol.% Na₂O; 8-12 mol.% Al₂O₃; 0-3 mol.% B₂O₃; 2-5 mol.% K₂O; 4-6 mol.% MgO; and 0-5 mol.% CaO, wherein: 66 mol.% ≤ SiO₂ + B₂O₃ + CaO ≤ 69 mol.%; Na₂O + K₂O + B₂O₃ + MgO + CaO + SrO > 10 mol.%; 5 mol.% ≤ MgO + CaO + SrO ≤ 8 mol.%; (Na₂O + B₂O₃) + Al₂O₃ ≤ 2 mol.%; 2 mol.% ≤ Na₂O - Al₂O₃ ≤ 6 mol.%; and 4 mol.% ≤ (Na₂O + K₂O) - Al₂O₃ ≤ 10 mol.%.

[0057] In an alternative embodiment, the glass sheet may comprise an alkali aluminosilicate glass composition comprising: 2 mol% or more of Al₂O₃ and/or ZrO₂, or 4 mol% or more of Al₂O₃ and/or ZrO₂.
In some embodiments, the compositions used for a glass article may be batched with 0-2 mol. % of at least one fining agent selected from a group that includes Na₂SO₄, NaCl, NaF, NaBr, K₂SO₄, KCl, KF, KBr, and SnO₂.

The glass articles may be a single glass sheet or a laminate. According to one or more embodiments of the disclosure, a laminate refers to opposing glass substrates separated by an interlayer, for example, poly(vinyl butyral) (PVB). A glass sheet forming part of a laminate can be strengthened (chemically, thermally, and/or mechanically) as described above. Thus, laminates according to one or more embodiments comprise at least two glass sheets bonded together by an interlayer in which a first glass sheet defines an outer ply and a second glass sheet defines an inner ply. In vehicle applications such as automotive glazings, the inner ply is exposed to a vehicle or automobile interior and the outer ply faces an outside environment of the automobile. In vehicle applications such as automotive interiors, the inner ply is unexposed and placed on an underlying support (e.g., a display, dashboard, center console, instrument panel, seat back, seat front, floor board, door panel, pillar, arm rest etc.), and the outer ply is exposed to the vehicle or automobile interior. In architectural applications, the inner ply is exposed to a building, room, or furniture interior and the outer ply faces an outside environment of the building, room or furniture. In one or more embodiments, the glass sheets in a laminate are bonded together by an interlayer such as a polymer interlayer selected from the group consisting of polyvinyl butyral (PVB), ethylenevinylacetate (EVA), polyvinyl chloride (PVC), ionomers, and thermoplastic polyurethane (TPU).

Another aspect of the disclosure pertains to methods of cold forming the complexly curved glass articles described herein. In various embodiments, the cold forming involves bending a continuous glass sheet about a preform with a first bend region having a set of first bend line segments, and a second bend region having a set of second bend line segments, wherein the first bend line segments and the second bend line segments are independent, are not parallel, and do not intersect.

Non-limiting exemplary techniques for cold forming the complexly curved glass article include:

- Placing the glass sheet in between two complementary preforms, with an adhesive between the glass sheet and one of the two preforms. For example,
either of the preforms shown in FIGS. 1A-1G and 2A-2D could include a complementary preform, and a glass sheet can be cold formed between the preforms by applying force to move the two preforms toward each other. This force can be provided using mechanical force such as a worm gear, hydraulic force, pneumatic force or other suitable ways of providing appropriate force so that the glass sheet takes the form of the mold. The sandwich structure is pressed together to have the glass sheet take the shape of mold formed by the two preforms.

- Attaching a thin frame made out of metal (such as aluminum, steel, etc.) on the periphery of the glass sheet. Bending or twisting equipment is used to provide shape to the frame, which in turn bends the glass. The shaped glass and its metal frame can be used as a single article in the same way as a glass article as described herein.
- Sliding the glass sheet into a frame with grooves so that the glass will slide in to take the desired shape.
- Using rollers, guide pins, or vacuum to conform the glass sheet to the shape of the preform.
- Snapping the glass sheet into clips located on the preform.

[0062] In one or more embodiments, the cold forming is performed at a temperature below the glass transition temperature. Exemplary temperatures include room temperature (e.g. about 21 °C) or slightly elevated temperatures such as temperatures less than 200 °C. In one or more embodiments, the temperature during cold forming is less than or equal to any of the following temperatures: 300, 250, 200, 150, 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, 55, 50, 45, 40, 35, 30, 25 or 20 °C. In one or more embodiments, the cold forming is performed at a certain temperature relative to the glass transition temperature of the glass, such as at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900 or 1,000 °C below the glass transition temperature.

[0063] In one or more embodiments, at least one bend is formed according to a cold forming process, and at least one bend is formed according to another process such as a hot form process. In alternate embodiments, all bends are formed according to cold forming processes.
In one or more embodiments, two or more bends are both formed according to cold forming processes, but the bends are introduced in sequential cold forming processes rather than simultaneously forming both bends. In other embodiments, all bends are formed simultaneously during the same cold forming process.

According to another aspect of the disclosure, a vehicle interior component includes a complexly curved glass article as described herein. Exemplary vehicles include: motor vehicles such as motorcycles, automobiles, trucks, buses; rail vehicles such as trains and trams; watercraft such as ships and boats; aircraft such as airplanes and helicopters; and spacecraft. In one or more embodiments, the vehicle is an automobile. The vehicle interior component can also comprise the glass article on a support surface. Exemplary vehicle interior components include a display, a center console, a dashboard, a door panel, a pillar, a floorboard, an arm rest and an instrument cluster cover. The support surface can include, but is not limited to, fabric, leather, polymer, wood, metal and combinations thereof. The glass article can have one or more coatings such as an anti-glare coating, an anti-reflective coating, an oleophobic coating, an anti-scratch coating or an ink coating. The glass article can have different coatings on opposite surfaces, such as an ink coating on a first surface and an anti-reflective coating on a second surface.

According to one or more embodiments of the disclosure, a glass instrument cluster cover comprises a complexly curved glass article as described herein. According to one or more embodiments, a vehicle's instrument cluster houses various displays and indicators that enable an operator to operate the vehicle. Among these are several gauges, non-limiting examples including a speedometer, odometer, tachometer, oil pressure gauge, fuel gauge, etc. In addition, the vehicle's instrument cluster may include indicators for system malfunctions and warnings. Instrument clusters provide vehicle operators with a centralized and easily viewable location for displaying all critical system information. As used herein, "instrument cluster cover" includes a cover that covers the dashboard instrument cluster and/or the center console, which may include other components such as a radio, GPS, heater controls, etc.

Another aspect of the present disclosure pertains to a vehicle comprising a cabin and an interior, the interior comprising a vehicle interior component including a complexly curved glass article as described herein.
It will be understood that the disclosure further provides for at least the following embodiments:

A first embodiment pertaining to a glass article comprising a cold-formed, complexly-curved continuous glass sheet having a first bend in a first portion of the sheet defining a first bend region and having a set of first bend line segments, and a second bend in a second portion of the sheet defining a second bend region and having a set of second bend line segments and the second bend line segments are independent, are not parallel, and do not intersect.

In a second embodiment, the first embodiment includes the feature of a first portion of the sheet includes the first bend region and a second portion of the sheet includes the second bend region.

In a third embodiment, the second embodiment includes the feature of the first portion has a plurality of bend regions having a plurality of first portion bend axes, wherein at least two of the first portion bend axes are parallel.

In a fourth embodiment, the third embodiment includes the feature of second portion has a plurality of bend regions having a plurality of second portion bend axes, wherein at least two of the first portion bend axes are parallel.

In a fifth embodiment, the fourth embodiment includes the feature of the first portion includes an S-curve.

In a sixth embodiment, the fifth embodiment includes the feature of the second portion includes an S-curve.

In a seventh embodiment, the sixth embodiment includes the feature of the first bend region and the second bend region are separated by a flat region that is not curved for a distance of at least 10 millimeters.

In an eighth embodiment, the first embodiment includes the feature of the glass article has a first bend stress magnitude at the first bend region, a second bend stress magnitude at the second bend region, and a flat region stress magnitude, and the flat region stress magnitude differs from the first bend stress magnitude and the second bend stress magnitude by at least 1 MPa.

In a ninth embodiment, the eighth embodiment includes the feature of the flat region stress magnitude differs from the first bend stress magnitude and the second bend stress magnitude by at least 10 MPa.
In a tenth embodiment, the first embodiment includes the feature of the sheet has a first surface and a second surface and a thickness defined by the first surface and second surface, and the thickness is in a range of 25 micrometers and 5 millimeters.

In an eleventh embodiment, the first embodiment includes the feature of at least one of the first bend and the second bend has a radius of curvature of greater than 25 millimeters and less than 5 meters.

In a twelfth embodiment, the eleventh embodiment includes the feature of both the first bend and the second bend have a radius of curvature of greater than 25 millimeters and less than 5 meters.

In a thirteenth embodiment, the first embodiment includes the feature of the sheet has a first surface and a second surface, wherein the first bend has a first bend compressive stress at the first surface that is greater than a first bend compressive stress at the second surface, and wherein the second bend has a second bend compressive stress at the first surface that is greater than a second bend compressive stress at the second surface.

In a fourteenth embodiment, the first through thirteenth embodiments include the feature of the glass article comprises a strengthened glass substrate selected from the group consisting of a laminated glass substrate, chemically strengthened glass substrate, a thermally strengthened glass substrate and a combination thereof.

In a fifteenth embodiment, the first through fourteenth embodiments include the feature of the sheet comprises an ion exchangeable alkali aluminosilicate glass composition.

In a sixteenth embodiment, the first through fourteenth embodiments include the feature of the sheet comprises an ion exchangeable alkali aluminoboro silicate glass composition.

In a seventeenth embodiment, the first through sixteenth embodiments include the feature of the sheet comprises a chemically strengthened glass substrate with ions exchanged in an outer region to a depth of layer (DOL) in a range of about 10 micrometers to about 90 micrometers from an outer surface of the glass substrate.

In an eighteenth embodiment, the seventeenth embodiment includes the feature of the outer region has a compressive stress (CS) magnitude in a range of 300 MPa to 1000 MPa.
[0087] In a nineteenth embodiment, the eighteenth embodiment includes the feature of the CS is in the range of 600 MPa to about 1000 MPa.

[0088] In a twentieth embodiment, the first through nineteenth embodiments include the feature of the glass article is selected from the group consisting of an architectural glass substrate, a vehicle interior glass substrate, and an appliance glass substrate.

[0089] A twenty-first embodiment pertains to a vehicle interior component comprising the glass article of any of the first through nineteenth embodiments.

[0090] In a twenty-second embodiment, the twenty-first embodiment includes the feature of a support surface and the glass article on the support surface.

[0091] In a twenty-third embodiment, the twenty-second embodiment includes the feature of being selected from the group consisting of a display, a center console, a dashboard, a door panel, a pillar, a floor board, an arm rest and an instrument cluster cover.

[0092] In a twenty-fourth embodiment, the twenty-second embodiment includes the feature of the glass article further includes one or more of an anti-glare coating, an anti-reflective coating, an oleophobic coating, an anti-scratch coating and an ink coating.

[0093] In a twenty-fifth embodiment, the twenty-second embodiment includes the feature of the support surface comprises fabric, leather, polymer, wood, metal and combinations thereof.

[0094] A twenty-sixth embodiment pertains to a vehicle comprising a cabin and an interior, the interior comprising the vehicle interior component of any of the twentieth through twenty-fifth embodiments.

[0095] A twenty-seventh embodiment pertains to an automobile interior component comprising a cold-formed, complexly-curved continuous glass sheet having a first portion having a first bend defining a first bend region with a set of first bend line segments, and a second portion having a second bend defining a second bend region with a set of second bend line segments, wherein the first bend line segments and the second bend line segments are independent, are not parallel, and do not intersect, at least one of the first portion and the second portion comprises a flat region that is not curved for a distance of at least 10 millimeters, and the glass article has a first bend stress magnitude at the first bend region, a second bend stress magnitude at the second bend region, and a flat region stress magnitude, and the flat region stress magnitude
differs from the first bend stress magnitude and the second bend stress magnitude by at least 1 MPa.

[0096] A twenty-eighth embodiment pertains to a method of forming a complexly curved glass article comprising cold forming a continuous glass sheet about a preform having a first bend region with a set of first bend line segments, and a second bend region with a set of second bend line segments, wherein the first bend line segments and the second bend line segments are independent, are not parallel, and do not intersect.

[0097] In a twenty-ninth embodiment, the twenty-eighth embodiment includes the feature of the glass sheet has a glass transition temperature and the cold forming is performed at a temperature below the glass transition temperature.

[0098] In a thirtieth embodiment, the twenty-ninth embodiment includes the feature of the cold forming is performed at a temperature of less than 200° C.

[0099] In a thirty-first embodiment, the twenty-eighth embodiment includes the feature of the glass sheet prior to cold forming has a shape including a first portion and a second portion that intersect to form the continuous sheet.

[0100] In a thirty-second embodiment, the thirty-first embodiment includes the feature of the glass sheet prior to cold forming has a shape selected from the group consisting of an L-shape, a T-shape, an I-shape, an C-shape, an H-shape, a V-shape and an X-shape.

[0101] In a thirty-third embodiment, the thirty-second embodiment includes the feature of the cold forming imparts a first bend along a first bend axis in the first portion and a second bend along a second bend axis is the second portion.

[0102] In a thirty-fourth embodiment, the thirty-third embodiment includes the feature of the cold forming imparts a plurality of bends in the first portion along a plurality of first portion bend axes, wherein at least two of the first portion bend axes are parallel.

[0103] In a thirty-fifth embodiment, the thirty-fourth embodiment includes the feature of the cold forming imparts a plurality of bends in the second portion along a plurality of second portion bend axes, wherein at least two of the second portion bend axes are parallel.

[0104] In a thirty-sixth embodiment, the thirty-fifth embodiment includes the feature of the first portion includes an S-curve after cold forming.
[00105] In a thirty-seventh embodiment, the thirty-sixth embodiment includes the feature of the second portion includes an S-curve after cold forming.

[00106] In a thirty-eighth embodiment, the thirty-third embodiment includes the feature of at least one of the first portion and the second portion comprises a flat region after cold forming that is not curved for a distance of at least 10 millimeters.

[00107] In a thirty-ninth embodiment, the thirty-eighth embodiment includes the feature of the glass article has a first bend stress magnitude at the first bend region, a second bend stress magnitude at the second bend region, and a flat region stress magnitude, and the flat region stress magnitude differs from the first bend stress magnitude and the second bend stress magnitude by at least 1 MPa.

[00108] In a fortieth embodiment, the thirty-ninth embodiment includes the feature of the flat region stress magnitude differs from the first bend stress magnitude and the second bend stress magnitude by at least 10 MPa.

[00109] In a forty-first embodiment, the thirty-third embodiment includes the feature of the sheet has a first surface and a second surface, wherein the first bend has a first bend compressive stress at the first surface that is greater than a first bend compressive stress at the second surface, and wherein the second bend has a second bend compressive stress at the first surface that is greater than a second bend compressive stress at the second surface.

[00110] In a forty-second embodiment, the twenty-eighth embodiment includes the feature of the sheet has a first surface and a second surface and a thickness defined by the first surface and second surface, and the thickness is in a range of 25 micrometers and 5 millimeters.

[00111] In a forty-third embodiment, the twenty-eighth embodiment includes the feature of at least one of the first bend and the second bend has a radius of curvature of greater than 25 millimeters and less than 5 meters.

[00112] In a forty-fourth embodiment, the twenty-eighth embodiment includes the feature of both the first bend and the second bend have a radius of curvature of greater than 25 millimeters and less than 5 meters.

[00113] In a forty-fifth embodiment, the twenty-eighth embodiment includes the feature of the glass sheet is coated prior to cold forming.
[00114] In a forty-sixth embodiment, the twenty-eighth embodiment includes the feature of the coating comprises one or more of an anti-glare coating, an anti-reflection coating, an oleophobic coating, an anti-scratch coating and an ink coating.

[00115] In a forty-seventh embodiment, the twenty-eighth through forty-sixth embodiments include the feature of the glass article comprises a strengthened glass substrate selected from the group consisting of a laminated glass substrate, chemically strengthened glass substrate, a thermally strengthened glass substrate and a combination thereof.

[00116] In a forty-eighth embodiment, the twenty-eighth through forty-seventh embodiments include the feature of the sheet comprises an ion exchangeable alkali aluminosilicate glass composition.

[00117] In a forty-ninth embodiment, the twenty-eighth through forty-seventh embodiments include the feature of the sheet comprises an ion exchangeable alkali aluminoborosilicate glass composition.

[00118] In a fiftieth embodiment, the twenty-eighth through forty-ninth embodiments include the feature of the sheet comprises a chemically strengthened glass substrate with ions exchanged in an outer region to a depth of layer (DOL) in a range of about 10 micrometers to about 90 micrometers from an outer surface of the glass substrate.

[00119] In a fifty-first embodiment, the twenty-eighth through forty-sixth embodiments include the feature of the outer region has a compressive stress (CS) magnitude in a range of 300 MPa to 1000 MPa.

[00120] In a fifty-second embodiment, the fifty-first embodiment includes the feature of the CS is in the range of 600 MPa to about 1000 MPa.

[00121] In a fifty-third embodiment, the twenty-eighth through fifty-seventh embodiments include the feature of the glass article is selected from the group consisting of an architectural glass substrate, a vehicle interior glass substrate, and an appliance glass substrate.

[00122] Although the disclosure herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present disclosure. It will be apparent to those skilled in the art that various modifications and variations can be made to the method and apparatus of the present disclosure without departing from
the spirit and scope of the disclosure. Thus, it is intended that the present disclosure include modifications and variations that are within the scope of the appended claims and their equivalents.
What is claimed is:

1. A glass article comprising a cold-formed, complexly-curved continuous glass sheet having a first bend in a first portion of the sheet defining a first bend region and having a set of first bend line segments, and a second bend in a second portion of the sheet defining a second bend region and having a set of second bend line segments, wherein the first bend line segments and the second bend line segments are independent, are not parallel, and do not intersect.

2. The glass article of claim 1, wherein a first portion of the sheet includes the first bend region and a second portion of the sheet includes the second bend region.

3. The glass article of claim 2, wherein the first portion has a plurality of bend regions having a plurality of first portion bend axes, wherein at least two of the first portion bend axes are parallel.

4. The glass article of claim 3, wherein the second portion has a plurality of bend regions having a plurality of second portion bend axes, wherein at least two of the first portion bend axes are parallel.

5. The glass article of claim 4, wherein the first portion includes an S-curve.

6. The glass article of claim 5, wherein the second portion includes an S-curve.

7. The glass article of claim 1, wherein the first bend region and the second bend region are separated by a flat region that is not curved for a distance of at least 10 millimeters.

8. The glass article of claim 7, wherein the glass article has a first bend stress magnitude at the first bend region, a second bend stress magnitude at the second bend region, and a flat region stress magnitude, and the flat region stress magnitude differs from the first bend stress magnitude and the second bend stress magnitude by at least 1 MPa.
9. The glass article of claim 8, wherein the flat region stress magnitude differs from the first bend stress magnitude and the second bend stress magnitude by at least 10 MPa.

10. The glass article of claim 1, wherein the sheet has a first surface and a second surface and a thickness defined by the first surface and second surface, and the thickness is in a range of 25 micrometers and 5 millimeters.

11. The glass article of claim 1, wherein at least one of the first bend and the second bend has a radius of curvature of greater than 25 millimeters and less than 5 meters.

12. The glass article of claim 11, wherein both the first bend and the second bend have a radius of curvature of greater than 25 millimeters and less than 5 meters.

13. The glass article of claim 1, wherein the sheet has a first surface and a second surface, wherein the first bend has a first bend compressive stress at the first surface that is greater than a first bend compressive stress at the second surface, and wherein the second bend has a second bend compressive stress at the first surface that is greater than a second bend compressive stress at the second surface.

14. The glass article of any of claims 1-13, wherein the glass article comprises a strengthened glass substrate selected from the group consisting of a laminated glass substrate, chemically strengthened glass substrate, a thermally strengthened glass substrate and a combination thereof.

15. The glass article of any of claims 1-14, wherein the sheet comprises an ion exchangeable alkali aluminosilicate glass composition.

16. The glass article of any of claims 1-14, wherein the sheet comprises an ion exchangeable alkali aluminoboro silicate glass composition.

17. The glass article of any of claims 1-16, wherein the sheet comprises a chemically strengthened glass substrate with ions exchanged in an outer region to a depth of layer (DOL) in a range of about 10 micrometers to about 90 micrometers from an outer surface of the glass substrate.
18. The glass article of claim 17, wherein the outer region has a compressive stress (CS) magnitude in a range of 300 MPa to 1000 MPa.

19. The glass article of claim 18, wherein the CS is in a range of 600 MPa to about 1000 MPa.

20. The glass article of any of claims 1-19, wherein the glass article is selected from the group consisting of an architectural glass substrate, a vehicle interior glass substrate, and an appliance glass substrate.

21. A vehicle interior component comprising the glass article of any of claims 1-19.

22. The vehicle interior component of claim 21, comprising a support surface and the glass article on the support surface.

23. The vehicle interior component of claim 22 selected from the group consisting of a display, a center console, a dashboard, a door panel, a pillar, a floor board, an armrest and an instrument cluster cover.

24. The vehicle interior component of claim 22, wherein the glass article further includes one or more of an anti-glare coating, an anti-reflective coating, an oleophobic coating, an anti-scratch coating and an ink coating.

25. The vehicle interior component of claim 22, wherein the support surface comprises fabric, leather, polymer, wood, metal and combinations thereof.

26. A vehicle comprising a cabin and an interior, the interior comprising the vehicle interior component of any of claims 20-25.

27. An automobile interior component comprising a cold-formed, complexly-curved continuous glass sheet having a first portion having a first bend defining a first bend region with a set of first bend line segments, and a second portion having a second bend defining a second bend region with a set of second bend line segments, wherein the first bend line segments and the second bend line segments are independent, are not parallel, and do not intersect, at least one of the first portion and
the second portion comprises a flat region that is not curved for a distance of at least 10 millimeters, and the glass sheet has a first bend stress magnitude at the first bend region, a second bend stress magnitude at the second bend region, and a flat region stress magnitude, and the flat region stress magnitude differs from the first bend stress magnitude and the second bend stress magnitude by at least 1 MPa.

28. A method of forming a complexly curved glass article comprising cold forming a continuous glass sheet about a preform having a first bend region with a set of first bend line segments, and a second bend region with a set of second bend line segments, wherein the first bend line segments and the second bend line segments are independent, are not parallel, and do not intersect.

29. The method of claim 28, wherein the glass sheet has a glass transition temperature and the cold forming is performed at a temperature below the glass transition temperature.

30. The method of claim 29, wherein the cold forming is performed at a temperature of less than 200° C.

31. The method of claim 28, where the glass sheet prior to cold forming has a shape including a first portion and a second portion that intersect to form the continuous sheet.

32. The method of claim 31, wherein the glass sheet prior to cold forming has a shape selected from the group consisting of an L-shape, a T-shape, an I-shape, a C-shape, an H-shape, a V-shape and an X-shape.

33. The method of claim 31, wherein cold forming imparts a first bend along a first bend axis in the first portion and a second bend along a second bend axis is the second portion.

34. The method of claim 33, wherein cold forming imparts a plurality of bends in the first portion along a plurality of first portion bend axes, wherein at least two of the first portion bend axes are parallel.
35. The method of claim 34, wherein cold forming imparts a plurality of bends in the second portion along a plurality of second portion bend axes, wherein at least two of the second portion bend axes are parallel.

36. The method of claim 35, wherein the first portion includes an S-curve after cold forming.

37. The method of claim 36, wherein the second portion includes an S-curve after cold forming.

38. The method of claim 33, wherein at least one of the first portion and the second portion comprises a flat region after cold forming that is not curved for a distance of at least 10 millimeters.

39. The method of claim 38, wherein the glass article has a first bend stress magnitude at the first bend region, a second bend stress magnitude at the second bend region, and a flat region stress magnitude, and the flat region stress magnitude differs from the first bend stress magnitude and the second bend stress magnitude by at least 1 MPa.

40. The method of claim 39, wherein the flat region stress magnitude differs from the first bend stress magnitude and the second bend stress magnitude by at least 10 MPa.

41. The method of claim 33, wherein the sheet has a first surface and a second surface, wherein the first bend has a first bend compressive stress at the first surface that is greater than a first bend compressive stress at the second surface, and wherein the second bend has a second bend compressive stress at the first surface that is greater than a second bend compressive stress at the second surface.

42. The method of claim 28, wherein the sheet has a first surface and a second surface and a thickness defined by the first surface and second surface, and the thickness is in a range of 25 micrometers and 5 millimeters.
43. The method of claim 28, wherein at least one of the first bend and the second bend has a radius of curvature of greater than 25 millimeters and less than 5 meters.

44. The method of claim 28, wherein both the first bend and the second bend have a radius of curvature of greater than 25 millimeters and less than 5 meters.

45. The method of claim 28, wherein the glass sheet is coated prior to cold forming.

46. The method of claim 45, wherein the coating comprises one or more of an anti-glare coating, an anti-reflection coating, an oleophobic coating, an anti-scratch coating and an ink coating.

47. The method of any of claims 28-46, wherein the glass article comprises a strengthened glass substrate selected from the group consisting of a laminated glass substrate, chemically strengthened glass substrate, a thermally strengthened glass substrate and a combination thereof.

48. The method of any of claims 28-47, wherein the sheet comprises an ion exchangeable alkali aluminosilicate glass composition.

49. The method of any of claims 28-47, wherein the sheet comprises an ion exchangeable alkali aluminoboro silicate glass composition.

50. The method of any of claims 28-49, wherein the sheet comprises a chemically strengthened glass substrate with ions exchanged in an outer region to a depth of layer (DOL) in a range of about 10 micrometers to about 90 micrometers from an outer surface of the glass substrate.

51. The method of claim 50, wherein the outer region has a compressive stress (CS) magnitude in a range of 300 MPa to 1000 MPa.

52. The method of claim 51, wherein the CS is in a range of 600 MPa to about 1000 MPa.
53. The method of any of claims 28-52, wherein the glass article is selected from the group consisting of an architectural glass substrate, a vehicle interior glass substrate, and an appliance glass substrate.
INTERNATIONAL SEARCH REPORT

International application No:

PCT/US2017/021069

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or both national classification and IPC:

- INV. C03B23/023
- C03B23/03
- C03B23/031
- C03B23/033
- C03B23/035

ADD.

Minimum documentation searched (classification system followed by classification symbols)

- C03B
- B32B
- B60J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

- EPO-Internal
- WPI Data
- COMPEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 4 147 527 A (BYSTROV NI KOLAI M ET AL) 3 April 1979 (1979-04-03) the whole document</td>
<td>1-27</td>
</tr>
<tr>
<td></td>
<td>GB 991 867 A (PI RNA GUSS & FARBENGLASWERKE) 12 May 1965 (1965-05-12) the whole document</td>
<td>1-27</td>
</tr>
<tr>
<td>X</td>
<td>US 2 608 030 A (JENDRISAK JOSEPH E) 26 August 1952 (1952-08-26) the whole document</td>
<td>1-27</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search

2 June 2017

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040
Fax. (+31-70) 340-3016

Date of mailing of the international search report

20/06/2017

Authorized officer

Gkerou, El i savet

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| X | **EP 0 418 700 AI (PPG INDUSTRIES INC [US])**
the whole document | 1-27 |
| X | **EP 0 664 210 AI (FIAT AUTO SPA [IT])**
the whole document | 1-27 |
15 August 2013 (2013-08-15)
the whole document | 1-27 |
| A | Vakar I Laszlo: "Col d Bendab l e, Lami nated Gl ass- New P ossibilities in Desi gn",
9 July 2004 (2004-07-09) , XP055378271 ,
[retrieved on 2017-06-02]
the whole document | 1-27 |
| A | GALUPPI LAURA ET AL: "Optimal col d bendi ng of l ami nated gl ass",
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES,
vol. 67, 15 August 2015 (2015-08-15) ,
pages 231-243 , XP029240103 ,
ISSN: 0020-7683 , DOI: 10.1016/J.IJSOLSTR.2015.04.023
the whole document | 1-27 |
| A | BELIS J, ET AL: "Col d bendi ng of l ami nated gl ass panel s",
Heron
vol. 52, no. 1/2
2007, pages 123-146, XP002770751,
[retrieved on 2017-06-02]
the whole document | 1-27 |
| Y | **WO 2015/031594 A2 (CORNING INC [US])**
5 March 2015 (2015-03-05)
the whole document | 1-27 |
| Y | **GB 805 770 A (DU PONT)**
10 December 1958 (1958-12-10)
the whole document | 1-27 |
| Y | **US 4 445 953 A (HAWK THOMAS W [US])**
1 May 1984 (1984-05-01)
the whole document | 1-27 |

Form PCT/ISA/210 (continuation of second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>WO 2015/084902 Al (CORNING INC [US])</td>
<td>1-27</td>
</tr>
<tr>
<td></td>
<td>11 June 2015 (2015-06-11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
<tr>
<td>Y, P</td>
<td>WO 2016/196531 Al (CORNING INC [US])</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>8 December 2016 (2016-12-08)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
<tr>
<td>Y, P</td>
<td>WO 2017/023673 Al (CORNING INC [US])</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>9 February 2017 (2017-02-09)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
</tbody>
</table>
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

 - see FURTHER INFORMATION sheet PCT/ISA/210

2. ☒ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☒ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☒ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest
- ☒ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- ☒ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- ☒ No protest accompanied the payment of additional search fees.
Further, confi gurati ons produced in the art by cold forming processes (see also descri pti on on paragraph [0008]) involve only large bend radii and thereby only slight bending of the glass. How would the person skilled in the art be able to produce complexly curved glass sheets with small bend radii without damag ing the substrate to-be-processed? How does the cold forming process and/or glass structure of the current applicati on differ from that of the prior art thereby rendering the glass material flexible capable of such complex bending.

2 The non-compliance with the substantive provi si ons is to such an extent, that no meaningful search of claims 28-53 could be carri ed out at all (Arti cle 17(2) PCT). The search was therefore restricted to claims 1-27.

The applicant’s attenti on is drawn to the fact that claims relating to inventi ons in respect of which no internati onal search report has been established need not be the subject of an internati onal preli minary examinati on (Rule 66.1(e) PCT). The applicant is advised that the EP0 policy when acting as an Internati onal Preliminary Examination Authority is normally not to carry out a preli minary examinati on on matter which has not been searched. This is the case irrespecti ve of whether or not the claims are amended following receipt of the search report or duri ng any Chapter II procedure. If the applicati on proceeds into the regi onal phase before the EP0, the applicant is reminded that a search may be carri ed out duri ng examinati on before the EP0 (see EP0 Gui delines C-IV, 7.2), should the probi ems which led to the Arti cle 17(2) declarati on be overcome.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 4147527 A</td>
<td>03-04-1979</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>GB 991867 A</td>
<td>12-05-1965</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2608030 A</td>
<td>26-08-1952</td>
<td>BE 538214 A</td>
<td>15-06-1955</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 1065690 A</td>
<td>28-05-1954</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 708705 A</td>
<td>05-05-1954</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2608030 A</td>
<td>26-08-1952</td>
</tr>
<tr>
<td>US 2011148267 Al</td>
<td>23-06-2011</td>
<td>CA 2722557 Al</td>
<td>18-06-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011148267 Al</td>
<td>23-06-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69006146 DI</td>
<td>03-03-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69006146 T2</td>
<td>21-07-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4979977 A</td>
<td>25-12-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69426759 T2</td>
<td>21-06-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0664210 Al</td>
<td>26-07-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT T0940025 A</td>
<td>19-07-1995</td>
</tr>
<tr>
<td>US 2013209824 Al</td>
<td>15-08-2013</td>
<td>CN 104114735 A</td>
<td>22-10-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2814995 Al</td>
<td>24-12-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015508847 A</td>
<td>23-03-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2014132591 A</td>
<td>27-02-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013209824 Al</td>
<td>15-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2013154629 A</td>
<td>17-10-2013</td>
</tr>
<tr>
<td>Wo 2015031594 A2</td>
<td>05-03-2015</td>
<td>CN 105705330 A</td>
<td>22-06-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 3038827 A2</td>
<td>06-07-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016530204 A</td>
<td>29-09-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20160046889 A</td>
<td>29-04-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2016207290 Al</td>
<td>21-07-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2015031594 A2</td>
<td>05-03-2015</td>
</tr>
<tr>
<td>GB 805770 A</td>
<td>10-12-1958</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 4445953 A</td>
<td>01-05-1984</td>
<td>CA 1189781 A</td>
<td>02-07-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3305806 A</td>
<td>01-09-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2521908 A</td>
<td>26-08-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2116111 A</td>
<td>21-09-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1165550 B</td>
<td>22-04-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H0247350 B2</td>
<td>19-10-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP S58193151 A</td>
<td>10-11-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4445953 A</td>
<td>01-05-1984</td>
</tr>
<tr>
<td>US 2004026021 Al</td>
<td>12-02-2004</td>
<td>US 2004026021 Al</td>
<td>12-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006012071 Al</td>
<td>19-01-2006</td>
</tr>
<tr>
<td>Wo 2015084902 Al</td>
<td>11-06-2015</td>
<td>EP 3077201 Al</td>
<td>12-10-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2017505746 A</td>
<td>23-02-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2016297176 Al</td>
<td>13-10-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2015084902 Al</td>
<td>11-06-2015</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
<td>Publication date</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>WO 2016196531 A1</td>
<td>08-12-2016</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>WO 2017023673 A1</td>
<td>09-02-2017</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>