wo 2014/058640 A 1[I I NPFV0 000 O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

17 April 2014 (17.04.2014)

WIPOIPCT

(10) International Publication Number

WO 2014/058640 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 21/53 (2013.01) GO6F 9/54 (2006.01)

International Application Number:
PCT/US2013/062636

International Filing Date:
30 September 2013 (30.09.2013)

Filing Language: English
Publication Language: English
Priority Data:

61/712,948 12 October 2012 (12.10.2012) US
61/712,953 12 October 2012 (12.10.2012) US
61/712,956 12 October 2012 (12.10.2012) US
61/712,962 12 October 2012 (12.10.2012) US
61/713,715 15 October 2012 (15.10.2012) US
61/713,718 15 October 2012 (15.10.2012) US
61/713,762 15 October 2012 (15.10.2012) US
61/714,293 16 October 2012 (16.10.2012) US
61/714,469 16 October 2012 (16.10.2012) US
61/806,577 29 March 2013 (29.03.2013) US
61/824,204 16 May 2013 (16.05.2013) US
61/861,199 1 August 2013 (01.08.2013) US
13/963,739 9 August 2013 (09.08.2013) US

Applicant: CITRIX SYSTEMS, INC. [US/US]; 851
West Cypress Creek Road, Fort Lauderdale, Florida 33309

(US).
Inventors: BORZYCKI, Andrew; c/o CITRIX SYS-

TEMS, INC., 851 West Cypress Creek Road, Fort Lauder-
dale, Florida 33309 (US). DEVA, Mallikharjuna Reddy;

(74

(8D

(84)

c/o CITRIX SYSTEMS, INC., 851 West Cypress Creck
Road, Fort Lauderdale, Florida 33309 (US). GAJENDAR,
Uday Nandigam,; c¢/o CITRIX SYSTEMS, INC., 851 West
Cypress Creek Road, Fort Lauderdale, Florida 33309 (US).
ROYCHOUDHRY, Anil; ¢/o CITRIX SYSTEMS, INC,,
851 West Cypress Creek Road, Fort Lauderdale, Florida
33309 (US).

Agent: EMFINGER, Brian J.; BANNER & WITCOFF,
LTD., 1100 13th Street, N.W., Suite 1200, Washington,
District of Columbia 20005-4051 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

[Continued on next page]

(54) Title: ORCHESTRATION FRAMEWORK FOR CONNECTED DEVICES

Chent

Agent

FiG. 6

(57) Abstract: Aspects described herein allow multiple devices to function as a coherent whole, allowing each device to take on dis-
tinct functions that are complementary to one another. Aspects described herein also allow the devices function as a coherent whole
when interconnected devices and their respective applications are configured to operate in various operation modes, when manage -
ment policies are employed to control the operation of the interconnected devices and their respective applications, when transfer -
ring content between the interconnected devices and storing the content at those devices, when obtaining access credentials for the
interconnected devices that enable the devices to access enterprise resources, when a policy agent applies management policies to
control operation of and interaction between the interconnected devices, and when the interconnected devices are used to access an
enterprise application store.

WO 2014/058640 A1 |IIWAT 00TV A0 0T O AR

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Published:

KM, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

WO 2014/058640 PCT/US2013/062636
1

ORCHESTRATION FRAMEWORK FOR CONNECTED DEVICES
CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Patent Application No. 13/963,739 entitled
“Coordinating a Computing Activity Across Applications and Devices Having Multiple
Operation Modes in an Orchestration Framework for Connected Devices” and filed on
August 9, 2013, which claims the benefit of U.S. Provisional Patent Application No.
61/712,948 entitled “Frictionless Distributive and Collaborative Work Across Time and
Space” and filed on October 12, 2012, of U.S. Provisional Patent Application No. 61/712,953
entitled “Mobile Work and Micro Work Using an Activity Interface” and filed on October
12, 2012, of U.S. Provisional Patent Application No. 61/712,956 entitled ‘“Multi-Device
Interaction” and filed on October 12, 2012, of U.S. Provisional Patent Application No.
61/712,962 entitled “Orchestration Framework for Connected Devices” and filed on October
12, 2012, of U.S. Provisional Patent Application No. 61/713,715 entitled “Managing
Dynamic Policies and Settings for Mobile Applications” and filed on October 15, 2012, of
U.S. Provisional Patent Application No. 61/713,718 entitled “Secure Data Sharing Among
Managed Applications” and filed on October 15, 2012, of U.S. Provisional Patent
Application No. 61/713,762 entitled “Conveying Data Between Secure Applications Running
on an Electronic Mobile Device” and filed on October 15, 2012, of U.S. Provisional Patent
Application No. 61/714,293 entitled “Managing Encrypted File Vaults for Managed
Applications on an Unmanaged Device” and filed on October 16, 2012, of U.S. Provisional
Patent Application No. 61/714,469 entitled “Policy-Based Control of a Managed Application
Derived from an Unmanaged Application” and filed on October 16, 2012, of U.S. Provisional
Patent Application No. 61/806,577 entitled “Systems and Methods for Enterprise Mobility
Management” and filed on March 29, 2013, of U.S. Provisional Patent Application No.
61/824,204 entitled “Multi-Device Interaction” and filed on May 16, 2013, and of U.S.
Provisional Patent Application No. 61/861,199 entitled “Orchestration Framework for
Connected Devices” and filed on August 1, 2013, cach of which are incorporated by

reference in their entirety herein.

[0002] This application is also related to U.S. Patent Application No. 13/963,758 entitled
“Sharing Content Across Applications and Devices Having Multiple Operation Modes in an
Orchestration Framework for Connected Devices” and filed on August 9, 2013, to U.S.
Patent Application No. 13/963,794 entitled “Managing Dynamic Policies and Settings in an

WO 2014/058640 PCT/US2013/062636
2

Orchestration Framework for Connected Devices” and filed on August 9, 2013, to U.S.
Patent Application No. 13/963,811 entitled “Controlling Device Access to Enterprise
Resources in an Orchestration Framework for Connected Devices” and filed on August 9,
2013, to U.S. Patent Application No. 13/963,825 entitled “Single Sign-On Access in an
Orchestration Framework for Connected Devices” and filed on August 9, 2013, to U.S.
Application No. 13/963,833 entitled “Application Management Framework for Secure Data
Sharing in an Orchestration Framework for Connected Devices” and filed on August 9, 2013,
to U.S. Application No. 13/963,851 entitled “Enterprise Application Store for an
Orchestration Framework for Connected Devices” and filed on August 9, 2013, to U.S.
Patent Application No. 13/886,889 entitled “Application with Multiple Operation Modes”
and filed May 3, 2013, to U.S. Patent Application No. 13/649,076 entitled “Gateway for
Controlling Mobile Device Access to Enterprise Resources” and filed on October 10, 2012,
to U.S. Patent Application to Qureshi et al. entitled “Automated Detection of Software
Problems in Software Application Deployments” and issued on August 31, 2010, to U.S.
Patent Application No. 13/886,845 entitled “Secure Access to Resources Using a Proxy” and
filed on May 3, 2013, to U.S. Patent Application No. 12/390,110 entitled “Implementing
Single Sign-On Across a Heterogeneous Collection of Client/Server and Web-Based
Applications” and filed on February 20, 2009, to U.S. Patent Application No. 12/575,121
entitled Authenticating a Client Using Linked Authentication Credentials” and filed on
October 7, 2009, to U.S. Patent No. 6,681,330 to Bradford et al. entitled “Method and System
for a Heterogencous Computer Network System with Unobtrusive Cross-Platform User
Access” and issued on January 20, 2004, and to U.S. Patent No. 6,243,816 to Fang et al.
entitled “Single Sign-On (SSO) Mechanism Personal Key Manager” and issued on June 5,

2001, each of which are incorporated by reference in their entirety herein.

WO 2014/058640 PCT/US2013/062636
3

BACKGROUND

[0003] Traditionally, personal computers included operating systems, applications, and user
settings for a single user. Personal computers were generally both used and managed by their
owners. However, many organizations are now using virtualization, remote access and/or
clouds of computing resources to fulfill their computing needs. Clouds of virtualized
computing resources generally allow for the operating systems, applications, and user settings
of multiple users to be included on a single physical machine. Desktop virtualization
technology allows multiple instances of an operating system to be kept separate, so the
activity of one user does not affect the experience of other users. Cloud computing
environments allow for computers owned by the cloud operator to be managed by the cloud

operator but used by cloud users, who may be customers of the cloud operator.

[0004] A virtual machine client agent is an application that allows a user a type of
virtualized remote access to corporate applications, desktops and data, even when said
“remote” resources are on the physical machine the user may be using. Each client agent may
communicate with a central enterprise server that lists which applications and other resource
have been selected by the user, and which applications and other resources are available for

the user to select or request.

[0005] As virtualization becomes increasingly popular and more cost effective, new
problems arise that aspects described herein address. For example, we are currently in the
post PC era, and moving from a single device to a multi device world. This typically involves
at least 4 screens — a smart phone, a tablet, a full featured laptop / desktop, and large, room
mounted displays. Each of these devices can independently run software such as web
browsers, meeting software (such as GOTOMEETING® by Citrix Systems Inc. of Ft.
Lauderdale, FL), and personal information managers (PIM software), and
document/productivity software. However, each of these devices runs independently, largely
unaware of other devices. The most linkage that currently occurs between devices typically
involves mirroring screens from one device to another. Typical examples of this include
displaying a laptop screen on a large, room-mounted display, or displaying a tablet / smart

phone display onto a laptop, which then gets displayed on a large, room mounted display.

SUMMARY

[0006] The following presents a simplified summary of various aspects described herein.

This summary is not an extensive overview, and is not intended to identify key or critical

WO 2014/058640 PCT/US2013/062636
4

clements or to delineate the scope of the claims. The following summary merely presents
some concepts in a simplified form as an introductory prelude to the more detailed

description provided below.

[0007] To overcome limitations in the prior art described above, and to overcome other
limitations that will be apparent upon reading and understanding the present specification,
aspects described herein are directed to an orchestration framework for managing the

interaction between interconnected devices in a coordinated fashion.

[0008] A first aspect described herein provides a method for managing the operation of
applications and devices having multiple operation modes in an orchestration framework for
connected devices. Computing devices may be interconnected through an orchestration
framework that coordinates operation of a computing activity across multiple computing
devices of the plurality of computing devices. A request to transfer content from a first
application at a first computing device to a second application at a second computing device
may be received, and a determination may be made of whether to initiate transfer of the
content. The determination may be based on the operation modes of the applications, which

may include a managed operation mode and an unmanaged operation mode.

[0009] A second aspect described herein provides an apparatus for managing interactions
between computing devices based on the operation mode of the computing devices. The
apparatus may include one or more processors and memory with computer-readable
instructions. The computer-readable instructions may, when executed, cause the apparatus to
interconnect multiple computing devices through an orchestration framework that coordinates
operation of a computing activity across the multiple computing devices. The apparatus may
receive a request to transfer content from a first computing device to a second computing
device and determine whether to initiate the transfer based on the operation modes of the
computing devices. The operation modes of the computing devices may also include a

managed operation mode and an unmanaged operation mode.

[0010] A third aspect described herein provides non-transitory computer-readable media
having instructions that, when executed, cause a computing device to connect to one or more
computing devices through an orchestration framework that coordinates operation of a
computing activity across the computing devices. The instructions may also cause the
computing device to facilitate transfer of content from the computing device to another

computing device. The computing device may receive an indication of selected content to

WO 2014/058640 PCT/US2013/062636
5

transfer. The computing device may also display a list of computing devices available for
selection to receive the selected content. The list of computing devices may be based on the
operation mode of the computing device transferring the content. The computing device may
provide to a server an indication of a computing device selected from the list. The server may

then initiate and facilitate transfer of the selected content to the selected computing device.

[0011] Some aspects described herein also provide initiating the transfer in response to a
determination that the operation modes are the same, blocking the transfer in response to a
determination that the operation modes are not the same, determining whether to permit
copying to or pasting from a virtual clipboard based on operation mode, setting the operation
mode of an application to a desired operation mode after initiating launch of the application,
applying a management policy, and interconnecting computing devices through an

orchestration framework in a client-server fashion or in a peer-to-peer fashion.

[0012] The aspects described above may be similarly applicable to methods, apparatuses,
and non-transitory computer-readable media for determining whether to instruct a computing
device to perform at least a portion of a computing activity initiated at one computing device
at another computing device. The determination may likewise be based on the operation
modes of the computing devices. Based on the operation modes of the computing devices, the
orchestration framework may instruct a computing device to perform at least a portion of a
computing activity initiated at another computing device. The orchestration framework may
also instruct a computing device or an application residing at a computing device to change
operation modes before performing the portion of the computing activity, e.g., from an
unmanaged operation mode to a managed operation mode. A list of computing devices
available for selection to perform the portion of the computing activity may also be based on
the operation modes of the computing devices. The orchestration framework may be
configured to interconnect computing devices via a client-server communication session, a

peer-to-peer communication session, and combinations thereof.

[0013] These and additional aspects will be appreciated with the benefit of the disclosures

discussed in further detail below.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] A more complete understanding of aspects described herein and the advantages

thereof may be acquired by referring to the following description in consideration of the

accompanying drawings, in which like reference numbers indicate like features, and wherein:

WO 2014/058640 PCT/US2013/062636
6

[0015] FIG. 1 depicts an illustrative computer system architecture that may be used in

accordance with one or more illustrative aspects described herein.

[0016] FIG. 2 depicts an illustrative remote-access system architecture that may be used in

accordance with one or more illustrative aspects described herein.

[0017] FIG. 3 depicts an illustrative virtualized (hypervisor) system architecture that may

be used in accordance with one or more illustrative aspects described herein.

[0018] FIG. 4 depicts an illustrative cloud-based system architecture that may be used in

accordance with one or more illustrative aspects described herein.
[0019] FIG. 5 depicts an illustrative enterprise mobility management system.
[0020] FIG. 6 depicts another illustrative enterprise mobility management system.

[0021] FIG. 7 illustrates multi-device use according to one or more illustrative aspects

described herein.

[0022] FIG. 8 illustrates a system architecture that may be used according to one or more

illustrative aspects described herein.

[0023] FIG. 9A illustrates a system architecture according to one or more illustrative

aspects described herein.

[0024] FIG. 9B illustrates a system architecture according to one or more additional

illustrative aspects described herein.
[0025] FIG. 10 is a flowchart of example method steps for cross-device file sharing.
[0026] FIG. 11 is a flowchart of example method steps for cross-device URL sharing.

[0027] FIG. 12 is a flowchart of example method steps for cross-device copy-and-paste

functionality.

[0028] FIG. 13 is a flowchart of example method steps for launching a shared file at a

destination device.

[0029] FIG. 14 is a block diagram of an example environment in which embodiments

hereof can be practiced.

[0030] FIG. 15 depicts a sample interface of a mobile device in accordance with an

embodiment.

WO 2014/058640 PCT/US2013/062636
7

[0031] FIG. 16 is a flowchart for determining an application mode for an application in

accordance with an embodiment.

[0032] FIG. 17 is a flowchart for determining an account type context for an application in

accordance with an embodiment.

[0033] FIG. 18 is a flowchart for determining a location context for an application in

accordance with an embodiment.

[0034] FIG. 19 is a flowchart for determining a predetermine application status context for

an application in accordance with an embodiment.

[0035] FIG. 20 is a flowchart for determining a network connection context for an

application in accordance with an embodiment.

[0036] FIG. 21 is a flowchart for determining a settings context for an application in

accordance with an embodiment.

[0037] FIG. 22 is a flowchart for switching an application mode for an application in

accordance with an embodiment.

[0038] FIG. 23 is a block diagram of an example environment in which embodiments

hereof can be practiced.

[0039] FIG. 24 is a block diagram of an example environment in which embodiments

hereof can be practiced.
[0040] FIG. 25 is a block diagram of various features of the mobile device of FIG. 24.
[0041] FIG. 26 is a schematic illustration of an embodiment of a mobile device.

[0042] FIG. 27 illustrates security-related components and application that may be installed

on a mobile device.

[0043] FIG. 28 depicts an illustrative system having a client, a proxy, resource(s), and/or

authentication service(s).
[0044] FIG. 29 depicts an illustrative detailed view of a client and a proxy.

[0045] FIG. 30A is a flowchart of example method steps for authentication and/or

providing secured access to resources using a proxy.

[0046] FIG. 30B is a flowchart of additional example method steps for authentication

and/or providing secured access to resources using a proxy.

WO 2014/058640 PCT/US2013/062636
8

[0047] FIG. 30C is a flowchart of yet additional example method steps for authentication

and/or providing secured access to resources using a proxy.

[0048] FIG. 31A is a block diagram of an electronic mobile device which is suitable for use

in conveying data between secure applications.

[0049] FIG. 31B is a block diagram of secure applications that are configured to access a

hidden encrypted pasteboard.

[0050] FIG. 31C illustrates an example copy of data into the general clipboard by an

unsecure application that creates a detectable copy event.
[0051] FIG. 31D illustrates example ways data can move in and out of a device

[0052] FIG. 32 illustrates an example electronic environment which is suitable for

configuring management policies at a device.

[0053] FIG. 33 is a flowchart of example method steps for transferring content between

computing devices based on the operation mode of the computing devices.

[0054] FIG. 34 is another flowchart of example method steps for transferring content

between computing devices based on the operation mode of the computing devices.

[0055] FIG. 35 is an additional flowchart of example method steps for transferring content

between computing devices based on the operation mode of the computing devices.

[0056] FIG. 36 is a flowchart of example method steps for determining whether to permit a
request to copy to and paste from a virtual clipboard based on the operation mode of a

computing device.

[0057] FIG. 37 is a flowchart of example method steps for identifying a set of computing
devices available for selection as a destination computing device based on the respective

operation modes of the computing devices.

[0058] FIG. 38 is a flowchart of example method steps for obtaining a management policy

and distributing the management policy among interconnected computing devices.

[0059] FIG. 39 is a flowchart of example method steps for applying a management policy
to determine whether a computing device can access a resource, share the resource with
another computing device, and transfer content from the resource to another computing

device.

WO 2014/058640 PCT/US2013/062636
9

[0060] FIG. 40 is a flowchart of example method steps for applying a management policy

to manage the transfer of content from one computing device to another computing device.

[0061] FIG. 41 is a flowchart of example method steps for applying a management policy
to determine whether a user is permitted to connect a new computing device via an

orchestration framework.

[0062] FIG. 42 is a flowchart of example method steps for transferring content between
computing devices based on a data vault type of a data vault that stores the content at the

computing devices.

[0063] FIG. 43 is another flowchart of example method steps for transferring content
between computing devices based on a data vault type of a data vault that stores the content

at the computing devices.

[0064] FIG. 44 is a flowchart of example method steps for carrying out an instruction to

wipe content respectively stored at interconnected computing devices.

[0065] FIG. 45 is a flowchart of example method steps identifying a set of computing
devices available for selection as a destination computing device based on the respective data

vault types of data vaults at the computing devices.

[0066] FIG. 46 is a flowchart of example method steps for obtaining SSO credentials for

interconnected computing devices.

[0067] FIG. 47 is another flowchart of example method steps for obtaining SSO credentials

for interconnected computing devices.

[0068] FIG. 48 is a flowchart of example method steps for providing a management policy

to interconnected computing devices that include respective policy agents.

[0069] FIG. 49 is another flowchart of example method steps for providing a management

policy to interconnected computing devices that include respective policy agents.

[0070] FIG. 50 is a flowchart of example method steps for managing the transfer of content
from a computing device subject to a policy agent to another computing device subject to a

policy agent.

[0071] FIG. 51 is a flowchart of example method steps for coordinating operation of a
computing activity at multiple computing devices interconnected through an orchestration

framework.

WO 2014/058640 PCT/US2013/062636
10

[0072] FIG. 52 is a flowchart of example method steps for selecting an interconnected

computing device to perform at least a portion of a computing activity.

DETAILED DESCRIPTION

[0073] To address the above problems, and others that will be apparent to the reader,
aspects described herein allow multiple devices to function as a coherent whole, allowing
cach device to take on distinct functions that are complementary to one another. Aspects
described herein also allow the devices function as a coherent whole when interconnected
devices and their respective applications are configured to operate in various operation
modes, when management policies are employed to control the operation of the
interconnected devices and their respective applications, when transferring content between
the interconnected devices and storing the content at those devices, when obtaining access
credentials for the interconnected devices that enable the devices to access enterprise
resources, when a policy agent applies management policies to control operation of and
interaction between the interconnected devices, and when the interconnected devices are used

to access a virtual workspace and enterprise application store.

[0074] As described in further detail below, an orchestration framework may interconnect
multiple computing devices and coordinate operation of a computing activity across the
interconnected devices. According to one aspect, the orchestration framework may make
content residing at one computing device available to another computing device for
presentation at that computing device. For example, the orchestration framework may make
video content residing at a tablet computing device available to a larger display device (e.g., a
television) that presents the video content. According to another aspect of the orchestration
framework, a computing activity may be initiated at a first computing device, and a portion of
that computing activity may be performed at one of the other computing devices. For
example, an online meeting may be initiated at a mobile cellular telephone, audio from the
online meeting may be output at a larger audio output device (e.g., a speaker system), and
video from the online meeting may be output to a larger display device. As another example,
a document editing application may be initiated at a tablet computing device, input to the
application may be received at a keyboard of a desktop computing device, and the interface
of the application may be presented at a larger display device. Additional aspects and

examples will be appreciated with the benefit of the detailed description provided below.

WO 2014/058640 PCT/US2013/062636
11

[0075] Stated more generally, functionality, input, and output associated with an
application may be spread across multiple devices that are interconnected by the orchestration
framework such that the interconnected devices operate as a coordinated whole. In addition,
the orchestration framework may also cause the interconnected devices to operate as a
coordinated whole by providing applications, credentials, content, and other resources to the
interconnected computing devices. The orchestration framework may interconnect the
computing devices via client-server communication session, a peer-to-peer communication
session, or both. As described in further detail below, each interconnected computing device
may include a respective orchestration agent that communicates with an orchestration service
at a server during the client-server communication session in order to coordinate operation of
the computing activity. The orchestration agents may also communicate with each other
during the peer-to-peer communication session to coordinate operation of the computing
activity. The orchestration agents may communication with each other to coordinate

operation of the computing activity with or without the orchestration service at a server.

[0076] Additionally, computing devices and applications respectively residing at those
computing device may be described below as managed or unmanaged. If a computing device
or application is managed, functionality of the computing device or application may be
selectively enabled, disabled, or modified. By managing a computing device or an
application, an enterprise may secure the computing device or application as described in
further detail below. Accordingly, a computing device or application may also be referred to
as secured or unsecured. It will be appreciated, however, that an enterprise may manage a
computing device or application in a secured or unsecured way. Therefore, in some examples,
a computing device may be a managed computing device that is a secured computing device
or an unsecured computing device depending on the particular management policies utilized

to manage the computing device or application.

[0077] In the following description of the various embodiments, reference is made to the
accompanying drawings identified above and which form a part hereof, and in which is
shown by way of illustration various embodiments in which aspects described herein may be
practiced. It is to be understood that other embodiments may be utilized and structural and
functional modifications may be made without departing from the scope described herein.
Various aspects are capable of other embodiments and of being practiced or being carried out

in various different ways.

WO 2014/058640 PCT/US2013/062636
12

[0078] It is to be understood that the phraseology and terminology used herein are for the
purpose of description and should not be regarded as limiting. Rather, the phrases and terms
used herein are to be given their broadest interpretation and meaning. The use of “including”
and “comprising” and variations thereof is meant to encompass the items listed thereafter and
equivalents thereof as well as additional items and equivalents thercof. The use of the terms
“mounted,” “connected,” “coupled,” “positioned,” “engaged” and similar terms, is meant to

include both direct and indirect mounting, connecting, coupling, positioning and engaging.
[0079] Computing Architecture

[0080] Computer software, hardware, and networks may be utilized in a variety of different
system environments, including standalone, networked, remote-access (aka, remote desktop),
virtualized, and/or cloud-based environments, among others. FIG. 1 illustrates one example
of a system architecture and data processing device that may be used to implement one or
more illustrative aspects described herein in a standalone and/or networked environment.
Various network nodes 103, 105, 107, and 109 may be interconnected via a wide area
network (WAN) 101, such as the Internet. Other networks may also or alternatively be used,
including private intranets, corporate networks, local area networks (LANSs), metropolitan
arca networks (MAN), wireless networks, personal networks (PAN), and the like. Network
101 is for illustration purposes and may be replaced with fewer or additional computer
networks. A LAN may have one or more of any known LAN topology and may use one or
more of a variety of different protocols, such as Ethernet. Devices 103, 105, 107, 109 and
other devices (not shown) may be connected to one or more of the networks via twisted pair

wires, coaxial cable, fiber optics, radio waves or other communication media.

[0081] The term “network™ as used herein and depicted in the drawings refers not only to
systems in which remote storage devices are coupled together via one or more
communication paths, but also to stand-alone devices that may be coupled, from time to time,
to such systems that have storage capability. Consequently, the term “network” includes not
only a “physical network™ but also a “content network,” which is comprised of the data—

attributable to a single entity—which resides across all physical networks.

[0082] The components may include data server 103, web server 105, and client computers
107, 109. Data server 103 provides overall access, control and administration of databases
and control software for performing one or more illustrative aspects describe herein. Data

server 103 may be connected to web server 105 through which users interact with and obtain

WO 2014/058640 PCT/US2013/062636
13

data as requested. Alternatively, data server 103 may act as a web server itself and be directly
connected to the Internet. Data server 103 may be connected to web server 105 through the
network 101 (e.g., the Internet), via direct or indirect connection, or via some other network.
Users may interact with the data server 103 using remote computers 107, 109, e.g., using a
web browser to connect to the data server 103 via one or more externally exposed web sites
hosted by web server 105. Client computers 107, 109 may be used in concert with data server
103 to access data stored therein, or may be used for other purposes. For example, from client
device 107 a user may access web server 105 using an Internet browser, as is known in the
art, or by executing a software application that communicates with web server 105 and/or

data server 103 over a computer network (such as the Internet).

[0083] Servers and applications may be combined on the same physical machines, and
retain separate virtual or logical addresses, or may reside on separate physical machines. FIG.
1 illustrates just one example of a network architecture that may be used, and those of skill in
the art will appreciate that the specific network architecture and data processing devices used
may vary, and are secondary to the functionality that they provide, as further described
herein. For example, services provided by web server 105 and data server 103 may be

combined on a single server.

[0084] Each component 103, 105, 107, 109 may be any type of known computer, server, or
data processing device. Data server 103, e.g., may include a processor 111 controlling overall
operation of the rate server 103. Data server 103 may further include RAM 113, ROM 115,
network interface 117, input/output interfaces 119 (e.g., keyboard, mouse, display, printer,
etc.), and memory 121. I/O 119 may include a variety of interface units and drives for
reading, writing, displaying, and/or printing data or files. Memory 121 may further store
operating system software 123 for controlling overall operation of the data processing device
103, control logic 125 for instructing data server 103 to perform aspects described herein, and
other application software 127 providing secondary, support, and/or other functionality which
may or may not be used in conjunction with aspects described herein. The control logic may
also be referred to herein as the data server software 125. Functionality of the data server
software may refer to operations or decisions made automatically based on rules coded into
the control logic, made manually by a user providing input into the system, and/or a

combination of automatic processing based on user input (e.g., queries, data updates, etc.).

[0085] Memory 121 may also store data used in performance of one or more aspects

described herein, including a first database 129 and a second database 131. In some

WO 2014/058640 PCT/US2013/062636
14

embodiments, the first database may include the second database (e.g., as a separate table,
report, etc.). That is, the information can be stored in a single database, or separated into
different logical, virtual, or physical databases, depending on system design. Devices 105,
107, 109 may have similar or different architecture as described with respect to device 103.
Those of skill in the art will appreciate that the functionality of data processing device 103 (or
device 105, 107, 109) as described herein may be spread across multiple data processing
devices, for example, to distribute processing load across multiple computers, to segregate

transactions based on geographic location, user access level, quality of service (QoS), etc.

[0086] One or more aspects may be embodied in computer-usable or readable data and/or
computer-executable instructions, such as in one or more program modules, executed by one
or more computers or other devices as described herein. Generally, program modules include
routines, programs, objects, components, data structures, etc. that perform particular tasks or
implement particular abstract data types when executed by a processor in a computer or other
device. The modules may be written in a source code programming language that is
subsequently compiled for execution, or may be written in a scripting language such as (but
not limited to) Javascript or ActionScript. The computer executable instructions may be
stored on a computer readable medium such as a nonvolatile storage device. Any suitable
computer readable storage media may be utilized, including hard disks, CD-ROMs, optical
storage devices, magnetic storage devices, and/or any combination thereof. In addition,
various transmission (non-storage) media representing data or events as described herein may
be transferred between a source and a destination in the form of electromagnetic waves
traveling through signal-conducting media such as metal wires, optical fibers, and/or wireless
transmission media (e.g., air and/or space). Various aspects described herein may be
embodied as a method, a data processing system, or a computer program product. Therefore,
various functionalities may be embodied in whole or in part in software, firmware and/or
hardware or hardware equivalents such as integrated circuits, field programmable gate arrays
(FPGA), and the like. Particular data structures may be used to more effectively implement
one or more aspects described herein, and such data structures are contemplated within the

scope of computer executable instructions and computer-usable data described herein.

[0087] With further reference to FIG. 2, one or more aspects described herein may be
implemented in a remote-access environment. FIG. 2 depicts an example system architecture
including a generic computing device 201 in an illustrative computing environment 200 that

may be used according to one or more illustrative aspects described herein. Generic

WO 2014/058640 PCT/US2013/062636
15

computing device 201 may be used as a server 206a in a single-server or multi-server desktop
virtualization system (e.g., a remote access or cloud system) configured to provide virtual
machines for client access devices. The generic computing device 201 may have a processor
203 for controlling overall operation of the server and its associated components, including
random access memory (RAM) 205, read-only memory (ROM) 207, input/output (I/O)
module 209, and memory 215.

[0088] I/O module 209 may include a mouse, keypad, touch screen, scanner, optical reader,
and/or stylus (or other input device(s)) through which a user of generic computing device 201
may provide input, and may also include one or more of a speaker for providing audio output
and a video display device for providing textual, audiovisual, and/or graphical output.
Software may be stored within memory 215 and/or other storage to provide instructions to
processor 203 for configuring generic computing device 201 into a special purpose
computing device in order to perform various functions as described herein. For example,
memory 215 may store software used by the computing device 201, such as an operating

system 217, application programs 219, and an associated database 221.

[0089] Computing device 201 may operate in a networked environment supporting
connections to one or more remote computers, such as terminals 240 (also referred to as
client devices). The terminals 240 may be personal computers, mobile devices, laptop
computers, tablets, or servers that include many or all of the elements described above with
respect to the generic computing device 103 or 201. The network connections depicted in
FIG. 2 include a local area network (LAN) 225 and a wide area network (WAN) 229, but
may also include other networks. When used in a LAN networking environment, computing
device 201 may be connected to the LAN 225 through a network interface or adapter 223.
When used in a WAN networking environment, computing device 201 may include a modem
227 or other wide area network interface for establishing communications over the WAN
229, such as computer network 230 (e.g., the Internet). It will be appreciated that the network
connections shown are illustrative and other means of establishing a communications link
between the computers may be used. Computing device 201 and/or terminals 240 may also
be mobile terminals (e.g., mobile phones, smartphones, PDAs, notebooks, ectc.) including

various other components, such as a battery, speaker, and antennas (not shown).

[0090] Aspects described herein may also be operational with numerous other general
purpose or special purpose computing system environments or configurations. Examples of

other computing systems, environments, and/or configurations that may be suitable for use

WO 2014/058640 PCT/US2013/062636
16

with aspects described herein include, but are not limited to, personal computers, server
computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based
systems, set top boxes, programmable consumer electronics, network PCs, minicomputers,
mainframe computers, distributed computing environments that include any of the above

systems or devices, and the like.

[0091] As shown in FIG. 2, one or more client devices 240 may be in communication with
one or more servers 206a-206n (generally referred to herein as “server(s) 206”). In one
embodiment, the computing environment 200 may include a network appliance installed
between the server(s) 206 and client machine(s) 240. The network appliance may manage
client/server connections, and in some cases can load balance client connections amongst a

plurality of backend servers 206.

[0092] The client machine(s) 240 may in some embodiments be referred to as a single
client machine 240 or a single group of client machines 240, while server(s) 206 may be
referred to as a single server 206 or a single group of servers 206. In one embodiment a single
client machine 240 communicates with more than one server 206, while in another
embodiment a single server 206 communicates with more than one client machine 240. In yet

another embodiment, a single client machine 240 communicates with a single server 206.

[0093] A client machine 240 can, in some embodiments, be referenced by any one of the
following non-exhaustive terms: client machine(s); client(s); client computer(s); client
device(s); client computing device(s); local machine; remote machine; client node(s);
endpoint(s); or endpoint node(s). The server 206, in some embodiments, may be referenced
by any one of the following non-exhaustive terms: server(s), local machine; remote machine;

server farm(s), or host computing device(s).

[0094] In one embodiment, the client machine 240 may be a virtual machine. The virtual
machine may be any virtual machine, while in some embodiments the virtual machine may
be any virtual machine managed by a Type 1 or Type 2 hypervisor, for example, a hypervisor
developed by Citrix Systems, IBM, VMware, or any other hypervisor. In some aspects, the
virtual machine may be managed by a hypervisor, while in aspects the virtual machine may
be managed by a hypervisor executing on a server 206 or a hypervisor executing on a client

240.

[0095] Some embodiments include a client device 240 that displays application output

generated by an application remotely executing on a server 206 or other remotely located

WO 2014/058640 PCT/US2013/062636
17

machine. In these embodiments, the client device 240 may execute a virtual machine client
agent program or application to display the output in an application window, a browser, or
other output window. In one example, the application is a desktop, while in other examples
the application is an application that generates or presents a desktop. A desktop may include a
graphical shell providing a user interface for an instance of an operating system in which
local and/or remote applications can be integrated. Applications, as used herein, are programs
that execute after an instance of an operating system (and, optionally, also the desktop) has

been loaded.

[0096] The server 206, in some embodiments, uses a remote presentation protocol or other
program to send data to a thin-client or remote-display application executing on the client to
present display output generated by an application executing on the server 206. The thin-
client or remote-display protocol can be any one of the following non-exhaustive list of
protocols: the Independent Computing Architecture (ICA) protocol developed by Citrix
Systems, Inc. of Ft. Lauderdale, Florida; or the Remote Desktop Protocol (RDP)
manufactured by the Microsoft Corporation of Redmond, Washington.

[0097] A remote computing environment may include more than one server 206a-206n
such that the servers 206a-206n are logically grouped together into a server farm 206, for
example, in a cloud computing environment. The server farm 206 may include servers 206
that are geographically dispersed while and logically grouped together, or servers 206 that are
located proximate to each other while logically grouped together. Geographically dispersed
servers 206a-206n within a server farm 206 can, in some embodiments, communicate using a
WAN (wide), MAN (metropolitan), or LAN (local), where different geographic regions can
be characterized as: different continents; different regions of a continent; different countries;
different states; different cities; different campuses; different rooms; or any combination of
the preceding geographical locations. In some embodiments the server farm 206 may be
administered as a single entity, while in other embodiments the server farm 206 can include

multiple server farms.

[0098] In some embodiments, a server farm may include servers 206 that execute a
substantially similar type of operating system platform (e.g.,, WINDOWS, UNIX, LINUX,
10S, ANDROID, SYMBIAN, etc.) In other embodiments, server farm 206 may include a first
group of one or more servers that execute a first type of operating system platform, and a

second group of one or more servers that execute a second type of operating system platform.

WO 2014/058640 PCT/US2013/062636
18

[0099] Server 206 may be configured as any type of server, as needed, e.g., a file server, an
application server, a web server, a proxy server, an appliance, a network appliance, a
gateway, an application gateway, a gateway server, a virtualization server, a deployment
server, a SSL. VPN server, a firewall, a web server, an application server or as a master
application server, a server executing an active directory, or a server executing an application
acceleration program that provides firewall functionality, application functionality, or load

balancing functionality. Other server types may also be used.

[0100] Some embodiments include a first server 206a that receives requests from a client
machine 240, forwards the request to a second server 206b, and responds to the request
generated by the client machine 240 with a response from the second server 206b. First server
206a may acquire an enumeration of applications available to the client machine 240 and well
as address information associated with an application server 206 hosting an application
identified within the enumeration of applications. First server 206a can then present a
response to the client’s request using a web interface, and communicate directly with the
client 240 to provide the client 240 with access to an identified application. One or more
clients 240 and/or one or more servers 206 may transmit data over network 230, e.g., network

101.

[0101] Figure 2 shows a high-level architecture of an illustrative desktop virtualization
system. As shown, the desktop virtualization system may be single-server or multi-server
system, or cloud system, including at least one virtualization server 206 configured to provide
virtual desktops and/or virtual applications to one or more client access devices 240. As used
herein, a desktop refers to a graphical environment or space in which one or more
applications may be hosted and/or executed. A desktop may include a graphical shell
providing a user interface for an instance of an operating system in which local and/or remote
applications can be integrated. Applications may include programs that execute after an
instance of an operating system (and, optionally, also the desktop) has been loaded. Each
instance of the operating system may be physical (e.g., one operating system per device) or
virtual (e.g., many instances of an OS running on a single device). Each application may be

executed on a local device, or executed on a remotely located device (e.g., remoted).

[0102] With further reference to FIG. 3, a computer device 301 may be configured as a
virtualization server in a virtualization environment, for example, a single-server, multi-
server, or cloud computing environment. Virtualization server 301 illustrated in Figure 3 can

be deployed as and/or implemented by one or more embodiments of the server 206 illustrated

WO 2014/058640 PCT/US2013/062636
19

in Figure 2 or by other known computing devices. Included in virtualization server 301 is a
hardware layer that can include one or more physical disks 304, one or more physical devices
306, one or more physical processors 308 and one or more physical memories 316. In some
embodiments, firmware 312 can be stored within a memory element in the physical memory
316 and can be executed by one or more of the physical processors 308. Virtualization server
301 may further include an operating system 314 that may be stored in a memory element in
the physical memory 316 and executed by one or more of the physical processors 308. Still
further, a hypervisor 302 may be stored in a memory element in the physical memory 316

and can be executed by one or more of the physical processors 308.

[0103] Executing on one or more of the physical processors 308 may be one or more virtual
machines 332A-C (generally 332). Each virtual machine 332 may have a virtual disk 326A-C
and a virtual processor 328A-C. In some embodiments, a first virtual machine 332A may
execute, using a virtual processor 328A, a control program 320 that includes a tools stack
324. Control program 320 may be referred to as a control virtual machine, Dom0, Domain 0,
or other virtual machine used for system administration and/or control. In some
embodiments, one or more virtual machines 332B-C can execute, using a virtual processor

328B-C, a guest operating system 330A-B.

[0104] Virtualization server 301 may include a hardware layer 310 with one or more pieces
of hardware that communicate with the virtualization server 301. In some embodiments, the
hardware layer 310 can include one or more physical disks 304, one or more physical devices
306, one or more physical processors 308, and one or more memory 216. Physical
components 304, 306, 308, and 316 may include, for example, any of the components
described above. Physical devices 306 may include, for example, a network interface card, a
video card, a keyboard, a mouse, an input device, a monitor, a display device, speakers, an
optical drive, a storage device, a universal serial bus connection, a printer, a scanner, a
network element (e.g., router, firewall, network address translator, load balancer, virtual
private network (VPN) gateway, Dynamic Host Configuration Protocol (DHCP) router, etc.),
or any device connected to or communicating with virtualization server 301. Physical
memory 316 in the hardware layer 310 may include any type of memory. Physical memory
316 may store data, and in some embodiments may store one or more programs, or st of
executable instructions. Figure 3 illustrates an embodiment where firmware 312 is stored

within the physical memory 316 of virtualization server 301. Programs or executable

WO 2014/058640 PCT/US2013/062636
20

instructions stored in the physical memory 316 can be executed by the one or more

processors 308 of virtualization server 301.

[0105] Virtualization server 301 may also include a hypervisor 302. In some embodiments,
hypervisor 302 may be a program executed by processors 308 on virtualization server 301 to
create and manage any number of virtual machines 332. Hypervisor 302 may be referred to as
a virtual machine monitor, or platform virtualization software. In some embodiments,
hypervisor 302 can be any combination of executable instructions and hardware that monitors
virtual machines executing on a computing machine. Hypervisor 302 may be Type 2
hypervisor, where the hypervisor that executes within an operating system 314 executing on
the virtualization server 301. Virtual machines then execute at a level above the hypervisor.
In some embodiments, the Type 2 hypervisor executes within the context of a user’s
operating system such that the Type 2 hypervisor interacts with the user’s operating system.
In other embodiments, one or more virtualization servers 201 in a virtualization environment
may instead include a Type 1 hypervisor (Not Shown). A Type 1 hypervisor may execute on
the virtualization server 301 by directly accessing the hardware and resources within the
hardware layer 310. That is, while a Type 2 hypervisor 302 accesses system resources
through a host operating system 314, as shown, a Type 1 hypervisor may directly access all
system resources without the host operating system 314. A Type 1 hypervisor may execute
directly on one or more physical processors 308 of virtualization server 301, and may include

program data stored in the physical memory 316.

[0106] Hypervisor 302, in some embodiments, can provide virtual resources to operating
systems 330 or control programs 320 executing on virtual machines 332 in any manner that
simulates the operating systems 330 or control programs 320 having direct access to system
resources. System resources can include, but are not limited to, physical devices 306,
physical disks 304, physical processors 308, physical memory 316 and any other component
included in virtualization server 301 hardware layer 310. Hypervisor 302 may be used to
emulate virtual hardware, partition physical hardware, virtualize physical hardware, and/or
execute virtual machines that provide access to computing environments. In still other
embodiments, hypervisor 302 controls processor scheduling and memory partitioning for a
virtual machine 332 executing on virtualization server 301. Hypervisor 302 may include
those manufactured by VMWare, Inc., of Palo Alto, California; the XEN® hypervisor, an
open source product whose development is overseen by the open source Xen.org community;

HyperV, VirtualServer or virtual PC hypervisors provided by Microsoft, or others. In some

WO 2014/058640 PCT/US2013/062636
21

embodiments, virtualization server 301 executes a hypervisor 302 that creates a virtual
machine platform on which guest operating systems may execute. In these embodiments, the
virtualization server 301 may be referred to as a host server. An example of such a
virtualization server is the XEN SERVER® provided by Citrix Systems, Inc., of Fort
Lauderdale, FL.

[0107] Hypervisor 302 may create one or more virtual machines 332B-C (generally 332) in
which guest operating systems 330 execute. In some embodiments, hypervisor 302 may load
a virtual machine image to create a virtual machine 332. In other embodiments, the
hypervisor 302 may executes a guest operating system 330 within virtual machine 332. In

still other embodiments, virtual machine 332 may execute guest operating system 330.

[0108] In addition to creating virtual machines 332, hypervisor 302 may control the
execution of at least one virtual machine 332. In other embodiments, hypervisor 302 may
presents at least one virtual machine 332 with an abstraction of at least one hardware resource
provided by the virtualization server 301 (e.g., any hardware resource available within the
hardware layer 310). In other embodiments, hypervisor 302 may control the manner in which
virtual machines 332 access physical processors 308 available in virtualization server 301.
Controlling access to physical processors 308 may include determining whether a virtual
machine 332 should have access to a processor 308, and how physical processor capabilities

are presented to the virtual machine 332.

[0109] As shown in FIG. 3, virtualization server 301 may host or execute one or more
virtual machines 332. A virtual machine 332 is a set of executable instructions that, when
executed by a processor 308, imitate the operation of a physical computer such that the
virtual machine 332 can execute programs and processes much like a physical computing
device. While Figure 3 illustrates an embodiment where a virtualization server 301 hosts
three virtual machines 332, in other embodiments virtualization server 301 can host any
number of virtual machines 332. Hypervisor 302, in some embodiments, provides each
virtual machine 332 with a unique virtual view of the physical hardware, memory, processor
and other system resources available to that virtual machine 332. In some embodiments, the
unique virtual view can be based on one or more of virtual machine permissions, application
of a policy engine to one or more virtual machine identifiers, a user accessing a virtual
machine, the applications executing on a virtual machine, networks accessed by a virtual
machine, or any other desired criteria. For instance, hypervisor 302 may create one or more

unsecure virtual machines 332 and one or more secure virtual machines 332. Unsecure virtual

WO 2014/058640 PCT/US2013/062636
22

machines 332 may be prevented from accessing resources, hardware, memory locations, and
programs that secure virtual machines 332 may be permitted to access. In other embodiments,
hypervisor 302 may provide each virtual machine 332 with a substantially similar virtual
view of the physical hardware, memory, processor and other system resources available to

the virtual machines 332.

[0110] Each virtual machine 332 may include a virtual disk 326A-C (generally 326) and a
virtual processor 328A-C (generally 328.) The virtual disk 326, in some embodiments, is a
virtualized view of one or more physical disks 304 of the virtualization server 301, or a
portion of one or more physical disks 304 of the virtualization server 301. The virtualized
view of the physical disks 304 can be generated, provided and managed by the hypervisor
302. In some embodiments, hypervisor 302 provides each virtual machine 332 with a unique
view of the physical disks 304. Thus, in these embodiments, the particular virtual disk 326
included in each virtual machine 332 can be unique when compared with the other virtual
disks 326.

[0111] A virtual processor 328 can be a virtualized view of one or more physical
processors 308 of the virtualization server 301. In some embodiments, the virtualized view of
the physical processors 308 can be generated, provided and managed by hypervisor 302. In
some embodiments, virtual processor 328 has substantially all of the same characteristics of
at least one physical processor 308. In other embodiments, virtual processor 308 provides a
modified view of physical processors 308 such that at least some of the characteristics of the
virtual processor 328 are different than the characteristics of the corresponding physical

processor 308.

[0112] With further reference to FIG. 4, some aspects described herein may be
implemented in a cloud-based environment. Figure 4 illustrates an example of a cloud
computing environment (or cloud system) 400. As seen in Figure 4, client computers 411-414
may communicate with a cloud management server 410 to access the computing resources
(c.g., host servers 403, storage resources 404, and network resources 405) of the cloud

System.

[0113] Management server 410 may be implemented on one or more physical servers. The
management server 410 may run, for example, CLOUDSTACK by Citrix Systems, Inc. of Ft.
Lauderdale, FL, or OPENSTACK, among others. Management server 410 may manage

various computing resources, including cloud hardware and software resources, for example,

WO 2014/058640 PCT/US2013/062636
23

host computers 403, data storage devices 404, and networking devices 405. The cloud
hardware and software resources may include private and/or public components. For
example, a cloud may be configured as a private cloud to be used by one or more particular
customers or client computers 411-414 and/or over a private network. In other embodiments,
public clouds or hybrid public-private clouds may be used by other customers over an open

or hybrid networks.

[0114] Management server 410 may be configured to provide user interfaces through which
cloud operators and cloud customers may interact with the cloud system. For example, the
management server 410 may provide a set of APIs and/or one or more cloud operator console
applications (e.g., web-based or standalone applications) with user interfaces to allow cloud
operators to manage the cloud resources, configure the virtualization layer, manage customer
accounts, and perform other cloud administration tasks. The management server 410 also
may include a set of APIs and/or one or more customer console applications with user
interfaces configured to receive cloud computing requests from end users via client
computers 411-414, for example, requests to create, modify, or destroy virtual machines
within the cloud. Client computers 411-414 may connect to management server 410 via the
Internet or other communication network, and may request access to one or more of the
computing resources managed by management server 410. In response to client requests, the
management server 410 may include a resource manager configured to select and provision
physical resources in the hardware layer of the cloud system based on the client requests. For
example, the management server 410 and additional components of the cloud system may be
configured to provision, create, and manage virtual machines and their operating
environments (e.g., hypervisors, storage resources, services offered by the network elements,
etc.) for customers at client computers 411-414, over a network (e.g., the Internet), providing
customers with computational resources, data storage services, networking capabilities, and
computer platform and application support. Cloud systems also may be configured to provide
various specific services, including security systems, development environments, user

interfaces, and the like.

[0115] Certain clients 411-414 may be related, for example, different client computers
creating virtual machines on behalf of the same end user, or different users affiliated with the
same company or organization. In other examples, certain clients 411-414 may be unrelated,

such as users affiliated with different companies or organizations. For unrelated clients,

WO 2014/058640 PCT/US2013/062636
24

information on the virtual machines or storage of any one user may be hidden from other

users.

[0116] Referring now to the physical hardware layer of a cloud computing environment,
availability zones 401-402 (or zones) may refer to a collocated set of physical computing
resources. Zones may be geographically separated from other zones in the overall cloud of
computing resources. For example, zone 401 may be a first cloud datacenter located in
California, and zone 402 may be a second cloud datacenter located in Florida. Management
sever 410 may be located at one of the availability zones, or at a separate location. Each zone
may include an internal network that interfaces with devices that are outside of the zone, such
as the management server 410, through a gateway. End users of the cloud (e.g., clients 411-
414) might or might not be aware of the distinctions between zones. For example, an end user
may request the creation of a virtual machine having a specified amount of memory,
processing power, and network capabilities. The management server 410 may respond to the
user’s request and may allocate the resources to create the virtual machine without the user
knowing whether the virtual machine was created using resources from zone 401 or zone
402. In other examples, the cloud system may allow end users to request that virtual
machines (or other cloud resources) are allocated in a specific zone or on specific resources

403-405 within a zone.

[0117] In this example, each zone 401-402 may include an arrangement of various physical
hardware components (or computing resources) 403-405, for example, physical hosting
resources (or processing resources), physical network resources, physical storage resources,
switches, and additional hardware resources that may be used to provide cloud computing
services to customers. The physical hosting resources in a cloud zone 401-402 may include
one or more computer servers 403, such as the virtualization servers 301 described above,
which may be configured to create and host virtual machine instances. The physical network
resources in a cloud zone 401 or 402 may include one or more network elements 405 (e.g.,,
network service providers) comprising hardware and/or software configured to provide a
network service to cloud customers, such as firewalls, network address translators, load
balancers, virtual private network (VPN) gateways, Dynamic Host Configuration Protocol
(DHCP) routers, and the like. The storage resources in the cloud zone 401-402 may include
storage disks (e.g., solid state drives (SSDs), magnetic hard disks, etc.) and other storage

devices.

WO 2014/058640 PCT/US2013/062636
25

[0118] The example cloud computing environment shown in Figure 4 also may include a
virtualization layer (e.g., as shown in Figures 1-3) with additional hardware and/or software
resources configured to create and manage virtual machines and provide other services to
customers using the physical resources in the cloud. The virtualization layer may include
hypervisors, as described above in Figure 3, along with other components to provide network
virtualizations, storage virtualizations, etc. The virtualization layer may be as a separate layer
from the physical resource layer, or may share some or all of the same hardware and/or
software resources with the physical resource layer. For example, the virtualization layer may
include a hypervisor installed in each of the virtualization servers 403 with the physical
computing resources. Known cloud systems may alternatively be used, e.g., WINDOWS
AZURE (Microsoft Corporation of Redmond Washington), AMAZON EC2 (Amazon.com
Inc. of Seattle, Washington), IBM BLUE CLOUD (IBM Corporation of Armonk, New
York), or others.

[0119] Enterprise Mobility Management Architecture

[0120] Figure 5 represents an enterprise mobility technical architecture 500 for use in a
BYOD environment. The architecture enables a user of a mobile device 502 to both access
enterprise or personal resources from a mobile device 502 and use the mobile device 502 for
personal use. The user may access such enterprise resources 504 or enterprise services 508
using a mobile device 502 that is purchased by the user or a mobile device 502 that is
provided by the enterprise to the user. The user may utilize the mobile device 502 for
business use only or for business and personal use. The mobile device may run an i0S
operating system, Android operating system, and/or the like. The enterprise may choose to
implement management policies to manage the mobile device 504. The management policies
may be implanted through a firewall or gateway in such a way that the mobile device may be
identified, secured or security verified, and provided selective or full access to the enterprise
resources. The management policies may be mobile device management policies, mobile
application management policies, mobile data management policies, or some combination of
mobile device, application, and data management policies. A mobile device 504 that is
managed through the application of mobile device management policies may be referred to as

an enrolled device.

[0121] The operating system of the mobile device may be separated into a managed
partition 510 and an unmanaged partition 512. The managed partition 510 may have

management policies applied to it to secure the applications running on and data stored in the

WO 2014/058640 PCT/US2013/062636
26

managed partition. The applications running on the managed partition may be secure
applications. The secure applications may be email applications, web browsing applications,
software-as-a-service (SaaS) access applications, Windows Application access applications,
and the like. The secure applications may be secure native applications 514, secure remote
applications 522 executed by a secure application launcher 518, virtualization applications
526 executed by a secure application launcher 518, and the like. The secure native
applications 514 may be wrapped by a secure application wrapper 520. The secure
application wrapper 520 may include integrated management policies that are executed on the
mobile device 502 when the secure native application is executed on the device. The secure
application wrapper 520 may include meta-data that points the secure native application 514
running on the mobile device 502 to the resources hosted at the enterprise that the secure
native application 514 may require to complete the task requested upon execution of the
secure native application 514. The secure remote applications 522 executed by a secure
application launcher 518 may be executed within the secure application launcher application
518. The virtualization applications 526 executed by a secure application launcher 518 may
utilize resources on the mobile device 502, at the enterprise resources 504, and the like. The
resources used on the mobile device 502 by the virtualization applications 526 executed by a
secure application launcher 518 may include user interaction resources, processing resources,
and the like. The user interaction resources may be used to collect and transmit keyboard
input, mouse input, camera input, tactile input, audio input, visual input, gesture input, and
the like. The processing resources may be used to present a user interface, process data
received from the enterprise resources 504, and the like. The resources used at the enterprise
resources 504 by the virtualization applications 526 executed by a secure application launcher
518 may include user interface generation resources, processing resources, and the like. The
user interface generation resources may be used to assemble a user interface, modify a user
interface, refresh a user interface, and the like. The processing resources may be used to
create information, read information, update information, delete information, and the like. For
example, the virtualization application may record user interactions associated with a GUI
and communicate them to a server application where the server application will use the user
interaction data as an input to the application operating on the server. In this arrangement, an
enterprise may elect to maintain the application on the server side as well as data, files, etc.
associated with the application. While an enterprise may elect to “mobilize” some
applications in accordance with the principles herein by securing them for deployment on the

mobile device, this arrangement may also be elected for certain applications. For example,

WO 2014/058640 PCT/US2013/062636
27

while some applications may be secured for use on the mobile device, others may not be
prepared or appropriate for deployment on the mobile device so the enterprise may elect to
provide the mobile user access to the unprepared applications through virtualization
techniques. As another example, the enterprise may have large complex applications with
large and complex data sets (e.g. material resource planning applications) where it would be
very difficult, or otherwise undesirable, to customize the application for the mobile device so
the enterprise may elect to provide access to the application through virtualization techniques.
As yet another example, the enterprise may have an application that maintains highly secured
data (e.g. human resources data, customer data, engineering data) that may be deemed by the
enterprise as too sensitive for even the secured mobile environment so the enterprise may
elect to use virtualization techniques to permit mobile access to such applications and data.
An enterprise may elect to provide both fully secured and fully functional applications on the
mobile device as well as a virtualization application to allow access to applications that are
deemed more properly operated on the server side. In an embodiment, the virtualization
application may store some data, files, etc. on the mobile phone in one of the secure storage
locations. An enterprise, for example, may elect to allow certain information to be stored on

the phone while not permitting other information.

[0122] In connection with the virtualization application, as described herein, the mobile
device may have a virtualization application that is designed to present GUI’s and then record
user interactions with the GUI. The application may communicate the user interactions to the
server side to be used by the server side application as user interactions with the application.
In response, the application on the server side may transmit back to the mobile device a new
GUI. For example, the new GUI may be a static page, a dynamic page, an animation, or the
like.

[0123] The applications running on the managed partition may be stabilized applications.
The stabilized applications may be managed by a device manager 524. The device manager
524 may monitor the stabilized applications and utilize techniques for detecting and
remedying problems that would result in a destabilized application if such techniques were

not utilized to detect and remedy the problems.

[0124] The secure applications may access data stored in a secure data container 528 in the
managed partition 510 of the mobile device. The data secured in the secure data container
may be accessed by the secure wrapped applications 514, applications executed by a secure

application launcher 518, virtualization applications 526 executed by a secure application

WO 2014/058640 PCT/US2013/062636
28

launcher 518, and the like. The data stored in the secure data container 528 may include files,
databases, and the like. The data stored in the secure data container 528 may include data
restricted to a specific secure application 530, shared among secure applications 532, and the
like. Data restricted to a secure application may include secure general data 534 and highly
secure data 538. Secure general data may use a strong form of encryption such as AES 128-
bit encryption or the like, while highly secure data 538 may use a very strong form of
encryption such as AES 254-bit encryption. Data stored in the secure data container 528 may
be deleted from the device upon receipt of a command from the device manager 524. The
secure applications may have a dual-mode option 540. The dual mode option 540 may
present the user with an option to operate the secured application in an unsecured mode. In an
unsecured mode, the secure applications may access data stored in an unsecured data
container 542 on the unmanaged partition 512 of the mobile device 502. The data stored in an
unsecured data container may be personal data 544. The data stored in an unsecured data
container 542 may also be accessed by unsecured applications 548 that are running on the
unmanaged partition 512 of the mobile device 502. The data stored in an unsecured data
container 542 may remain on the mobile device 502 when the data stored in the secure data
container 528 is deleted from the mobile device 502. An enterprise may want to delete from
the mobile device selected or all data, files, and/or applications owned, licensed or controlled
by the enterprise (enterprise data) while leaving or otherwise preserving personal data, files,
and/or applications owned, licensed or controlled by the user (personal data). This operation
may be referred to as a selective wipe. With the enterprise and personal data arranged in

accordance to the aspects described herein, an enterprise may perform a selective wipe.

[0125] The mobile device may connect to enterprise resources 504 and enterprise services
508 at an enterprise, to the public Internet 548, and the like. The mobile device may connect
to enterprise resources 504 and enterprise services 508 through virtual private network
connections. The wvirtual private network connections may be specific to particular
applications 550, particular devices, particular secured arcas on the mobile device, and the
like (e.g., 552). For example, each of the wrapped applications in the secured area of the
phone may access enterprise resources through an application specific VPN such that access
to the VPN would be granted based on attributes associated with the application, possibly in
conjunction with user or device attribute information. The virtual private network
connections may carry Microsoft Exchange traffic, Microsoft Active Directory traffic, HTTP
traffic, HTTPS traffic, application management traffic, and the like. The virtual private

WO 2014/058640 PCT/US2013/062636
29

network connections may support and enable single-sign-on authentication processes 554.
The single-sign-on processes may allow a user to provide a single set of authentication
credentials, which are then verified by an authentication service 558. The authentication
service 558 may then grant to the user access to multiple enterprise resources 504, without

requiring the user to provide authentication credentials to each individual enterprise resource

504.

[0126] The virtual private network connections may be established and managed by an
access gateway 560. The access gateway 560 may include performance enhancement features
that manage, accelerate, and improve the delivery of enterprise resources 504 to the mobile
device 502. The access gateway may also re-route traffic from the mobile device 502 to the
public Internet 548, enabling the mobile device 502 to access publicly available and
unsecured applications that run on the public Internet 548. The mobile device may connect to
the access gateway via a transport network 562. The transport network 562 may be a wired
network, wireless network, cloud network, local area network, metropolitan area network,

wide area network, public network, private network, and the like.

[0127] The enterprise resources 504 may include email servers, file sharing servers, SaaS
applications, Web application servers, Windows application servers, and the like. Email
servers may include Exchange servers, Lotus Notes servers, and the like. File sharing servers
may include cloud storage resource servers, and the like. SaaS applications may include
Salesforce, and the like. Windows application servers may include any application server that
is built to provide applications that are intended to run on a local Windows operating system,
and the like. The enterprise resources 504 may be premise-based resources, cloud based
resources, and the like. The enterprise resources 504 may be accessed by the mobile device
502 directly or through the access gateway 560. The enterprise resources 504 may be
accessed by the mobile device 502 via a transport network 562. The transport network 562
may be a wired network, wireless network, cloud network, local area network, metropolitan

arca network, wide area network, public network, private network, and the like.

[0128] The enterprise services 508 may include authentication services 558, threat
detection services 564, device manager services 524, file sharing services 568, policy
manager services 570, social integration services 572, application controller services 574, and
the like. Authentication services 558 may include user authentication services, device
authentication services, application authentication services, data authentication services and

the like. Authentication services 558 may use certificates. The certificates may be stored on

WO 2014/058640 PCT/US2013/062636
30

the mobile device 502, by the enterprise resources 504, and the like. The certificates stored on
the mobile device 502 may be stored in an encrypted location on the mobile device, the
certificate may be temporarily stored on the mobile device 502 for use at the time of
authentication, and the like. Threat detection services 564 may include intrusion detection
services, unauthorized access attempt detection services, and the like. Unauthorized access
attempt detection services may include unauthorized attempts to access devices, applications,
data, and the like. Device management services 524 may include configuration, provisioning,
security, support, monitoring, reporting, and decommissioning services. File sharing services
568 may include file management services, file storage services, file collaboration services,
and the like. Policy manager services 570 may include device policy manager services,
application policy manager services, data policy manager services, and the like. Social
integration services 572 may include contact integration services, collaboration services,
integration with social networks such as Facebook, Twitter, and LinkedIn, and the like.
Application controller services 574 may include management services, provisioning services,

deployment services, assignment services, revocation services, wrapping services, and the

like.

[0129] The enterprise mobility technical architecture 500 may include an application store
578. The application store 578 may include unwrapped applications 580, pre-wrapped
applications 582, and the like. Applications may be populated in the application store 578
from the application controller 574. The application store 578 may be accessed by the mobile
device 502 through the access gateway 560, through the public Internet 548, or the like. The
application store may be provided with an intuitive and easy to use user interface. The
application store 578 may provide access to a software development kit 584. The software
development kit 584 may provide a user the capability to secure applications selected by the
user by wrapping the application as described previously in this description. An application
that has been wrapped using the software development kit 584 may then be made available to
the mobile device 502 by populating it in the application store 578 using the application

controller 574.

[0130] The enterprise mobility technical architecture 500 may include a management and
analytics capability. The management and analytics capability may provide information
related to how resources are used, how often resources are used, and the like. Resources may
include devices, applications, data, and the like. How resources are used may include which

devices download which applications, which applications access which data, and the like.

WO 2014/058640 PCT/US2013/062636
31

How often resources are used may include how often an application has been downloaded,

how many times a specific set of data has been accessed by an application, and the like.

[0131] Figure 6 is another illustrative enterprise mobility management system 600. Some
of the components of the mobility management system 500 described above with reference to
Figure 5 have been omitted for the sake of simplicity. The architecture of the system 600
depicted in Figure 6 is similar in many respects to the architecture of the system 500
described above with reference to Figure 5 and may include additional features not

mentioned above.

[0132] In this case, the left hand side represents an enrolled mobile device 602 with a client
agent 604, which interacts with gateway server 606 (which includes access gateway and
application controller functionality) to access various enterprise resources 608 and services
609 such as Exchange, Sharepoint, PKI Resources, Kerberos Resources, and Certificate
Issuance Service, as shown on the right hand side above. Although not specifically shown,
the mobile device 602 may also interact with an enterprise application store (e.g., StoreFront)

for the selection and downloading of applications.

[0133] The client agent 604 acts as the Ul (user interface) intermediary for Windows
apps/desktops hosted in an Enterprise data center, which are accessed using the
HDX®/ICA® display remoting protocol. The client agent 604 also supports the installation
and management of native applications on the mobile device 602, such as native i0OS or
Android applications. For example, the managed applications 610 (mail, browser, wrapped
application) shown in the figure above are all native applications that execute locally on the
device. Client agent 604 and application management framework of this architecture act to
provide policy-driven management capabilities and features such as connectivity and SSO
(single sign on) to enterprise resources/services 608. The client agent 604 handles primary
user authentication to the enterprise, normally to the access gateway (AG) with SSO to other
gateway server components. The client agent 604 obtains management policies from gateway

server 606 to control the behavior of the managed applications 610 on the mobile device 602.

[0134] The secure IPC links 612 between the native applications 610 and client agent 604
represent a management channel, which allows client agent to supply management policies to
be enforced by the application management framework 614 “wrapping” each application. The
IPC channel 612 also allows client agent 604 to supply credential and authentication

information that enables connectivity and SSO to enterprise resources 608. Finally the IPC

WO 2014/058640 PCT/US2013/062636
32

channel 612 allows the application management framework 614 to invoke user interface

functions implemented by client agent 604, such as online and offline authentication.

[0135] Communications between the client agent 604 and gateway server 606 are
essentially an extension of the management channel from the application management
framework 614 wrapping each native managed application 610. The application management
framework 614 requests policy information from client agent 604, which in turn requests it
from gateway server 606. The application management framework 614 requests
authentication, and client agent 604 logs into the gateway services part of gateway server 606
(also known as NetScaler® Access Gateway). Client agent 604 may also call supporting
services on gateway server 606, which may produce input material to derive encryption keys
for the local data vaults 616, or provide client certificates which may enable direct

authentication to PKI protected resources, as more fully explained below.

[0136] In more detail, the application management framework 614 “wraps” each managed
application 610. This may be incorporated via an explicit build step, or via a post-build
processing step. The application management framework 614 may “pair” with client agent
604 on first launch of an application 610 to initialize the secure IPC channel and obtain the
management policy for that application. The application management framework 614 may
enforce relevant portions of the management policy that apply locally, such as the client
agent login dependencies and some of the containment policies that restrict how local OS

services may be used, or how they may interact with the application 610.

[0137] The application management framework 614 may use services provided by client
agent 604 over the secure IPC channel 612 to facilitate authentication and internal network
access. Key management for the private and shared data vaults 616 (containers) may be also
managed by appropriate interactions between the managed applications 610 and client agent
604. Vaults 616 may be available only after online authentication, or may be made available
after offline authentication if allowed by the management policy. First use of vaults 616 may
require online authentication, and offline access may be limited to at most the management

policy refresh period before online authentication is again required.

[0138] Network access to internal resources may occur directly from individual managed
applications 610 through access gateway 606. The application management framework 614 is
responsible for orchestrating the network access on behalf of each application 610. Client

agent 604 may facilitate these network connections by providing suitable time limited

WO 2014/058640 PCT/US2013/062636
33

secondary credentials obtained following online authentication. Multiple modes of network
connection may be used, such as reverse web proxy connections and end-to-end VPN-style

tunnels 618.

[0139] The mail and browser managed applications 610 have special status and may make
use of facilities that might not be generally available to arbitrary wrapped applications. For
example, the mail application may use a special background network access mechanism that
allows it to access Exchange over an extended period of time without requiring a full AD
logon. The browser application may use multiple private data vaults to segregate different

kinds of data.

[0140] This architecture supports the incorporation of various other security features. For
example, gateway server 606 (including its gateway services) in some cases will not need to
validate AD passwords. It can be left to the discretion of an enterprise whether an AD
password is used as an authentication factor for some users in some situations. Different
authentication methods may be used if a user is online or offline (i.c., connected or not

connected to a network).

[0141] Step up authentication is a feature wherein gateway server 606 may identify
managed native applications 610 that are allowed to have access to highly classified data
requiring strong authentication, and ensure that access to these applications is only permitted
after performing appropriate authentication, even if this means a re-authentication is required

by the user after a prior weaker level of login.

[0142] Another security feature of this solution is the encryption of the data vaults 616
(containers) on the mobile device 602. The vaults 616 may be encrypted so that all on-device
data including files, databases, and configurations are protected. For on-line vaults, the keys
may be stored on the server (gateway server 606), and for off-line vaults, a local copy of the
keys may be protected by a user password. When data is stored locally on the device 602 in
the secure container 616, it is preferred that a minimum of AES 256 encryption algorithm be

utilized.

[0143] Other secure container features may also be implemented. For example, a logging
feature may be included, wherein all security events happening inside an application 610 are
logged and reported to the backend. Data wiping may be supported, such as if the application
610 detects tampering, associated encryption keys may be written over with random data,

leaving no hint on the file system that user data was destroyed. Screenshot protection is

WO 2014/058640 PCT/US2013/062636
34

another feature, where an application may prevent any data from being stored in screenshots.
For example, the key window’s hidden property may be set to YES. This may cause whatever
content is currently displayed on the screen to be hidden, resulting in a blank screenshot

where any content would normally reside.

[0144] Local data transfer may be prevented, such as by preventing any data from being
locally transferred outside the application container, e.g., by copying it or sending it to an
external application. A keyboard cache feature may operate to disable the autocorrect
functionality for sensitive text fields. SSL certificate validation may be operable so the
application specifically validates the server SSL certificate instead of it being stored in the
keychain. An encryption key generation feature may be used such that the key used to
encrypt data on the device is generated using a passphrase supplied by the user (if offline
access is required). It may be XORed with another key randomly generated and stored on the
server side if offline access is not required. Key derivation functions may operate such that
keys generated from the user password use KDFs (key derivation functions, notably
PBKDF2) rather than creating a cryptographic hash of it. The latter makes a key susceptible

to brute force or dictionary attacks.

[0145] Further, one or more initialization vectors may be used in encryption methods. An
initialization vector will cause multiple copies of the same encrypted data to yield different
cipher text output, preventing both replay and cryptanalytic attacks. This will also prevent an
attacker from decrypting any data even with a stolen encryption key if the specific
initialization vector used to encrypt the data is not known. Further, authentication then
decryption may be used, wherein application data is decrypted only after the user has
authenticated within the application. Another feature may relate to sensitive data in memory,
which may be kept in memory (and not in disk) only when it’s needed. For example, login
credentials may be wiped from memory after login, and encryption keys and other data inside
objective-C instance variables are not stored, as they may be casily referenced. Instead,

memory may be manually allocated for these.

[0146] An inactivity timeout may be implemented, wherein after a policy-defined period of

nactivity, a user session is terminated.

[0147] Data leakage from the application management framework 614 may be prevented in
other ways. For example, when an application 610 is put in the background, the memory may

be cleared after a predetermined (configurable) time period. When backgrounded, a snapshot

WO 2014/058640 PCT/US2013/062636
35

may be taken of the last displayed screen of the application to fasten the foregrounding

process. The screenshot may contain confidential data and hence should be cleared.

[0148] Another security feature relates to the use of an OTP (one time password) 620
without the use of an AD (active directory) 622 password for access to one or more
applications. In some cases, some users do not know (or are not permitted to know) their AD
password, so these users may authenticate using an OTP 620 such as by using a hardware
OTP system like SecurID (OTPs may be provided by different vendors also, such as Entrust
or Gemalto). In some cases, after a user authenticates with a user ID, a text is sent to the user
with an OTP 620. In some cases, this may be implemented only for online use, with a prompt

being a single field.

[0149] An offline password may be implemented for offline authentication for those
applications 610 for which offline use is permitted via an enterprise management policy. For
example, an enterprise may want the enterprise application store to be accessed in this
manner. In this case, the client agent 604 may require the user to set a custom offline
password and the AD password is not used. Gateway server 606 may provide management
policies to control and enforce password standards with respect to the minimum length,
character class composition, and age of passwords, such as described by the standard

Windows Server password complexity requirements, although these requirements may be
modified.

[0150] Another feature relates to the enablement of a client side certificate for certain
applications 610 as secondary credentials (for the purpose of accessing PKI protected web
resources via the application management framework micro VPN feature). For example, an
application such as an email application may utilize such a certificate. In this case, certificate-
based authentication using ActiveSync protocol may be supported, wherein a certificate from
the client agent 604 may be retrieved by gateway server 606 and used in a keychain. Each
managed application may have one associated client certificate, identified by a label that is

defined in gateway server 606.

[0151] Gateway server 606 may interact with an enterprise special purpose web service to
support the issuance of client certificates to allow relevant managed applications to

authenticate to internal PKI protected resources.

[0152] The client agent 604 and the application management framework 614 may be

enhanced to support obtaining and using client certificates for authentication to internal PKI

WO 2014/058640 PCT/US2013/062636
36

protected network resources. More than one certificate may be supported, such as to match
various levels of security and/or separation requirements. The certificates may be used by the
mail and browser managed applications, and ultimately by arbitrary wrapped applications
(provided those applications use web service style communication patterns where it is

reasonable for the application management framework to mediate HTTPS requests).

[0153] Application management framework client certificate support on 10S may rely on
importing a PKCS 12 BLOB (Binary Large Object) into the i0OS keychain in each managed
application for each period of use. application management framework client certificate
support may use a HTTPS implementation with private in-memory key storage. The client
certificate will never be present in the 10S keychain and will not be persisted except

potentially in “online-only” data value that is strongly protected.

[0154] Mutual SSL may also be implemented to provide additional security by requiring
that a mobile device 602 is authenticated to the enterprise, and vice versa. Virtual smart cards

for authentication to gateway server 606 may also be implemented.

[0155] Both limited and full Kerberos support may be additional features. The full support
feature relates to an ability to do full Kerberos login to AD 622, using an AD password or
trusted client certificate, and obtain Kerberos service tickets to respond to HTTP negotiate
authentication challenges. The limited support feature relates to constrained delegation in
AFEE, where AFEE supports invoking Kerberos protocol transition so it can obtain and use
Kerberos service tickets (subject to constrained delegation) in response to HTTP negotiate
authentication challenges. This mechanism works in reverse web proxy (a.k.a. CVPN) mode,

and when HTTP (but not HTTPS) connections are proxied in VPN and MicroVPN mode.

[0156] Another feature relates to application container locking and wiping, which may
automatically occur upon jail-break or rooting detections, and occur as a pushed command
from administration console, and may include a remote wipe functionality even when an

application 610 is not running.

[0157] A multi-site architecture or configuration of the enterprise application store and
application controller may be supported that allows users to be service from one of several

different locations in case of failure.

[0158] In some cases, managed applications 610 may be allowed to access a certificate and
private key via an API (example OpenSSL). Trusted managed applications 610 of an

enterprise may be allowed to perform specific Public Key operations with an application’s

WO 2014/058640 PCT/US2013/062636
37

client certificate and private key. Various use cases may be identified and treated
accordingly, such as when an application behaves like a browser and no certificate access is
required, when an application reads a certificate for “who am I,” when an application uses the
certificate to build a secure session token, and when an application uses private keys for

digital signing of important data (e.g. transaction log) or for temporary data encryption.
[0159] Orchestration Framework for Connected Devices

[0160] Aspects described herein allow a collection of devices owned by individuals or
groups to be used in a coordinated, collective way, beyond simple screen sharing. This
collective coordination of devices can be done on either a memorized (for your own personal

devices), or an ad hoc basis (such as when two people use their devices collectively).

[0161] For example, consider the GoToMeeting® software application by Citrix Systems,
Inc. It exists on laptops, smart phones and tablets. However, cach platform does essentially
the same thing and the devices do not work in harmony when used by the same user.
According to one aspect, a smart phone may take on the role of microphone for a meeting; a
tablet may take on the role of displaying video for the meeting, and a laptop may display a

screen sharing element of the meeting.

[0162] Other examples of cross device coordination include: assigning web links that get
clicked on by a laptop to appear on a tablet device, and transferring an already opened

PowerPoint presentation from one device to another.

[0163] In addition to the ability to assign specific roles to devices while interacting with
devices, aspects allow for the persistent assignment of device roles, to allow efficient usage
of multiple devices, without extra interaction on the part of the user. For example, in the
GoToMeeting® context, this may involve making the smartphone the microphone, the tablet

display video, and the laptop display screen sharing immediately when a meeting starts.

[0164] In order to address the above problems, and other problems that will become
apparent to the reader, aspects described herein harness and orchestrate devices together to
allow complex multi device behaviors that make the internet of things come alive to make a
big impact on people’s daily lives. One problem solved by aspects described herein is to
allow user level customization of behaviors that result when many different devices interact
with each other. One problem today is that while many devices can interact with each other,
the way they interact with each other is hard wired, and not configurable by the users of the

system. The range of behaviors is limited, and often limited to devices from similar vendors,

WO 2014/058640 PCT/US2013/062636
38

who have already established how devices will interact with each other, based on specific,

closed use cases.

[0165] Using aspects described herein, a user can configure flexible interactions between
different devices to allow orchestration of different devices to work together in harmony.
This allows devices which are typically unrelated to work together to trigger different
behaviors. For example, if a user has a smartphone, a laptop and a tablet, aspects described

herein provide the following illustrative use-case solution:

a. If the user is driving in a car and a meeting starts, then they do not want to
have to enter meeting join information—they just want the meeting to call them on
the telephone using the PSTN, which allows simple integration with the in car
steering wheel phone controls.

b. However, if the user is in the office, then they want to use the device they
are currently interacting with.

[0166] Aspects described herein give the user the choice to customize these actions
according to their preferences, utilizing triggers that are provided by devices. Users can
customize these actions either by explicitly specifying them, or they can rely on the system

observing user behavior and following their preferences.

[0167] One known solution to the above recited problems is to manually carry out the
orchestration steps between devices to achieve some of the features the software described
herein provides, such as manually connecting to a meeting by dialing the PSTN bridge

information while in the car, despite the dangers of doing so.

[0168] Other features of the software described herein, such as triggers that invoke when a
user is not physically present, cannot be achieved at the moment, and the user lives without
such features. Limited known previous attempts at this problem involve solutions such as
web mashups, including technologies like OnX and IFTTT. However, these technologies are
focused on bringing together different web sites and some features of mobile devices. They
are not broader technologies that cover the wider range of devices that are part of “the
internet of things”. Still other known technologies include standards such as X10, DMX and
ZWave. However, these are home automation technologies focused on devices and sensors

such as light, motion sensors, and motorized control of items in the home.

[0169] FIG. 7 shows multi-device use according to illustrative aspects described herein.

The system of FIG. 7 outlines the way that items are spread across devices, as well as ways

WO 2014/058640 PCT/US2013/062636
39

that users may trigger cross device interactions. As shown by way of example in FIG. 7, a
user may select content at one computing device to share with another computing device. The
user may select the content to share and then select one of the other computing devices
connected via the orchestration framework. Upon selection of the selected computing device
(the destination computing device), the selected content may be transferred to the selected
computing device. As seen in FIG. 7, various approaches may be selectively employed to
present or display a set of computing devices available for selection as the device to receive
the selected content. In one approach, the computing devices available for selection may
“peek” in from the edges of the interface as selectable targets of a drag-and-drop action. In
another approach the computing devices available for selection may be presented as a set of
selectable icons. In a further approach, the computing devices available for selection may be
presented as selectable entries in a list of computing devices. Similar approaches may be
employed in order to request that a computing device perform at least a portion of a
computing activity initiated at another computing device. Moreover, the set of computing
devices presented as available for selection may be dynamically generated or configured
based on, e.g., the computing devices associated with the computing device, the computing
devices associated with a user of the computing device, the computing devices co-located
with the computing device, operation modes of the computing device, operation modes of
applications at the computing devices, whether the computing devices are capable of
presenting the content or performing the computing activity, based on whether the computing
devices are permitted to present the content or perform the computing activity, and additional

or alternative criteria that will be appreciated with the benefit of this disclosure.

[0170] One known solution to the multi-device problem is to manually dedicate specific
devices to specific roles, through manual manipulation of software on devices. For example,
in the GoToMeeting® context, this can mean making the laptop screen minimize the video
part of the meeting, to allow screen sharing to take up the screen, and mirroring this to the
room display. It also means manually muting all speakers other than that of the smartphone,
which is acting as the microphone. It also means making the tablet maximize the video
display of GoToMeeting®. Once after this is done, a single user appears to be connected
multiple times in the list of users in a meeting, which provides a sub optimal user experience.
For other situations, such as launching an application from one device onto another, there are
no existing solutions in place. Thus, existing solutions, to the extent they exist, are laborious,

manually driven and error prone.

WO 2014/058640 PCT/US2013/062636
40

[0171] FIG. 8 shows a system architecture according to one or more illustrative aspects
described herein. The system in FIG. 8 shows a cloud service responsible for the server side
facilities, and multi-device (MD) software running on client devices responsible for cross
device interaction. The MD software on each different kind of client device may be adapted
based on the capabilities of that client device. The system of FIG. 8 may include the
following: 1) a cloud service, which provides server and the back end services (this can be
implemented, e.g., using ASP.NET MVC running in Windows Azure); and 2) different client
devices, each representing a different form factor of device. A laptop, smartphone, tablet and

large room display are shown in the diagram, but other devices may also be used.
[0172] The cloud server components of the system may include:

a. Cloud file interface. This is responsible for communicating with the
underlying cloud storage resource. Cloud storage resources may include, e.g.,

ShareFile®, DropBox, GoogleDocs, Box, etc.

b. Cloud file service. In this example, this is a cloud storage resource, which

acts as an external data provider in the context of this disclosure.

c. Device Service. This is responsible for maintaining knowledge of all the
devices that a user has, and the capabilities of each device, such as what kind of
device it is, what applications it is capable of running, and what kind of peripherals

(such as cameras), that it has available.

d. Device Database. This database maintains the information used by the

Device Service.

e. User Service. This is responsible for maintaining knowledge of all the users

available in the system. It is also used for identity management.

f. User Database. This is the database maintaining the information used by the

User Service.

g. Device Management Interface. This is an interface that allows users of the
system to define what specific roles or actions occur on what specific devices. It
allows the user to customize how their devices behave for specific situations, such as
GoToMeeting® or what device will display web content. It defers the work of

actually sequencing what goes to what device to the Orchestration Service.

WO 2014/058640 PCT/US2013/062636
41

h. Push Notification Service. This is responsible for leveraging push
notification frameworks that are used by i0S, Android, Windows, and other services

to notify devices that they need to take action.

1. Orchestration Service. This is responsible for coordinating the different
actions related to making devices display certain content. It is a central point within

the system and issues instructions to all the other components

[0173] Client components of the system may be the same, regardless of the kind of device.
However, implementation details may vary according to the underlying platform. Client

components may include:

a. Cloud file Interface. This is responsible for communicating with the cloud

storage resource (e.g., ShareFile®, DropBox, GoogleDocs, Box).

b. Application Resolver. This is responsible for determining how to act upon a
request to engage in a cross device request. For example, if the user wants to make
use of a tablet as a GoToMeeting® video renderer, then the resolver determines that

the request involves launching GoToMeeting® in video output mode only.

¢. Notification Interface. Handles notifications that are received from the

server to engage in cross device behavior.

d. Application Launcher. Launches an appropriate application on the device,

after any data that needs to be brought to a device is on the device.

¢. Presence Subsystem. Ensures that the cloud service is aware that a device is
online and available. It may also transfer location information or NFC related

information, which may be used by the server to determine if devices are co-located.

f. Orchestration Agent. This is responsible for orchestrating work items related
to a cross device activity so that a user can accomplish their goals with minimal
intervention. For example, if a power point presentation is being transferred to this
device from another device, the orchestration agent ensures that the presentation is
available on the device, and downloads it to the device if needed. The orchestration
agent then makes use of the application resolver to determine the appropriate way to
launch the application, and then using the application launcher to launch the

application.

WO 2014/058640 PCT/US2013/062636
42

[0174] As an illustrative example of how these components work together to address the
above problems, the following describes the flow of execution during a use-case scenario
where a user wants to launch a multi device GoToMeeting® (or similar service), and then

display web links on another device to that which the link was clicked upon.

[0175] Initially, prior to the meeting, the user has MD software client running on his / her
laptop. The presence subsystem of the client on the laptop communicates to the device
service of the cloud service, to indicate that the device is available. The presence subsystem
of the client on the user’s smart phone and tablet indicate that the devices are available. At
the time of the meeting, the Orchestration Service decides that it is time to start a meeting.
The Orchestration Service consults with the Device Service to determine what devices are
available for the user. The Device Service makes use of the Device Database to determine
what devices a user has and what their status is. The Orchestration Service uses the Push
Notification Service to send messages to the active devices that the user has registered with
the MD software. The Notification Interface on the clients receive the notification that a
meeting is to be launched and passes this onto the Orchestration Agent, which ensures that
the user is asked if they want to join the meeting. The Orchestration Agent uses the
Application Resolver to determine what application and what parameters are needed to
launch the meeting with the given role. This information may be different for each device.
For example, the laptop may be given information indicating that just screen sharing is to be
used, whereas the tablet may be given information indicating that just the video is to be used.
The Orchestration Agent uses the Application Launcher to start GoToMeeting® with the

appropriate information. This sequence may occur for each of the user’s active devices.

[0176] At the end of the meeting, the user then decides to make use of his / her tablet to
display web content for links that are clicked on the laptop. The user clicks on a link in a web
browser. The web link used is intercepted by the MD software. The MD software sends the
link to the Orchestration Service at the cloud service. The Orchestration Service uses the
Device Service to determine if the tablet is available. The Orchestration Service sends a
request to the Push Notification Service to send a push notification to the tablet device. The
Notification Interface on the client receives the request from the cloud service and passes it
onto the Orchestration Agent. The Orchestration Agent uses the Application Resolver to
determine which application and what parameters are needed to launch the particular web
link. In this example, the information passed back is that the internal web browser needs to be

used, and the information to pass to the browser. The Orchestration Agent uses the

WO 2014/058640 PCT/US2013/062636
43

Application Launcher to launch the web browser with the information passed from the other

machine.

[0177] Using aspects described herein, the MD software overcomes the difficulties
involved in effectively using multiple devices together in a complementary fashion. Without
the MD software, multiple devices are not able to work together in harmony, in a
complementary fashion. Each device can display applications and content, but there is no

coherence or ability to orchestrate across multiple devices.

[0178] Using the MD software, for example, provides a usetr/enterprise the ability to
associate a person’s devices with their identity in a collaboration system. Collaboration
systems such as GoToMeeting® do not currently have any particular association for a user’s
devices, and consequently cannot take advantage of pre-assigned roles for different devices.
The MD software also provides for associating devices with a space or group of people.
Examples include conference room devices such as smart displays and speakerphones being
associated with a space. These assets can then be shared by a group occupying that space
(temporary assignment) or be permanently assigned to a logical group of people. The MD
software also provides for the ability to move / assign interactions across devices in the form
of applications (native, virtual, web, etc.) with associated content and preferences in such a
way that it is seamless to spread work across devices. The MD software also provides the
ability to scaffold context / state across devices to afford better user experiences. For
example, upon launch of a collaboration, the automatic launch of a meeting onto all a user’s
devices, with each device launching into its specific role. The MD software may also provide

the context of a device.

[0179] Using the MD software, for example, provides a usetr/enterprise the ability to
associate a person’s devices with their identity in a collaboration system. Collaboration
systems such as GoToMeeting® do not currently have any particular association for a user’s
devices, and consequently cannot take advantage of pre-assigned roles for different devices.
The MD software also provides for associating devices with a space or group of people.
Examples include conference room devices such as smart displays and speakerphones being
associated with a space. These assets can then be shared by a group occupying that space
(temporary assignment) or be permanently assigned to a logical group of people. The MD
software also provides for the ability to move / assign interactions across devices in the form
of applications (native, virtual, web, etc.) with associated content and preferences in such a

way that it is seamless to spread work across devices. The MD software also provides the

WO 2014/058640 PCT/US2013/062636
44

ability to scaffold context / state across devices to afford better user experiences. For
example, upon launch of a collaboration, the automatic launch of a meeting onto all a user’s
devices, with each device launching into its specific role. The MD software may also provide
the context of a device (such as location of the phone) to be used as information for another
device (such as a tablet). The MD Software also provides the ability to use device assignment
/ movement to afford device specific roles in a collaboration system. Examples include a
smartphone acting as a speakerphone, a tablet acting as an avatar, or any device acting as a
camera. The MD software also provides targeted paste, ¢.g., allowing an application to be a
paste target on one of the devices, subsequent copies on any of the associated devices get
pasted automatically into the paste target. This cuts the typical copy and paste operation
overhead in half. The MD software provides methods and systems to make a natural user
interaction (voice, touch, gesture, keyboard, etc.) action on one device that allows all devices
to respond. An example is to bring the focus of an app (such as email) to the front on any of

the devices.

[0180] Use the aspects described herein to simplify the use of multiple devices by reducing
manual configuration and coordination. Other aspects provide the ability to share world
knowledge / state between devices to enhance the user experience. This reduces redundant
entry of information. Some aspects provide the ability to quickly spread activities across
devices by reducing the friction caused by applications, data, and context being locked into
devices. Other aspects reduce copy/paste efforts in half. Some aspects provide cross device
Natural User Interaction (NUI) that allows less capable devices to participate in natural
interaction. Other aspects provide the ability to quickly bring an app to the front on any
device, no matter what devices the app was on previously. This allows faster movement

between applications, e.g., “show email on my tablet”.

[0181] According to another aspect, additional applications may benefit from use of MD
software, e.g., client agent software in virtualization environments. The MD software may
enable migrating client agent applications from one device to another device. This may be
performed using push driven Smooth Roaming, which is a feature provided by software such
as XenDesktop® from Citrix®. Other aspects of MD software may provide for the ability to
share the state of web browser sessions across devices. Still other aspects of MD software
may provide ad hoc device discovery using technologies such as NFC and using the

Orchestration Service and Orchestration Agent to assign roles for the devices. Other

WO 2014/058640 PCT/US2013/062636
45

examples Bluetooth, wifi direct or even something as simple as playing a human inaudible

tone and devices that pick it up can report back and thus must be co-located.

[0182] FIG. 9A illustrates a system architecture according to one or more illustrative
aspects. FIG. 9A outlines a general structure that may be used. It shows a cloud service

responsible for server side facilities and new, dynamic software running on client devices.

[0183] The system architecture may include at least three discrete subsystems: 1) a cloud
service, which provides the back end services (This may be implemented using ASP.NET
MVC running in Windows Azure, as one example); 2) client devices, which run the software
the user interacts with for collaboration, deferred work, applications and other software. This
software can be running on platforms such as Windows, i0S, Android, Mac or a Smart TV,
among others; and 3) internet enabled sensors, such as motion sensors, light sensors,

temperature sensors.
[0184] Cloud service components of the system include:

a. Device Service. maintains knowledge of all the devices that a user has, and
the capabilities of each device, such as what kind of device it is, what applications it is
capable of running, and what kind of peripherals (such as cameras), that it has

available.
b. Device Database. maintains the information used by the Device Service.

c. User Service. maintains knowledge of all the users available in the system.

It is needed for identity management.
d. User Database. maintains all the information used by the User Service.

e. PSTN Interface. interface that proactively contacts users via the public

switched telephone network (PSTN).

f. Push Notification Service. leverages push notification frameworks that are
used by 10S, Android and Windows (among others) to notify devices that they need

to take action.

g. Orchestration Service. coordinates different actions based on different
events, or triggers that happen. The Orchestration Service may include the following

components:

WO 2014/058640 PCT/US2013/062636
46

1. Trigger Handler. receives input from different external sources, such

as sensors and clients about when specific events occur that can act as a trigger

for different actions to occur.

2. Rules Service. determines what actions to carry out when a
particular event, or trigger, occurs. The Rules Service is the core of the system

that determines what to do when something occurs.

3. Action Generator. translates the sequence of actions that need to
occur based on what the resultant actions generated from the Rules Service are

for a given trigger.

h. Rules Database. Maintains information used by the Orchestration Service
and Rules Service which determines how the software behaves based on different

triggers.

1. Orchestration Interface. Provides an interface for users of the system to
customize the behavior of the system for different devices, events and triggers. It is

through this interface that the users customize the system.

[0185] The client components of the system may be the same, regardless of the kind of
device. However, the implementation details may vary according to the underlying platform.

Client components may include:

a. Application Resolver. This is responsible for determining how to act upon a
request that involves launching an application. For example, if the user wants to
launch Google maps on their tablet when they enter a car, the Application Resolver
determines how to launch Google Maps — be it a web application, native application,

or client agent published application.

b. Notification Interface. Handles notifications that are received from the

server based on information from the server side.
c. Application Launcher. Launches an appropriate application on the device.

d. Presence Subsystem. Ensures that the cloud service is aware that a device is

online and available.

e. Orchestration Agent. Orchestrates the work items related to making deferred

and distributed work possible. This includes tasks such as starting meetings in

WO 2014/058640 PCT/US2013/062636
47

response to events from the server, triggering authentication and general coordination

of the client. The Orchestration Agent may include the following components:

1. Trigger Handler. Receives input from different external sources,
such as sensors and clients about when specific events occur that can act as a

trigger for different actions to occur.

2. Rules Engine. Determines what actions to carry out when a
particular event, or trigger, occurs. The Rules Service is the core of the system

that determines what to do when something occurs.

3. Action Generator. Translates the sequence of actions that need to
occur based on what the resultant actions generated from the Rules Engine are

for a given trigger.

[0186] To illustrate how these components work together to address the problems the
software addresses, the following example use-case scenario shows how a user would set
rules to ensure that if they are driving in a car when a meeting starts, that the system should

call the user on the PSTN to let them join the meeting.

[0187] Initially, the user points their web browser to the Orchestration Interface. The user

enters a rule with the following definition:
a. A trigger set to “If a meeting starts”.

b. Contextual conditions set to “The motion sensor or GPS in my smart phone

indicates that I am moving at a speed greater than Skm/h”.

c. An action set to “Call a specified telephone number and patch me into the

meeting automatically.”

[0188] The rule entered into the Orchestration Interface is sent to the Rules Service, which
writes the information to the Rules Database. At this point, the rules are all set up on the
server. The Rules Service instructs the Device Service to send each device a message with the
new rules. The Presence Subsystem on the client device communicates with the Device
Service to indicate that the device is present. The client receives a response back indicating
that it needs to update its rules. The Rules Engine on the client requests the latest set of rules
that apply to the device from the Rules Service. The Rules Service provides the information

back to the client, which stores the information in its internal Rules Engine configuration.

WO 2014/058640 PCT/US2013/062636
48

Now that the client knows about the rules specified by the user, it can send information about

the state of this rule to the server. So, in this case:

a. The Trigger Generator on the client receives a message cach time the

Presence Subsystem intends to notify the server about its status.

b. The Rules Engine on the client determines that information about the

device’s motion / speed needs to be sent back to the server.

c. The Rules Engine uses the Action Handler on the client to append

information to the data sent back to the server by the Presence Subsystem.

[0189] The Device Service on the server side receives the message about the device’s
presence, and the rule information from the client, which it passes on to the Trigger Handler,
which passes it onto the Rules Service. The Rules Service updates its information about the
state of the device, relative to the rule relating to meeting starting and motion sensor speed.
When a meeting is due to start, the Trigger Handler receives a message from an external
service monitoring the user’s calendar. The Trigger Handler passes the message about the
start of the meeting to the Rules Service. The Rules Service consults the rules database and
determines that there is a rule triggered by the start of a meeting. The Rules Service consults
the rules database for further information about how the contextual condition for the rule
relates to the state of the client device. The status received last from the client indicates that
the device is moving and the contextual condition for the rule evaluates to true, namely, carry

out the action of the rule.

[0190] The Rules Service passes on the result of the rule evaluation to the Action
Generator. In this case, it passes on an action of calling the user on a specified telephone
number. The Action Generator creates the sequence of instructions needed to call the
telephone. The Action Generator issues a request to the PSTN Service to make a telephone
call to the specified telephone number. The PSTN Service calls the requested telephone
number, and connects to the user’s telephone. The Action Generator issues a request to the
PSTN Service to dial the appropriate instructions to patch the user into the meeting they are
due to attend. At this point, the user is connected into the meeting while they are driving,
without having to take their eyes off the road, or enter complex sequences into their smart

phone.

[0191] The software and systems described herein overcome the difficulties that arise when

users have several devices that can work together to automate tasks, yet are not configured

WO 2014/058640 PCT/US2013/062636
49

out of the box to allow such orchestration, or do not allow flexibility of orchestration.
Aspects described herein thus provide the ability to define inferred contextual (temporal,
geospatial, situational) and explicit (from all forms of natural interaction across devices)
triggers from a variety of devices. Aspects also provide the ability to define actions for
devices to perform based upon triggers determined from device context, and for the definition
of rules that can be fired based on an inference engine to enable complex automation
behaviors across devices. Aspects also provide a question and answer interface to refine
desired behaviors, as well as the ability to learn how device behavior triggers based on
learning or observing user behavior across devices, instead of only relying on users explicitly
scripting the behavior. For example, learning what a user does when they respond to
something like a meeting notification, and replicating this behavior the next time, such as
automatically muting their microphone, or setting it to a particular volume. Aspects also
provide the ability to learn device behavior based upon a question and answer or if / then /

else style interface.

[0192] While there are existing rules engines and automation frameworks available, they
are typically related to one particular application or device. Aspects of the approaches
described in this disclosure span across multiple devices and applications that a user has. This
provides several advantages, including providing the ability to provide future proof behaviors
of devices working together collectively, even if they are not explicitly designed to cooperate
with each other. Aspects described herein also provide the ability to define simple triggers,
actions, and behavior rules to give a level of flexibility not available out of the box in other
solutions. Aspects also provide the ability to learn system behaviors based upon question and
answer style interfaces, and/or by observing how a user uses the system can make

customization accessible to users without any programming background.

[0193] Other aspects described herein provide the ability for users to customize
orchestration by providing a learning facility, a question and answer style interface and a
traditional scripting approach. The orchestration software may adapt to how users interact
with the system, and adjust rules based on user behavior. Thus, the system may learn new

interactions and rules, based upon the observed behavior of a user of the system.

[0194] As noted above, the cloud service may be utilized for sharing various types of
content at a computing device, ¢.g., for cross-device file sharing, URL sharing, and copy-and-
paste functionality. The back-end cloud service advantageously allows cross-device sharing

across different operating environments using only a multi-device client installed at the

WO 2014/058640 PCT/US2013/062636
50

various devices. The content shared across devices may be anything residing at a device
including, e.g., document files, image files, audio files, video files, archive files, software
applications, URLs, text-based content, presentation meetings, and the like. Moreover, users
may share content with devices they are associated with (e.g., a personal mobile telephone, a
personal laptop computer, a personal tablet computer, etc.) and may share content with

devices associated with other individuals.

[0195] In some example implementations, a user may select the particular device selected
content it is shared with. In other example implementations, the cloud service may
automatically determine which device to share the content with. The cloud service may make
the determination based on, e.g., the type of content shared, the devices presently connected
to the cloud service, and so forth. This context-based decision-making of the cloud service
advantageously provides a seamless and unobtrusive workflow for the users. Allowing users
to select which devices content is shared with, however, advantageously gives the users more
control over the destination of their shared content. It will thus be appreciated that the cloud
service may be selectively configured to share content between devices according to the
selections of the users, according to the present context, according to file sharing rule sets, or

a combination of such.

[0196] As noted above, the orchestration framework may also interconnect computing
devices to operate as a coordinated whole via a peer-to-peer communication session. FIG. 9B
illustrates an example implementation in which the orchestration agents are interconnected
via a peer-to-peer communication session. The orchestration agents may still allow the
computing devices to access, e.g., a cloud storage resource, a rules database, a device
database, and a user database as described above. It will be appreciated that aspects of the
orchestration framework are applicable in the peer-to-peer context as well as the client-server

context.

[0197] A word processing application (e.g., Microsoft Word) is one example of an
application where the orchestration framework may distribute operation of the application
across multiple interconnected devices. In this example, a desktop computing device may
initiate the word processing application and request that a television display device present
the output from the application, e.g., a document being edited. The orchestration framework
may distribute the application across other interconnected computing devices such that input
for the word processing application may be received from the other computing devices

interconnected with the desktop application. For example, a user at a laptop device may

WO 2014/058640 PCT/US2013/062636
51

provide input at the laptop keyboard in order to edit the document, and another user at a tablet
device may provide input at the touchscreen keyboard in order to edit the document. In this
way, a user may share a document with other devices while accessing the document at a first

device.

[0198] In another example, interconnected devices may coordinate with each other if one of
the devices does not have the hardware or software needed to carry out a computing activity.
Online meetings are provided in this disclosure as one example in which computing devices
may be interconnected via an orchestration framework that coordinates operation of a
computing activity across the computing devices. In one particular example, a user may only
have access to a cellular telephone and a television display device when joining the meeting.
In this example, the television display device may not have an audio input device, and the
cellular telephone may not have an adequate video output device. Accordingly, the
orchestration framework may coordinate the operation of the cellular telephone and the
television display device to enable the user to join the online meeting. Respective
orchestration agents at the cellular telephone device and the television display device may
connect the devices via the orchestration framework as shown by way of example in FIG. 9B.
During the online meeting, the orchestration framework may thus cause video of the online
meeting to be presented at the television display device and cause audio from the user to be
received for the online meeting from the microphone of the cellular telephone device.

Additional and alternative examples will be appreciated.

[0199] FIG. 10 is a flowchart 1000 of example method steps for cross-device file sharing.
A user may operate a computing device at which various computer files reside. The user may
select one of the files to share with another device (block 1002). With the file selected, the
user may initiate a cross-device share request (block 1004). The user may initiate the cross-
device share request via, e.g., a keyboard shortcut, menu selection, and the like. Upon

initiation of the cross-device share request, the multi-device client may launch or activate at

the device (block 1006).

[0200] The multi-device client may present a list of destinations the user may transmit the
selected file to (block 1008). The list of destinations may include line items corresponding to
computing devices associated with the user as well as line items corresponding to individuals.
As noted above, the user may select a personal device associated with that user or an
individual to transmit the selected file to. As also noted above, the list of line items may

include the devices associated with the listed individuals, and the user may select which

WO 2014/058640 PCT/US2013/062636
52

device associated with an individual to transmit the selected file to. If the user selects an
individual rather than a device, the cloud service may automatically determine which device
associated with the selected individual to transmit the selected file to. It will be appreciated
that the list of individuals may also include the user, and selection of the user may transmit

the selected file to a different device associated with the user.

[0201] As noted above, the determination of which device to transmit the sclected file to
may be based on user selection, context, or rule sets. The user may manually select which
device or individual to transmit the selected file to. Additionally or alternatively, the cloud
service may determine which devices are presently connected to the cloud service, and
automatically select one of those devices to receive the selected file. The cloud service may
also automatically select a device based on the type of file selected. As an example, the cloud
service may select an audio device to receive the selected file when the file is an audio file.
As another example, the cloud service may automatically select a large display device to
receive the selected file when the file is a video file. The cloud service may also employ one
or more rule sets to determine which device should receive the selected file. Users may
modify the rule sets according to their preferences, and the rules may consider various
characteristics associated with the users (e.g., user role, location, etc.), the devices (e.g.,
device type, etc.), the selected file, and combinations of such. This rule-based approach to file
sharing may advantageously provide greater flexibility in customizing how the cloud service

automatically shares files across devices.

[0202] Moreover, the list of destinations may be context-sensitive such that the destinations
included in the list depend on various factors. In one example implementation, the multi-
device client may dynamically filter the list of destinations based on the capabilities of the
potential device destinations. In this regard, the multi-device client may be aware of the
capabilities of the various devices. The cloud service may maintain capability information
corresponding to each device connected to the cloud service and provide this capability
information to the multi-device client. In turn, the multi-device client may utilize the
capability information when constructing the list of destinations. If a potential device
destination is not capable of opening the selected file, then the multi-device client may
exclude that device destination from the list of destinations. In this way, the multi-device
client may tailor the list of destinations to include only those devices having the capability to
open the selected file. The multi-device client may tailor the list of destinations based on

additional or alternative criteria. For example, the individuals included in the list of

WO 2014/058640 PCT/US2013/062636
53

destinations may be the attendees of an ongoing meeting that the user is attending. It will be
appreciated that the multi-device client may employ combinations of criteria to construct the

list of destinations.

[0203] Referring back to FIG. 10, the user may select from the list of destinations a
destination to transmit the selected file to (block 1010). Having selected the destination, the
multi-device client may upload the selected file to a remote file sharing service that stores the
selected file (block 1012). The multi-device client may then notify the cloud service that the
selected file is available at the file sharing service (block 1014). The notification to the cloud
service may include, for example, the selected destination for the file, the location of the file
at the file sharing service (e.g., a URL corresponding to the file), and the like. The cloud
service may then notify the destination device that the file is available at the file sharing
service (block 1016). The notification to the destination device may likewise include the

location of the file at the file sharing service.

[0204] The multi-device client at the destination device may respond differently depending
on whether the user shared the file with a device associated with that user (e.g., another
personal device) or a device associated with another individual. For example, a sender may
be notified when a recipient has modified a file shared via the orchestration framework, e.g.
where two users are collaborating across time and space. A sender may, in some instances,
push a file for sharing purposes and not care if it is ever modified. The sender may, in other
instances, share a file for collaborating purposes and does not care of being notified when the
file changes. In particular, the multi-device client may present an unobtrusive notification at
the mobile device when another user shares a file. In this way, the multi-device client may
avoid interrupting users while engaging in other computing activities. As seen in FIG. 10, if
the destination device is not a personal device of the user that shared the file (block 1018:N),
then the multi-device client at the destination device may display a notification that a new
filed has been shared with the destination device (block 1020). Upon receipt of the
notification of the shared file, the multi-device client may provide the recipient with the
option to accept or reject the shared file. If the recipient does not accept the shared file (block
1022:N), then the multi-device client may wait (block 1024) until the recipient accepts the
shared file, e.g., by providing input requesting receipt of the shared file. When the recipient
accepts the shared file (block 1022:Y), the multi-device client may retrieve the file from the
file sharing service (block 1026). The file sharing service may be located remotely relative to

the device the multi-device client resides at, and may be accessible, e.g., via the Internet.

WO 2014/058640 PCT/US2013/062636
54

Accordingly, the multi-device client may submit a request to the file sharing service using the
URL corresponding to the location of the shared file at the file sharing service. The multi-
device client may download the file from the file sharing service and launch the appropriate

application at the destination device to open the file (block 1028).

[0205] In some example implementations, the multi-device client may be configured to
automatically respond to a file share. Accordingly, if the destination device is a personal
device of the user that shared the file (block 1018:Y), then the multi-device client may
automatically retrieve the shared file from the file sharing service (block 1030) upon
notification of the shared file. When the multi-device client receives the shared file from the
file sharing service, the multi-device client may also automatically launch the appropriate

application at the destination device to open the shared file.

[0206] It will be appreciated that the example approach described above provides a quick
and efficient way to share, e.g., email attachments. Instead of forwarding or creating new
emails to share email attachments, users may share email attachments using the cloud service
which streamlines the sharing process. The example approach described above also provides
a quick and efficient way to share online presentations or meetings with other devices or
individuals. Instead of having users launch and log on to join an existing meeting, a user may
share the meeting information and details with another individual using the cloud service, and
that meeting may automatically launch at a device utilized by the individual. Similarly, the
cloud service allows an attendee to transfer an ongoing meeting presented at one device to
another device associated with the attendee. As an example, an individual may attended an
online meeting using a desktop computing device. If the individual needs to leave the desktop
device for any reason, the individual may use the cloud service to transfer the meeting to a
mobile device such as a tablet computing device or mobile phone device. In this way, users
are not tied to any particular device when attending an online meeting and may

advantageously jump between devices while attending the meeting.

[0207] FIG. 11 is a flowchart 1100 of example method steps for cross-device URL sharing.
Similar to selecting a file to share, a user may select a URL to share (block 1102), e.g., by
highlighting the URL. The user may then initiate a cross-device request as described above
(block 1104) and launch the multi-device client (block 1106). The user may select a
destination from a list of destinations (block 1108), e.g., another device or an individual.

With the destination selected, the multi-device client may upload the URL to the cloud

WO 2014/058640 PCT/US2013/062636
55

service (block 1110). The cloud service may similarly notify the destination device of the

shared URL (block 1112). The notification may include the shared URL.

[0208] As with sharing files, the multi-device client at the destination device may respond
differently depending on whether the destination device is associated with the user that
shared the URL or another individual. As noted above, if the destination device is not a
personal device of the user that shared the URL (block 1114:N), then the multi-device client
may display a notification indicating the shared URL (block 1116) so as to avoid any
interruptions of other computing activities occurring at the destination device. If the
individual does not accept the shared URL (block 1118:N), then the multi-device client may
wait (block 1120) until input is received indicating acceptance of the shared URL. When the
recipient accepts the shared URL (block 1118:Y), the multi-device client may initiate
launching of a web browser at the destination device as well as a request for the shared URL
(block 1122). If the user shares the URL another personal device (block 1114:Y), then the
multi-device client at the destination device may automatically initiate launching of a web

browser and request the shared URL (block 1124).

[0209] The cloud service may be configured to share URLSs in a context-sensitive manner.
In particular, the cloud service may recognize URLs for different types of online resources,
¢.g., a text-based webpage and a video sharing webpage. Accordingly, the cloud service may
automatically select a destination device based on the URL type. As an example, the cloud
service may recognize that the URL addresses a video sharing website and, in response,
select a large display device to share the URL with. In this way, the cloud service may
advantageously share the URL with the device suitable for presenting the content addressed
by the URL. As another example, the cloud service may recognize that the URL addresses a
text-based website and, in response, select a tablet device or desktop device to share the URL
with. The cloud service may also employ rule sets to determine which device to share the
URL with. For example, a URL sharing rule set may list various websites and the devices or
types of devices the cloud service should select when sharing URLs associated with those
websites. Users may configure the rule sets according to their preferences in order to
customize the behavior of the cloud sharing service when sharing URLSs. The rule sets may be
associated with individual users for use when those users share the URL, and additionally or

alternatively, the cloud service may maintain a global rule set applicable to all users.

[0210] FIG. 12 is a flowchart 1200 of example method steps for cross-device copy-and-

paste functionality. Stated generally, a user may select content at one device and copy the

WO 2014/058640 PCT/US2013/062636
56

content to a clipboard at the cloud service from which other users may paste the content at
their own devices. A user may first select the content to share (block 1202), e.g., by
highlighting text or otherwise selecting the content. The user may then initiate a cross-device
request as described above (block 1204), and the multi-device client may launch or otherwise
activate (block 1206). The multi-device client may then upload the content to a global
clipboard of the cloud service (block 1208). The global clipboard corresponds to a storage
location at the cloud service accessible to at least some of the devices connected to the cloud

service.

[0211] When a user copies content to the global clipboard, the cloud service notifies one or
more of the devices connected to the cloud service that new clipboard content is available
(block 1210). Users may utilize the multi-device client to paste the global clipboard content
at their respective devices. The multi-device client may transmit a request to the cloud service
for the global clipboard content. When the cloud service receives the request (block 1212),
the cloud service may download the global clipboard content to the device (block 1214).
Having received the global clipboard content from the cloud service, the user may paste the

content into an application at the device (block 1216).

[0212] As set forth above, a device may not have the capability to open a file shared with
that device. For example, the application used to open the shared file may not be installed at
the destination device. Nevertheless, the cloud service and multi-device client may be
configured handle situations where a destination device does not have the capability to open a
shared file. As described in more detail below, the cloud service may automatically launch a
virtual environment that has the capability to open the shared file, and the multi-device client
may launch a virtualization client to connect to the virtual environment when a destination

device is not capable of opening a shared file.

[0213] FIG. 13 is a flowchart 1300 of example method steps for launching a shared file at a
destination device. The cloud service may receive notification of a shared file (block 1302) as
discussed above. The cloud service may then determine whether the destination device is
capable of opening the shared file (block 1304). As noted above, the cloud service may store
device capability information and may thus be aware of the capabilities of the devices
connected to the cloud service. Devices may provide the cloud service with their respective
capability information during the negotiation process when connecting to the cloud service. If
the destination device is capable of opening the shared file (block 1306:Y), the device then

downloads the file from the cloud storage service, and then the device may launch the

WO 2014/058640 PCT/US2013/062636
57

appropriate application to open the shared file, e.g., automatically or in response to receipt of

input accepting the shared file as discussed above.

[0214] If the destination device is not capable of opening the shared file (block 1306:N),
then the cloud service may initiate creation of a virtual environment (block 1310). The cloud
service itself may create and maintain the virtual environment locally or, additionally or
alternatively, a virtualization server that is located remotely relative to the cloud service may
create and maintain the virtual environment. The virtual environment may be configured with
the capability to open the shared file (block 1312). As an example, the virtual environment
may be configured to include the application used to open the shared file. The virtual
environment may also be provided with the shared file (block 1314). As an example, the
cloud service may provide the virtual environment with the location of the shared file at the
file sharing service, and a multi-device client at the virtual environment may retrieve the file
from the file sharing service. In this regard, the virtual environment may also be considered

as a destination for the shared file.

[0215] Once the virtual environment retrieves the shared file from the file sharing service,
the virtual environment may launch a virtualized application to open the shared file (block
1316). The multi-device client at the destination device may launch a virtualization client
(block 1318), and the virtualization client may connect to the virtual environment (block
1320). In this way, users may advantageously share files across devices that may not be
equipped to open those files. A more particular example may include a 3D formatted
computer file that can only be opened using 3D modeling software. A mobile phone may not
be equipped with the necessary software to open the 3D file. Using the cloud service and the
virtualization approach described above, a virtual environment may launch a virtualized
instance of the 3D modeling software, and the virtualization client at the mobile phone may
connect to the virtual environment to access 3D files shared with the mobile phone device.

Other practical uses will be appreciated with the benefit of this disclosure.
[0216] Applications and Devices Having Multiple Operation Modes

[0217] An improved technique for managing enterprise applications on mobile devices
allows users to access enterprise applications from their own mobile devices, where the
enterprise applications securely coexist with the users” own personal applications and data.
Enterprise mobile applications are specially created or adapted in such a way that they are

forced to interact with other applications and services on a mobile device through respective

WO 2014/058640 PCT/US2013/062636
58

application management policies. Each enterprise mobile application running on the mobile
device has an associated management policy through which it interacts with its environment.
The management policy selectively blocks or allows activities involving the enterprise
application in accordance with rules established by the enterprise. Together, the enterprise
applications running on the mobile device form a set of managed applications. The
management policy associated with each of the managed applications includes a record of
cach of the other managed applications. Typically, policy settings for interacting with
managed applications are different from policy settings for interacting with other
applications, i.e., applications which are not part of the managed set, such as a user’s personal
mobile applications. Managed applications are typically allowed to exchange data with other
managed applications, but are blocked from exchanging data with other applications, such as
the user’s own personal applications. In some examples, application management policies of
managed applications are configured to allow links and/or icons presented in one managed
application to be followed or opened in another application only if the other application is

also a managed application.

[0218] For example, a managed email application can be configured, through its
management policy, to allow an attachment to be opened in a managed PDF annotator. But
the same managed email application can be configured to prevent the same attachment from

being opened in a PDF annotator that is not part of the managed set.

[0219] By constraining managed applications to interact on a mobile device through
enterprise-administered management policies, the managed set of applications can thus be
made to operate with other applications in the managed set of applications, but can be
prevented from operating with applications that are not part of the managed set. Leakage of
enterprise information out of the managed set of applications can thus be prevented, as can be
receipt of personal information into the managed set of applications. Certain embodiments
are directed to a method of managing applications of an enterprise on a mobile device. The
method includes installing a set of managed applications of the enterprise on the mobile
device, wherein other applications are installed on the mobile device that are not part of the
set of managed applications. The method further includes receiving a set of application
management policies, wherein each of the set of managed applications is associated with a
respective management policy of the set of application management policies. The method
still further includes selectively allowing a first application of the set of managed applications

to provide data to a second application installed on the mobile device, responsive to accessing

WO 2014/058640 PCT/US2013/062636
59

a management policy of the first application and reading an indication from the management
policy of the first application that the second application is a member of the set of managed
applications, and selectively blocking the first application from providing data to a third
application installed on the mobile device, responsive to accessing the management policy of
the first application and failing to read an indication from the management policy of the first

application that the third application is a member of the set of managed applications.

[0220] An improved technique for managing enterprise applications on mobile devices
allows users to access enterprise applications from their own mobile devices, where the

enterprise applications securely coexist with the users’ own personal applications and data.

[0221] Secure data sharing is accomplished by creating a managed set of applications that
can share files and/or data with one another, but are selectively prohibited from sharing files
and/or data with applications that are not part of the managed set. Thus, two objectives are
achieved: (1) data are prevented from leaking out of the managed set and (2) data are allowed
to be shared among the applications within the managed set. FIG. 14 shows an example
environment in which embodiments hercof can be practiced. Here, a mobile device 1410,
such as a smartphone, tablet, PDA, and the like, has installed upon it various mobile
applications. The mobile applications include a set 1420 of managed applications 1422, 1424,
and 1426, and a personal application 1430. In some examples, an enterprise mobility
management (EMM) client 1440 is also installed on the mobile device 1410. The EMM client
1440 is configured to connect, e.g., via a network such as the Internet, with an EMM server
1450, which typically includes an authentication server 1452 and an application store 1454.
An example of the EMM client 1440 is a client agent available from Citrix. An example of
the EMM server 1450 is a gateway server that provides access to enterprise resources and/or
cloud resources. Each application in the set 1420 of managed applications is associated with a
respective management policy. For example, application 1422 is associated with a
management policy 1422a, application 1424 is associated with a management policy 1424a,
and application 1426 is associated with a management policy 1426a. In some examples, the
management policies 1422a, 1424a, and 1426a are provided in the form of files, such as
XML or JSON files, in which the respective management policy is expressed as a set of
key/value pairs. In an example, each management policy 1422a, 1424a, and 1426a includes a
record of all applications within the set 1420 of managed applications. Each of the set 1420
of managed applications is specially designed or adapted for use with the enterprise. Some of

the set 1420 of managed applications may be designed specifically for the enterprise. Others

WO 2014/058640 PCT/US2013/062636
60

of the set 1420 of managed applications are more widely used applications (e.g., available to
the public) that have been specifically adapted for use with the enterprise. Each of the set
1420 of applications includes injected code that enables the application to conform to a
framework of the enterprise. The injected code can be compiled into the application using an
SDK. Alternatively, the injected code can be applied as a wrapper around a general-use
application, to adapt it for use with the enterprise. In general, the injected code serves to
divert API calls from the application to its associated management policy, such that the

management policy can selectively allow or block activities specified by the API calls.

[0222] In typical operation, a user of the mobile device 1410 starts the EMM client 1440,
logs on to the EMM server 1450 via the authentication server 1452, and accesses the
application store 1454. The user can then peruse enterprise applications available from the
application store 1454, select desired applications, and download them to the mobile device
1410, where the downloaded applications are included in the set 1420 of managed
applications. For each application downloaded, a corresponding management policy is also
downloaded to the mobile device, and the management policies of all applications in the set
1420 are updated to reflect all members of the set 1420. In an example, management policies
(c.g., 1422a, 1424a, and 1426a) are refreshed periodically and/or in response to particular
events, such as each time the respective application is started and/or each time the user logs
onto the EMM server 1450. Management policies can thus be adapted over time and

dynamically transferred to the mobile device 1410 from the EMM server 1450.

[0223] Depending on settings of the management policies 1422, 1424, and 1426,
applications within the set 1420 of managed applications can be constrained to exchange files
and/or data only with other applications within the set 1420. For example, API calls from the
application 1422 are intercepted by the injected code of the application 1422. The
management policy 1422a is read, and the operation specified by the API call is either
blocked or allowed depending on the settings in the management policy 1422a. Because the
management policy 1422a has a record of all applications in the set 1420 of managed
applications, the application 1422, by reading the management policy 1422a, can test whether
the requested operation of the API call involves an application inside or outside the set 1420,
and allow or block activity accordingly. Thus, based on management policy settings,
movement of data can be restricted such that data within the set 1420 of managed

applications is not comingled with data outside the managed set (e.g., with application 1430).

WO 2014/058640 PCT/US2013/062636
61

[0224] In some examples, applications in the set 1420 of managed applications on the
mobile device 1410 can be assigned to different groups. In such cases, management policies
(e.g., 1422a, 1424a, and 1426a) are updated to include records of groups and group members.
The flow of files and/or data between applications can thus be further restricted to members
of particular groups. Providing different groups of mobile applications within the managed
set 1420 can help to segregate applications handling highly sensitive data from those that

handle less sensitive data.

[0225] It is understood that the above-described process of intercepting an API call,
consulting an application’s management policy, and allowing or blocking the operation
specified by the API call based on the management policy can be carried out in a number of
contexts. In one example, the above process can be applied for selecting a set of applications
on the mobile device 1410 that can be used to open a file or data element identified by a link
or icon (e.g., using Open In). In another example, the above process can be applied for
copying data or data objects from one application and pasting the data or data objects in
another application (e.g., via a hidden, encrypted paste buffer). In yet another example, the
above process can be applied for moving files into and/or out of a protected file vault.
Essentially, any operation used to move data into and/or out of an application can make use

of the above technique.

[0226] It is further understood that this techniques can apply not only to movement of data
to other applications, but also to recording, pictures, printing, playback of audio, and other

functions.

[0227] Operating system extensions may be obtained for the mobile device 1410. One such
operating system extension responds to a user pointing to a link or icon representing a data
object, such as a file, by displaying a list of applications on the mobile device 1410 that are
capable of opening that data object. An example of such an operating system extension is
“Open In,” which is available on iOS devices. Similar extensions are available for Android

and Windows 8 devices.

[0228] In an example, applications within the set 1420 of managed applications support the
use of Open In, but the list of applications displayed for opening a selected data object is
limited based on the management policies of the respective applications. For example, the list
of applications displayed when Open In is invoked from the application 1422 can be limited,

in accordance with the management policy 1422a, only to other applications in the managed

WO 2014/058640 PCT/US2013/062636
62

set 1420. Thus, in this example, Open In lists only applications that are both (1) within the
managed set 1420 and (2) compatible with the data object. On mobile operating systems,
such as 10S, Android, and Windows 8, each application runs in its own sandbox. These apps
use a very high level content sharing mechanism like Open In in 10S, Intents/activities in
Android and Charms in Windows8. On a BYOD (bring your own device) mobile device, it
will have a mix of managed and un-managed/personal applications running on the device.

Here, we focus on how to enable data sharing among the managed set of applications.

[0229] On modern mobile operating systems like 108, the file system is not really exposed
to the end user by design to hide complexity. The focus is rather on the applications and the

data they handle.

[0230] There are many ways data can move in and out of the device. Primary examples
include email, cloud storage resources (e.g., ShareFile®, DropBox, GoogleDocs, Box),
browsers, etc. Then the data needs to be moved among the managed applications to get actual

work done.

[0231] A method and system for operating an application with multiple modes are
described. A plurality of applications may be presented to a user on a mobile device and one
of the displayed applications may be selected. The selected application may have one or more
contexts that are determined. For example, a context for the selected application may be that
the application is configured to access an enterprise account. Based on the context, the
selected application may be run on the mobile device in one of a plurality of operations
modes. The operation modes may comprise managed, unmanaged, and partially managed

modes.

[0232] In an embodiment, the context for the selected application may comprise an account
to be accessed by the selected application, a location for the mobile device that will be
running the selected application, a determination as to whether a predetermined application is
running on the mobile device, one or more network connections for the mobile device, and
one or more settings for the mobile device. One or more of these contexts may be compared

to management policies to determine an operation mode for the selected application.

[0233] In another embodiment, an operation mode may be switched for a selected
application. One or more contexts may be monitored for the selected application while
running and a change in operation mode may be detected based on the monitoring. For

example, one or more contexts may change for the selected application and a management

WO 2014/058640 PCT/US2013/062636
63

policy may define that an operation mode for the selected application is to be changed.

Accordingly, the operation mode may be switched to the updated operation mode.

[0234] FIG. 15 illustrates a sample interface of a mobile device, and FIGS. 16-22 illustrate
sample embodiments of methods for determining an operation mode for an application. The
methods depicted in FIGS. 16-22 may be combined in any suitable manner in various
embodiments. The sample interface depictured in FIG. 15 may be displayed on a mobile
device, such as device 107, 109, 240, 502, and/or 602, and the methods depicted in FIGS. 16-

22 may be implemented by such a mobile device.

[0235] In FIG. 16, a flowchart of example method steps for determining an application
mode for an application is shown. The method of FIG. 16 may begin at step 1602, where a
plurality of applications are presented. For example, a plurality of applications may be
presented to a user on a mobile device. FIG. 14 illustrates an embodiment where user
interface 700 displayed on a mobile device (e.g., tablet, smart phone, or the like) presents
Applications A 700, B 701, C 702, and E 703 to a user. This is merely an example, and the
plurality of applications may be presented in any suitable manner. In an embodiment, the
plurality of applications may comprise email applications, web browsing applications,

software-as-a-service (SaaS) access applications, and the like.

[0236] The method of FIG. 16 may proceed from step 1602 to step 1604, where a selection
for one of the plurality of applications is received. With reference to an embodiment depicted
in FIG. 14, a user of a mobile device may select one of the presented applications by, for
example, pressing a display of the mobile device to select the application. This is merely an

example, and the application may be selected in any suitable manner.

[0237] The method of FIG. 16 may proceed from step 1604 to step 1606, where a context
for the selected applications is determined based on one or more operational parameters of
the device executing the selected application. For example, a context may be based on an
account to be accessed by the application, a location of the mobile device or a network
connectivity status of the mobile device executing the application, or based on any other
operational parameter. The methods of FIGS. 17-21, further described below, illustrate

various embodiments where example contexts are described.

[0238] The method of FIG. 16 may proceed from step 1604 to step 1606, where an
operation mode for the selected application is determined based on the context. In an

embodiment, the operations modes may comprise unmanaged, managed, and partially

WO 2014/058640 PCT/US2013/062636
64

managed modes. The operation mode may be determined based on one or more determined

contexts.

[0239] In an embodiment, the determined context may be compared to a stored
management policy in order to determine an operation mode. A mobile device, such as
mobile device 502, may store one or more management policies used to determine an
operation mode for an application. In an embodiment, the management policies may be
stored remotely, such as at policy manager 570, described above with reference to FIG. 5. In
an example, a context may comprise a selected application configured to access a secure
account, such as an email application configured to access a secure email account. This
context may be compared to a stored management policy. For instance, the stored
management policy may define that an email application that is configured to access a secure
email account is to be run as a managed application. Additional contexts and management

policies will be described with respect to FIGS. 17-21.

[0240] The method of FIG. 16 may proceed from step 1606 to step 1608, where the
selected application is run in the determined operation mode. For example, the operation
mode may be determined as managed, unmanaged, or partially managed, and the selected

application may be run in the determined mode.

[0241] In an embodiment, an application that is capable of running in managed mode or
unmanaged mode may be controlled by partition, by policy, by one or more sandboxes, or
any other suitable configuration. For example, a managed operation mode may include
running the application as a part of the managed partition 510 of mobile device 502, as
described above with reference to FIG. 5. As such, the managed application may be run as
secure native applications 514, secure remote applications 522 executed by a secure
application launcher 518, virtualization applications 526 executed by a secure application
launcher 518, and the like. The applications running on the managed partition may be
stabilized applications such that device manager 524 monitors the stabilized applications to
detect and remedy problems that might result in a destabilized application, such as pushing

updates to the stabilized applications.

[0242] In an embodiment, an application running in managed mode may access data stored
in a secure data container 528 in the managed partition 510 of the mobile device. The data
stored in the secure data container 528 may include data restricted to a specific secure

application 530, shared among other secure applications, and the like. Data restricted to a

WO 2014/058640 PCT/US2013/062636
65

secure application may include secure general data 534 and highly secure data 538. Secure
general data may use a strong form of encryption such as AES 128-bit encryption or the like,
while highly secure data 538 may use a very strong form of encryption such as AES 254-bit
encryption. In an embodiment, an application running in managed mode may save, modify,
or delete data in secure data container 528. The data saved or modified may be encrypted
similar to other data stored in secure data container 528. The data saved or modified may be
encrypted similar to other data stored in secure data container 528. In this example, an
unmanaged operation mode may include running the application as part of unmanaged

partition 512, as described above.

[0243] In an embodiment, an application running in managed mode or unmanaged mode
may be controlled by policies. As such, one or more policies may define that the application
running in managed mode may access secured data (e.g., data in secure data container 528,
encrypted data, such as data encrypted with a particular key, or any other suitable secured
data), may communicate with a secure server (e.g., gateway server 560), may be managed by
a device manager (e.g., device manager 524), or any other suitable policy. One or more
policies may also define that the application running in unmanaged mode may not access
secure data (e.g., data in secure data container 528, encrypted data, such as data encrypted
with a particular key, or any other suitable secured data), may not communicate with a secure
server (e.g., gateway server 560), may access unsecured data (e.g., unsecured data container
542, unencrypted data, or any other unsecured data), or any other suitable policy. In this
example, an application running in managed mode and an application running in unmanaged
mode may either include partitions (e.g., managed partition 510 and unmanaged partition

512) or may not include partitions.

[0244] In an embodiment, an application running in managed mode or unmanaged mode
may be controlled by one or more sandboxes. A sandbox may comprise a physical or
virtualized portion of a device where applications running in the sandbox may include access
policies that are different from access policies for applications that are not running in the
sandbox. For example, an application running in managed mode may run in a sandbox that
includes policies for the managed mode, such as the policies described herein. In another
example, an application running in unmanaged mode may run in a sandbox that includes
policies for the unmanaged mode, such as the policies described herein. In this example, an

application running in managed mode and an application running in unmanaged mode may

WO 2014/058640 PCT/US2013/062636
66

either include partitions (e.g., managed partition 510 and unmanaged partition 512) or may

not include partitions.

[0245] In an embodiment, an application running in managed mode may connect to
enterprise resources 504 and enterprise services 508 through virtual private network
connections, as described about with reference to FIG. 5. The virtual private network
connections may be specific to particular application, such as the selected application,
particular devices, particular secured areas on the mobile device, and the like. For example,
wrapped applications in a secured area of the phone may access enterprise resources through
an application specific VPN such that access to the VPN would be granted based on attributes
associated with the application, possibly in conjunction with user or device attribute

information.

[0246] In an embodiment, an application running in managed mode may encrypt data
transmitted from the application. For example, an application running in managed mode may
be communicating with a computing device over a network, and the data transmitted from the
application to the device may be encrypted. In addition, the data communicated from the
computing device to the application may also be encrypted, and the application running in

managed mode may be configured to decrypt the received data.

[0247] In an embodiment, an application running in managed mode my access a secure
portal. For example, an application may connect to a computing device over a network, for
example, a microVPN, and may access a secure portal that might not be access by unsecured

applications, such as applications running in unmanaged mode.

[0248] In an embodiment, an unmanaged operation mode may include running the
application as a part of the unmanaged partition 512 of mobile device 502, as described above
with reference to FIG. 5. In an unmanaged mode, the application may access data stored in an
unsecured data container 542 on the unmanaged partition 512 of the mobile device 502. The

data stored in an unsecured data container may be personal data 544.

[0249] In an embodiment, an application running in partially managed mode may be run
similar to an application running in managed mode, but might not include all aspects of the
latter. For example, an application running in partially managed mode may have the
information transmitted from the application over a network encrypted, but the application
might not have access to secure data container 528, as described with reference to Fig. 5. In

another example, an application running in partially managed mode may have access to

WO 2014/058640 PCT/US2013/062636
67

secure data container 528, but might not be able to connect to enterprise resources 504 and
enterprise services 508 through virtual private network connections. Accordingly, depending
on the determined context, an application running in partially managed mode may include
aspects of an application running in managed mode and aspects of an application running in

unmanaged mode.

[0250] In FIGS. 17-21, flowcharts of example method steps for determining a context and
operation mode for an application are shown. In an embodiment, steps 1606 and 1608 of FIG.
16 may comprise the method steps of any one or more of FIGS. 17-21. The method of FIG.
17 may begin at step 1702, where an account to be accessed by a selected application is
detected. For example, a selected application may comprise an email application and an email
account that the email application is configured to access may be detected. In this example,
the email application may be able to access multiple email accounts, such as an enterprise
email account and a personal email account, and the account that the email application is
configured to access at the time of running may be determined as the context account to be

accessed.

[0251] The method of FIG. 17 may proceed from step 1702 to step 1704, where an account
type of the account to be accessed may be determined. The account type may comprise a
context for the selected application. For example, a selected application may comprise an
email application and the email application may be configured to access an enterprise
account. In another example, the email application may be configured to access a personal

account.

[0252] The method of FIG. 17 may proceed from step 1704 to step 1706, where an account
type may be compared with an account type management policy. For example, a management
policy may define that an email application that is to access an enterprise account should run
in managed mode and an email application that is to access a personal account should run in
unmanaged mode. The method of FIG. 17 may proceed from step 1706 to step 1708, where

an operation mode is determined based on the comparison.

[0253] The method of FIG. 18 may begin at step 1802, where a location for a mobile
device is determined. For example, a mobile device, such as mobile device 502, may
implement the method of FIG. 18, and a location for the mobile device may be determined.
The location may be determined by GPS, signal triangulation, or any other suitable or

otherwise known manner. The location may comprise a context for the selected application.

WO 2014/058640 PCT/US2013/062636
68

[0254] The method of FIG. 18 may proceed from step 1802 to step 1804, where a
determined location may be compared with a location management policy. For example, a
management policy may define that a selected application run in managed mode when in a
certain location, for example, on company premises. In an embodiment, a management policy
may define that a selected application run in partially managed mode when in a certain
location, for example, when the determined location is inside the United States but off
company premises. For example, the partially managed mode may encrypt communication to
and from the selected application, but might not allow access to enterprise resources, such as
resources 504. In another embodiment, a management policy may define that a selected
application run in unmanaged mode when in a certain location, for example, when the
determined location is outside the United States. The method of FIG. 18 may proceed from

step 1804 to step 1806, where an operation mode is determined based on the comparison.

[0255] The method of FIG. 19 may begin at step 1902, where it is monitored whether a
predetermined application is running on a device. For example, a mobile device, such as
mobile device 502, may implement the method of FIG. 19, and the mobile device may be
monitored to determine whether a predetermined application is running. The predetermined
application may comprise any application capable of running on the mobile device, such a
client agent 604 as described with reference to FIG. 6. The monitored predetermined

application may comprise a context for the selected application.

[0256] The method of FIG. 19 may proceed from step 1902 to step 1904, where a
monitored application is compared against a management policy. For example, a
management policy may define that a selected application run in managed mode when a
predetermined application, such as client agent 604, is running and that the selected
application run in unmanaged mode when the predetermined application is not running. The
method of FIG. 19 may proceed from step 1904 to step 1906, where an operation mode is

determined based on the comparison.

[0257] The method of FIG. 20 may begin at step 2002, one or more network connections
are detected. For example, a mobile device, such as mobile device 502, may implement the
method of FIG. 20, and the network connections that the mobile device makes may be
detected. In an example, network connections may comprise a connection to a cellular
network, a connection to a WIFI network, or a connection to a Wireless Local Area Network
(WLAN), or the like. The one or more network connections may comprise a context for the

selected application.

WO 2014/058640 PCT/US2013/062636
69

[0258] The method of FIG. 20 may proceed from step 2002 to step 2004, where detected
network connections are compared against a network connection management policy. For
example, a management policy may define that a selected application run in managed mode
when a mobile device is connected to an internal network, such as a WLAN internal to a
company, and that the selected application run in unmanaged mode when the mobile device
is only connected to a wireless network, such as cellular network or WIFI network. The
method of FIG. 20 may proceed from step 2004 to step 2006, where an operation mode is

determined based on the comparison.

[0259] The method of FIG. 21 may begin at step 2102, where one or more settings for a
mobile device are detected. For example, a mobile device, such as mobile device 502, may
implement the method of FIG. 21, and one or more settings for the mobile device may be
detected. In an example, it may be detected whether the mobile device has a lock screen, such
as a PIN required for using the mobile device, or it may be detected whether the mobile
device is jailbroken, e.g., has received after-market modifications. The one or more settings

may comprise a context for the selected application.

[0260] The method of FIG. 21 may proceed from step 2102 to step 2104, where detected
settings are compared against a settings management policy. For example, a management
policy may define that a selected application might not run in managed mode if the mobile
device does not have a lock screen or if the mobile device is jailbroken. The method of FIG.
21 may proceed from step 2104 to step 2106, where an operation mode is determined based
on the comparison. In an embodiment, when running the selected application in the
determined mode, an indicator may be displayed on the mobile device that informs a user of
certain management policies, such as a requirement for a mobile device to have a lock screen
before the mobile device is allowed to run the selected application in managed mode. FIGS.
17-21 describe a plurality of contexts, and any other suitable context and corresponding

management policy may be implemented.

[0261] In an embodiment, one or more of the contexts described in FIGS. 17-21 may be
combined and these contexts may be compared against a management policy for the selected
application. For example, contexts for a selected application may comprise an account type to
be accessed as an enterprise email account and a detected network connection as a cellular
network. In this example, the management policy may define that when an enterprise account
is attempted to be accessed over a cellular network, the selected application should be run in

managed mode. The management policy may be defined in this way because the selected

WO 2014/058640 PCT/US2013/062636
70

application may encrypt the communication with the enterprise email account, and therefore

the risk of sending secure traffic over a cellular network may be mitigated.

[0262] In another example, contexts for a selected application may comprise a determined
location outside of the United States and a network connection with a WLAN internal to a
company. A management policy may define that a selected application is to run in managed
mode when a determined location is outside the United States and a network connection is
with a WLAN internal to a company. The management policy may be defined in this way
because a network connection with a WLAN internal to a company mitigates the risk

associated with secure communications outside of the United States.

[0263] In an embodiment, the one or more contexts as described in FIGS. 17-21 may
include a priority. For example, a context for a selected application may comprise a mobile
device setting as jailbroken and a management policy may define that a selected application
is to run in unmanaged mode when a context indicates a jailbroken mobile device, regardless
of what other contexts indicate. Accordingly, a jailbroken mobile device will have a selected
application run in unmanaged mode even when the mobile device is connected to a WLAN
internal to a company or if the selected application is attempting to access an enterprise

account.

[0264] In an embodiment, a management policy may indicate that a selected application is
to be run in partially managed mode based on a plurality of contexts as described in FIGS.
17-21. For example, contexts for a selected application may comprise an account type to be
accessed as an enterprise email account and a detected network connection as a cellular
network. In this example, the management policy may define that when an enterprise account
is attempted to be accessed over a cellular network, the selected application should be run in
partially managed mode. The partially managed mode may encrypt communication to and
from the selected application, but might not allow access to enterprise resources, such as
resources 504. The management policy may be defined in this way because the encrypted
communication with the enterprise email account may be a low risk communication, and

allowing access to enterprise resources may be a high risk communication.

[0265] In FIG. 22, a flowchart of example method steps for switching an operation mode
for an application is shown. For example, the method steps of FIG. 22 may follow the method
steps of FIG. 16. The method of FIG. 22 may begin at step 2202, where one or more contexts

may be monitored while a selected application is running. In an embodiment, one or more of

WO 2014/058640 PCT/US2013/062636
71

the contexts described with reference to FIGS. 17-21 may be monitored. For example, a
mobile device running a selected application may be connected to a cellular network and
while the selected application is running, the mobile device may make a new network

connection with a WLAN internal to a company.

[0266] The method of FIG. 22 may proceed from step 2202 to step 2204, where a change in
an operation mode for a selected application is detected based on the monitoring. Stated
differently, the mobile device may detect a change in information that formed the basis for
selecting a particular operational mode. For example, a selected application may be running
in unmanaged mode, and once a mobile application running the selected application connects
to a WLAN internal to a company, a management policy may define that the operation mode
for the selected application should switch to managed mode. The method of FIG. 22 may
proceed from step 2204 to step 2206, where the operation mode for the selected application is

switched.
[0267] Managing Dynamic Management Policies and Settings for Mobile Applications

[0268] An improved technique ensures that a wide range of management policies,
including application-specific management policies and settings, can be composed,
configured through an administrative interface, and delivered to the deployed applications,

without requiring changes to control point software.

[0269] Some embodiments are directed to a method for specially prepared enterprise
applications delivered and managed through an enterprise mobile application management
system to (a) define the available set of application management policies in an open-ended
manner such that new management policies can be contrived easily, (b) describe the required
user interface elements and range of possible management policy settings values sufficient
for the control point software to dynamically compose an administrative user interface for the
setting in question without explicit knowledge of the particular setting or its meaning, and/or
(c) roll up all applicable management policy settings for a particular managed application
(taking into account user and access scenario) and deliver them to the application at run time
such that these settings can be queried dynamically by the application as needed for proper

enforcement.

[0270] An improved technique ensures that a wide range of management policies,

including application-specific management policies and settings, can be composed,

WO 2014/058640 PCT/US2013/062636
72

configured through an administrative interface, and delivered to the deployed applications,

without requiring changes to control point software.

[0271] Enterprises create (or adapt) their native mobile applications using tools and SDKs
associated with the enterprise mobility management (EMM) solution they have chosen to
deploy. Depending upon the tools or SDK version used to prepare such applications, one can
expect that there will be a default set of management policies that the EMM system software
provides automatically. These default management policies can be further augmented by the
application developer defining their own application specific management policies and

settings.

[0272] All management policies and settings should be defined using a declarative syntax

(metadata) that includes the following elements associated with each setting:

» Setting group or category ID;

» Setting dictionary name;

» Setting type (Boolean, integer, string, multistring, enum, uri, etc);
» Range of possible settings values;

* Default setting value;

« Setting friendly name string (default language plus resource ID for localized

name);

» Setting units and other U/I display strings (default language plus references to

resource ID for localized strings);

» Explanation and extended help text strings (default language plus references to

resource ID for localized strings);

[0273] In an example, the above-described metadata is provided in the form of an XML

document that defines individual elements listed above for each setting.

[0274] The application preparation tools should assemble the management policy metadata
for the default EMM-system-provided management policies as well as any application-

specific management policies provided by the application developer packaging these setting

WO 2014/058640 PCT/US2013/062636
73

descriptions directly into the application bundle that will be uploaded to the management

control point of the EMM server.

[0275] When a managed application is uploaded to the control point for the purpose of
publishing the application for the enterprise users to consume, the control point will read the
management policy metadata of the application and dynamically compose an administrative
user interface for all setting all application management policies and settings. The IT
administrator interacts with the various controls choosing settings that are appropriate for
cach or leaving them to their default value. In an example, the output of this step is a simple
JSON or XML dictionary of key/value pairs representing each defined setting name

(dictionary name) and its assigned value.

[0276] Once uploaded and configured on the control point, these enterprise managed
applications are made available to an organization’s employees to peruse and choose to
install based on their role within the organization. Alternatively, such applications can be
pushed directly to mobile devices for employees who have enrolled their device with a

corporate MDM server.

[0277] When an employee executes a managed application on the mobile device, they are
typically challenged to authenticate their corporate identity along with passwords and other
factors as dictated by corporate management policy. After having authenticated the user and
device, the access manager components of the system verify that the user is entitled to the
application in question and downloads the JSON or XML management policy document
representing the settings that have been established by the enterprise administrator for this

user when using this specific application.

[0278] The configured settings held therein are consulted by the application or embedded
EMM software whenever a management policy decision is needed at run time. The
application management policy document would typically be cached and periodically
refreshed to ensure continued compliance with configured administrative settings should they
change in the future. Indeed, one of the embedded management policy settings should dictate

required update frequency.

[0279] As new versions of the EMM toolkit or SDK become available and as new
applications are developed and adapted to this system, the available set of management policy

settings needed by current application mix can grow dramatically. However, no change in

WO 2014/058640 PCT/US2013/062636
74

control point software is needed to offer administrative control over the new settings surfaced

by these newly deployed applications.

[0280] By relying on a comprehensive metadata description of all management policies and
settings associated with managed enterprise applications embedded within the application
bundle itself, the administrative control point for these management policies can dynamically
compose user interface for these settings, thereby decoupling the back end EMM server

software from the specific knowledge of management policies to be offered.

[0281] Further, this data driven description of management policy settings makes it very
casy to deliver management policy settings dynamically to an application at runtime without

any middleware knowledge of the semantics of these settings.

[0282] FIG. 23 shows an example environment in which embodiments hereof can be
practiced. As shown, a mobile device 2310 communicates, ¢.g., over the Internet or some
other network, with an EMM 2330. The EMM 2330 includes an authentication server 2332,
an application store 2334, and an administrative user interface generator 2336. Other

constructs maybe included, as well, but these are omitted from FIG. 9A for simplicity.

[0283] In operation, an application developer 2340 develops a mobile application 2312.
The application developer also produces management policy metadata 2346. The
management policy metadata 2346 defines a set of management policies for controlling data
flow into and/or out of the mobile application 2312. Typically, the management policy
metadata includes a first set of management policy metadata that is general to the EMM 2330
and a second set of management policy metadata that is specific to the mobile application
2312. It is understood that the application developer 2340 (or multiple developers) may
develop multiple mobile applications, each with metadata general to the EMM 2330 and with

application-specific metadata.

[0284] The mobile application 2312 and management policy metadata 2346 are sent to the
EMM 2330 and received by the administrative UI generator 2336. Upon receiving the mobile
application 2312 and management policy metadata 2346, the administrative Ul generator
2336 dynamically generates an administrative Ul 2350. An administrator then views the
management policy metadata 2346 (e.g., an XML file) via a viewer, and customizes the
management policy settings in the metadata , e.g., based on rules of the EMM 2330 and/or
other considerations. The result of the administrator’s customizations is an application

management policy 2356. In an example, the application management policy 2356 is

WO 2014/058640 PCT/US2013/062636
75

provided in the form of a dictionary of management policy names and values, which may be

rendered as an XML or JSON file, for example.

[0285] With the settings of the application management policy 2356 established, the mobile
application 2312 is made available to users via the application store 2334. Users, such as a
user of the mobile device 2310, can log on to the EMM 2330 by submitting authentication
requests 2314 to the authentication server 2332 and receiving authentication responses 2316.
Authenticated users can view mobile applications in the application store 2334 and download
them to their mobile devices. For example, the user of the mobile device 2310 can download

the mobile application 2312 from the application store 2334.

[0286] When the user downloads the application 2312, the user also receives the
application management policy 2356. The mobile application 2312 is then constrained to
operate on the mobile device 2310 in accordance with the application management policy

2356.

[0287] Generally, the mobile application 2312 is specially designed or adapted for use with
the enterprise, i.e., it is not an application that general users can download for their own
personal activities (e.g., news apps, Facebook app, etc.). In some examples, the mobile
application 2312 is specially designed for the EMM 2330. In other examples, the application
2312 is a widely used application that is adapted specifically for use with the EMM 2330. For
example, the application is provided with additional code that enables the application to
conform with the framework of the EMM 2330. Such code can be compiled into the
application using an SDK. Alternatively, such code may be applied as a wrapper around the
general-use application, to adapt it specifically for use with the EMM 2330. In general, the
additional code serves to divert API calls from the mobile application 2312 through the
application management policy 2356, such that the management policy 2356 can control the

behavior of the mobile application 2312 on the mobile device 2310.

[0288] The application developers 2340 can periodically provide updated versions of the
management policy metadata 2346. These are used to generate (via the administrative Ul
generator 2336) an updated application management policy 2356. In some examples, the
updated application management policy 2356 is pushed to the mobile device 2310 to update

the management policy in use.

WO 2014/058640 PCT/US2013/062636
76

[0289] In some examples, the application management policy 2356 residing on the mobile
device 2310 is refreshed periodically, or in response to certain events, such as starting the

mobile application 2312 on the mobile device 2310.
[0290] Controlling Device Access to Enterprise Resources

[0291] An improved technique for managing encrypted data vaults for storing data on
mobile devices includes directing read and write operations from an application running on a
mobile device to an enterprise-generated management policy, specific to that application,

which designates an encrypted vault for the data specified by the read and write operations.

[0292] FIG. 24 shows an example environment in which embodiments hereof can be
practiced. Here, a mobile device 2410, such as a smartphone, tablet, PDA, and the like, has
installed upon it various mobile applications. The mobile applications include a set 2420 of
managed applications 2422, 2424, and 2426, which are managed by the enterprise, and a
personal application 2430, which is not managed by the enterprise. In some examples, an
enterprise mobility management (EMM) client 2440 is also installed on the mobile device
2410. The EMM client 2440, also referred to herein as a “broker,” is configured to connect,
e.g., via a network such as the Internet, with an EMM server 2450, which typically includes
an authentication server 2452, an application store 2454, and a key server 2456. An example
of the EMM client 2440 is a client agent available for Citrix. An example of the EMM server

2450 is a gateway server that provides access to enterprise resources and/or cloud resources.

[0293] The illustrated mobile device 2410 also includes a shared data vault 2442. The
shared data vault 2442 includes encrypted files and/or data objects accessible to each of the
set 2420 of managed applications.

[0294] Each application in the set 2420 of managed applications is associated with a
respective management policy. For example, application 2422 is associated with a
management policy 2422a, application 2424 is associated with a management policy 2424a,
and application 2426 is associated with a management policy 2426a. In some examples, the
management policies 2422a, 2424a, and 2426a are provided in the form of files, such as
XML or JSON files, in which the respective management policy is expressed as a set of
key/value pairs. In an example, each management policy 2422a, 2424a, and 2426a includes a

record of all applications within the set 2420 of managed applications.

[0295] In some examples, each application in the set 2420 of managed applications is also

associated with a respective private application vault. For example, application 2422 is

WO 2014/058640 PCT/US2013/062636
77

associated with a private application vault 2422b, application 2424 is associated with a
private application vault 2424b, and application 2426 is associated with a private application
vault 2426b. Encryption keys for the private application vaults 2422b, 2424b, and 2426b, as
well as an encryption key for the shared vault 2442 are obtained from the key server 2456 on
the EMM server 2450 and can be held temporarily within the mobile device.

[0296] Each of the set 2420 of managed applications is specially designed or adapted for
use with the enterprise. Some of the set 2420 of managed applications may be designed
specifically for the enterprise. Others of the set 2420 of managed applications are more
widely used applications (e.g., available to the public) that have been specifically adapted for
use with the enterprise. Each of the set 2420 of applications includes injected code that
enables the application to conform to a framework of the enterprise. The injected code can be
compiled into the application using an SDK. Alternatively, the injected code can be applied
as a wrapper around a general-use application, to adapt it for use with the enterprise. In the
context of the improvements disclosed herein, the injected code serves to divert API calls for
reading and writing from the application to its associated management policy, such that the
read or write requests are redirected to a designated secure vault in accordance with the

settings of the management policy.

[0297] In typical operation, a user of the mobile device 2410 starts the EMM client 2440,
logs on to the EMM server 2450 via the authentication server 2452, and accesses the
application store 2454. The user can then peruse enterprise applications available from the
application store 2454, select desired applications, and download them to the mobile device
2410, where the downloaded applications are included in the set 2420 of managed
applications. For each application downloaded, a corresponding management policy is also
downloaded to the mobile device, and the management policies of all applications in the set

2420 are updated to reflect all members of the set 2420.

[0298] In an example, management policies (e.g., 2422a, 2424a, and 2426a) are refreshed
periodically and/or in response to particular events, such as each time the respective
application is started and/or each time the user logs onto the EMM server 2450. Management
policies can thus be adapted over time and dynamically transferred to the mobile device 2410

from the EMM server 2450.

[0299] Depending on settings of the management policies 2422, 2424, and 2426,

applications within the set 2420 of managed applications can be constrained to exchange files

WO 2014/058640 PCT/US2013/062636
78

and/or data only with other applications within the set 2420. For example, API calls from the
application 2422 specifying file reads or writes are intercepted by the injected code of the
application 122. The management policy 2422a is read, and the read or write operation
specified is diverted to an encrypted vault (e.g., the private vault 2422b or the shared vault
2442), depending on the settings in the management policy 2422a.

[0300] In some examples, applications in the set 2420 of managed applications on the
mobile device 2410 can be assigned to different groups. In such cases, management policies
(e.g., 2422a, 124a, and 2426a) are updated to include records of groups and group members.
The flow of files and/or data between applications can thus be further restricted to members
of particular groups. For example, cach group may be provided with its own shared vault 142.
Providing different groups of mobile applications within the managed set 2420 can help to
segregate applications handling highly sensitive data from those that handle less sensitive

data.

[0301] It is understood that the above-described process of intercepting an API call,
consulting an application’s management policy, and allowing, blocking, or redirecting the
operation specified by the API call based on the management policy can be carried out in a
number of contexts. In one example, the above process can be applied for selecting a set of
applications on the mobile device 2410 that can be used to open a file or data element
identified by a link or icon (e.g., using Open In). In another example, the above process can
be applied for copying data or data objects from one application and pasting the data or data
objects in another application (e.g., via a hidden, encrypted paste buffer). In yet another
example, the above process can be applied for moving files into and/or out of a protected file
vault, as described herein. Essentially, any operation used to move data into and/or out of an

application can make use of the above technique.

[0302] FIG. 25 shows various features of the mobile device 2510 in additional detail. Here,
the application 2522 (representative of any of the applications of the managed set 2420)
issues read operations 2510 and write operations 2512 to persistent space on the mobile
device 2510. In non-managed applications, such read and write operations would typically be
directed to the application’s sandbox. Here, however, read and write operations are
intercepted by the management policy-aware interception layer 2520 and directed to an
appropriate encrypted vault. For read operations 2510, the management policy-aware
interception layer 2520 inspects the type of data to be read and consults the management

policy 2522a. If the management policy 2522a specifies that the identified type of data is

WO 2014/058640 PCT/US2013/062636
79

stored in the private application vault 2522b, the management policy-aware interception layer
2520 obtains the data from the private application vault 2522b. However, if the management
policy 2522a specifies that the identified type of data is stored in the shared data vault 2542,
the management policy-aware interception layer 2520 obtains the data from the shared data
vault 2542. The management policy-aware interception layer 2520 then decrypts the data
(using an encryption key from the EMM server 2550), and returns the data to the application
2522.

[0303] In the case of write operations 2512, the management policy-aware interception
layer 2520 inspects the type of data to be written and consults the management policy 2522a.
If the management policy 2522a specifies that the identified type of data is to be stored in the
private application vault 2522b, the management policy-aware interception layer 2520
encrypts the data and stores the data in the private application vault 2522b. However, if the
management policy 2522a specifies that the identified type of data is to be stored in the
shared data vault 2542, the management policy-aware interception layer 2520 encrypts the

data and stores the data in the shared data vault 2542.

[0304] Reference is made again to FIGS. 26-27. In some embodiments, a mobile device
2620 can include a secure document container 2636, which can be referred to as a
"container." As explained herein, the container 2636 can help prevent the spread of enterprise
information to different applications and components of the mobile device 2620, as well as to
other devices. The enterprise system (which can be partially or entirely within the cloud) can
transmit documents to the devices 2620, which can be stored (e.g., by the enterprise agent
2620) within the container 2636. The container 2636 can prevent unauthorized applications
2618 and other components of the device 2620 from accessing information within the
container 2636. For enterprises that allow users to use their own mobile devices 2620 for
accessing, storing, and using enterprise data, providing containers 2636 on the devices 2620
helps to secure the enterprise data. For instance, providing containers 2636 on the devices
2620 can centralize enterprise data in one location on each device 2620, and can facilitate

selective or complete deletion of enterprise data from the device 2620.

[0305] As used in this context, a "document" can comprise any computer-readable file
including text, audio, video, and/or other types of information or media. A document can

comprise any single one or combination of these media types.

WO 2014/058640 PCT/US2013/062636
80

[0306] The secure document container 2636 can compose an application that implements a
file system 2638 that stores documents and/or other types of files. The file system 2638 can
comprise a portion of a computer-readable memory of the mobile device 2620. The file
system 2638 can be logically separated from other portions of the computer-readable memory
of the mobile device 2620. In this way, enterprise data can be stored in secure document
container 2636 and private data can be stored in a separate portion of the computer-readable
memory of the mobile device 2620. The container 2636 can allow the enterprise agent 2620,
mobile device applications 2618 and/or other components of the device 2620 to read from,
write to, and/or delete information from the file system 2638 (if authorized to do so).
Deleting data from the container 2636 can include deleting actual data stored in the container
2636, deleting pointers to data stored in the container 2636, deleting encryption keys used to
decrypt data stored in the container 2636, and the like. The container 2636 can be installed
by, e.g., the agent 2620, IT administrators of the enterprise system, or the device 2620
manufacturer. The container 2636 can enable some or all of the enterprise data stored in the
file system 2638 to be deleted without modifying private data stored on the mobile device
2620 outside of the container 2636. The file system 2638 can facilitate selective or complete
deletion of data from the file system 2638. For example, a component of the enterprise
system can delete data from the file system 2638 based on, e.g., encoded rules. In some
embodiments, the agent 2620 deletes the data from the file system 2638, in response to
receiving a deletion command from the enterprise system. In other embodiments, the data is
deleted without the assistance of the agent 2620, for example if an agent 2620 is not
provided.

[0307] The secure document container 2636 can comprise an access manager 2640 that
governs access to the file system by applications 2618 and other components of the mobile
device 2620. Access to the file system 2638 can be governed based on document access
management policies (e.g., encoded rules) stored in the documents and/or the file system
2638. A document access management policy can limit access to the file system 2638 based
on (1) which application 2618 or other component of the device 2620 is requesting access, (2)
which documents are being requested, (3) time or date, (4) geographical position of the
device 2620, (5) whether the requesting application 2618 or other component provides a
correct certificate or credentials, (6) whether the user of the device 2620 provides correct
credentials, (7) other conditions, or any combination therecof A user's credentials can

comprise, for example, a password, one or more answers to security questions (e.g., What is

WO 2014/058640 PCT/US2013/062636
81

the mascot of your high school?), biometric information (e.g., fingerprint scan, eye-scan,
etc.), and the like. Hence, by using the access manager 2640, the container 2636 can be
configured to be accessed only by applications 2618 that are authorized to access the
container 2636. As one example, the access manager 2640 can enable enterprise applications
installed on the mobile device 2620 to access data stored in the container 2636 and to prevent

non-enterprise applications from accessing the data stored in the container 2636.

[0308] Temporal and geographic restrictions on document access may be useful. For
example, an enterprise administrator may deploy a document access management policy that
restricts the availability of the documents (stored within the container 2636) to a specified
time window and/or a geographic zone (e.g., as determined by a GPS chip 2616) within
which the device 2620 must reside in order to access the documents. Further, the document
access management policy can instruct the container 2636 or agent 2620 to delete the
documents from the container 2636 or otherwise make them unavailable when the specified
time period expires or if the mobile device 2620 is taken outside of the defined geographic

zonce.

[0309] Some documents can have access management policies that forbid the document
from being saved within the secure document container 2636. In such embodiments, the
document can be available for viewing on the mobile device 2620 only when the user is

logged in to the enterprise system.

[0310] The access manager 2640 can also be configured to enforce certain modes of
connectivity between remote devices (e.g., an enterprise resource or other enterprise server)
and the container 2636. For example, the access manager 2640 can require that documents
received by the container 2636 from a remote device and/ or sent from the container 2636 to
the remote device be transmitted through application tunnels, for example, as described
above. Such application tunnels can use the tunneling mediator of the enterprise system. The
access manager 2640 can require that all documents transmitted to and from the container
2636 be encrypted. The enterprise agent 2620 or access manager 2640 can be configured to
encrypt documents sent from the container 2636 and decrypt documents sent to the container

2636. Documents in the container 2636 can also be stored in an encrypted form.

[0311] The secure document container 2636 can be configured to prevent documents or
data included within documents from being used by unauthorized applications or components

of the mobile device 2620 or other devices. For instance, a mobile device application 2618

WO 2014/058640 PCT/US2013/062636
82

having authorization to access documents from the container 2636 can be programmed to
prevent a user from copying a document's data and pasting it into another file or application
interface, or locally saving the document or document data as a new file outside of the
container 2636. Similarly, the container 2636 can include a document viewer and/or editor
that does not permit such copy/paste and local save operations. Moreover, the access manager
2640 can be configured to prevent such copy/past and local save operations. Further, the
container 2636 and applications 2618 programmed and authorized to access documents from
the container 2636 can be configured to prevent users from attaching such documents to

emails or other forms of communication.

[0312] A mobile device application 2618 can be programmed to lookup and find the secure
document container 2636 (or a secure web browser 2632, described below, that includes the
container 2636) as a resource of the mobile device 2620. In certain embodiments, the
application 2618 can run in a secure virtual machine separate from a virtual machine of an
operating system of the mobile device 2620. According to some other embodiments, the
application can run within the secure web browser 2632. An application 2618 can be
programmed to write enterprise-related data only into the container 2636. For instance, the
application's 2618 source code can be provided with the resource name of the container 2636.
Similarly, a remote application (e.g., an enterprise resource 2430) can be configured to send
data or documents only to the containers 2636 of one or more mobile devices 2620 (as
opposed to other components or memory locations of the devices 2620). Storing data to the
container 2636 can occur automatically, for example, under control of the application 2618,
the enterprise agent 2620, or the web browser 2632. An application 2618 can be programmed
to encrypt or decrypt documents stored or to be stored within the container 2636. In certain
embodiments, the container 2636 can only be used by applications (on the device 2620 or
remote) that are programmed to look for and use the container 2636, and which have

authorization to do so.

[0313] The secure document container 2636 can serve as a temporary repository for
documents and other files sent to the mobile device 2620. Remote applications can be
configured to send documents to the container 2636 (e.g., via application tunnels) on a
onetime or periodic basis. For example, a sales-related enterprise resource 130 can be
programmed to send sales-related documents (e.g., most recent price sheets) every morning
to the containers 2636 of a team of users having sales-related roles (e.g., sales persons). The

sales-related documents can have document access management policies such that the

WO 2014/058640 PCT/US2013/062636
83

documents will "self-destruct” (e.g., be automatically deleted from the container 2636 - the
deletion being performed by, e.g., the container 2636 itself or the enterprise agent 2620) at a
certain time or at the expiration of a time period beginning at a defined event (e.g., the user's
opening of a document). Document distribution management policies (e.g., encoded rules)
can be provided (e.g., within the mobile device management system) to control when and
how remote applications (e.g., enterprise resources) send documents to the containers 2636,
to which users the documents are sent, what restrictions (e.g., temporal or geographic
restrictions) are placed on the use and availability of the documents (e.g., in the form of

document access management policies as described above), etc.

[0314] Remote applications that send documents to one or more secure document
containers 2636 of mobile devices 2620 can be configured to integrate with other
repositories, for the purpose of sending documents from such repositories to the containers
2636. Such other repositories can be stored, for example, within the enterprise system (e.g.,
enterprise document repositories such as a Microsoft Sharepoint™ repository) or in a cloud

computing system (e.g., a Box.net™ repository).

[0315] EMM solutions have traditionally taken the approach of managing entire mobile
devices through mobile device management (MDM) servers. Increasingly EMM solutions are
focusing on a mobile application management solution that secks only to manage the
enterprise applications and their associated data which may be installed and running on an
employee’s mobile device. Such systems generally use role-based access to provision
specially prepared enterprise apps that are specifically designed to protect corporate assets.
Such applications often require employees to logon to corporate servers in order to access the
managed applications. Additionally, such applications may be associated with management
policies established by an enterprise administrator to control application access while also

seeking to protect and control information held by the application.

[0316] One of the biggest challenges in managing enterprise applications on an otherwise
unmanaged mobile devices is ensuring that information used by the managed application
cannot escape from the set of trusted enterprise applications that IT administrators make
available to their enterprise users. Information can escape in any number of ways, and a
robust EMM system will provide management policies and enforcement mechanisms to
prevent such information leakage where IT administrators deem it proper and to provide

management policy overrides, where appropriate. However, even with a robust set of

WO 2014/058640 PCT/US2013/062636
84

information containment management policies, there are other threats to the security of the

information managed by applications on mobile devices.

[0317] One such threat is that applications may store some information persistently on the
mobile device by writing files or other data into the flash memory or other persistent storage
on the device. Most mobile platforms will segregate persistent data recorded by applications
into private application sandboxes. However this sandboxing is trivially defeated with
common tools capable of rooting or jail-breaking the device. Rooting and jail-breaking are
techniques that seek to replace parts of the mobile device operating system platform often
with goal of defeating app sandboxing, app integrity checks, and other OS provided security
mechanisms. Rootkits and jail-breaking software for most popular mobile platforms are
readily available on the public Internet and easy to use. Since rooting and jail-breaking are so
casy to accomplish, most enterprises do not wish to rely on mobile device OS enforced

sandbox as the only means of protecting data that an application may need to persist.

[0318] Some mobile device platforms additionally allow information to be encrypted in its
persistent form and some applications do take advantage of these features. Invariably, such
encryption mechanisms rely on the encryption keys being held on the device itself with the
keys themselves protected by a user supplied PIN or passcode. The fact that the keys are held
on the device and protected by weak cryptographic factors means that the data is not
particularly well protected from hacking, particularly if a device is stolen and hacker has
ample time to try to unlock the keys. Also, since the keys are in possession of the device
holder, an enterprise is powerless to remove them or revoke access for a terminated employee

unless they can recover the device.

[0319] Another issue with app sandboxing that occurs on mobile platforms is that it is
problematic to have a single repository of documents that are available to all managed
applications on the mobile device and potentially synced offline to cloud based storage.
Mobile applications work around the sandbox limits in various ways, all of which have
drawbacks. Often, they will exchange files of certain fixed types with other applications that
have registered to accept certain those same types. The drawback here is that one ends up
with multiple copies of a particular file in each app’s sandbox. If one or more apps wish to

edit the file content, keeping track of which app has latest versions is problematic for users.

[0320] One can overcome the issue highlighted above if users are trained to always send

their modified documents back to a common sync agent application which might also be

WO 2014/058640 PCT/US2013/062636
85

charged with syncing documents to/from cloud based storage. The Citrix ShareFile® mobile
application is an example of an application that permits this sort of data exchange with cloud-
based sync. The drawback here is that these extra steps are easy to forget. Also, they are not
required when using equivalent desktop applications that operate on the notion of shared
documents folders for all applications. These two facts can lead to data file consistency issues

and poor user experience if users are not properly trained.

[0321] Another approach to this problem is to save the files that one wishes to share into
shared storage on those mobile platforms that support this concept. This has the downside
that shared storage is world readable and therefore shared with all applications. Once
information is placed into shared storage, containment of the information is lost since any
application on mobile device can read it. Also the data can trivially be accessed by anyone

who gains physical access to the device using standard file viewers and development tools.

[0322] The challenges of information containment and sharing of documents between
trusted applications that are highlighted above are overcome by introducing the concept of an
encrypted file vault. An encrypted file vault is a logical container into which all persistent
data read/written by a mobile application (which would otherwise end up in a writeable file in
the app sandbox) will be redirected. The contents of the vault are themselves written into
file(s) held inside an app sandbox. But the contents of all files and the file metadata itself

(name, size, access times, etc.) are all encrypted.

[0323] Strong encryption algorithms (e.g. FIPS 140-2 certified) are used to protect all
information placed into the vault with keys that are managed by the enterprise rather than the
users themselves. Keys would typically be assigned based on a tuple of user, device, and
application or app group. That implies that distinct key sets are used each unique combination
of user, device, and application/app group. The keys are maintained off device in an
enterprise key management server. The keys may be downloaded temporarily to the mobile
device to enable data access, but only after strongly authenticating the user, device, and

application in question.

[0324] An application can certainly be written in such a way that it is aware of the presence
of file vault services. Applications written with this awareness can utilize any number of file
vaults, which they can identify explicitly with vault name identifiers. However applications
will not always be written with such awareness. Correspondingly, administrator defined

management policies can be used to configure a default file vault for each application. The

WO 2014/058640 PCT/US2013/062636
86

default file vault of an application is used for the transparent redirection of all application file
I/O that would otherwise end up in a writable portion of the application sandbox or shared

storage.

[0325] The typical mechanism for assigning apps to a default file vault dictates that the
administrator place each configured mobile application into a named security group by
management policy. Then all applications that share the same security group inherit the same
default file vault. In this manner, applications not only gain the security of the encrypted
container for their data, but apps configured with the same default file vault will see a single

consistent view of their data shared with other similarly configured file applications.

[0326] It should be noted that not all writable areas in the app sandbox are appropriate for
sharing with other applications, for example the application’s /tmp directory. The implication
here is that there is always an app private file vault that would be used to hold certain files
and directories. If the app is not configured into a shared group, then all files are redirected to
the app private vault. However if an app were configured into shared group, documents and
other such files would be redirected to the common vault but files designated for special

private directories like /tmp would continue to flow to the app’s private vault.

[0327] It should also be noted that the notion of a shared file vault does imply the existence
of a common broker that manages the shared files on behalf of all applications. Without such
a broker, one would not be able to share files transparently. While such a broker could be a
network-attached service that does not exist on the mobile device itself, such a design would
preclude offline access to the encrypted file vault. For this reason, another application
installed on the mobile device will generally serve this role. An EMM client agent like the

Citrix client agent mobile application would be the typical host of this shared vault broker.

[0328] The above-described technique thus offers the unique combination of transparent
file access, strong encryption with keys managed by the enterprise, and dynamic

reconfiguration of the vaults by management policy.

[0329] Enterprises may create (or adapt) their native mobile applications using tools and
SDKs associated with the enterprise mobility management (EMM) solution they have chosen
to deploy. In preparing their app for EMM deployment, they certainly have the freedom to
(re)write specific application logic to utilize encrypted file vault services exposed by the
EMM developer SDK as needed for their application. However, most often, an application

will already be written to use standard file system APIs of the platform for which they were

WO 2014/058640 PCT/US2013/062636
87

developed. As such, it is far more convenient for the application developer if the EMM SDK
and tools can transparently redirect these native file access services to one or more file vaults
dictated by administrative management policy rather than rewriting their application. This
approach also allows an administrator to reconfigure targeted file vaults without directly

modifying and recompiling the application.

[0330] When taking this approach, the application developer need not worry about the
specifics of how to interface with the native file vault services. Instead, by integrating the
header files, libraries, and run-time support of the EMM system framework code with the
application, all file system APIs called by the application will be redirected to a management
policy-aware interception layer. Assuming the encrypted file vault feature is configured, then
based on the management policies in force for the current user, device, and app, a set of
default file vaults will be selected and the file system API interception layer will be

configured to target them.

[0331] After preparing the application for the specific EMM system, the managed
application is uploaded to the EMM server for the purpose of publishing the application for
the enterprise users to consume. As part of this app publishing workflow, an IT administrator
will choose management policies and settings that apply to the application and associated
user roles. Once uploaded and configured, the applications is made available to
organization’s employees to peruse and install based on their role within the organization.
Alternatively, such applications can be pushed directly to mobile devices for employees who

have enrolled their device with a corporate MDM server.

[0332] When a user executes a managed application on the mobile device, the user is
typically challenged to authenticate their corporate identity along with passwords and other
factors as dictated by corporate management policy. After having strongly authenticated the
user, device, and application, the access manager components of the system verifies that the
user is entitled to the application and downloads the configured management policies for this

specific app and user.

[0333] Based on those management policies, the EMM framework that is delivered with
the managed app configures itself. It will select one or more default file vaults to use and
configure the file system API interception layer to target the selected vaults. If a configured

file vault does not already exist, a new empty vault is initialized. This ensures that a change

WO 2014/058640 PCT/US2013/062636
88

in file vault management policies that would select a not-previously-used vault will appear to

the application as if it had been recently installed (e.g. empty writable directories).

[0334] As the application begins to utilize the file system APIs, the file system API
interception layer looks for file accesses that intersect the writable portions of the app
sandbox or shared storage. Such files are flagged and tracked by the file system interception
layer such that all subsequent file 1/O is passed through encryption/decryption before being
placed into the real file container that holds the data.

[0335] In order to accomplish this encryption, the required keys first need to be recovered.
These are retrieved from the key management server and cached locally. If this is the first
access to the protected files in a long time, the user will be forced to do a strong
authentication by logging on to the EMM server. Periodically these keys will need to be
refreshed as dictated by the time to live management policy setting for the keys. When
refreshing, as long as user has maintains an active logon with EMM server, this refreshing of
keys can occur without user interaction. If user logs off or their logon session expires, then

the refreshing of keys will need to be strongly authenticated again.

[0336] When the file vault is private to the application, the file vault services layer directly
uses the mobile platform’s file I/O functions to read and write encrypted version of the data.
Also, all file directory access functions are also similarly intercepted such that the real file

names and sizes can be obscured.

[0337] To support random access to any range of bytes within an encrypted file, a scheme
that uses encrypted blocks is may be used. For this to work, the keys used to encrypt/decrypt
cach of the file block are derived mathematically from base keys and the file/block offset.
Similarly, different files will use initialization vectors for the cryptography as well. These
techniques represent sound and reasonably standard practices for the encoding encrypted file

volumes using a single set of cryptographic keys.

[0338] For efficiency, the system may read ahead or delay writing of data to encrypted data
content as necessary to optimize application performance. Delayed write of encrypted data

must be flushed prior to closing files or exiting the application.

[0339] When the file vault is to be shared with another application, the same processes
described above are used, but they must occur in a common file system repository under the
control of common file system broker application. The implication is that when the file

system interception layer is operating on shared file vault, the file vault services will operate

WO 2014/058640 PCT/US2013/062636
89

not by directly reading/writing encrypted data, but rather by redirected these services via
remote procedure call mechanism to the brokering application. Within the brokering
application, the same local file vault services used for private vault files are utilized for the

shared vault content.

[0340] There are certainly other possible designs for implementing shared vaults. For
example, one can use shared storage coupled with inter-process synchronization mechanisms
to coordinate access. But in any workable design, the key factor to be noted is that same
underlying encrypted file vault services are used to encrypt the actual file data regardless of

where the encrypted data will be retained or how concurrent access to it coordinated.

[0341] By providing strong and transparent file encryption services with keys managed by
enterprise servers, security of information held and stored locally by managed mobile
applications can be made secure without the need to rewrite applications to use new file

access paradigms.

[0342] Adding the notion a management policy directed file vault configuration that
permits multiple applications to be bound to the same default file vaults further permits

secure sharing of documents between properly configured managed applications.

[0343] The architecture described in this specification can be used by a corporation or other
enterprise to flexibly implement a management policy, such as a corporate owned device,
BYOD (bring your own device) management policy, for allowing enterprise users to use their
mobile devices to securely access enterprise resources (documents, confidential data,
corporate application and database servers, etc.). This is accomplished through various
security features that, for example, enable the enterprise to specify and implement
management policies for controlling mobile device accesses to particular enterprise
resources. The management policies may, for example, control mobile device accesses to
enterprise resources based on a variety of criteria, such as the role of the respective user (e.g.,
which department the user is in), the configuration of the mobile device (e.g., whether any
blacklisted mobile applications are installed), the logged behaviors of the user, the location of
the mobile device, and/or the time at which access to the enterprise resource is requested. The
architecture further enhances security, in some embodiments, by creating application tunnels
that enable enterprise mobile applications to securely communicate over a network with the
enterprise system. The architecture may also enable IT staff to selectively (and remotely)

wipe a user's mobile device of enterprise application(s) and corporate data when, for

WO 2014/058640 PCT/US2013/062636
90

example, the user discontinues employment or violates a corporate management policy (such

as if they jailbreak their device or otherwise use it in a disallowed configuration).

[0344] The use of passcodes (or other types of authentication information) for enterprise
applications reduces the likelihood that enterprise resources will be improperly accessed
when, for example, the mobile device is lost or stolen, or when the mobile device is used by
an employee's children to play games. In some embodiments, the secure launcher (or another
component installed on the mobile device) further reduces this risk by performing a selective
wipe of the mobile device when, for example, the user attempts but fails to enter a valid
passcode a threshold number of consecutive times (e.g., 5 or 10). The selective wipe
operation deletes some or all of the enterprise applications and associated data from the
mobile device, without deleting any personal applications or data. In some embodiments, the
enterprise’s IT department can initiate a selective wipe of a particular mobile device by

remotely issuing a wipe command to the device.

[0345] In some embodiments, when a selective wipe operation is performed, some or all of
the documents and data stored in the secure container are deleted from the mobile device or

are otherwise made inaccessible.

[0346] In another example, a meta-application can be configured to create gateway rules
based at least partly on the time(s) at which a mobile device was "wiped" (e.g., deletion of

some or all data stored on the device or removal of software application(s) from the device).

[0347] A system and process will now be described for enabling non-developers, such as
members of a company's IT department, to add to or otherwise modify the behaviors of an
existing mobile application, such as an Android, i10S, or Windows Mobile application. The
system and process can be used, as one example, to create different versions of a mobile
application (with different privileges, access rights, etc.) based on a user's role within the
enterprise. For instance, different versions of the mobile application can be created for
different job categories (e.g., executive, non-executive employee, intern, etc.) and/or different
departments (sales, IT, human resources, etc.). The processes described in this section can be
implemented in an application modification or "wrapping” tool or utility that is made
available to enterprises that use the disclosed system. This utility may, for example, be hosted
on a server (e.g., as a web service) that is accessible to enterprises, or may be provided to the

enterprises (e.g., as a PC application).

WO 2014/058640 PCT/US2013/062636
91

[0348] In a typical use case scenario, the mobile application to be modified is a custom
application developed for a particular enterprise. However, this need not be the case. For
example, the disclosed system and process are also applicable to commercially available
mobile applications available in app stores. The mobile applications can be modified without
being specially written to support or enable such modifications. For example, the developer
need not include any special code or functionality in the application to enable or facilitate the
modifications, and need not be involved in the disclosed process of modifying the

application.

[0349] The behaviors that are modified typically include or consist of behaviors that
involve standard API calls or classes. The following are examples of some of the types of

behaviors that can be added or modified via the disclosed process:

[0350] A mobile application can be modified to enable an enterprise to remotely initiate
deletion of the application's data on a particular mobile device of a particular employee,
without affecting other users of the application. As mentioned above, such selective wipe
operations may also be executed when, for example, a user fails to enter a valid enterprise

passcode a threshold number of times.

[0351] Additional code may be added, if applicable, to implement one or more features or
behaviors that do not require the replacement of any existing API calls. As one example, code
may be added for enabling an authorized administrator to remotely trigger the deletion, on a
user-specific or mobile device specific basis, of the application's data stored on a particular
mobile device. In this example, the code added would add functionality for receiving and
processing a message containing a command to perform such a selective wipe or deletion

operation.
[0352] Single Sign-On Access and Identity Management

[0353] Figure 28 depicts an illustrative system having a client device 2805, a proxy device
2810, resource(s) 2820, and/or authentication service(s) 2815. Figure 29 depicts an
illustrative detailed view of the client device 2805 and proxy device 2810. These elements
may implement one or more aspects described herein. A brief summary of these aspects will
now be provided, with additional examples provided below. The client device 2805 may
communicate with one or more resources 2820 and/or authentication services 2815 using a
proxy device 2810. In some aspects, the client device 2805 might not be configured to

communicate directly with the resources 2820 and/or authentication services 2815. For

WO 2014/058640 PCT/US2013/062636
92

example, the client device 2805 and resources 2820 may use different authentication and/or
communication protocols. The proxy device 2810 may translate between these different
protocols. Additionally or alternatively, the proxy device 2810 may provide additional

benefits, as will be described in the examples below.

[0354] The client device 2805 may send a request for resources 2820, such as documents,
emails, services, files, and the like, to the proxy device 2810. The proxy device 2810 may
forward the request to the resource 2820, and in response, authentication between the proxy
device 2810 and resource 2820 may be initiated. At one or more points during the
authentication, the resource 2820 may request a signature, such as from a client certificate.
The proxy device 2810 might not directly have access to the client certificate, so the proxy
device 2810 may involve the client device 2805 in the authentication process, such as if the
client device 2805 controls access to the client certificate. For example, the proxy device
2810 may request that the client device 2805 sign or decrypt an authentication message using
the client certificate (or a private key included therein), or return a list of available security

certificates or a selection by the user of a particular security certificate.

[0355] The proxy device 2810 may provide the client device 2805 with context information
that identifies the authentication session between the proxy device 2810 and the
resource/authentication server. For example and as will be described in further detail in the
examples below, the context information may identify a data structure of authentication
information exchanged (or to be exchanged) between the proxy device 2810 and resource
2820 and/or the proxy device 2810 and the authentication service 2815. The client device
2805 may use the context information to verify or otherwise confirm the authentication
session between the proxy device 2810 and the resource/authentication server. Once the
context information is verified, the client device 2805 may provide the requested signature to
the proxy device 2810, and the proxy device 2810 may complete authentication with the
resource 2820 and/or the authentication service 2815. Then, the proxy device 2810 may
retrieve the resource requested by the client device 2805 and provide it to the client device

2805.

[0356] The client device 2805 may comprise any of an end point device, client computers
107 or 109, terminals 240, client computers 411-414, mobile device 502, mobile device 602,
or any other device. For example, the mobile device may comprise any of a smartphone, a
tablet, and the like. One or more applications may be running on the client device 2805. An

application may desire to access a protected resource, such as an enterprise resource, and a

WO 2014/058640 PCT/US2013/062636
93

module included in the application (or other applications) may facilitate access to those
protected resources. For example and with reference to Figure 29, an application running on
the client device 2805 may send a request for a resource (e.g., an HTTP request) to MAMP
Framework 2905, which may facilitate communications with the proxy device 2810. In some
aspects, the MAMP Framework 2905 may run as a privileged application on the client device
2805. The MAMP Framework 2905 may comprise all of or a portion of the functionalities
provided by the MAMP framework 614, as previously described.

[0357] The client device 2805 may also have a PKOperation SDK module 2910 that
facilitates access to a keystore 2915 that stores one or more client certificates that may be
used to sign for authentication purposes. For example, the client device 2805 may authorize
access to or have possession of client certificate representing the user of the client device
2805. In some aspects, the certificate may be an enterprise-issued certificate. The certificate
may be bound to a physical smart card having a cryptographic module. In other words, the
cryptographic secret may be confined to the smart card. The user may authorize the client
device 2805 to access the smart card protected certificate. Alternatively, the certificate may
be bound to a virtual smart card, which may use hardware and/or software modules to protect
the key. The client device 2805 and/or a removable hardware module of the client device
2805 may be authorized by a provisioning process to store the certificate and private key. The
user may be required to enter a PIN code using the client device 2805 to authorize operations
involving the client certificate private key. Another external device separate from the client
device 2805 (e.g., another smartphone) may control the certificate, and the client device 2805
may utilize a custom reader interface to access the certificate controlled by the external

device.

[0358] In some embodiments, the client certificate and/or private key might be confined to
the client device 2805 or to a physical smart card. Accordingly, the client device 2805 may
maintain control of the key. If authentication using the key is required, the client device 2805
may need to be involved in the authentication process. This allows the client device 2805 to
have assurance that operations performed with the certificate private key are ones that the
client device 2805 intended. Some organizations may use smart cards to achieve non-
repudiation for certain operations, which may require users to have authority over all uses of
a certificate issued by the organization. For example, document signing may require explicit
user authority, whereas authentication to certain systems might not require explicit user

authority. Suitable mechanism(s) for providing such assurance may depend on the nature of

WO 2014/058640 PCT/US2013/062636
94

the resource being accessed, the proxy device involved, and how the client device 2805

operates.

[0359] The proxy device 2810 may comprise one or more of a server (e.g., servers 201,
206, 301, 410), computing device, access gateway 560, gateway server 606, or any other
device. The proxy device 2810 may facilitate communications between the client device 2805
and enterprise resources or other networks. For example, a user of the client device 2805 may
wish to access enterprise resources that require authentication, and the proxy device 2810
may mediate access. The client device 2805 may use the proxy device 2810 to access
resource if, for example, the client device 2805 is not able to directly access the resources.
For example, the client device 2805 might not be configured for a protocol utilized by the
enterprise resources. In some aspects, the enterprise resource may implement Kerberos with
PKINIT for authentication, but the client device 2805 might not implement Kerberos with
PKINIT. Similarly, the enterprise resource may implement SSL with client certificate
authentication, but the client device 2805 might not implement SSL with client certificate
authentication. Instead, the client device 2805 and proxy device 2810 may communicate
using a protocol having standard components and fitting well-known authentication
frameworks. The proxy device 2810 may translate between a first protocol to the resource
(e.g., Kerberos or SSL) and a second, different protocol to the client device 2805 (e.g., HTTP
or HTTPS). By utilizing the proxy device 2810, client devices might not need to understand
and operate a complex or different protocol used by the enterprise resource. In these
examples, the proxy device 2810 may play the client role. However, the proxy device 2810

might not have control of the client certificate private key.

[0360] The proxy device 2810 may be used to facilitate access to resources in other
circumstances, such as if the client device 2805 is not permitted to directly access the
resources, if access capabilities of the client device 2805 are limited, and/or if the proxy
device 2810 enhances access by improving performance or offering a preferable interface.
The proxy device 2810 may also facilitate enhanced security. For example, Kerberos resource
authentication may require obtaining service tickets from Kerberos KDCs (e.g., Active
Directory domain controllers). However, the KDCs themselves may comprise sensitive
enterprise resources that should not be directly accessible to some client devices. For these
cases. Kerberos authentication may require use of a trusted proxy device 2810. As another
example, the proxy device 2810 may be a hardened communication gateway deployed in the

DMZ network of an enterprise. To provide extra security benefits, the proxy device 2810 may

WO 2014/058640 PCT/US2013/062636
95

be able to inspect communications being proxied to enterprise resources, rather than allowing
a transparent end to end communication flow between the client device 2805 and the
enterprise resources as if the proxy device 2810 were not present. That is, the proxy device
2810 may have knowledge of what resources the client device 2805 is using and the protocols
the client device 2805 utilizes. As will be discussed in further detail in the examples below,
the proxy device 2810 may also provide, to the client device 2805, context information that
identifies one or more aspects of the authentication session between the proxy device 2810
and an authentication service 2815 and/or resource 2820. The client device 2805 may use this
context information to determine whether or not to sign data provided by the proxy device

2810 that requires a signature.

[0361] With reference to Figure 29, the proxy device 2810 may include a packet engine
2920, which may be a hardware module and/or software module. The packet engine 2920
may facilitate communications with the client device 2805 and/or the resource. The proxy
device 2810 may also include a session cache 2925. As will be described in further in the
examples below, the session cache 2925 may store a session key and/or ticket (e.g., for
Kerberos sessions) to enable communications between the proxy device 2810 and one or
more resources or servers storing the resources. The proxy device 2810 may include a client-
side authentication module 2930 configured to manage authentication with the client device
2805, such as obtaining a signature from the client device 2805. For Kerberos authentication,
the client-side authentication module 2930 may comprise a PKINIT module (which may be
referred to as a likewise daemon) that implements the client side of the public key form of the
Kerberos authentication protocol (e.g., a PKINIT protocol). For example, this could be the

kinit command line program that is available from open source implementations of Kerberos.

[0362] The proxy device 2810 may also include a library module 2935 (e.g., a
PKOperation Proxy SDK 2935) used by the client-side authentication module 2930 to
abstract details for accessing the client certificate private key. For Kerberos, a PKOperation
Proxy SDK 2935 that implements a PKCS#11 API specification for accessing client
certificates bound to smart cards may be used. The PKOperation Proxy SDK 2935 may
implement portions of PKCS#11 and package the relevant certificate operations into a form
that can be remoted to the client device 2805. By using the PKCS#11 API, the Kerberos
implementation, which may comprise a standard Kerberos implementation, such as MIT,
need not be modified. This makes it easier to maintain the Kerberos product, such as if

security fixes are made to the product. The packet engine 2920, session cache 2925, client-

WO 2014/058640 PCT/US2013/062636
96

side authentication module 2930, and PKOperation Proxy SDK 2935 may comprise hardware
and/or software modules, and the operations that they may perform will be described in
further detail in the examples below. In some aspects, the proxy device 2810 may comprise
one or more processor and memory storing computer-executable instructions that, when
executed by the processor, cause the proxy device 2810 to provide the packet engine 2920,
session cache 2925, client-side authentication module 2930, and PKOperation Proxy SDK
2935 and/or to perform the operations of the packet engine 2920, session cache 2925, client-

side authentication module 2930, and PKOperation Proxy SDK 2935.

[0363] The client device 2805 and the proxy device 2810 may communicate using a
standard framework, such as an HTTP framework. In some aspects and as will be described
in the examples below, the client device 2805 and proxy device 2810 may exchange one or
more authentication messages. They may exchange HTTP status codes, such as HTTP 401
codes for requesting authentication, and/or challenge-response messages. In some
embodiments, if the client device 2805 which receives a 401 authentication challenge does
not support secured exchange of client private certificates, the client device 2805 may
recognize the 401 message as an authentication challenge that the client device 2805 does not
understand. The client device 2805 may react with the appropriate error handling behavior,
such as displaying a message to the user that an operation could not be completed because the
client device 2805 does not support secured exchange of client private certificates. The HTTP
level encoding to support public key operation remoting may be relatively simple. The Packet
Engine 2920 and the MAMP Framework 2905 may process the HTTP level encoding.
Communications may be structure similar to the HTTP Negotiate authentication scheme
described in RFC 4559, which is incorporated herein by reference in its entirety. Base64
encoded blobs may be exchanged back and forth between the client device and proxy device
using WWW-Authenticate and/or Authorization headers. The blobs may be generated and
processed at each device by the respective PKOperation SDKs (810, 2935).

[0364] In some embodiments, components in the communication path between the client
device 2805 and the proxy device 2810 that are HTTP aware might not interface with the
authentication process. For example, an HTTP proxy server between the client device 2805
and the proxy device 2810 may be aware that the connection to the proxy device 2810 should
not be reused to send requests from other client devices and/or users. Furthermore, caching of
any HTTP data returned from the proxy device 2810 should be correctly scoped so that the

data is not sent to another client device.

WO 2014/058640 PCT/US2013/062636
97

[0365] In some aspects, authentication between the client device 2805 and proxy device
2810 may utilize a standard authentication framework, such as web authentication or Generic
Security Services Application Program Interface (GSSAPI) with a custom mechanism.
Objects may be transmitted from the proxy device 2810 to the client device 2805. The client
device 2805 may process the objects and validate them by standard cryptographic

mechanisms, such as certificate path validation with a name check.

[0366] A specialized communication channel between the client device 2805 and proxy
device 2810 may be created. For example, the specialized communication channel may be
used to relay certificate operation requests and results. Utilizing the specialized
communication channel may provide extra cryptographic protection beyond that provided by
a standard SSL channel between the client device 2805 and the proxy device 2810. This may
be appropriate given the sensitivity of the inputs and outputs of the cryptographic operations
being remoted. In some examples, a Diffie-Hellman key exchange between the client device
2805 and the proxy device 2810 may occur. The exchange may provide mutual authentication
between client device 2805 and proxy device 2810. In some embodiments, mutual
authentication may already have been established prior to a resource access request by the
client device 2805. Channel binding, as described in RFC5929, which is hereby incorporated
by reference in its entirety, may be used to cryptographically link the specialized
communication channel to an outer SSL session. With brief reference to Figure 29, setting up
the specialized communication channel for data, such as PK operation payloads, may utilize
multiple exchanges between the client device 2805 and the Packet Engine 2920. This may be
opaque to everything except the PKOperation SDK 2910 and PKOperation Proxy SDK 2935.

[0367] One reason for providing extra protection via the specialized communication
channel is that SSL, in practice, may be terminated by a networking device, such as an
offload device, in front of the proxy device 2810. Offload devices may be optimized for SSL
connection processing, such as by using specialized hardware for accelerating CPU intensive
operations involved in SSL connections. The hardware module may also be certified to meet
commercially important cryptographic processing standards, such as the Federal Information
Processing Standard (e.g., FIPS-140). Another reason for providing extra protection is that an
inspection device may be given access to the SSL certificate key in order to decode
communications. The inspection device may comprise a security device designed to monitor
network traffic for compliance with security management policies, such as by detecting

attempts to send confidential information outside of a trusted network zone, or attempts to

WO 2014/058640 PCT/US2013/062636
98

communicate with untrusted or unauthorized servers. Some of these inspection devices may
be configured to impersonate other servers during SSL connection handshakes, in order to
prevent the inspection process from being foiled by the use of encrypted communication
channels. Using the specialized communication channel may prevent unnecessary and/or
inappropriate exposure of sensitive data to the offload device and/or inspection device.
Accordingly, non-repudiation properties expected from using smart card equivalent client
certificates may be protected. For example, the specialized communication channel may
prevent the data to be signed from being modified by external devices and/or leaks of

decrypted data.

[0368] The specialized communication channel may be implemented in many ways. For
example and as previously noted, a custom GSSAPI mechanism operating inside a standard
HTTP authentication protocol may be utilized. This implementation provides several non-
exclusive benefits. First, the proxy device 2810 may indicates to the client device 2805 in a
standard way (e.g., HTTP) that authentication to a resource and/or authentication server is
required to complete the requested resource access. Second, an arbitrary binary protocol may
be conducted between the client device 2805 and the proxy device 2810, with multiple
rounds if necessary. Third, the implementation allows for secure communication mechanisms
to be negotiated and applied to transfer data in a standard way (e.g., at the GSSAPI level). In
some implementations, the custom GSSAPI mechanism operating inside a standard HTTP
authentication protocol can also allow for a platform implementation of GSSAPI to be used

with a custom mechanism being added, such as the MICROSOFT NegoEx mechanism.

[0369] Referring to Figure 28, one or more authentication service 2815 (or server running
the authentication service 2815) may exist. Authentication service 2815 may implement one
or more types of authentication, including Kerberos or SSL. The aspects described herein
may be implemented for any authentication protocol that involves client certificate private
key operations. For example, for Kerberos, the authentication server may be tasked with
issuing tickets, including ticket granting tickets and/or session tickets. The authentication
server may communicate with the proxy device 2810 over one or more channels.
Furthermore, the one or more channels may use a communication protocol different from the
communication protocol used by the client device 2805 to communicate with the proxy
device 2810. In some aspects, the authentication services 2815 might remain unchanged,

even with implementation of the aspects described herein. In other words, the authentication

WO 2014/058640 PCT/US2013/062636
99

services 2815 may exist in a traditional infrastructure. The authentication services 2815 may

include, for example, the authentication services 558 noted above.

[0370] One or more resources 2820 (or servers storing the resources 2820) may exist. The
resource 2820 may communicate with the proxy device 2810 using one or more of the same
or different protocols as the authentication server uses to communicate with the proxy device
2810. In some aspects, the resources might remain unchanged, even with implementation of
the aspects described herein. In other words, the resources may exist in a traditional
infrastructure. Non-limiting examples of resources may include, but are not limited to, file
resources, web resources, mail resources, Sharepoint resources, and the like. These resources
may include Structure Query Language (SQL) databases, remote procedure call (RPC)
servers, Distributed Component Object Module (DCOM) servers, Simple Object Access
Protocol (SOAP) web services, Representational State Transfer (REST) web services, and
other proprictary resources that may use GSSAPI or a similar security framework for
authentication. One or more of these resources may be directly accessed by internal devices,
such as computers on the same network as the resources or in another protected network. The
resources may comprise the enterprise resources 504, 508, and/or 608 and/or the enterprise
services 508 and/or 609 noted above. Furthermore, the resources may be stored on one or
more servers, such as servers 206 illustrated in Figure 2. The resources may be accessed
through a multi-tier system. The proxy device 2810 may communicate with a front-end server
that may in turn communicate (and authenticate as a requesting user) with a back-end server.
Kerberos with unconstrained delegation may be used for this type of system, and the proxy

device 2810 may supply a forwarded TGT for the user to the front-end server.

[0371] Figures 30A-C are flowcharts of example method steps for authentication and/or
providing secured access to resources using a proxy. Figures 30A-C illustrate each step being
performed by one of the client device 2805, proxy device 2810, authentication service(s)
2815, and/or resource(s) 2820. However, the method steps may be performed by any of the
client device 2805, proxy device 2810, authentication service(s) 2815, resource(s) 2820,
and/or a combination thercof. As previously noted, the resources 2820 and authentication
services 2815 may be provided by the same server (or group of servers). Alternatively, the
resources 2820 and authentication services 2815 may be provided by different servers (or
group of servers). For simplicity, some of the method steps are illustrated in Figures 30A-C
as being performed by a single resource/authentication service entity (e.g., a server or group

of servers). However, the authentication services may be provided by an authentication server

WO 2014/058640 PCT/US2013/062636
100

(or groups of authentication servers) and the resources may be provided by a different server

(or group of servers).

[0372] In step 3002, the user may be authenticated with the client device 2805. For
example, the user may provide credentials, such as a username and/or password, to login to

the client device 2805.

[0373] In step 3004, the client device 2805 may authenticate the proxy device 2810.
Additionally or alternatively, in step 3006, the proxy device 2810 may authenticate the client
device 2805. In other words, the client device 2805 and proxy device may perform mutual
authentication. To perform the authentication, the client device 2805 may connect to the
proxy device 2810 using SSL with server authentication. The proxy device 2810 may request
the client device 2805 and/or the user of the client device 2805 to authenticate to the proxy
device 2810 before authorizing access to the proxy device 2810. In some aspects, the client
device 2805 may use an enterprise client certificate for this authentication. The enterprise
client certificate may be the same certificate used by the client device 2805 to sign documents
and/or authentication messages, as will be described in further detail in the examples below.
Alternatively, the enterprise client certificate may comprise a different certificate. For
example, the client device 2805 may have multiple certificates, each used for a different
purpose. If a physical smart card is used, the multiple certificates may be stored on the smart

card or different smart cards.

[0374] Similarly, the client device 2805 may request authentication of the proxy device
2810 to establish that the proxy device 2810 is a known trusted entity and may request
identification of resources to which the user is being authenticated by means of delegated
authentication through the proxy. The client device 2805 may also authenticate the user of the
client device 2805 to the proxy device 2810, for instance using the client certificate available
to the device as part of the SSL handshake, or by running a separate user authentication
protocol inside the SSL connection, for instance over HTTP. Resources 2820 may also wish
to know that access to the resources 2820 is being mediated by the proxy device 2810, such
as by using a resource access protocol. Thus, mutual authentication or identification may be
performed for all three entities, the client device 2805/user, the proxy device 2810, and the

resources 2820.

[0375] After authentication and/or identification of one or more of the three entities, the

client device 2805 may send a request to the proxy device 2810 for one or more resources,

WO 2014/058640 PCT/US2013/062636
101

such as web resources, enterprise resources (e.g., from a network file server), or other
resources, that can be accessed by the proxy device 2810 but that may require user
authentication based on a client certificate. The request for a resource may be sent by the
client device 2805 over HTTP, HTTPS, or any other access protocol supported by the client
device. The proxy device 2810 may translate or bridge from the access protocol used by the
client device 2805 (e.g., HTTP or HTTPS) to the access protocol used by the resource. After
translation, the proxy device 2810 may forward the request to the resource and/or

authentication service in step 3010 or otherwise attempt to access the requested resource.

[0376] In step 3012, the resource may request authentication from the proxy device 2810.
For example, the resource may indicate the type of authentication to be performed (e.g., SSL,
a domain-based authentication, such as Kerberos, etc.). Based on the type of authentication,
the resource may send an authentication challenge (e.g., a 401 Negotiate message for
Kerberos authentication or a client certificate challenge for SSL authentication). For Kerberos
authentication, a PKINIT protocol may be used, and the proxy device 2810 may perform the
role of the client in the PKINIT protocol to authenticate the user identified by the client
certificate to the Kerberos realm (e.g., a MICROSOFT Active Directory domain). The
resource server may generate a Kerberos authentication challenge, such as HTTP 401
Negotiate. For SSL authentication (e.g., using a client certificate), the proxy device 2810 may
represent to the resource that the proxy device 2810 has access to the user’s client certificate
and/or key. The proxy device 2810 may attempt to authenticate directly with the resource
instead of with a particular domain, as in Kerberos authentication. Additionally or
alternatively, the proxy device 2810 may be aware that authentication is required before
attempting to access the requested resource. In either case, the proxy may determine and
initiate the relevant authentication protocol interactions with the resource. These interactions
may involve additional entities such as an authentication server running an authentication

service trusted by the resource.

[0377] In step 3014, the proxy device 2810 may determine whether a session key that can
be used to initiate a secured communication session with the resource (or a server having the
resource) is available. A session key may have previously been obtained by the proxy device
2810 based on a prior authentication session with the resource or authentication service and
stored (e.g., cached) at the proxy device. For Kerberos authentication, the session key may be
stored with a Kerberos ticket, such as a ticket granting ticket (TGT) or other time-limited

ticket. With reference to Figure 29 and for Kerberos authentication, the Packet Engine 2920

WO 2014/058640 PCT/US2013/062636
102

of the proxy device 2810 may invoke its Kerberos authentication response logic, which
checks to see if there is already a service ticket for the resource (e.g., a web resource) in the
session cache 2925. In some aspects, the client-side authentication module 2930, in response
to the check, may invoke PKINIT if the proxy device 2810 knows that client certificate
authentication is required and/or supported. For SSL authentication, the session key may be
used to resume a previous SSL connection, such an SSL session. If a session key (and/or
ticket) is available (step 3014: Y), the proxy device 2810 may continue to step 3054 (obtain
requested resource) using the session key (and/or ticket), as will be described in further detail

in the examples below.

[0378] For a first time authentication, the session cache may be empty (e.g., not store a
valid session key and/or ticket) (step 3014: N). Thus, the proxy device 2810 may initiate
authentication with the resource. With reference to Figure 29 and for Kerberos authentication,
the Packet engine 2920 may issue an internal PKINIT command to the client-side
authentication module to obtain a TGT. In order to authenticate, the proxy device 2810 may
determine that it needs one or more client certificates and/or signatures based on a client
certificate accessible by the client device 2805. These certificates and/or signatures might not
be directly accessible by the proxy device 2810. With reference to Figure 29, the client-side
authentication module 2930 may send a command, such as an internal P11 get certificates
command, to PKOperation Proxy SDK 2935 to obtain certificates from the client device
2805. The client-side authentication module 2930 may incorporate a Kerberos client
implementation, which supports a public-key cryptography standard (PKCS), such as the
standard PKCS#11 library interface as a way to look for suitable client certificates for
PKINIT. The PKOperation Proxy SDK 2935 may implement the relevant subset of the
PKCS#11 API functions to support the PKINIT feature.

[0379] In step 3016, the proxy device 2810 may send the request to the client device 2805
for a list of certificates available and/or accessible to the client device 2805. The request may
be encoded into an HTTP header. For example, the request may be encoded in a 401 status
code in HTTP indicating that an authentication is required and challenging the client device
2805 for authentication. With reference to Figure 29, the Proxy SDK 2935 may require a
custom interface to the Packet Engine 2920 which the Proxy SDK 2935 may use to have
certificate requests (e.g., PK operation requests) sent to the client device 2805 and to receive
the results if the client device 2805 responds to the request. If the certificate requests need to

be remoted, the Proxy SDK 2935 may encode the request into a binary structure (having

WO 2014/058640 PCT/US2013/062636
103

encryption/integrity wrappers as appropriate), and submit to the Packet Engine 2920. The
Packet Engine 2920 may causes an HTTP 401 response with a custom authentication
challenge to be sent to the client device 2805 in response to the initial HTTP request,

containing the binary structure encoded in a WWW-Authentication header.

[0380] In some aspects, the proxy device 2810 might not receive a response responsive to
the request for a list of certificates from the client device 2805. In particular, there is no
guarantee that the client device 2805 will respond to the certificate (e.g., PK operation)
request. For example, the client device 2805 may have crashed or otherwise been unable to
respond to the request. Furthermore, the client device 2805 may have attempted to obtain user
consent for the operation (e.g., by requesting the user to enter a PIN to unlock the keystore
2915), but consent might be denied. To handle situations where the client device 2805 does
not return a list of client certificates, the proxy device 2810 (such as the Proxy SDK 2935
component) may use a timeout to eventually abandon the certificate request operation. The
proxy device 2810 may return a suitable error code in these circumstances. During PKINIT
logon, several PK operations may be sent to the device, until the PKINIT logon succeeds,

fails or is abandoned or the timeout lapses.

[0381] In step 3018, the client device 2805 may receive the certificate list request from the
proxy device 2810 and, in response, identify the certificates available or otherwise accessible
to the client device 2805. For example and with reference to Figure 29, the MAMP
framework 2905 of the client device 2805 may receive the message (e.g., an HTTP 401
request) having a custom authentication challenge from the proxy device 2810. Recognizing
it as a certificate request (e.g., a PK operation ‘authentication’ protocol), the MAMP
framework 2905 may decode the message from the received header format and pass a binary
structure of the message to the PKOperation SDK 2910. The PKOperation SDK 2910 may
have knowledge of the available client certificate(s). As previously noted, the client
certificates may be in the form of a physical smart card, a virtual smart card, and the like. The
PKOperation SDK 2910 may decode the request (including processing any
encryption/integrity wrappers), and dispatch it to an appropriate internal handler. The handler
may process the request and generate a list of available certificates. The list of certificates
may be filtered according to relevance for the operation being requested, for example, to only
include certificates with an appropriate key usage indicator. The list of certificates may be
filtered until only one certificate remains. For example, the list may be further filtered by

presenting a Ul to the user of the client device 2805 to pick the certificate that should be used

WO 2014/058640 PCT/US2013/062636
104

for the operation. The list may be in a binary structure that represents the operation result.
The PKOperation SDK 2910 may return the list of certificates, which may still be in the
binary structure, to the MAMP framework 2905 or signal an error condition if the list cannot

be generated.

[0382] With reference to figure 30B, in step 3024, the client device 2805 may send a
message including the list of available certificates to the proxy device 2810. In some aspects,
the message may be sent as an HTTP or HTTPS message. For example, the MAMP
framework 2905 may replay the original HTTP request from the proxy device, but use a
custom Authorization header attached to the request which includes the list of available
certificates. Prior to sending, the message may be sealed in the encryption/integrity wrapper

and/or encoded to fit an HTTP header.

[0383] In step 3026, the proxy device 2810 may receive the message from the client device
2805 (and decrypt/decode if necessary). With reference to figure 29, the Packet Engine 2920
may recognize that the HTTP request received from the client device 2805 is a resend of the
original certificate request sent by the proxy device 2910. The Packet Engine 2920 may
submit a binary structure of data from the Authorization header to the Proxy SDK 2935 via
the client-side authentication module 2930. The Proxy SDK 2935 may unpack the binary
structure (including the encryption/integrity wrapper) and return the unpacked data to the
client-side authentication module 2930. Next, the proxy device 2810 may select a certificate
(from the list of certificates) to use to authenticate the proxy device 2810 with the
resource/authentication server, such as a certificate that is suitable for the authentication
session (i.e., to authenticate the proxy device 2810 with the resource/authentication server).
In some embodiments, the Kerberos and SSL standards may specify the key usage(s) that are
expected or required. For example, if the authentication session comprises Kerberos
authentication, the proxy device 2810 may need to obtain Kerberos tickets and can select the
certificate suitable to obtain Kerberos tickets. If the client device 2805 returned multiple
certificates in step 3024, the proxy device 2810 may send a selection request to the client

device seeking user input to select from a list of certificates.

[0384] The proxy device 2810 and resource may continue exchanging messages during the
authentication session. At one or more points during the authentication session, the proxy
device 2810 may be required to perform a cryptographic operation with a signature, such as a
private key, of the client device 2805. The private key might not be directly available to the

proxy device 2810. Instead, the private key may remain under the control of the client device

WO 2014/058640 PCT/US2013/062636
105

2805 and not exposed directly to the proxy device 2810. The proxy device 2810 may interact
with the client device 2805 over a specialized communication channel to obtain a signature

(e.g., the private key).

[0385] In step 3028, the proxy device 2810 may generate a request for a signature
corresponding to the selected certificate from the client device 2805. The proxy device 2810
may also generate a piece of data to be signed. For Kerberos authentication, the piece of data
may comprise an authentication service request (AS REQ) message using the selected
certificate. The AS REQ message may optionally be included with the request for signature
to be sent to the client device 2805. The proxy device 2810 may send an unsigned AS REQ
message to the client device 2805 if the client device needs to ascertain the full details of the
authentication context before providing a signature. The proxy device 2810 might not send
the AS REQ message to the client device 2805 if the communication protocol between the
client and proxy devices and/or the Kerberos authentication implementation do not support
sending the AS REQ message to the client device 2805. As will be discussed in the examples
below, the proxy device 2810 may send a signed AS REQ message to the authentication
service 2815 and/or resource 2820 for authentication once it has been signed by the client

device 2805.

[0386] In step 3030, the proxy device 2810 may determine authentication context
information to be included in the request for signature. In some aspects, the context
information might not be limited by size or format. For example, the proxy device 2810 may
send the context information as a Binary Large Object (BLOB). Generally, the context
information may comprise information that identifies the authentication session between the
proxy device 2810 and the resource/authentication server. As will be described in further
detail in the examples below, the client device 2805 may use the context information to verify
or otherwise confirm the authentication session between the proxy device 2810 and the

resource/authentication server.

[0387] Examples of the content of the context information will now be provided. The
context information may identify a data structure of authentication information previously
exchanged between the proxy device 2810 and the resource/authentication server. For
example, if the proxy device 2810 and the resource have already exchanged authentication
messages and are currently in the middle of authentication, the context information may
comprise all or a portion of the exchanged authentication messages. Additionally or

alternatively, the context information may identify a data structure of authentication

WO 2014/058640 PCT/US2013/062636
106

information to be sent by the proxy device 2810 to the resource/authentication server in the
future. In Kerberos authentication, for example, the context information may comprise part or
the entire AS REQ message to be sent by the proxy device 2810 to the

resource/authentication server.

[0388] The context information may comprise timestamp information associated with the
authentication session. The timestamp may identify the current time as determined by the
proxy device 2810. For Kerberos / PKINIT, the authentication service 2815 and/or resource
2820 may validate the timestamp during authentication. In general, the timestamp should be
within a reasonably tight tolerance of the current time (e.g., within X seconds) determined by
the authentication service 2815 and/or resource 2820. Because the timestamp is used to
authenticate the proxy device 2810 with the authentication service 2815 and/or resource
2820, the timestamp may also be used for verification by the client device 2805. A greater
tolerance threshold (e.g., X +Y seconds) may be used by the client device 2805 because the
client device 2805 and the proxy device 2810 might not be as closely synchronized in time as
the proxy device 2810 and the authentication service 2815. The client device 2805 may use
the timestamp information to verify that the authentication session is recent (e.g., within the

last minute, within the last day, etc.).

[0389] The context information may identify the type of authentication protocol being used
by the proxy device 2810 and resource/authentication server. For example, if Kerberos
authentication is used, the context information may identify Kerberos generally or
PKINIT/Kerberos if the PKINIT features of Kerberos are being used. As one example, “sign-
for-PKINIT” may be used. The context information may also identify the application
requesting the signature or the specific proxy device 2810 implementation. For example,
‘sign-for-PKINIT-by-NetScaler®’ or ‘sign-for-PKINIT-by-XenApp®’ may be used. If SSL
authentication is used, the context information may identify SSL. As one example, ‘sign-for-
SSL-client-authentication’ may be used. The context information may also identify which
SSL authentication operation the proxy device 2810 is performing (e.g., operation 1,

operation 2, etc.) and with which resource the proxy device 2810 is authenticating.

[0390] The context information may identify the certificate that the proxy device 2810
selected from the list of certificates provided by the client device 2805 (e.g., step 3026). By
providing the selected certificate, the client device 2805 may be able to figure out the type of

authentication protocol being used by the proxy device 2810 and the resource.

WO 2014/058640 PCT/US2013/062636
107

[0391] The context information may identify the data structure of the authentication
session, such as a Kerberos data structure or an SSL data structure. For example, the
Kerberos authentication session may comprise Abstract Syntax Notation 1 (ASN.1)
constructs, which the proxy device 2810 may identify via the context information. In
particular, an AuthPack, which may be part of the AS REQ, to be signed may have a well-
defined ASN.1 structure that the client device 2805 may recognize. For SSL authentication,

the data structure may comprise a CertificateVerify structure.

[0392] The context information may comprise specific pieces of information that the client
device 2805 may use to verify the authentication session. The specific pieces of information
can also be used to identify the data structure of the authentication session. For example, if
the authentication session comprises Kerberos authentication, the context information may
include, for example, a checksum associated with the Kerberos authentication, a Kerberos
domain used for the Kerberos authentication (e.g., the realm that a particular authentication
server serves), a Kerberos principal name associated with the client device 2805 (e.g., a
username assigned to the client device 2805), an identifier of a key distribution center (KDC)
used for the authentication session, a validity period of a requested ticket (e.g., a TGT ticket
or session ticket), and Kerberos flags that have been set during the authentication session
(c.g., based on the authentication messages so far exchanged between the proxy device 2810
and resource/authentication server). An example flag that the client device 2805 may verify is
a “forwardable” flag, which may indicate that the resulting ticket may be forwarded to
another device. As previously noted, a portion or the entirety of an AS REQ message to be
signed by the client device 2805 and to be sent to the resource/authentication server may be

sent to the client device 2805.

[0393] For SSL authentication, specific pieces of information alone might not be sufficient
for the client device 2805 to identify the context of the SSL authentication session between
the proxy device 2810 and the resource/authentication service. For example, the specific
pieces of information will look like random data to the client device 2805 because SSL
authentication creates hashes of an entire series of packets that have gone back and forth
between proxy device 2810 and the resource. Thus, in some embodiments, the context
information for SSL authentication may comprise the entire (or close to entire) authentication
conversation between the proxy device 2810 and the resource prior to requesting the
signature from the client device 2805. In other words, all of the SSL operations (e.g.,

handshake messages) may be provided to the client device 2805. The proxy device 2810

WO 2014/058640 PCT/US2013/062636
108

generates a cumulative digest of SSL operations performed. Accordingly, the client device
2805 may inspect any portion of the handshake that the client device 2805 wishes to inspect,
allowing the client device 2805 to ascertain the identity of the resource being accessed and to
confirm that the handshake is well-formed. In some aspects, the proxy device 2810 may
delegate the entire SSL handshake process to the client device 2805 over a certificate
operation interface. When the handshake is complete, the client device 2805 may supply a
Master Secret protected under the key exchange for the specialized communication channel

between the client and proxy.

[0394] In step 3032, the client device 2805 may receive the request for signature from the
proxy device 2810 and extract the context information included therein. For example, the
client device 2805 may decode and/or decrypt the request message. Examples of the context
information were previously listed. In step 3034, the client device 2805 may attempt to verify
the context information. The client device 2805 may use the context information to verify
that the authentication session between the proxy device 2810 and the resource/authentication
server is valid. For example, the client device 2805 may use the context information to
determine that the proxy device 2810 is communicating with the resource/authentication
server and the type of communication occurring between them. The client device 2805 may
be made aware of a relevant portion (or entirety) of the resource authentication protocol or
the proxy’s authentication context, sufficient for the client device 2805 to satisfy itself that,
for example, the resource being accessed is the intended one, the cryptographic operation
being requested is part of the expected protocol, and the results of the cryptographic
operation will be or can only be usefully used as part of the specific protocol interaction
between the proxy device 2810 and resource. For instance, the client device 2805 may inspect
the data (e.g., an AS REQ message for Kerberos authentication) the client device 2805 has
been asked to sign to ensure that the data (or appended data) corresponds to a well-known
structure used by that construct of the expected authentication protocol (e.g., Kerberos, SSL,
etc.). The data may also potentially include specific data elements that can be verified by the
client device 2805. Alternatively or additionally, the client device 2805 may look for a
recognizable and/or verifiable expected structure in the data before the client device 2805

provides a signature.

[0395] If the context information is not verified (step 3034: N), the client device 2805 may
send a message indicating that the context information could not be verified. For example, the

client device 2805 may send a response that does not include the requested signature. For

WO 2014/058640 PCT/US2013/062636
109

Kerberos authentication, the verification may fail if the timestamp is outside the tolerance
threshold set by the client device 2805. For SSL and Kerberos authentication, the client
device 2805 may perform certificate chain validation on the authentication/resource server
certificate, which may fail for any of a number of reasons. Certificate chain validation for
Kerberos may require a separate PK operation step (dealing with AS_REP, which is the reply
to AS_REQ). For SSL, the chain validation may be possible if the relevant portion of the SSL
authentication messages between proxy device 2810 and resource are sent to the client device

2805.

[0396] In some aspects, the client device 2805 may request additional context information
from the proxy device 2810 if the client device 2805 cannot verify based on the context
information already provided by the proxy device 2810. If the proxy device 2810 decides to
provide the additional context information, the proxy device 2810 may return to step 3030
and find additional context information to provide to the client device. The additional context
information may be of a different type of context information. For example, if the proxy
device 2810 previously provided information identifying the certificate that the proxy device
2810 sclected, the proxy device 2810 may provide specific information from the
authentication messages exchanged between the proxy device 2810 and the
resource/authentication server (e.g., the Kerberos flags set during a Kerberos authentication
session or handshake messages exchanged during an SSL authentication session). Instead of
sending a message without a signature, the client device 2805 might not respond to the proxy

device’s signature request.

[0397] In step 3038, the proxy device 2810 may generate a message indicating that a
signature is unavailable and forward the message to the resource/authentication server. In
step 3070, the resource/authentication server may determine that the proxy has not been
authenticated, and in response, may end the authentication session. In other words, the
resource/authentication server might not provide the Proxy with a session key (or a ticket in

the case of Kerberos).

[0398] The context information may be wverified (step 3034: Y). For Kerberos
authentication, verification may succeed if, for example, the received timestamp is within a
tolerance of the current time at the client device and/or if the checksum in received AuthPack
matches the checksum computed by the client device (in the case where AS REQ is supplied
as context information). If the context information is verified, in step 3042, the client device

2805 may sign the data provided by the proxy device 2810 using the certificate, which may

WO 2014/058640 PCT/US2013/062636
110

have been selected by the proxy device 2810 in step 3026. For example, for Kerberos
authentication, if the proxy device 2810 provided the unsigned AS REQ message to the
client device 2805 (e.g., in step 3030), the client device 2805 may sign the AS REQ
message. As previously noted, providing the unsigned AS REQ is optional. As an
alternative, for both Kerberos and SSL authentication, the data provided by the proxy device
2810 may comprise any chunk of data, such as a sequence of octets, on which the signature is
to be computed. After signing the data, the client device 2805 may send a message with the

signature and/or the signed data to the proxy device 2810 in step 3044.

[0399] In step 3046, the proxy device 2810 may receive the message and extract the
signature and/or signed data. For example, the signature (which may be another sequence of
octets) may be returned to the proxy device and inserted by the proxy device into the
appropriate authentication message to be sent to the resource or authentication service, as will
be discussed in further detail below. With reference to Figure 29, the Packet Engine 2920
may receive the message and forward the message to the Proxy SDK 2935. The Proxy SDK

2935 may provide the signature to the client-side authentication module 2930.

[0400] In step 3048, the proxy device 2810 may send an authentication message including
the signature to the resource/authentication server. The authentication message may be in
response to the request to authenticate sent by the resource/authentication server in step 3012.
In general, the authentication message may be used to obtain a session key for the proxy
device 2810 to obtain resources requested by the client device 2805. In Kerberos
authentication, for example, the authentication message may comprise an AS REQ message
used to obtain a session key and a ticket, such as a TGT, which the proxy device 2810 may
use to obtain tickets for a secured communication session with the resource. If the proxy
device 2810 received a signed AS REQ message from the client device 2805, the proxy
device 2810 may forward the signed AS REQ message to the resource/authentication server.
If the proxy device 2810 received the signature separately, the proxy device 2810 may
generate an AS REQ message and append the signature to the AS REQ message. In some
aspects, the AS REQ message may be encoded in the PA-PK-AS-REQ format, as described

in RFC 4556, which is herein incorporated by reference in its entirety.

[0401] In step 3050, the resource/authentication server may receive the authentication
message and determine whether the authentication message has a valid signature. If the

signature is not valid, the resource/authentication server may perform step 3070, which was

WO 2014/058640 PCT/US2013/062636
111

previously discussed (e.g., determine that the proxy device 2810 is not authentication and/or

end the authentication session with the proxy device 2810).

[0402] In step 3052, if the signature is valid (step 3050: Y), the resource/authentication
server may generate and/or send a session key to the proxy device 2810. In Kerberos
authentication, the resource/authentication server may also send a ticket, such as a TGT or a
service ticket, to the proxy device 2810. The session key and/or ticket may be encapsulated
using another key that the proxy device 2810 and/or the client device 2805 can decrypt. In

some aspects, the message may be sent as a Kerberos AS REP message.

[0403] In step 3053, the proxy device 2810 may receive the session key and/or ticket and
store (e.g., cache) the session key and/or ticket. They may be cached for later use. For
example, the session key and/or ticket may be used in the future if the client device 2805
requests additional resources. With reference to Figure 30A, the proxy device 2810 may
determine that a session key is available in step 3014 the next time the proxy device 2810
needs to obtain a resource for the client device 2805. With reference to Figure 29 and for
Kerberos authentication, the client-side authentication module 2930 may populate a Kerberos
ticket cache for user sessions with TGTs and/or service tickets and their corresponding

session keys.

[0404] In some embodiments, the proxy device 2810 might not have the key to decrypt the
message having the session key and/or ticket received from the resource/authentication
server. Instead, the client device 2805 may control access to the key, for example, if the client
device 2805 does not entirely trust the proxy device 2810. In these embodiments, the proxy
device 2810 and the client device 2805 may optionally exchange an additional set of
messages (e.g., in an additional certificate operation) to decrypt the encapsulated message
comprising the session key and/or ticket. The exchange may occur instead of the proxy

device 2810 decrypting and storing the session key and/or ticket in step 3053.

[0405] For example, in Kerberos authentication, PKINIT may use Diffie-Hellman key
exchange to negotiate an AS reply key for wrapping the TGT session key, as described in
section 3.2.3.1 in RFC 4556, which is incorporated by reference in its entirety. Alternatively,
public key encryption may be utilized by a KDC to encrypt an AS reply key it generates with
the certificate’s public RSA key, as described in section 3.2.3.2 in RFC 4556. This may force
the proxy device 2810 to request the client device 2805 to decrypt the reply key. In these

examples, the client device 2805 may choose to retain the reply key and other keys it protects

WO 2014/058640 PCT/US2013/062636
112

such as the TGT session key allowing it to control any use of the TGT to request further
tickets (and to control use of those service tickets as well if it wished). Thus, instead of the
proxy device 2810 storing the session key and/or ticket in step 3053, the client device 2805
may store the session key and/or ticket. This may be appropriate if the client device 2805 has

a moderate trust in the proxy device 2810, but not entire trust.

[0406] Further details on using public key encryption will now be described. If RSA public
key encryption is used to return the AS reply key, the proxy device 2810 may request
certificate private key decryption from the client device 2805 of a sub-structure in a data field
of the reply message with the session key and/or ticket received from the resource, such as an
encKeyPack field of a KRB-AS-REP reply message. A blob which results from decryption
by the client device 2805 may be a SignedData structure, as defined in section 5.1 of RFC
3852, which is incorporated herein by reference in its entirety. The SignedData struct may
have content type id-pkinit-rkeyData and a content field containing a ReplyKeyPack structure
as defined in section 3.2.3.2 of RFC4556. The signature field on SignedData may include the
KDC’s certificate allowing the client device 2805 to perform certificate path validation to
confirm the identity of the KDC. Accordingly, if RSA public key exchange is used, the client
device 2805 may have the ability to fully verify the identity of the KDC to which the proxy
device 2810 is authenticating. If Diffie-Hellman key exchange is used, the proxy device 2810
may see the KDC’s certificate and perform path validation. The proxy device 2810 may not

need to involve the client device 2805 in completing the key exchange.

[0407] Alternatively, the client device 2805 may have high trust in the proxy device 2810
and allow the proxy device 2810 to decrypt the message containing the session key and/or
ticket. In these embodiments, the proxy device may decrypt the message and store the session
key and/or ticket as previously described with respect to step 3053. For example, the proxy
device 2810 may control the Diffie-Hellman key exchange, allowing the proxy device 2810
to recover the session key (e.g., associated with a TGT) without further client device 2805
support. In this case, the proxy device 2810 may be granted unconstrained delegation
permissions by the client device 2805 as the proxy device 2810 can exercise full control of

the TGT.

[0408] Additionally or alternatively, the proxy device may utilize the Microsoft Active
Directory environment to obtain the session key and/or ticket. In a Microsoft Active
Directory environment, the proxy device 2810 may support an extension of the PKINIT

process that allows the proxy device 2810 to receive the user’s password hash (such as

WO 2014/058640 PCT/US2013/062636
113

NTLM credentials) from the domain controller. This allows the proxy device 2810 to respond
to NTLM authentication challenges as well as Kerberos authentication challenges. Unless the
client device retains the AS reply key in order to retain control over the TGT session key (as
previously described), no additional interaction between the proxy device 2810 and the client
device 2805 may be required to recover the NTLM password hash because it may be

encrypted with the same AS reply key used to convey the TGT session key.

[0409] In step 3054, the proxy device 2810 may obtain the requested resource using the
session key. In step 3056, a server or other database may provide the requested resource
based on the session key. For Kerberos authentication, the resource/authentication server may
have provided a TGT and an associated session key in step 3052. In this example, the proxy
device 2810 may perform inline authentication on behalf of the user of the client device 2805
by obtaining additional Kerberos service tickets for requested resources using the TGT. With
reference to Figure 29, the client-side authentication module 2930 may signal the Packet
Engine 2920 if PKINIT and Kerberos ticket fetching succeeded to retry the proxied HTTP
request to the resource. This may be performed when the session key/ticket cache is
populated. The Packet Engine 2920 may attach an Authorization header containing the
appropriate Kerberos binary structure (AP_REQ) generated from the service ticket and
session key to obtain the resource. As previously noted, the client device 2805 might not
entirely trust the proxy device 2810. In these examples, the client device 2805 may retain
possession of the TGT session key and may require the proxy device 2810 to interact with the
client device 2805 when requesting service tickets for individual resources. In this way, the
client device 2805 can ensure visibility of the identity of resources being accessed on its

behalf by the proxy device 2810.

[0410] In step 3058, once the proxy device 2810 obtains the resource, the proxy device
2810 may send the resource to the client device 2805. In step 3060, the client device 2805
may receive the requested resource and use it as desired, such as by accessing data or
services, such as enterprise data or services. As previously discussed, the data or services

may be encrypted in data vaults 616 to protect the data or services on the client device 2805.

[0411] In some embodiments, the client device 2805 may communicate with the resource
2820, such as Sharepoint, using a VPN tunnel (e.g., through the proxy device 2810) or other
type of communication channel. Instead of the proxy device 2810 receiving the resource
authentication challenge from the resource 2820 (e.g., in step 3014 illustrated in Fig. 30A),
the client device 2805 may receive the challenge via the VPN tunnel. The client device 2805

WO 2014/058640 PCT/US2013/062636
114

may establish a second parallel conversation with the proxy device 2810 (or communicate
with the proxy device over a previously established channel) to enable the proxy device 2810
to aid in authentication. This is beneficial because the client device 2805 might not have the
functionalities to perform certain types of authentication, such as Kerberos authentication.
During the second parallel conversation, the client device 2805 may present the resource
authentication challenge to the proxy device 2810. The proxy device 2810 may then
communicate with the authentication service 2815 (e.g., a KDC in the case of Kerberos
authentication) and obtain a session key (and Kerberos ticket in the case of Kerberos
authentication) needed for the client device 2805 to access the resource. At this point, the
steps performed among the client device 2805, proxy device 2810, and authentication service
2815 may include, for example, any of steps 3014, 3016, 3018, 3024, 3026, 3028, 3030,
3032, 3034, 3036, 3038, 3070, 3042, 3044, 3046, 3048, 3050, 3052, and/or 3053 previously
discussed in reference to Figs. 30A-C. After the proxy device 2810 receives the session key
and/or ticket from the authentication service 2815, the proxy device 2810 may return the key
and/or ticket to the client device 2805 over the secure communication channel between the
client device and the proxy device. The client device 2805 may now respond to the resource
authentication challenge received from the resource 2820 using the session key and/or ticket
and obtain the requested resource. Alternatively, instead of the proxy device 2810 returning
the key and/or ticket to the client device 2805, the proxy device 2810 may itself construct the
response to the resource authentication challenge and send the authentication response to the
client device 2805. The client device 2805 may forward the response to the resource 2820 to

obtain the requested resource.

[0412] The steps illustrated in figures 30A-C may be applied to signing documents, such as
emails or other document types, and/or to decrypting data that is protected by the certificate
private key. In the example of signing documents, the proxy device 2810 may provide the
client device 2805 with the document to be signed as the context information described

herein.

[0413] The steps illustrated in figures 30A-C may also be applied to a virtualization
environment, such as desktop and/or application virtualization. In a virtualization
environment, the client device 2805 may be running a virtualization application, such as the
client agent 604 illustrated in Figure 6 or any other client application used to establish a

remote display connection (e.g., CITRIX ICA, CITRIX RDP, ctc.). As previously noted, the

WO 2014/058640 PCT/US2013/062636
115

client device 2805 may still secure a private certificate, such as a key stored in a physical or

virtual smart card.

[0414] The proxy device 2810 may comprise or be part of an application or desktop
virtualization server, such as virtualization server 301 illustrated in Figure 3. Such servers
may run applications and may communicate with resources, such as enterprise resources.
Communications between the proxy device 2810 and the client device 2805 in a
virtualization environment may be handled over a display remoting protocol, such as CITRIX
ICA protocol or CITRIX RDP protocol. The resource may comprise the enterprise resources

504, 508, and/or 608 and/or the enterprise services 508 and/or 609 noted above.

[0415] In some embodiments, the steps illustrated in Figures 30A-C may be used for
virtualization environments. Alternatively, some changes may be made. HTTP
communications between the client device 2805 and the proxy device 2810 may be replaced
with communications utilizing a display remoting protocol, such as CITRIX ICA protocol or
CITRIX RDP protocol. The PKOp Proxy SDK 2935 may comprise a third party application.
Accordingly, steps performed by the PKOperation Proxy SDK 2935 described above may be
performed by a third party application. In some aspects, the proxy device 2810 may call out
to the third party application to perform these steps.

[0416] An example virtualization embodiment will now be described. A standard OS
Kerberos implementation where the virtualization server runs an OS, such as Microsoft
Windows, may be used. For example, Kerberos Security Service Provider (Kerberos SSP)
Authentication Package (SSP/AP) may be used. Various programming interfaces to the
Kerberos SSP may be utilized, including, but not limited to, LsaCallAuthenticationPackage
and KERB CERTIFICATE LOGON. A smart card equivalent client certificate, in
conjunction with a custom credential provider and custom key storage provider (KSP), may
be used to invoke the PKINIT Kerberos logon protocol previously discussed. The KSP may
be exposed to the specific protocol elements of PKINIT that can be signed with the private
key, such as the checksum of the AuthPack structure. Additionally, the Kerberos SSP may
use OS APIs to invoke cryptographic operations, such as the Hash API used to compute the
checksum which is an initial step in generating a signature. By intercepting the Hash API
calls made by the Kerberos SSP the protocol elements upon which signatures are to be
calculated can be seen. The Hash API calls can be intercepted by using a custom SSP which

18 loaded into the trusted LSASS process where the Kerberos SSP performs PKINIT.

WO 2014/058640 PCT/US2013/062636
116

[0417] As previously noted, the elements to be signed may comprise an AuthPack structure
described in section 3.2.1 of RFC4556. Furthermore, the protocol element may have some
well-formed structure, such as a structure that follows ASN.l1 binary encoding rules.
Additionally, the structure may include a timestamp which represents the current time,
allowing the client device 2805 to perform a basic validation check against the client device’s
own knowledge of the current time. To allow for time variances that may be likely in
practice, the client device 2805 may wish to allow a wider latitude of variance than, for
example, the authentication server (e.g., a KDC) will. For example, the client device 2805
may accept a time value that is within 24 hours of its own time value, rather than the 5

minutes which is what the KDC may allow.

[0418] In some embodiments, the KSP may reliably locate the KRB-REQ-BODY binary
structure which may have been prepared in the Kerberos SSP prior to invoking the certificate
sign operation which ultimately calls the KSP. If this structure can be located, such as from a
stack walk back to the Kerberos SSP, then a full validation of AuthPack may be possible.
Alternatively, by intercepting the OS Hash API calls made by the Kerberos SSP, to compute
a checksum of KRB-REQ BODY as part of the preparation of the AuthPack structure, the
KRB-REQ-BODY structure may be directly visible. A copy of the structure can then be sent
by the proxy device 2810 to the client device 2805 as part of the PK operation request.
Similarly the AuthPack structure may be visible to the Hash API as part of the signature
construction. As previously noted, a special communication channel between the client
device 2805 and the proxy device 2810 may comprise a custom GSS-API mechanism. In the
virtualization embodiment, the special communication channel may be inside a virtual
channel in the display remoting protocol. For example, a SSPI Virtual Channel may be used.
In some aspects, if a SSPI negotiation fails to complete authentication itself, other

authentication methods supported by the display remoting protocol can be used instead.

[0419] In some embodiments, the aspects described herein may be applied to CITRIX
XenApp® and/or XenDesktop®. XenApp® and XenDesktop® may support smart card
remoting using a smart card virtual channel that remotes a smart card reader interface (e.g., a
PC/SC). The aspects described herein may replace PC/SC remoting for the purpose of
Windows logon. The smart card may be accessed once the session has been established, for
instance to support applications that use the smart card to sign documents. This may be

achieved by appropriately configuring the smart card API hooks used by

WO 2014/058640 PCT/US2013/062636
117

XenApp®/XenDesktop®, causing them not to apply in the Windows Logon processes (e.g.,

winlogon.exe, logonui.exe, etc.), but still apply normally to other processes.

[0420] From the client device 2805’s perspective, the certificate operations that are
remoted may be associated with a particular form of PKINIT (e.g., ‘sign-for-PKINIT-from-
XenApp®’), and the smart card context used for PKINIT may be immediately released upon
conclusion so that application causes additional PIN prompts if required. Additionally or
alternatively, the smart card context may have been used prior to the PKINIT request, for
example by the client device 2805 to perform SSL with client certificate authentication to the
proxy device 2810 or to another device or server. In this way, a single PIN prompt may be
sufficient to enable authentication by the client device 2805 to a broker server which
identifies the proxy device 2810 to be used for the resource access operations (from a
plurality of devices that can perform this service). The selected proxy device 2810 may then
perform PKINIT without an additional PIN prompt and without having required explicit PIN
caching by the client device 2805. In the case of domain login to application or desktop
virtualization servers, a significant performance improvement may be achieved over
traditional methods of remote smart card authentication. Furthermore, this can be achieved

without needing to implement the full reader and smart card interface for a virtual smart card.

[0421] Various modifications to the aspects describe above can be made. Each entity (client
device 2805, proxy device 2810, authentication service 2815, and/or resource 2820) may be
made aware of the activities of the other entities. For example, each entity may be provided
with identifiers for one or more of the other entities. The identifiers may be provided during
any of the message exchanges previously described with respect to Figures 30A-C. For
example, the proxy device 2810 may inject information identifying the client device 2805
into the information packets that the proxy device 2810 sends to the resource/authentication
server. The proxy device 2810 may also inject information identifying the
resource/authentication server into the information packets the proxy device 2810 sends to
the client device 2805. In a similar manner, the type of client device 2805 (e.g., PC, tablet,
smartphone, etc.) may be provided to the other entities. In some aspects, Kerberos Protocol
Extensions (e.g., MS-KILE), as described in RFC 6113, which is hereby incorporated by
reference in its entirety, may be leveraged to make the activities of entities available to other
entities. By providing identification information to the resource 2820, the resource 2820 may

determine who is accessing data and/or also restrict access to data.

WO 2014/058640 PCT/US2013/062636
118

[0422] For the case of Kerberos, it is possible in some implementations (e.g., a Windows
Server 2012 implementation) to provide two principal identities during network service
authentication. The proxy device 2810 may use its own Kerberos identity (e.g., TGT) to
‘armor’ the TGS exchange, as described in the Microsoft Kerberos Protocol Extensions
documentation [MS-KILE] and RFC 6113. This technique is referred to as FAST, also
described in RFC 6113. A compound identity for the user/client device 2805 and proxy
device 2810 may be created. In Windows Server 2012, this compound identity may be
exposed to resources that operate on top of the Windows ACL framework, with the ability for
ACLs to inspect the machine identity and other claims. While a Windows Server 2012
implementation has been described, one of ordinary skill in the art would recognize that any

other implementations using different operating systems may be utilized.

[0423] The proxy device 2810 may use generalized claims mechanisms to also supply
information relating to the client device 2805 itself, which could reflect its identity (if known
from other means, such as device certificate authentication by SSL to the proxy device 2810)
or other relevant attributes of the device such as its type, OS, version, or security posture that
may be learned during the authentication or resource access process from client device 2805

to proxy device 2810.

[0424] Another modification to the aspects describe above may comprise adjusting a user
experience to notify the user of operations using the client certificate. Information that the
proxy device 2810 provides to the client device 2805 may be displayed to the user. In another
example, the display may indicate that the client device 2805 is in the middle of a logon
process, which may also utilize the client certificate. A PIN prompt may also be displayed,
such as for smart cards using Class 1 readers. More detailed displays to the user that
faithfully represents the operation to be conducted may be provided. For example, for signing
documents with the client certificate, the document may be displayed to the user for review.
A suitable summary indicator of a transaction to be performed may also be displayed.
Detailed displays may be utilized in any of the smart card reader classes, such as Class 4. In
some embodiments, the client device 2805 may simulate a smart card reader (or support

using such a reader if interacting with a physical smart card).

[0425] Unnecessary interactions with the user may be avoided. For example, the scope of
remoted certificate operations may be properly grouped (e.g., bounded), so that multiple
operations which are part of the same group (e.g., a group of operations using the same

resource authentication protocol) may be recognized as being part of the same group, and a

WO 2014/058640 PCT/US2013/062636
119

logical group may be created. In some aspects, one information display or prompt may be
displayed to the user for operations within the same group. Approximately speaking, this
logical grouping corresponds to obtaining and releasing a smart card context in the case of

traditional physical smart cards.
[0426] Application Management Framework for Secure Data Sharing

[0427] Improved techniques involve conveying data between secure applications running
on an electronic mobile device via a parallel, hidden encrypted pasteboard. Such a hidden
pasteboard is defined only to a set of secure (or “managed”) applications running on the
mobile device (e.g., via management policies). Moreover, all data is encrypted by the
managed app writing the data to the hidden pasteboard, and then decrypted by another
managed app reading the data from the hidden pasteboard thus preventing exposure of the

data even if the location of the hidden pasteboard is discovered.

[0428] One embodiment is directed to a method of conveying data between secure
applications running on the electronic mobile device which is performed in an electronic
mobile device having (i) processing circuitry and (ii)) memory. The method includes
receiving, by the processing circuitry, a copy command; and encrypting, by the processing
circuitry and in response to the copy command, original data from a first secure application to
form encrypted data. The method further includes writing, by the processing circuitry and in
response to the copy command, the encrypted data to a hidden pasteboard residing in the
memory to enable a second secure application to subsequently read and decrypt the encrypted
data from the hidden pasteboard, the hidden pasteboard residing at a location of the memory
which is different than that of a general clipboard residing in the memory, the general
clipboard being accessible by a set of unsecure applications running on the electronic mobile

device.

[0429] FIG. 31A shows an clectronic mobile device which is suitable for use in conveying
data between secure applications. The electronic mobile device includes, among other things,
a user interface for user input/output, memory to store data, and processing circuitry.
Examples of suitable mobile devices include smart phones, tablet devices, electronic
notebooks, and so on. In the context of smart phones, various specific platforms are suitable
for use such as those running iOS provided by Apple Computer, Android provided by
Google, and Windows provided by Microsoft are suitable.

WO 2014/058640 PCT/US2013/062636
120

[0430] During operation, the eclectronic mobile device responds to user commands by
performing operations such as launching applications, establishing connections to external
devices (e.g., cellular calls, WiFi connections, etc.) to exchange wireless signals, and
performing useful work. Along these lines, the processing circuitry of the electronic mobile

device runs a set of (i.c., one or more) unsecure applications, and a set of secure applications.

[0431] When the processing circuitry runs an unsecure application, the processing circuitry
is configured to access the general clipboard for copy and paste operations in a traditional
manner. For example, while the processing circuitry runs a first unsecure application, the user
is able to copy data from the first unsecure application to the general clipboard. Additionally,
the while the processing circuitry runs a second unsecure application, the user is able to paste
the copied data from the general clipboard into a workspace of the second unsecure

application.

[0432] However, as illustrated in FIG. 31B, the secure applications are configured to access
the hidden encrypted pasteboard. In particular, to perform a copy operation using a secure
application, the processing circuitry encrypts the data and then writes the encrypted data into
the pasteboard (bypassing the general clipboard). Furthermore, to perform a paste operation
using a secure application, the processing circuitry reads data from the hidden encrypted
pasteboard, and decrypts the data before placing the decrypted data into the workspace of that

secure application. Accordingly, the data is never exposed outside the secure applications.

[0433] In some arrangements, the mobile device is capable of inputting data from the
general clipboard into the secure applications. Along these lines and as shown in FIG. 31C,
copying of data into the general clipboard by an unsecure application creates a detectable
copy event. When the processing circuitry runs a secure application that receives an
indication of the copy event, the processing circuitry reads the data from the general
clipboard, encrypts the data to form encrypted data, and writes the encrypted data into the
hidden encrypted pasteboard. Accordingly, the data within the hidden encrypted pasteboard is
now synchronized with the data in the general clipboard and the secure applications which
have access to the hidden encrypted pasteboard may now access the data from the hidden
encrypted pasteboard. In some arrangements, the mobile device equips different groups of
secure applications to use different secure pasteboards. For example, the processing circuitry
may provide (i) a first memory address of the hidden pasteboard and a first set of
cryptographic keys to a first group of secure applications, (ii) a second memory address to

another hidden pasteboard and a second set of cryptographic keys to a second group of secure

WO 2014/058640 PCT/US2013/062636
121

applications, and so on. Such deployment and configuration of the secure applications may be
effectuated via management policies to group applications where the management policies

dictate a particular group, keys and pasteboard to each secure application.

[0434] While various embodiments of the present disclosure have been particularly shown
and described, it will be understood by those skilled in the art that various changes in form
and details may be made therein without departing from the spirit and scope of the present
disclosure as defined by the appended claims. Additionally, further details are provided in the

following materials which are appended this portion of the application.

[0435] Some arrangements are directed to a system to prevent sensitive data from being
shared outside of a managed set of applications. A company may wish to restrict data sharing
to this managed set of applications, allowing full bidirectional access, but also potentially
allowing incoming insecure data, such as text from a webpage, to be copied into one of the
managed applications. On modern operating systems such as i10S, Android and Windows,
there is a mechanism typically called the “pasteboard” or “clipboard” that is used to share
data between applications. The user can “copy” data from one application into the
pasteboard, and then “paste” it from the pasteboard into a second application. One problem is
that the data put into the pasteboard is not secured in any way, and sometimes there is a need
to secure it such that only a defined set of managed applications can share this data, hiding it
from other non-managed applications. Aspects of this disclosure are directed towards a
mechanism for redirecting copy and paste operations to a parallel encrypted pasteboard, that

only managed applications have access to.

[0436] In order to provide secure copy and paste functionality between a set of managed
applications, the circuitry redirects copy and paste operations to a parallel pasteboard. This
parallel pasteboard is hidden from general view by other applications, and all data written to
it is encrypted. Only managed applications know how to access this hidden, encrypted

pasteboard.

[0437] In addition, to allow the user to copy and paste data from insecure application to one
of the managed applications, a synchronization method monitors the unsecure pasteboard for

changes, and writes the changes to the secure pasteboard as needed.

[0438] Furthermore, in some cases a system administrator may choose to entirely disable

copy and paste functionality, either for a single application, a group of applications, or all

WO 2014/058640 PCT/US2013/062636
122

managed applications. This is achieved by adding appropriate management policy

enforcement points in the redirection code.

[0439] Also, there may be a need to have multiple application groups, each with its own
secure pasteboard. This is achieved by using management policies to group applications, and

then provide each group with their own separate secure pasteboard.
[0440] In some mobile devices:

1. Copy and paste between managed applications is totally secured by using a parallel,

hidden, encrypted pasteboard.

2. Synchronization with an unsecure pasteboard allows a user to copy and paste data

from an unsecure app into a secure app, but not vice versa.

3. Copy and paste functionality can be completely blocked based on management

policies set by a system administrator.
[0441] Additionally, depending on settings of particular management policies, applications
within a set of managed applications can be constrained to exchange files and/or data only
with other managed applications within the set. In some arrangements, API calls from a
managed application are intercepted by injected (or wrapped) code which operates to
‘contain’ the application. A particular management policy is read, and the operation specified
by the API call is either blocked or allowed depending on the settings in the management
policy. Because the management policy has a record of all applications in the set of managed
applications, the application, by reading the management policy, can test whether the
requested operation of the API call involves an application inside or outside the set, and allow
or block activity accordingly. Thus, based on management policy settings, movement of data
can be restricted such that data within the set of managed applications is not comingled with

data outside the managed set.

[0442] It is understood that a process of intercepting an API call, consulting an
application’s management policy, and allowing or blocking the operation specified by the
API call based on the management policy can be carried out in a number of contexts. In one
example, the above process can be applied for selecting a set of applications on the mobile
device that can be used to open a file or data element identified by a link or icon (e.g., using
Open- In). In another example, the above process can be applied for copying data or data
objects from one application and pasting the data or data objects into another application

(e.g., via a hidden, encrypted paste buffer). In yet another example, the above process can be

WO 2014/058640 PCT/US2013/062636
123

applied for moving files into and/or out of a protected file vault. Essentially, any operation

used to move data into and/or out of an application can make use of the above techniques.

[0443] On mobile operating systems, such as 10S, Android, and Windows 8, each
application runs in its own sandbox. These apps use a very high level content sharing
mechanism like Open In in 108, Intents/activities in Android and Charms in Windows8. On a
BYOD (bring your own device) mobile device, it will have a mix of managed and un-
managed/personal applications running on the device. Here, we focus on how to enable data

sharing among the managed set of applications.

[0444] On modern mobile operating systems like 108, the file system is not really exposed
to the end user by design to hide complexity. The focus is rather on the applications and the

data they handle.

[0445] There are many ways data can move in and out of the device. Primary examples
include email, cloud storage resources (e.g., ShareFile®, DropBox, GoogleDocs, Box),
browsers, etc. Then the data needs to be moved among the managed applications to get actual

work done.

[0446] In FIG. 31D, all of the displayed apps are managed applications, i.c., members of

the set 1 of managed applications.

[0447] To keep data moving among only managed applications, the Open In list provided
to the application is filtered by intercepting the call and presenting to the application only the
set of managed applications which can handle that particular file format. The same technique
is extended to Mail To option where the URL scheme used for Mail To could be intercepted
and presented with the option of Mail To with only a managed mail application as shown in

FI1G. 31D.

[0448] This way, even the managed applications could be forced to Save to only the
managed data sharing applications, like ShareFile®, DropBox, GoogleDocs, Box.

[0449] By using above interception and filtering technique, data flow in and out of the
device as well as on the device is limited to the managed secure space. The same techniques

could be easily extended to Android and Windows 8.

[0450] The drawing above presents a 3 app scenario: a corporate email application, a cloud
storage resource, and a pdf annotation application. A user may wish to get a file from the

cloud storage resource, annotate it with the PDF annotator, and pass it to the corporate email.

WO 2014/058640 PCT/US2013/062636
124

This can be made to work because these are all in the managed set. But it is also necessary to
prevent the file from going through private email, or to pass for viewing to other apps that are

not part of the managed set (and therefore trusted).

[0451] In general, there is no comingling of trusted apps and others, but comingling
depends on management policy. An admin on the EMM server can set management policies
for any task of managed application to allow/disallow features. It is possible that a
management policy could allow one to export a file from the PDF annotator to an app outside

the managed set, but then control over the of PDF file would be lost.

[0452] The general concept is that an admin sets the management policies of the managed
applications, with default settings being to contain data within the managed set of trusted
apps. The management policies are dynamically delivered from the EMM server. However,
exceptions can be provided, e.g., to allow content to leak out from the managed set, when

business concerns dictate it.

[0453] It is understood that for apps that are not part of the managed set, there is no

interference with normal activities, i.¢., they are unrestricted.

[0454] In an example, each application in the managed set creates its own VPN back to the
EMM server. The EMM client (e.g., a Citrix client agent) logs onto EMM server and
negotiates to construct a secure tunnel. Each application supports its own VPN tunnel to the
EMM server. Apps can connect directly to services on EMM server through VPN tunnel,

without requiring communications to pass through the EMM Client.

[0455] Improved techniques involve imposing control over managed applications which
have been derived from unmanaged applications. Once the managed applications have been
installed on electronic equipment such as electronic mobile devices, the managed applications
operate based on management policies which are updated locally on the mobile devices in a

routine manner.

[0456] For example, an application source such as an app store, a software developer, etc.
may operate as a repository of unmanaged apps (i.e., applications which are not under local
management policy control). An unmanaged app from the application source is then
decompiled, augmented with a set of instructions that impose control based on a set of
management policies, and then recompiled to form a managed application. The managed
application is then offered through an application source (e.g., the same app store, a different

app store, an enterprise application server, etc.) for use by mobile devices.

WO 2014/058640 PCT/US2013/062636
125

[0457] Once the managed application is installed on a mobile device, the managed
application accesses, and operates in accordance with, a set of management policies which
are separately maintained on the mobile device. Additionally, the managed application may
request an updated set of management policies from the application source and operate in

accordance with the updated set of management policies over time and in a routine manner.

[0458] Fig. 32 shows an electronic environment which is suitable for use. The electronic
environment includes an application source, a software converting equipment running a
specialized software utility, an application store server, and a mobile device (e.g., a smart

phone, a tablet, etc.).

[0459] It should be understood that the application source and the application store server
are shown as separate apparatus although, in some arrangements, they may be the same
apparatus. In some arrangements, users of mobile devices purchase managed applications
from the application store server, and the application store server operates as both a vehicle
for distributing the managed applications as well as a management policy server for
distributing management policies which control how the managed applications operate on the

mobile devices.

[0460] It should be understood that the various apparatus of the electronic environment are
computerized and communicate via electronic signals. For example, ecach computerized
apparatus may include a communications interface to connect to a communications medium
such as a network, memory to cache and/or persistently store information, and processing

circuitry to execute an operating system and local applications.

[0461] During operation, the conversion equipment runs a specialized software utility
which receives an unmanaged app from a software source (see step 1). The conversion
equipment, when running in accordance with the specialized software utility, decompiles the
unmanaged app into human readable source code. Then, the conversion equipment modifies
the human readable source code to include management policy control features. In particular,
the conversion equipment is constructed and arranged to analyze (e.g., scan and identify)
activities and appropriate locations to inject management policy-based control instructions
into the human readable source code. The conversion equipment then recompiles the human

readable source code to form a managed app.

[0462] The application store server then loads the managed apps from the conversion

equipment (see step 2) thus making the managed app available for distribution. Additionally,

WO 2014/058640 PCT/US2013/062636
126

an administrator provides management policies which control the operation of the managed
apps, and such management policies are also made available on the application store server

for distribution.

[0463] Users of mobile devices are able to browse apps offered by the application store
server via application store apps installed on the mobile devices. When a user of a mobile
device wishes to acquire a managed app (e.g., via a purchase), the user directs the application
store app on the mobile device to request the managed app (see step 3). The application store
server response to the app request by providing the managed app to the mobile device (see

step 4).

[0464] The user then installs the managed app on the mobile device (see step). Such
installation may be automatically triggered by the application store app (e.g., the application
store app automatically directs the operating system to install the managed app), or manually

coordinated by the user.

[0465] When the user initially invokes the managed app, the manage app communicates
with the application store app to obtain a set of management policies (see step 6). Such a set
of management policies may have been provided to the application store app from the
application store server during purchase. However, if the set of management policies is not
present, the application store app sends a management policy request to the application store
server for a set of management policies (see step 7). In response to the management policy
request, the application store server provides the set of management policies to the mobile
device (see step 8). It should be understood that the set of management policies and the

managed app are separate software constructs.

[0466] At this point, the managed app is able to run in accordance with the set of
management policies and thus enable the user to perform useful work (see step 9). Along
these lines, the set of management policies may dictate times in which the managed app is to
request an updated set of management policies. For example, the set of management policies
may direct the managed app to obtain a new set of management policies daily, every two or

three days, and so on.

[0467] When the managed app requires a new set of management policies, the managed
app signals the application store app to retrieve the new set of management policies from the
application store server (see step 6 again). That is, the application store app operates as a

proxy and obtains the new set of management policies from the application store server on

WO 2014/058640 PCT/US2013/062636
127

behalf of the managed app. In some arrangements, the mobile device runs multiple managed
apps, and the same application store app communicates with the application store server on
behalf of each managed app. One embodiment is directed to a method of generating a
managed application from an unmanaged application. The method includes receiving, by
processing circuitry, an unmanaged application from an application source, the unmanaged
application being constructed and arranged to execute on a mobile device. The method
further includes decompiling, by the processing circuitry, the unmanaged application into
unmanaged source code which is human readable and editable. The method further includes
adding, by the processing circuitry, a set of management policy-based control instructions to
the unmanaged source code to form managed source code, the set of management policy-
based control instructions being constructed and arranged to provide management policy-
based control. The method further includes compiling, by the processing circuitry, the
managed source code to form a managed application which, when executed on a mobile
device, is constructed and arranged to access and operate in accordance with a set of

management policies which is separately stored on the mobile device.

[0468] Examples of suitable processing circuitry includes particular hardware of various
software development platforms such as servers, general purpose computers, client
workstations, and so on. Such platforms may be equipped with various software development
tools including compilers, linkers, libraries, editors, debuggers, other runtime environment

and test utilities, and so on.

[0469] Another embodiment is directed to a method of operating an electronic mobile
device. The method includes receiving, by a processor of the electronic mobile device, a
managed application from an application server during a first communication, the managed
application being constructed and arranged to access and operate in accordance with a set of
management policies. The method further includes receiving, by the processor, the set of
management policies from the application server during a second communication which is
different than the first communication, the set of management policies being stored on the
electronic mobile device separately from the managed application. The method further
includes running, by the processor, the managed application on the mobile device, the
managed application accessing and operating in accordance with the set of management
policies which is stored on the clectronic mobile device separately from the managed

application.

WO 2014/058640 PCT/US2013/062636
128

[0470] Other embodiments are directed to electronic systems and apparatus, processing
circuits, computer program products, and so on. Some embodiments are directed to various
processes, electronic components and circuitry which are involved in generating, deploying

and operating managed apps derived from unmanaged apps.

[0471] While various embodiments of the present disclosure have been particularly shown
and described, it will be understood by those skilled in the art that various changes in form
and details may be made therein without departing from the spirit and scope of the present

disclosure as defined by the appended claims.

[0472] For example, it should be understood that mobile devices allow users to purchase
and download applications for their device from an external Web Site or Service commonly
referred to as an application store (e.g., StorcFront). The application that browses these
application store services may be known as an application store app or storefront application.
Once the application store app has downloaded and installed an application, typically
management of that application may cease. For example, loss of entitlement to the
application, or changes to the allowed uses of the application, may not be maintained or
enforced. Once the application is installed on a device, the enterprise or corporation that

distributed it may lose the ability to control access to the application.

[0473] Many vendors offer conventional solutions that manage the entire device. For
example, a user wishing to install managed applications must first enroll their device into a
corporate Mobile Device Management system (MDM). These MDM services usually require
strict adherence to corporate security management policies, forcing the user to comply if they
want to install the applications. In addition, by enrolling their device in an MDM system,
often times the user must relinquish his/her control over certain aspects of their device, such

as the ability to not have a passcode or password set.

[0474] Many employees would prefer to use their own devices but without enrolling their
device in some MDM service. Accordingly, what is needed is a way for Corporations to

manage Applications on unmanaged devices.

[0475] Improved techniques discussed within this disclosure provide a means by which a
corporation can add management to applications and distribute those applications to

unmanaged devices.

[0476] Some techniques are directed to a system and method for adding management to

applications that are to be distributed to unmanaged devices. The system includes an

WO 2014/058640 PCT/US2013/062636
129

Application running on a mobile device that acts as an application store app for downloading
and installing other applications from one or more Sites or Services acting as an application
store. The system further includes a Software Utility, which takes as input an unmanaged
application and outputs the same application with additional management software added.
The system further includes a set of security management policies or rules that control how

the managed application is expected to operate.

[0477] Some techniques are directed to methods which involve an administrator generating
a managed application by submitting an unmanaged application to the Software Utility. The
method includes the Software Utility decompiling the original application into byte code. The
method further includes modification of the byte code to inject the management software and
components. The method further includes recompiling the modified application into a new
and managed version of the application. The method further includes the managed
application being posted to an application store and made available for download and install
by the application store app. The method further includes the managed application
periodically contacting the application store app to confirm entitlement and to refresh the

security management policies.

[0478] Some improved techniques provide a means for an enterprise to provide managed
applications to unmanaged devices, alleviating the need to enroll the device into Mobile
Device Management Systems. Some improved techniques provide a means by which an
Enterprise can distribute and control access to specific applications and data on devices that
are not in its direct control, even if those applications were originally written with no

management software included.

[0479] Some techniques are directed to a Software Utility (and associated methods) which
dynamically injects management code into existing unmanaged applications. In this way,
even applications that were originally developer without any management software can be

added to the list of Enterprise Managed applications.

[0480] Furthermore, the application store app now acts as an Authentication and Security
Management Policy management application. This extends the intent and use for a
conventional storefront application in an improved way, allowing for management of specific

applications on unmanaged devices.

[0481] Alternative conventional approaches usually involve either device management

(where the entire device is enrolled into a management system) or rewriting applications with

WO 2014/058640 PCT/US2013/062636
130

specific management components added as part of the core design of the application.
However, with the above-described improved techniques, control may be imposed and
dynamically updated via management policies which are routinely deployed locally to the

mobile devices to direct the operation of the managed apps.
[0482] Enterprise Application Storefront

[0483] As described above with reference to FIG. 5, an enterprise mobility technical
architecture may include an application store. An enterprise application store interface may,
for example, generate one or more user interfaces and/or cause the one or more user
interfaces to be displayed (e.g., on a mobile device, such as the computing device from which
the identity credential was received). In one or more arrangements, the enterprise application
store interface may enable a user, such as a user of a mobile device who may be accessing the
enterprise application store to browse and/or download various applications. The enterprise
application store interface may, for instance, be configured by one or more administrative
users to include various features that may be specific to the organization or other enterprise
that has deployed and/or is implementing the enterprise application store. For example, the
enterprise application store interface may include a listing of one or more applications that
are available to (and/or have been chosen, recommended, and/or licensed for) employees of
the organization or enterprise (and/or other enterprise users who may be otherwise affiliated
with the organization or enterprise). In addition, the one or more applications that are
presented to a particular user (e.g., in a listing of applications included in the enterprise
application store interface) may be selected by the enterprise application store based on the
identity of the user. In some instances, an enterprise application store interface that is
presented to a first user by an enterprise application store (which may, e.g., be provided by a
first organization to employees and/or other users affiliated with the organization) may
include a first set of applications, while an enterprise application store interface that is
presented to a second user (who may, e.g., be different from the first user in terms of identity,
role, etc.) by the enterprise application store may include a second set of applications
different from the first set of applications. For instance, the second set of applications may
include one or more applications that are selected by the enterprise application store for the
second user based on a determination, by the enterprise application store, that the
application(s) are recommended for and/or more appropriate for the second user (e.g., and

perhaps not for the first user).

WO 2014/058640 PCT/US2013/062636
131

[0484] A request for an application may be received. For example, the enterprise
application store may receive a request for a software application. For instance, the enterprise
application store may receive a request from a computing device to download and/or
otherwise provide a particular application that is available in the enterprise application store
to the computing device. Such a request may, for instance, be received based on a user of the
computing device (which may, e.g., be a mobile device, such as a smart phone, tablet
computer, or other mobile computing device) selecting and/or requesting to download a
particular application from the enterprise application store using the enterprise application

store interface.

[0485] The application may be configured for operation at the computing device. For
example, the enterprise application store may configure the software application based on
credentials received from the computing device. In configuring the application, the enterprise
application store may, for instance, establish one or more user-specific settings, apply one or
more management policies, and/or otherwise modify generic and/or default settings of the
application to be provided based on, e.g., received credentials as well as the identity, access

rights, and/or privileges of the user.

[0486] For instance, in some embodiments, configuring the software application may
include establishing one or more user-specific settings. For example, various application-
specific settings may be defined and/or stored (e.g., for certain users with respect to various
different applications) in one or more data sources, and in establishing user-specific settings,
the enterprise application store may look up, access, and/or otherwise obtain these settings
from the one or more data sources based on information or credentials received from the user.
For instance, the enterprise application store may use the information and/or credentials to
authenticate with the one or more data sources and to identify the particular user’s

application-specific settings (e.g., based on the user identity) in the one or more data sources.

[0487] Some examples of the user-specific settings that may be established by the
enterprise application store include user account settings that may be set for a particular
application (e.g., an email client, a web browser, document management software, etc.),
network and/or connection settings that may be set for a particular application (e.g., an email
client, a web browser, etc.), custom dictionary settings that may be set for a particular
application (e.g., a word processor, an email client, etc.), custom view and/or display settings
that may be set for a particular application (e.g., a word processor, a spreadsheet tool, an

email client, document management software, etc.). Other examples of the user-specific

WO 2014/058640 PCT/US2013/062636
132

settings that may be established by the enterprise application stored based on an identity
credential include user interface settings (e.g., color settings, theme settings, etc.), language
settings, time zone settings, currency settings, and/or other settings. While these examples
illustrate some of the types of settings that may be established in some embodiments, as well
as some of the types of applications for which some settings may be established, in additional
and/or alternative embodiments, any other types of user-specific settings may be established

for any of these and/or other types of applications.

[0488] In some embodiments, in configuring the software application, the application store
may minimally configure an application, and subsequently, in providing the application to the
recipient device, the application store may provide the minimally configured application to
the recipient device. In some instances, a minimally configured application may be an
application that has not been fully configured by the enterprise application store before it is
provided to the recipient device. In other instances, in minimally configuring the application,
the application store may, for example, establish one or more settings that may be essential to
enabling functionality of the application (e.g., network and/or connection settings for a
browser application or email client application) without establishing one or more settings that
may be non-essential to enabling such functionality (e.g., color theme settings and/or other
user interface settings for the browser application or email client application). In one or more
arrangements, the non-essential settings instead may be established (and the applying may be
fully configured) on the recipient device at runtime (e.g., when the application is executed,
for instance, on the mobile device) and/or after runtime (e.g., as may be needed as a particular

aspect of the application is invoked).

[0489] In some embodiments, the configured software application that is provided to the
recipient device may be a stub application that corresponds to a virtualized application. For
example, the stub application may provide a container or a client agent (which may, e.g., be
provided on a user computing device) for a virtualized application that is executed on one or
more remote servers and/or devices. In configuring such a stub application, the enterprise
application store may establish one or more settings that facilitate execution of the virtualized
application for the particular user (e.g., user account settings for the virtualized application
and/or a virtualization platform, network and/or connecting settings for the virtualized

application and/or a virtualization platform, etc.).

[0490] In some embodiments, the enterprise application store may also automatically

provide applications to a device. For example, in instances in which the enterprise application

WO 2014/058640 PCT/US2013/062636
133

store determines that certain devices and/or users are in need of certain applications (e.g.,
based on download history information for various applications and users, based on update
and/or version history information for various applications and/or users, based on information
provided by on-device monitoring agents for various devices and/or users, etc.), the
enterprise application store may automatically provide the one or more needed applications to
a particular device and/or user responsive to a determination that the user or device needs the
application (e.g., without the user of such a device manually selecting to download the
particular needed applications). Additional aspects regarding the enterprise application store

will be appreciated with the benefit of this disclosure.

[0491] Operation of Applications and Devices Having Multiple Operation Modes in an

Orchestration Framework for Connected Devices

[0492] Systems and methods for cross-device coordination are described above as well as
systems and methods for managing enterprise resources at computing devices. It will thus be
appreciated with the benefit of this disclosure that a user may desire to interconnect both
managed and unmanaged computing devices via an orchestration framework such that the
computing devices can interact in a coordinated way to perform at least a portion of a
computing activity. In addition, a set of interconnected and coordinated devices may include
both managed and unmanaged applications. Therefore, a need exists for managing computing
devices, applications, and other enterprise resources that are configurable to operate in a

managed or an unmanaged mode.

[0493] FIGS. 33-37 illustrate flowcharts of example method steps for managing
interactions between interconnected computing devices based on the operation mode of the
computing devices. In particular, FIGS. 33-35 illustrate respective flowcharts 3300, 3400,
and 3500 of example method steps for transferring content between computing devices based
on the operation mode of the computing device. FIG. 36 is a flowchart 3600 of example
method steps for determining whether to permit a computing device to copy to or paste from
a virtual clipboard based on the operation mode of the computing device. FIG. 37 is a
flowchart 3700 of example method steps for identifying a set of computing devices available
for sclection as a destination computing device to transfer content to. The various steps
illustrated in the flowcharts of FIGS. 33—-37 are described in further detail below. It will also
be appreciated that the steps are shown by way of example only and that the principles
disclosed in the flowcharts may be similarly applicable to applications residing at the

computing devices and the operation modes of the applications.

WO 2014/058640 PCT/US2013/062636
134

[0494] As described above, a user may utilize an orchestration framework to transfer
content from one computing device associated with the user to another computing device
associated with the user. The content may also be transferred between computing devices in a
peer-to-peer fashion. As described above, content transferred between computing devices
may include document-based content, image-based content, video-based content, audio-based
content, and web-based content. When the orchestration framework facilitates the transfer of
the content between computing devices, the orchestration framework may determine whether
transfer of content between computing devices is permitted based on operation mode which
may include, e.g., a managed operation mode, an unmanaged operation mode, and a partially

managed operation mode.

[0495] Whether and how the content is allowed to be transferred from one computing
device (the originating computing device) to another computing device (the destination
computing device) may depend on the operation mode of the originating computing device
and the operation mode of the destination computing device. Likewise, the transfer of content
from the originating computing device to the destination computing device may also depend
on the operation mode of an originating application installed at the originating computing
device and a destination application installed at the destination computing device. The
transfer of content between computing devices may further depend on the operation modes of

both the computing devices and the applications.

[0496] For example, if the originating computing device is in a managed operation mode,
the orchestration framework may determine that transfer of the content to a destination device
that is also in a managed operation mode is permitted. In this way, an enterprise may retain
control over the content at both the originating computing device and the destination
computing device. In a similar fashion, if the content is transferred from a managed
application at the originating computing device, then the orchestration framework may
determine transfer of the content to an application that is also in a managed operation mode at
the destination computing device is permitted. If the orchestration framework determines
transfer of the content between the computing devices based on operation mode is permitted,
then the orchestration framework may initiate and facilitate the transfer of the content as
described above. In a peer-to-peer communication context, the orchestration agent at the
computing device may determine whether transfer of the content to another computing device
is permitted and initiate and facilitate the transfer in response to a determination that the

transfer is permitted. The orchestration framework (or orchestration agent) may initiate and

WO 2014/058640 PCT/US2013/062636
135

facilitate the transfer of content by providing one or more instructions to the computing
device selected to receive the content, e.g., to the orchestration agent or the application

resolver of the destination computing device.

[0497] If the orchestration framework (or orchestration agent) determines that the transfer
is not permitted, then the orchestration framework may block the transfer. The orchestration
framework may block the transfer by, e.g., denying a request to initiate the transfer, refrain
from initiating the transfer, or otherwise prevent the transfer from occurring by carrying out

some action or not carrying out some action.

[0498] In some example implementations, the transfer of content between computing
devices may be permitted when the computing devices are both in the same operation mode.
For example, if both computing devices are in a managed operation mode, then the transfer of
content between those devices may be permitted. Similarly, if both computing devices are in
an unmanaged operation mode, then the transfer of content between those devices may be
permitted. In other example implementations, the transfer of content between computing
devices may not be permitted where each computing device is configured with a different
operation mode. For example, the transfer of content between computing devices may not be
permitted where one of the computing devices is in a managed (or partially managed)

operation mode and one of the computing devices is in an unmanaged operation mode.

[0499] In further example implementations, however, transfer of content between
computing devices having different operation modes may be permitted depending on which
device is the originating computing device and which device is the destination computing
device. In particular, transfer of content from an originating computing device in an
unmanaged operation mode to a destination computing device in a managed (or partially
managed) operation mode may be permitted. This may be because content residing at an
unmanaged computing device has not been designated as sensitive content and thus may be
received at, utilized by, access by, and presented by either a managed, partially managed, or
unmanaged computing device. In contrast, transfer of content from an originating computing
device in a managed (or partially managed) operation mode to a destination computing

device in an unmanaged operation mode may not be permitted.

[0500] The principles described above are similarly applicable to the applications residing
at the same or different computing devices. Transfer of content from applications that are

cach in the same operation mode may be permitted while transfer of content from

WO 2014/058640 PCT/US2013/062636
136

applications in different operation modes may not be permitted. Additionally, transfer of
content from an unmanaged application to a managed (or partially managed) application may
be permitted while transfer of content from a managed (or partially managed) application to

an unmanaged application may not be permitted.

[0501] In some example implementations, the orchestration framework may instruct the
destination device or destination application to change operation modes before initiating and
facilitating the transfer of the content. For example, if the originating device is in a managed
operation mode and the orchestration framework determines that the destination device is in
an unmanaged operation mode, then the orchestration framework may provide an instruction
to the destination device instructing the destination device to change its operation mode to the
managed operation mode. The orchestration framework may similarly instruct the destination
application to change the operation mode of the destination application from an unmanaged

operation mode to a managed operation mode.

[0502] As also described above, the orchestration framework may provide a virtual
clipboard that enables computing devices to share and transfer content by copying to and
pasting from the virtual clipboard. Whether a computing device or application has access to
the virtual clipboard may also depend on the managed operation mode of the computing
device or application. If the computing device or application is in an unmanaged mode, for
example, then a request to copy content to the virtual clipboard may be denied. In this way,
the orchestration framework (or orchestration agent) may block the computing device or
application from copying to the virtual clipboard. In a similar fashion, a request to paste
content from the virtual clipboard may be denied in response to a determination that the
computing device or application is in the unmanaged mode. In this way, the orchestration
framework (or orchestration agent) may block the computing device or application from
pasting from the virtual clipboard. If, however, the computing device or application is in a
managed operation mode, then the orchestration framework (or orchestration agent) may
permit the computing device or application to copy content to the virtual clipboard and paste
content from the virtual clipboard. A partially managed operation mode may, in some
example implementations, be treated as a managed operation mode when making the various

determinations described above.

[0503] As described in detail above, a user at a first computing device may select content
(e.g., a video) to be shared. Having selected the content, the user may then select a second

computing device (e.g., a display screen) to transfer the content to. The first computing

WO 2014/058640 PCT/US2013/062636
137

device may then submit to the orchestration framework a request to transfer the content. The
request may identify the content to transfer as well as the computing device to transfer the
content to. As described above, the orchestration framework may determine whether the
content is permitted to be transferred to the identified computing device and initiate and

facilitate the transfer of content in response to a determination that the transfer is permitted.

[0504] The user may select the destination computing device or application from a list of
computing devices or a list of applications presented to the user at the first computing device.
In some example implementations, the list of computing devices or applications may include
cach computing device and application associated with and accessible by the first computing
device. In other example implementations, the list of computing devices or list of applications
may be dynamically determined based on the operation mode of the first computing device or
an application at the first computing device. For example, the orchestration framework may
determine that the first computing device is in a managed operation mode and notify the first
computing device of the other computing devices and applications that are also in a managed
operation mode. In this way, the list of computing devices and applications presented to the
user as available for selection as a destination for the content includes only those computing

devices and applications that the first computing devices is permitted to transfer content to.

[0505] The orchestration framework may also be configured to initiate launch of an
application that is capable of presenting the content at the destination computing device, e.g.,
via the application resolver. The orchestration framework may also provide an instruction to
the second computing device instructing the second computing device to configure the
application in one of the operation modes. For example, the orchestration framework may
receive a request to transfer content from the first computing device to the second computing
device and determine that the first computing device is in a managed operation mode. The
orchestration framework may thus instruct the second computing device to configure the
application to also be in the managed operation mode before initiating and facilitating
transfer of the content. In some example implementations, the orchestration framework may
block launch of an application at the second computing device in response to a determination
that the first computing device and the second computing device are in different operation

modes.

[0506] It will be appreciated that the steps set forth by way of example in FIGS. 33—-37 may
be similarly applicable with respect to functionality of applications at the computing devices.

In particular, a user may initiate a computing activity at one application residing at a

WO 2014/058640 PCT/US2013/062636
138

computing device and request via the orchestration framework that a portion of that
computing activity be performed by another application at another computing device. The
orchestration framework may determine whether to fulfill the request based on the operation
modes of the applications. The orchestration framework may not fulfill the request unless
cach application is in the same operation mode, e.g., unless both applications are in a
managed operation mode or unless both applications are in an unmanaged operation mode. In
some example implementations, therefore, the orchestration framework may permit the
second application to perform at least a portion of the activity where each of the applications
are in the same operation mode. In these example implementations, the orchestration
framework may not permit, block, or otherwise prevent the second application from
performing at least a portion of the computing activity when the respective operation modes

of the first and second application are different.

[0507] In other example implementations, the orchestration framework may fulfill the
request and permit the second application to perform at least a portion of the computing
activity where the first application is in an unmanaged operation mode and the second
application is in a managed operation mode. The orchestration may also determine whether to
permit the second application to perform at least a portion of the computing activity based on

the respective operation modes of the first and second computing devices.

[0508] Moreover, the orchestration framework may configure corresponding applications at
respective computing devices based on the operation modes of the computing devices. If a
first computing device includes an application and a second computing device includes a
matching application, then the orchestration framework may enable or disable functionality
of the applications based on the operation mode of one of the applications or based on the
operation mode of one of the computing devices. For example, the orchestration framework
may determine that the first application is in a managed operation mode and identify enabled
functionality and disabled functionality at the first application. The orchestration framework,
in this example, may then enable and disable the same functionality of the second application
at the second computing device. The orchestration framework may also set the operation
mode of the second application to match the operation mode of the first application.
Moreover, the orchestration framework may enable or disable functionality of an application

based on the operation mode of a computing device at which the application resides.

[0509] To provide a specific example, two computing devices may be interconnected via

the orchestration framework, and each computing device may include a document editing

WO 2014/058640 PCT/US2013/062636
139

application. The document editing application at one of the computing devices may be in a
managed operation mode, and a save feature of the document editing application may be
disabled. The orchestration framework may thus set the operation mode of the other
document editing application at the other computing device to the managed operation mode
and also disable the save feature of the other document editing application. Additional and

alternative examples will be appreciated.

[0510] The orchestration framework may maintain a management policy that governs the
transfer of content between devices. The management policy may indicate, for example,
contexts in which transfer of the content is or is not permitted, launch of an application

should or should not be performed, and so forth.

[0511] Managing Dynamic Management Policies and Settings in an Orchestration

Framework for Connected Devices

[0512] In addition to systems and methods for cross-device coordination, the description
above also describes aspects of device management policies as well as application
management policies. Aspects of device management and application management may thus
also be applied in the context of computing devices interconnected via an orchestration
framework that coordinates operation of a computing activity across the interconnected
devices. Device management and application management may be performed when the
devices are connected through an orchestration framework or when the devices are connected

in a peer-to-peer fashion.

[0513] FIGS. 38-41 illustrate flowcharts of example method steps for obtaining
management policies and applying the management policies to manage the interactions
between the computing devices. In particular, FIG. 38 is a flowchart 3800 of example method
steps for obtaining a management policy and distributing the management policy among
interconnected computing devices. FIG. 39 is a flowchart 3900 of example method steps for
applying a management policy to determine whether a computing device is permitted to
access an enterprise resource, share that enterprise resource with another computing device,
and transfer content from the enterprise resource to the other computing device. FIG. 40 is a
flowchart 4000 of example method steps for applying a management policy to manage the
transfer of content between interconnected computing devices. FIG. 41 is a flowchart 4100 of
example method steps for applying a management policy to determine whether a user is

permitted to connect a new computing device via the orchestration framework. The various

WO 2014/058640 PCT/US2013/062636
140

steps illustrated in the flowcharts of FIGS. 38—41 are described in further detail below. It will
also be appreciated that the steps are shown by way of example only and that the principles
disclosed in the flowcharts may be similarly applicable to applications residing at the
computing devices and the use of management policies to control operation of the of the

applications.

[0514] In general, an orchestration framework may be configured to connect computing
devices and manage the interaction between those computing devices such that computing
activities are coordinated across the interconnected computing devices. The orchestration
framework may maintain and apply a management policy that governs the interaction
between the computing devices. The management policy may indicate the contexts in which
various interactions are permitted and the contexts in which various interactions are not
permitted. In particular, the orchestration framework may apply the management policy in
response to receipt of a request from a first computing device to interact with a second
computing device. Through the management policy, the orchestration framework may
determine whether a requested interaction is or is not permitted. If the management policy
indicates that the requested interaction is permitted, then the orchestration framework may
approve the request and initiate and facilitate the interaction. If, however, the management
policy indicates that the requested interaction is not permitted, then the orchestration
framework may deny the request and block or prevent the interaction between the computing
devices. As shown above, interaction may include, e.g., the transfer of content from one
computing device to a second computing device. The orchestration framework may initiate
and facilitate the interaction by providing one or more instructions to the computing devices,
e.g., to the respective application resolvers or corresponding orchestration agents at the

computing devices.

[0515] In some example implementations, the management policy may indicate whether a
computing device may access an enterprise resource, share the enterprise resource with
another computing device, or transfer content to another computing device. If the
management policy indicates that a first computing device is permitted to access or share the
enterprise resource or transfer content to another computing device, then the orchestration
framework may permit and facilitate the access or sharing of the enterprise resource or the
transfer of the content. If, however, the management policy indicates that the first computing
device is not permitted to access or share the enterprise resource or transfer the content, then

the orchestration framework may block or otherwise prevent the access or sharing of the

WO 2014/058640 PCT/US2013/062636
141

enterprise resource or transfer of the content. For example, the management policy may
permit a computing device of a first type to access an enterprise resource but not permit a
computing device of a second type to access the enterprise resource. As another example, the
management policy may permit a computing device to share the enterprise resource with
another computing device of a first type but not permit the computing device to share the
enterprise resource with another computing device of a second type. As a further example,
the management policy may permit a computing device to transfer content to another
computing device of a first type but not permit the computing device to transfer content to
another computing device of a second type. Device type may be based on, e.g., the type of
machine (desktop computer, laptop computer, tablet computer, mobile phone, etc.), the

operating system at the device (i0S, Android, etc.), and other device-based criteria.

[0516] In addition, the management policy may indicate whether content is permitted to be
transferred between computing devices based on content type. Content type may include,
e.g., a document content type, an image content type, an audio content type, a video content
type, and a web content type. As an example, the management policy may permit a
computing device to transfer video content to a large display screen and may not permit video

content to be transferred to a mobile phone.

[0517] Furthermore, the management policy may indicate whether an application is
permitted to be launched at one of the computing devices connected to the orchestration
framework (e.g., via a cloud server using a client-server communication session between
orchestration agents using a peer-to-peer communication session). If, for example, the
orchestration framework receives a request to transfer content from a first computing device
to a second computing device, the orchestration framework may identify an application at the
second computing device that is capable of presenting the content. The orchestration
framework may then determine whether the management policy permits the application to be
launched at the second computing device. If the management policy permits the application
to be launched at the second computing device, then the orchestration framework may initiate
launch of the application at the second computing device. If, however, the management
policy does not permit the application to be launched at the second computing device, then
the orchestration framework may block or otherwise prevent launch of the application at the
second computing device. The orchestration framework may notify the first computing
device that the request was denied so that the first computing device may select a new

computing device to transfer the content to if desired.

WO 2014/058640 PCT/US2013/062636
142

[0518] In some example implementations, the management policy may indicate a class of
applications that are or are not permitted to be launched at a computing device. Accordingly,
the orchestration framework may initiate launch of an application of a first application class
when the management policy indicates that applications in that application class are permitted
to be launched at a computing device. The orchestration framework may also block or
otherwise prevent launch of an application in a second application class when the
management policy indicates that the applications in that application class are not permitted
to be launched at the computing device. As an example the management policy may indicate
that all applications capable of presenting video content are not permitted to be launched at a

computing device.

[0519] Also in some example implementations, the management policy may include rules
that apply to all interconnected computing devices as well as management policies that apply
to individual computing devices. For example, the management policy may indicate that all
computing devices are not permitted to launch a web browser application. As another
example, the management policy may indicate that a specific computing device is not
permitted to launch a video application. The management policy may identify the computing
devices using a unique identifier associated with the computing device such as an IP address
or MAC address. Furthermore, the rules of the management policy may indicate whether
computing devices are permitted to interact based on the user associated with the
interconnected computing devices or a user role associated with a user. For example, the
management policy may indicate that all of the computing devices associated with a
particular user are not permitted present audio content. Examples of user roles may include,
e.g., presenter, participant, listener, etc. The management policy may thus indicate the
interactions that are or are not permitted based on user role. As another example, the
management policy may permit a user assigned the user role of presenter to transfer content
between interconnected devices but not permit a user assigned the user role of listener to

transfer content between interconnected devices.

[0520] If the management policy indicates that an application is not permitted to be
launched at a computing device, the orchestration framework may be configured to initiate a
client agent at the computing device instead of the application. The orchestration framework
may also initiate configuration of the client agent with a virtual application that is capable of

presenting the transferred content. In this way, the orchestration framework may facilitate the

WO 2014/058640 PCT/US2013/062636
143

transfer and presentation of content at a computing device that is not permitted to launch a

native application to present the content.

[0521] Additionally or alternatively, the orchestration framework may attempt to locate a
computing device that is capable of presenting the content and that the management policy
permits to present the content. If, for example, the management policy indicates that a
selected computing device is not permitted to present the content, then the orchestration
framework may initiate an attempt to locate a computing device at which to present the
content instead. The orchestration framework may determine whether a replacement
computing device includes an application that is capable of presenting the content and
whether the management policy permits the replacement computing device to present the
content. If the orchestration framework locates a replacement computing device that is
capable of and permitted to present the content, then the orchestration framework may initiate

the transfer of the content to the replacement computing device as described above.

[0522] The orchestration framework may also provide a management interface that
includes various controls that allow an administrative user to create, modify, and delete
management policies. The controls of the management interface may also allow an
administrative user to create, modify, and delete respective rules for the various management
policies maintained by the orchestration framework. The management interface may be
implemented as, e.g., a desktop application, a mobile application, a web-based application,

and the like.

[0523] In addition to managing the interactions between devices, the management policy
may be used to manage the interconnection of devices to the orchestration framework or the
interconnection of devices in a peer-to-peer fashion. In this regard, the management policy
may indicate a maximum number of devices that a single user may interconnect. If the user
requests interconnection of a device that would exceed the maximum permitted number of
devices, then the request may be denied, and the user may be prevented from interconnecting
the additional device. Similarly, the management policy may indicate whether a user is
permitted to interconnect a device based on device type. For example, the management policy
may indicate that the user is permitted to interconnect a tablet computer but not permitted to
interconnect a mobile phone. As mentioned above, the management policy may indicate the
types of interactions a user is permitted to perform and the types of interactions a user is not
permitted to perform. For example, the management policy may indicate whether or not a

user is permitted to transfer content to another computing device and whether the user is

WO 2014/058640 PCT/US2013/062636
144

permitted to receive transferred content from another computing device. The management
policy may include rules that are globally applicable to all users, to users of a particular user

role or group, to individual users, and combinations of such.

[0524] The management policy may also be configured with rules regarding devices
located at a common physical location. As described above, during a meeting a set of devices
may be interconnected to help conduct the meeting. As noted above, an orchestration
framework may interconnect the devices at the common meeting room location, and such
devices may include, e.g., a television display for presenting video content, a mobile phone
device to act as a speaker and present video content, and tablet computing devices for
presenting a slide presentation. In this example context, the management policy may include
rules indicating that computing devices determined to be at a common physical location are
permitted to interact while computing devices that are not located at the common physical
location are not permitted to interact. The management criteria may utilize the location of a
computing device in combination with other criteria described above. For example, the
management policy may indicate that even though a device is not located at the same location
as the other devices connected to the orchestration framework, the computing device is
permitted to interact with the other devices if the computing device is associated with a
specific user or a user have a specific user role. It will be appreciated with the benefit of this
disclosure that the management policy may include additional and alternative permutations
and combinations of criteria that indicate whether a device can connect to the orchestration
framework, whether the device can interact with other devices connected to the orchestration

framework, and how the device may interact with those other interconnected devices.

[0525] Controlling Device Access to Enterprise Resources in an Orchestration

Framework for Connected Devices

[0526] Systems and methods for managing data vaults at computing devices and the
content stored in those data vaults are described in conjunction with systems and methods for
cross-device coordination. It will thus be appreciated aspects of data vault and content
management may also be applied where computing devices are interconnected via an
orchestration framework through a cloud service or in a peer-to-peer fashion. The
orchestration framework may coordinate operation of a computing activity across the
interconnected computing devices such that the computing devices each perform at least a
portion of a computing activity. In particular, aspects of data vault management may be

applied when transferring content from a first computing device (the originating computing

WO 2014/058640 PCT/US2013/062636
145

device) to a second computing device (the destination computing device). Additionally,
aspects of content management may be applied to selectively wipe content that has been
transferred between devices. In this way, an enterprise may control sensitive content shared

between coordinated devices.

[0527] FIGS. 4245 illustrate flowcharts of example method steps for managing the storage
of content at data vaults of interconnected computing devices. In particular, FIGS. 42-43 are
respective flowcharts 4200 and 4300 of example method steps for transferring content
between computing devices based on a data vault type of a data vault that stores the content
at the computing devices. FIG. 44 is a flowchart 4400 of example method steps for carrying
out an instruction to wipe content respectively stored at interconnected computing devices.
FIG. 45 is a flowchart of example method steps for identifying a set of computing devices
available for selection as a destination computing device based on the respective data vault
types of data vaults at the computing devices. The various steps illustrated in the flowcharts
of FIGS. 42-45 are described in further detail below. It will also be appreciated that the steps
are shown by way of example only and that the principles disclosed in the flowcharts may be
similarly applicable to applications residing at the computing devices and managing the

storage of content transferred between applications.

[0528] In general, an orchestration framework may receive a request to transfer content
from an originating device to a destination device. The orchestration framework may identify
a data vault that stores the content at the originating computing device. As described above,
the data vault may be encrypted or unencrypted and thus referred to as an encrypted data

vault or an unencrypted data vault respectively.

[0529] The orchestration framework may thus instruct the destination device how the
content should be stored at the destination computing device when transferred to the
destination computing device. For example, the enterprise may require that sensitive data at
the originating computing device be stored at an encrypted data vault. Accordingly, if the
orchestration framework determines that the data to transfer is stored at an encrypted data
store, the orchestration framework may instruct the destination computing device to also store
the transferred content in an encrypted data store at the destination computing device. If the
orchestration framework determines that the originating computing device stores the
transferred content in an unencrypted data vault, then the orchestration framework may
instruct the destination computing device to also store the content in an unencrypted

computing device. It will be appreciated that the originating computing device may store

WO 2014/058640 PCT/US2013/062636
146

content in the unencrypted data vault because the content has not been designated as sensitive
content. Accordingly, in some example implementations, the destination computing device
may choose to store the content either in an encrypted data vault or an unencrypted data

vault.

[0530] Before transferring the content to the destination computing device, the originating
computing device may encrypt the content with an encryption key as described above. The
originating computing device may also provide the encryption key to the destination
computing device such that the destination computing device can decrypt the transferred

content.

[0531] In some example implementations, the orchestration framework may receive a
request to transfer content from an originating computing device to a destination computing
device. In response to receipt of the request, the orchestration framework may determine
whether the destination computing device includes an appropriate data vault the second
computing device may store the content in. For example, if the originating computing device
stores the content in an encrypted data store, then the orchestration framework may determine
whether the destination computing device also includes an encrypted data store. If the
orchestration framework, in this example, determines that the destination computing device
includes an encrypted data store, then the orchestration framework may initiate and facilitate
transfer of the content from the originating computing device to the destination computing
device. The orchestration framework may initiate and facilitate the transfer of the content by

providing one or more instructions to the computing devices.

[0532] If, however, the orchestration framework determines that the destination computing
device, in this example, does not include an encrypted data vault, then the orchestration
framework may block or otherwise prevent the transfer of the content from the orchestration
computing device to the destination computing device. In some example implementations,
the orchestration framework may be configured to locate a replacement computing device to
receive the content to be transferred in response to a determination that the destination
computing device does not include an encrypted data vault to store the content. In this
example, the orchestration framework may locate a computing device that does include an
encrypted data store and select the replacement computing device to receive the content. The
orchestration framework may thus initiate and facilitate the transfer of the content from the
originating computing device to the replacement computing device selected to receive the

content.

WO 2014/058640 PCT/US2013/062636
147

[0533] As described above the cloud service and orchestration agents may advantageously
provide for cross-device coordination where sensitive content is transferred between
computing devices. An enterprise, however, may desire to control the various computing
devices that store sensitive content. Accordingly, the cloud service (or orchestration agent)
may issue instructions to any computing devices that receive the content instructing those
computing device to delete the content. As described above, such instructions may be
referred to as a selective wipe instruction. In response to receipt of the instruction, a
computing device may delete at least a portion of the content stored at its data vaults. The
instruction may be a general wipe instruction such that a computing device deletes the
content in both the unencrypted data vault and the encrypted data vault. The instruction may
be relatively more targeted indicating that only content in the encrypted data vault should be
deleted. If the computing device includes multiple encrypted data vaults the instruction may
identify a particular data vault content should be deleted from. In some example
implementations, the instruction may be target particular content stored at a data vault such
that the computing device only deletes from the data vault the content identified in the
instruction. Furthermore, the instruction may instruct the computing device to delete all of the

content stored in the data store or only a portion of the content stored in the data store.

[0534] It will also be appreciated that various computing devices (e.g., the cloud data
storage provider may store the content as it is transferred between the originating computing
device and the destination computing device. Accordingly, the orchestration framework may
be configured to provide a wipe instruction to each computing device along the path between
the originating computing device and the destination computing device such that the
transferred content may be wiped from each potential computing device that may store the

content.

[0535] As described above, a user at a computing device may select content stored in an
encrypted data vault to transfer to another computing device. In some example
implementations, the orchestration framework may identify a set of computing devices that
also include encrypted data vaults and provide a list of those computing devices to the
computing device. The list may thus include one or more computing devices available for
selection as the destination computing device because the computing devices listed include an
encrypted data vault to store the transferred content. Correspondingly, the list may exclude
any computing devices that do not have an encrypted data store to store the transferred

content. In this way, the orchestration framework may control which computing devices are

WO 2014/058640 PCT/US2013/062636
148

available for selection to transfer content to based on the types of data vaults at those
computing devices. The user may thus select one of the computing devices in the list, and the
orchestration framework may initiate and facilitate the transfer of the content to the selected

computing device.

[0536] In some example implementations, a computing device may include multiple data
stores that are separate and distinct from one another. For example, a computing device may
include a data vault that is a dedicated areca of storage physically isolated from other data
stores of the computing device. More particularly, a computing device may include main data
stores of read-only and random access memory for carrying out typical computing operations.
The computing device, in this example, may also include a data vault that is physically
separate and distinct from the main data stores in order to allow for secure management of the
computing device, applications at the computing device, and any sensitive or confidential

resources residing at the computing device.
[0537] Single Sign-On Access in an Orchestration Framework for Connected Devices

[0538] Along with systems and methods for cross-device coordination, systems and
methods for authenticating computing devices are described above. As described above, a
computing device may request authentication in order to access an enterprise resource. If the
computing device is successfully authenticated, the computing device may be provided with
access credentials that allow the computing device to access and utilize the enterprise
resource. In the context of cross-device coordination, access credentials may be provided to
multiple computing devices interconnected via an orchestration framework such that the
interconnected computing devices may also access the enterprise resource when performing

at least a portion of a computing activity.

[0539] FIGS. 46-47 illustrate flowcharts of example method steps for obtaining SSO
credentials for interconnected computing devices in order to enable the computing devices to
access an enterprise resource. In particular, FIGS. 4647 are respective flowcharts 4600 and
4700 of example method steps for obtaining SSO credentials for interconnected computing
devices. The various steps illustrated in the flowcharts of FIGS. 4647 are described in
further detail below. It will also be appreciated that the steps are shown by way of example
only and that the principles disclosed in the flowcharts may be similarly applicable to
applications residing at the computing devices and obtaining SSO credentials for applications

such that the applications are enabled to access enterprise resources.

WO 2014/058640 PCT/US2013/062636
149

[0540] In general, multiple computing devices may be interconnected through an
orchestration framework in a client-server fashion through an orchestration agent at a
computing device communication with a cloud server or in a peer-to-peer fashion through
respective orchestration agents at the computing devices communicating with each other.
Multiple interconnected computing devices may be associated with one another, e.g., through
an association with a common user. The interconnected computing devices may interact with
one another, e.g., to exchange content. A proxy may be configured to authenticate a
computing device and provide the computing device with a single sign-on (SSO) credential to

acCess an enterprise resource.

[0541] A computing device may submit to the proxy a request to access the enterprise
resource. A resource manager may manage access to one or more enterprise resources. The
proxy may thus request access credentials from the resource manager on behalf of the
computing device in order to obtain access credentials for the computing device as described
above. In response to receipt of the request, the proxy may initiate authentication of the
computing device to determine whether the computing device is permitted to access the
enterprise resource. Upon successful authentication, the proxy may provide the computing
device (the authenticated computing device) with an SSO credential received from the
resource manager. The computing device may thus access the enterprise resource using the
SSO credential. The proxy may request and the computing device may provide a unique
identifier that the SSO credential is based on. As described above, the unique identifier may
be, e.g., a signature of the computing device, and the SSO credential may be, e.g., a session

key.

[0542] In a cross-device coordination context, a user may desire that each of the
interconnected computing devices also have access to the enterprise resource. Accordingly,
after a computing device is authenticated and enabled to access an enterprise resource, one or
more additional computing devices may automatically enabled to access the enterprise
resource as well. In some example implementations, the SSO credential may be provided to
another one of the computing devices such that the other computing device is enabled to
access the enterprise resource using the SSO credential. The SSO credential may be provided
to one, some or all of the computing devices associated with the authenticated computing
device. In this way, one computing device may be authenticated and enabled to access the
enterprise resource, and the computing devices associated with the computing device may

automatically be provided with the access credentials used to access the enterprise resource.

WO 2014/058640 PCT/US2013/062636
150

The orchestration framework may initiate the transfer of the SSO credential to a computing
device. In other example implementations, additional computing devices may be enabled to
access the enterprise resource by obtaining individual SSO credentials for each computing
device to be enabled to access the enterprise resource. Furthermore, the computing device
itself may access the enterprise resource using the SSO credential or the proxy may access

the enterprise resource using the SSO credential on behalf of the computing device.

[0543] As an example, a first computing device (an originating computing device) may
transfer content to a second computing device (a destination computing device). As described
above, the originating computing device may store the content at a file storage service and
initiate a notification to the destination computing device that the content is available from
the file storage service. Upon receipt of the notification, the destination computing device
may retrieve the content from the file storage service. In this example, the originating
computing device may receive an SSO credential that enables the originating computing
device to access the file storage service. The originating computing device may thus access
the file storage service using the SSO credential in order to store the content to transfer to the
destination computing device. The SSO credential may then be provided to the destination
computing device, and the destination computing device may utilize the SSO credential to

access the file storage service and retrieve the transferred content.

[0544] A computing device may establish one or more user settings based on the SSO
credential. Upon sharing the SSO credential with another computing device one or more
matching user settings may also be established at the other computing device. In this way,
interconnected computing devices may be similarly configured for accessing enterprise
resources using the SSO credential. In a similar fashion, configuration settings of an
application at a computing device may be set based on the SSO credential. The SSO
credential may thus be provided to another one of the computing devices such that a
corresponding application may be configured with matching settings based on the SSO
credential. Additionally, the orchestration framework may maintain a list that identifies the
computing devices. The orchestration framework may also maintain a list that identifies
respective login credentials associated with the computing devices connected to the
orchestration framework. Furthermore, the orchestration framework may apply one or more
management policies to the computing devices or the applications at the computing devices

based on the SSO credential. In some example implementations, the orchestration framework

WO 2014/058640 PCT/US2013/062636
151

may sclect a management policy to apply based on a user role associated with the SSO

credential.

[0545] As also described above, an originating computing device may initiate transfer of
content to a destination computing device. In some situations, however, the destination
computing device may not include an application capable of presenting the computing
resource. In response to a determination that the destination computing device does not
include an application capable of presenting the transferred content, a client agent may be
launched at the destination computing device. The client agent may also be configured with a
virtual application capable of presenting the computing device. In order to enable the client
agent or the virtual application to access the enterprise resource, the SSO credential may be

provided to the client agent at the destination computing device.

[0546] The orchestration framework may also be employed to ensure consistency of SSO
credentials between corresponding applications operating at respective computing devices.
For example, SSO credentials may periodically timeout, and a user may re-login to obtain
new SSO credentials. Upon receipt of the new SSO credentials after re-login, the
orchestration framework may broadcast the new SSO credentials to other interconnected
computing devices and applications at those computing devices. In this way, new SSO
credentials received at one computing device may be automatically kept consistent and made
available to associated computing devices and applications for continued coordination of

computing activities in a scamless fashion.

[0547] Application Management Framework for Secure Data Sharing in an

Orchestration Framework for Connected Devices

[0548] Systems and methods for cross-device coordination among interconnected
computing devices are described above in addition to systems and methods for applying
management policies to applications at computing devices and convey data between those
applications. It will thus be appreciated that aspects of management policy configuration and
inter-process communications may be applied in the cross-device coordination context. In
particular, management policies may be respectively applied at computing devices that are
interconnected via an orchestration framework that coordinates operation of a computing

activity across the interconnected computing devices.

[0549] FIGS. 48-50 illustrate flowcharts of example method steps for using policy agents

and management policies to manage operation of interconnected computing devices. In

WO 2014/058640 PCT/US2013/062636
152

particular, FIGS. 48—49 are respective flowcharts 4800 and 4900 of example method steps for
providing a management policy to interconnected computing devices. FIG. 50 is a flowchart
5000 of example method steps for transferring content from one computing device subject to
a management policy to another computing device subject to a management policy. The
various steps illustrated in the flowcharts of FIGS. 48-50 are described in further detail
below. It will also be appreciated that the steps are shown by way of example only and that
the principles disclosed in the flowcharts may be similarly applicable to applications residing
at the computing devices and using policy agents and management policies to manage

operation of applications subject to the policy agents.

[0550] An orchestration framework may interconnect one or more computing devices and
facilitate interaction between those computing devices as described above. Additionally, a set
of computing devices may be interconnected in a peer-to-peer fashion in which an
orchestration agent facilitates interaction between the computing devices. A policy agent at
the computing devices may be in signal communication with a policy manager. In some
example implementations, the policy manager may be located remote from the policy agent,
e.g., at the orchestration framework. The policy agent may utilize a management policy
received from the policy manager to control the operation and functionality of the various
applications residing at the computing devices. As described in detail above, the policy agent
may be an application wrapper that wraps an application at a computing device. Accordingly,
a computing device may include multiple policy agents as the respective application
wrappings of the applications at the computing device. In other example implementations, the
policy agent may be a management policy enforcement agent that resides at the computing
device distinct from the applications. When an application is subject to a policy agent that
controls operation of the application, the application may be referred to as a managed
application. If the application is not subject to a policy agent, then the application may be

referred to as an unmanaged application.

[0551] The policy manager may provide one or more management policies to the
interconnected computing devices. The policy agents at the computing devices may thus
apply the management policies to permit the applications to carry out various functionality or
prevent the applications from carrying the functionality. The management policies may be
global management policies that apply to all of the interconnected computing devices or
applications or that apply to individual computing devices or applications as described in

detail above. An orchestration framework may provide a management policy configuration

WO 2014/058640 PCT/US2013/062636
153

interface that provides controls allowing an administrative user to add, modify, or delete
management policy information. For example, the administrative user may create new
management policies or modify existing management policies with updated management

policy information.

[0552] In a cross-device coordination context, it may be desired that interconnected
computing devices operate with respect to the same management policies. For example, it
may be desired that each computing device associated with a user operate under a common
management policy that is configured for the user role of the user. Accordingly, a policy
agent of a computing device may request a management policy from the policy manager, and
the policy manager may provide the computing device with a requested management policy
when the management policy is available. If the requested management policy is not
available, the policy manager may notify the computing device that the requested

management policy is not available.

[0553] In some example implementations, the policy agent may request indication of
whether it has the most up-to-date management policy, in other words, whether the policy
manager includes updated management policy information, e.g., a new or updated
management policy. If the policy manager does include updated management policy
information, then the policy agent may request the update management policy information
from the policy manager. As noted above, the policy manager may provide update
management policy information to a policy agent at a computing device in response to receipt
of a request from the policy agent at the policy manager. In some example implementations,
however, the policy manager may push the updated management policy information to the
policy agent in response to receipt of the updated management policy information at the
policy manager. In this way, the policy agents at the computing devices may receive the

management policies without requesting them from the policy manager.

[0554] The policy agent may monitor the applications at a computing device and request
the management policy in response to a determination that an application has launched at the
computing device. The policy agent may request and receive updated management policy
information when it is available from the policy manager as described above. In this way, the
policy agent may ensure that it has the most up-to-date management policies before the

application is permitted to operate, e.g., to access enterprise resources.

WO 2014/058640 PCT/US2013/062636
154

[0555] In order to consistently apply the management policy to the computing devices
associated with a user, the requested management policy may also be provided to one or more
of the interconnected computing devices associated with the user. Accordingly, in response to
receipt of a request for a management policy, the policy manager may identify the computing
devices associated with the computing device that requested the management policy. The
policy manager may then initiate transfer of the requested management policy to at least one
of the computing devices associated with the computing device that requested the

management policy.

[0556] The policy agents at the computing devices may thus apply the management policy
to manage interaction between the interconnected computing devices. For example, a policy
agent may manage the interaction between one application at a first computing device and a
second application at another computing device. A policy agent may also apply the
management policy to manage communications between applications at the same computing

device.

[0557] As described above, interconnected computing devices may exchange content such
that content residing at one computing device (the originating computing device) may be
provided to a second computing device (the destination computing device). The destination
computing device may thus present the transferred content at an application at the second
computing device. Accordingly, the orchestration framework may receive a request from the
originating computing device to present content at an application at a destination device. The
policy agent may thus determine whether the application at the destination computing device
is subject to a policy agent. If the application at the destination device is not subject to a
policy agent (e.g., if the application is an unmanaged application), then the policy agent may
block or otherwise prevent the originating computing device from transferring the content to
the destination computing device. If, however, the application at the destination device is
subject to a policy agent (e.g., if the application is a managed application), then the
orchestration framework may initiate and facilitate transfer of the content to the destination
application. In this way, an enterprise may ensure that content is only transferred between

devices and applications that include policy agents in order to control the use of that content.

[0558] In some example implementations, the orchestration framework may attempt to
locate another application at the destination computing device that is subject to a policy
agent. If another application subject to a policy agent is located at the destination computing

device, then transfer of the content to that application may be initiated. In other example

WO 2014/058640 PCT/US2013/062636
155

implementations, the orchestration framework may attempt to locate another application at a
different computing device associated with the originating computing device. If a different
computing device that includes an application that is subject to a policy agent is located, then
that computing device may be selected as the destination device to send the transferred

content to.

[0559] If the destination computing device does not include an application that is capable
of presenting the transferred content and that is subject to a policy agent, a client agent
subject to a policy agent may be launched at the destination device. The client agent may thus
be configured with a virtual application that is capable of presenting the transferred content,

and the transferred content may be provided to the virtual application for presentation.

[0560] As described above, a user may select content at a computing device to be presented
at another computing connected to the computing device. Upon selection of the content to
transfer, a list may be displayed listing computing devices available for selection as the
destination computing device. The user may then select one of the computing devices from
the list, and the content may be transferred to the selected computing device for presentation.
In some example implementations, an orchestration framework may identify applications at
the connected computing devices that are subject to policy agents and applications at the
connected computing devices that are not subject to policy agents. The orchestration
framework may thus indicate to the originating computing device the applications at the
connected computing devices that are and are not subject to a policy agent. Accordingly, the
list of computing devices available for selection as the destination computing device may
include computing devices that are subject to a policy agent and exclude computing devices
that are not subject to a policy agent. In this way, the list of computing may, in some
examples, only display computing devices that include applications capable of presenting the

selected content and that are subject to a policy agent.

[0561] Enterprise Application Store for Orchestration Framework for Connected

Devices

[0562] An enterprise application store for delivering applications to computing devices is
also described above. Aspects of the enterprise application store may be applied in the cross-
device coordination context. In particular, an orchestration framework may interconnect
multiple computing devices such that the orchestration framework coordinates a computing

activity across the computing devices. The computing devices may also be connected to an

WO 2014/058640 PCT/US2013/062636
156

enterprise application store that delivers applications to the interconnected computing devices
in order to enable computing devices to perform at least a portion of the computing activity.

The interconnected computing devices may be associated with a common user.

[0563] FIGS. 51-52 illustrate flowcharts of example method steps for coordinating
computing activities across computing devices interconnected via an orchestration framework
and connected to an application store. In particular, FIG. 51 is a flowchart 5100 of example
method steps for coordinating operation of a computing at activity at multiple computing
devices interconnected through the orchestration framework. FIG. 52 is a flowchart of
example method steps for selecting an interconnected computing device to perform at least a
portion of the computing activity. Furthermore, an enterprise application store may be
utilized to deliver applications to interconnected computing devices in order to equip those
computing devices with applications to perform at least a portion of the computing activity It
will also be appreciated that the steps are shown by way of example only and that the
principles disclosed in the flowcharts may be similarly applicable to computing devices
interconnected via the orchestration framework using a client-server communication session

or a peer-to-peer communication session.

[0564] The enterprise application store may deliver applications to the computing devices
interconnected via the orchestration framework as noted above. A user may access the
application store from one computing device and select an application to be downloaded to
that computing device or another computing device associated with that computing device
and interconnected with that computing device via the orchestration framework. The
orchestration framework may also automatically identify and provide applications to
computing devices in order to enable those computing devices to perform at least a portion of
a coordinated computing activity. It will be appreciated that the virtual workspace may also
prepare applications as managed applications before delivering the applications to a
computing device. The enterprise application store may also deliver management policies to
the interconnected computing devices for managing operation of the computing devices and
managed applications at those computing devices. If, for example, the application to provide
the destination computing device is an unmanaged application, the enterprise application
store may modify the unmanaged application to include a policy agent as described above
such that the unmanaged application becomes a managed application. The policy agent may
thus enforce one or more management policies during operation of the managed application

at the destination computing device.

WO 2014/058640 PCT/US2013/062636
157

[0565] As noted above, the application store may automatically provide applications to the
interconnected computing devices in order to coordinate operation of a computing activity
across the computing devices. When a computing device (an originating computing device)
submits a request to perform at least a portion of a computing activity at another computing
device (a destination computing device), the orchestration framework may determine whether
the destination computing device includes an application that is capable of performing the
computing activity. If the destination computing device does not include an application that is
capable of performing the computing activity, then the application store may identify an
application available from the application store that is capable of performing the computing
activity and initiate download of the application to the destination computing device. The
destination computing device may thus utilize the received application to perform at least a

portion of the computing activity.

[0566] In one example, a user may interconnect via an orchestration framework a tablet
computer, a television display device, and a mobile telephone during a presentation. The user
may desire to obtain an audio recording of the presentation and may desire to use a
microphone at the mobile telephone to record the audio. The user may submit from the tablet
computer a request via the orchestration framework to record audio using the mobile
telephone. The mobile telephone may not include an audio recording application however.
Accordingly, the orchestration framework may query the enterprise application store to
identify a mobile telephone application that is capable of recording audio and that is
permitted to be received and launched at the mobile telephone. The orchestration framework
may thus initiate a download of the audio recording application from the application store to
the mobile phone. In some instances, the enterprise application store may prepare the audio
recording application as a managed application and provide the management policies to the
mobile phone along with the application. Having received the audio recording application,
the mobile phone may record the presentation for the user and, e.g., transfer the audio
recording via the orchestration framework to the tablet computer at the conclusion of the
presentation. The management policy may also indicate that the audio recording application
be deleted from the mobile telephone at the conclusion of the presentation, and the
application store may track which application are provided to which computing devices.
Accordingly, the orchestration framework may, through the management policies and a

selective wipe feature described above, ensure that applications automatically provided by the

WO 2014/058640 PCT/US2013/062636
158

application store do not reside at destination computing devices longer than needed to

perform a desired computing activity.

[0567] The enterprise application store may also be configured to recommend applications
for delivery to computing devices based on the type of computing device or, additionally or
alternatively, the capabilities of the computing device. For example, if a computing device is
capable of presenting video content (e.g., includes a video output device), then the
application store may recommend video output applications for delivery to the computing
device. As another example, if a computing device is capable of presenting audio content
(e.g., includes an audio output device), then the application store may recommend audio
output applications for delivery to the computing devices. As a further example, if a
computing device is capable of editing a document (e.g., includes a keyboard input device),
then the application store may recommend document editing applications for delivery to the

computing device. Additional and alternative recommendations will be appreciated.

[0568] Before providing an application to a destination computing device, the orchestration
framework may determine whether the destination computing device is permitted to perform
the computing activity or receive the application capable of performing the computing
activity. The orchestration framework may make the determination based on one or more
management policies maintained by the application store. The management policy may
indicate whether the computing device is permitted to perform the computing activity or
receive the application based on the type of the computing device or a user associated with
the computing device (e.g., a user role associated with the user). If the management policy
indicates that the computing device is permitted to receive the application and is permitted to
perform at least a portion of the computing activity, then the orchestration framework may
initiate download of the application to the destination computing device. If, however, the
destination computing device is not permitted to receive the application or not permitted to
perform at least a portion of the computing activity, then the orchestration framework may
not initiate (block or otherwise prevent) the download of the application to the destination

computing device.

[0569] The orchestration framework may also dynamically determine a set of computing
devices to present as a list of available for selection as a destination computing device. The
orchestration framework may configure the list based on the capabilities of potential
destination computing device or, additionally or alternatively, based on the management

policies indicating whether the potential destination computing devices are permitted to

WO 2014/058640 PCT/US2013/062636
159

perform at least a portion of the computing activity. In one example, the list of computing
devices available for selection as a destination computing device may include computing
devices capable of performing at least a portion of the computing activity and excludes
computing devices not capable of performing at least a portion of the computing activity. In
another example, the list of computing devices available for selection as a destination
computing device may include computing devices permitted to receive an application capable
of performing at least a portion of the computing activity and excludes any computing
devices that are not permitted to receive such an application. In a further example, the list of
computing devices available for selection as a destination computing device may include
computing devices permitted to perform at least a portion of the computing activity and
exclude any computing devices that are not permitted to perform at least a portion of the

computing activity.

[0570] In some example instances, the destination computing device may not include an
application capable of performing at least a portion of the computing activity and may not
permitted to receive an application capable of performing the computing activity. In this
example, the orchestration framework may initiate download of a client agent from the
enterprise application store to the destination computing device. The client agent may be
configured with a virtual application that is capable of performing at least a portion of the
computing activity. In this way, the orchestration framework may thus coordinate operation

of at least a portion of the computing activity at the destination computing device.

[0571] The computing devices may also be interconnected via the orchestration framework
to a virtual workspace. The virtual workspace may allow a user to access, manage, and utilize
various types of workspace content, which may include a set of tasks, messages, contacts,
events, computer files, applications, calendars, and other types of workspace content. The
enterprise application store may also be used to provide computing devices with applications
capable of presenting content selected from the virtual workspace. For example, a user may
select workspace content to view at a computing device. The computing device, however,
may not include an application capable of presenting the selected workspace content to view.
Accordingly, the orchestration framework may initiate a download of an application capable
of presenting the selected workspace content from the application store to the computing

device such that the computing device can view the selected workspace content.

[0572] The orchestration framework may, in some example implementations, automatically

determine which application to download to a computing device. For example, the workspace

WO 2014/058640 PCT/US2013/062636
160

content may be associated with a workspace content type. The virtual workspace may
maintain a list of associations between workspace content type and an application capable of
presenting workspace content of the workspace content type. Additionally or alternatively,
the virtual workspace may maintain a list of associations between workspace content type
and a computing device capable of presenting workspace content of the workspace content
type. The associations may be general associations applicable to workspace content across
virtual workspaces. The associations may additionally or alternatively be user-specific such
that each user may define which applications or computing devices should automatically be
selected to present workspace content. Accordingly, the virtual workspace may provide one
or more controls that allow a user to establish or modify associations between workspace
content type, interconnected computing devices, and applications. For example, a user may
specify that a television display device connected to the orchestration framework should
present video content when the user selects video content for presentation. As another
example a user may specify that a tablet computing device connected to the orchestration
framework should present web-based content (e.g., web pages) when the user selects web-
based content for presentation. Moreover, when a type of workspace content is associated
with a particular application, the orchestration framework may automatically locate a
computing that includes that application and select that computing device to present the

workspace content of that type.

[0573] In some situations, the orchestration framework may determine that none of the
interconnected computing devices is capable of presenting the workspace content. In
response, a virtual client may be launched at one of the computing devices and configured to
include a virtual application that is capable of presenting the selected workspace content.
Having launched the client agent and configured the client agent with the virtual application,
the selected workspace content may be provided to the virtual application at the client agent

for presentation.
[0574] Illustrative Embodiments

[0575] In view of the description above, the following illustrative embodiments are

provided.

[0576] A first set of illustrative embodiments may be directed towards sharing content
across applications and devices having multiple operation modes in an orchestration

framework for connected devices.

WO 2014/058640 PCT/US2013/062636
161

[0577] In one embodiment, a method includes interconnecting a plurality of computing
devices through an orchestration framework that coordinates operation of a computing
activity across multiple computing devices of the plurality of computing devices; receiving a
request to transfer content from a first application at a first computing device of the plurality
of computing devices to a second application at a second computing device of the plurality of
computing devices; determining whether to initiate transfer the content based, at least in part,
on a first operation mode of the first application and a second operation mode of the second
application; and initiating transfer of the content from the first application to the second
application responsive to a determination that the first operation mode is the same as the
second operation mode. In this example embodiment, the first operation mode and the second
operation mode are one of a plurality of operation modes that include a managed operation

mode and an unmanaged operation mode.

[0578] In an embodiment, the method further includes initiating transfer of the content
responsive to a determination that the first operation mode is the unmanaged operation mode
and that the second operation mode is the managed operation mode; and blocking transfer of
the content responsive to a determination that the first operation mode is the managed

operation mode and that the second operation mode is the unmanaged operation mode.

[0579] In an embodiment, the method further includes blocking transfer of the content from
the first application to the second application responsive to a determination that the first

operation mode is not the same as the second operation mode.

[0580] In an embodiment, the method further includes determining that the first operation
mode is the managed operation mode and that the second operation mode is the unmanaged
operation mode; instructing the second application to change the second operation mode to
the managed operation mode; and initiating transfer of the content after the second

application changes the second operation mode to the managed operation mode.

[0581] In an embodiment, the method further includes receiving a request from the first
application to copy the content to a virtual clipboard; determining whether to initiate copy the
content to the virtual clipboard based on the first operation mode of the first application;
initiating copy of the content to the virtual clipboard responsive to a determination that the
first operation mode is the managed operation mode; and blocking copy of the content to the
virtual clipboard responsive to a determination that the first operation mode is the unmanaged

operation mode.

WO 2014/058640 PCT/US2013/062636
162

[0582] In an embodiment, the method further includes receiving a request from the second
application to paste the content from the virtual clipboard; determining whether to paste the
content from the virtual clipboard based on the second application; initiating paste of the
content from the virtual clipboard responsive to a determination that the second operation
mode is the managed operation mode; and blocking paste of the content from the virtual
clipboard responsive to a determination that the second operation mode is the unmanaged

operation mode.

[0583] In an embodiment, the method further includes identifying one or more applications
at the second computing device wherein the respective operation modes of the one or more
application match the first operation mode of the first application at the first computing
device; and notifying the first application of the first computing device that the one or more

applications are available for selection as a destination for the content.

[0584] In another embodiment, an apparatus includes at least one processor; memory
storing computer-readable instructions that, when executed by the at least one processor,
cause the apparatus to interconnect a plurality of computing devices through an orchestration
framework that coordinates operation of a computing activity across multiple computing
devices of the plurality of computing devices, receive a request to transfer content from a first
computing device of the plurality of computing devices to a second computing device of the
plurality of computing device, determine whether to initiate launch of an application capable
of presenting the content at the second computing device based, at least in part, on a first
operation mode of the first computing device and a second operation mode of the second
computing device, and initiate launch of the application at the second computing device
responsive to a determination that the first operation mode is the same as the second
operation mode. In this example embodiment, the first operation mode and the second
operation mode are one of a plurality of operation modes that include a managed operation

mode and an unmanaged operation mode.

[0585] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to determine that the first operation mode of the first computing
device is the managed operation mode; and set an operation mode of the application as the

managed operation mode after the application is launched at the second computing device.

[0586] In an embodiment, the instructions, when executed by the at least one processor,

further cause the apparatus to block launch of the application at the second computing device

WO 2014/058640 PCT/US2013/062636
163

responsive to a determination that the first operation mode is not the same as the second

operation mode.

[0587] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to apply a management policy when determining whether to
initiate launch of the application. In this example embodiment, the determination of whether
to initiate launch of the application is based, at least in part, on the respective operation

modes of the first computing device and the second computing device.

[0588] In an embodiment, the management policy permits launch of the application when
the first operation mode of the first computing device is the same as the second operation
mode of the second computing device; the management policy permits launch of the
application when the first operation mode of the first computing device is the unmanaged
operation mode and the second operation mode of the second computing device is the
managed operation mode; and the management policy does not permit launch of the
application when the first operation mode of the first computing device is the managed
operation mode and the second operation mode of the second computing device is the

unmanaged operation mode.

[0589] In an embodiment, the instructions, when executed by the at least one processor,
cause the apparatus to apply a first management policy to determine whether a first
computing device is permitted to copy to a virtual clipboard based on a first operation mode
of the first computing device; and apply a second management policy to determine whether a
second computing device is permitted to paste from the virtual clipboard based on a second

operation mode of the second computing device.

[0590] In a further embodiment, one or more non-transitory computer-readable media
storing instructions that, when executed, cause a computing device to connect to one or more
computing devices through an orchestration framework that coordinates operation of a
computing activity across the computing device and the one or more computing devices;
receive an indication of selected content to transfer to a selected computing device of the one
or more computing devices; display a list of computing devices available for selection as the
selected computing device wherein the list of computing devices is based on an operation
mode of the computing device and the operation mode is one of a plurality of operation

modes that include a managed operation mode and an unmanaged operation mode; and

WO 2014/058640 PCT/US2013/062636
164

initiate transfer of the selected content to the selected computing device via the orchestration

framework.

[0591] In an embodiment, the list of computing devices includes at least one selectable
computing device having an operation mode that is the same as the operation mode of the
computing device; and the list of computing devices excludes any computing device having

an operation mode that is not the same as the operation mode of the computing device.

[0592] In an embodiment, the operation mode of the computing device is the managed
operation mode; and the list of computing devices includes at least one selectable computing

device having an operation mode that is the managed operation mode.

[0593] In an embodiment, the operation mode of the computing device is the unmanaged
operation mode; and the list of computing devices includes at least one selectable computing
device having an operation mode that is the managed operation mode or the unmanaged

operation mode.

[0594] In an embodiment, the instructions, when executed, further cause the computing
device to launch an application responsive to receipt of an instruction via the orchestration
framework wherein the instruction indicates a desired operation mode for the application; set
the operation mode of the application to the desired operation mode; and provide a
notification via the orchestration framework indicating that the application has been launched

with the desired operation mode.

[0595] In an embodiment, the instructions, when executed, further cause the computing
device to receive transferred content via the orchestration framework responsive to receipt of
the notification indicating that the application has been launched with the desired operation

mode; and present the transferred content using the application.

[0596] In an embodiment, the orchestration framework is configured to interconnect the
computing device and the one or more computing devices via at least one of a client-server

communication session, a peer-to-peer communication session, and combinations thereof.

[0597] A second set of illustrative embodiments may be directed towards coordinating a
computing activity across applications and devices having multiple operation modes in an

orchestration framework for connected devices.

[0598] In one embodiment, a method includes interconnecting a plurality of computing

devices through an orchestration framework that coordinates operation of a computing

WO 2014/058640 PCT/US2013/062636
165

activity across multiple computing devices of the plurality of computing devices; initiating a
computing activity at a first computing device of the plurality of computing devices;
receiving a request from the first computing device to perform at least a portion of the
activity at a second computing device of the plurality of computing devices; determining
whether to instruct the second computing device to perform at least a portion of the
computing activity based, at least in part, on a first operation mode of the first computing
device and a second operation mode of the second computing device; and instructing, via the
orchestration framework, the second computing device to perform at least a portion of the
computing activity responsive to a determination that the first operation mode is the same as
the second operation mode. In this example embodiment, the first operation mode and the
second operation mode are one of a plurality of operation modes that include a managed

operation mode and an unmanaged operation mode.

[0599] In an embodiment, the method further includes instructing, via the orchestration
framework, the second computing device to perform at least a portion of the computing
activity responsive to a determination that the first operation mode is the unmanaged
operation mode and that the second operation mode is the managed operation mode; and
providing no instruction to the second computing device responsive to a determination that
the first operation mode is the managed operation mode and that the second operation mode

is the unmanaged operation mode.

[0600] In an embodiment, the method further includes determining that the first operation
mode is the managed operation mode and that the second operation mode is the unmanaged
operation mode; and instructing, via the orchestration framework, the second computing
device to change the second operation mode to the managed operation mode. In this example
embodiment, the second computing device is instructed to perform at least a portion of the
computing activity after the second computing device changes the second operation mode to

the managed operation mode.

[0601] In an embodiment, the method further includes identifying at the second computing
device an application that is capable of performing at least a portion of the computing
activity, determining that the application is in the unmanaged operation mode; and
instructing, via the orchestration framework, the application to change to the managed
operation mode. In this example embodiment, the second computing device is instructed to
perform at least a portion of the computing activity using the application after the application

changes to the managed operation mode.

WO 2014/058640 PCT/US2013/062636
166

[0602] In an embodiment, the portion of the computing activity performed at the second

computing device includes presentation of content associated with the computing activity.

[0603] In an embodiment, the portion of the computing activity performed at the second

computing device includes receipt of input associated with the computing activity.

[0604] In another embodiment, an apparatus includes at least one processor, memory
storing computer-readable instructions that, when executed by the at least one processor,
cause the apparatus to interconnect a plurality of computing devices through an orchestration
framework that coordinates operation of a computing activity across multiple computing
devices of the plurality of computing devices, receive a request to perform at least a portion
of a computing activity initiated at a first computing device of the plurality of computing
devices at a second computing device of the plurality of computing device, determine
whether to instruct the second computing device to perform at least a portion of the
computing activity based, at least in part, on a first operation mode of the first computing
device and a second operation mode of the second computing device, and instruct, via the
orchestration framework, the second computing device to perform at least a portion of the
computing activity responsive to a determination that the first operation mode is the same as
the second operation mode. In this example embodiment, the first operation mode and the
second operation mode are one of a plurality of operation modes that include a managed

operation mode and an unmanaged operation mode.

[0605] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to determine that the first operation mode of the first computing
device is the managed operation mode; determine that the second operation mode of the
second computing device is the unmanaged operation mode; and instruct the second
computing device to change the second operation mode to the managed operation mode

before the portion of the computing activity is performed at the second computing device.

[0606] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to block performance of the portion of the computing activity by
the second computing device responsive to a determination that the first operation mode is

not the same as the second operation mode.

[0607] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to apply a management policy when determining whether to

instruct the second computing device to perform at least a portion of the computing activity.

WO 2014/058640 PCT/US2013/062636
167

In this example embodiment, the determination of whether to instruct the second computing
device to perform at least a portion of the computing activity is based, at least in part, on the

respective operation modes of the first computing device and the second computing device.

[0608] In an embodiment, the management policy permits the second computing device to
perform at least a portion of the computing activity when the first operation mode of the first
computing device is the same as the second operation mode of the second computing device.
In this example embodiment, the management policy also permits the second computing
device to perform at least a portion of the computing activity when the first operation mode
of the first computing device is the unmanaged operation mode and the second operation
mode of the second computing device is the managed operation mode. In this example
embodiment, the management policy does not permit the second computing device to
perform at least a portion of the computing activity when the first operation mode of the first
computing device is the managed operation mode and the second operation mode of the

second computing device is the unmanaged operation mode.

[0609] In an embodiment, the portion of the computing activity performed at the second
computing device includes at least one of a presentation of content associated with the
computing activity, a receipt of input associated with the computing activity, and

combinations thereof.

[0610] In a further embodiment, one or more non-transitory computer-readable media
storing instructions that, when executed, cause a computing device to connect to one or more
computing devices through an orchestration framework that coordinates operation of a
computing activity across the computing device and the one or more computing devices;
initiate a computing activity; receive an indication of a selected computing device to perform
at least a portion of the computing activity; display a list of computing devices available for
selection as the selected computing device wherein the list of computing devices is based on
an operation mode of the computing device and the operation mode is one of a plurality of
operation modes that include a managed operation mode and an unmanaged operation mode;
and provide a request to the orchestration framework to instruct the selected computing

device to perform at least a portion of the computing activity.

[0611] In an embodiment, the list of computing devices includes at least one selectable

computing device having an operation mode that is the same as the operation mode of the

WO 2014/058640 PCT/US2013/062636
168

computing device; and the list of computing devices excludes any computing device having

an operation mode that is not the same as the operation mode of the computing device.

[0612] In an embodiment, the operation mode of the computing device is the managed
operation mode; and the list of computing devices includes at least one selectable computing

device having an operation mode that is the managed operation mode.

[0613] In an embodiment, the operation mode of the computing device is the unmanaged
operation mode; and the list of computing devices includes at least one selectable computing
device having an operation mode that is the managed operation mode or the unmanaged

operation mode.

[0614] In an embodiment, the instructions, when executed, further cause the computing
device to launch an application responsive to receipt of an instruction via the orchestration
framework wherein the instruction indicates a desired operation mode for the application; set
the operation mode of the application to the desired operation mode; and provide a
notification via the orchestration framework indicating that the application has been launched

with the desired operation mode.

[0615] In an embodiment, the instructions, when executed, further cause the computing
device to perform at least a portion of another computing activity initiated at another
computing device of the one or more computing devices using the application. In this
example embodiment, the portion of the other computing activity performed by the
application includes at least one of a presentation of content associated with the computing

activity, a receipt of input associated with the computing activity, and combinations thereof.

[0616] In an embodiment, the orchestration framework is configured to interconnect the
computing device and the one or more computing devices via at least one of a client-server

communication session, a peer-to-peer communication session, and combinations thereof.

[0617] A third set of illustrative embodiments may be directed towards managing dynamic

policies and settings in an orchestration framework for connected devices.

[0618] In one example embodiment, a method includes interconnecting a plurality of
computing devices through an orchestration framework that coordinates operation of a
computing activity across multiple computing devices of the plurality of computing devices;
maintaining a management policy that governs interaction between the plurality of computing
devices; and applying the management policy responsive to receipt via the orchestration

framework of a request from a first computing device of the plurality of computing devices to

WO 2014/058640 PCT/US2013/062636
169

perform at least a portion of the computing activity at a second computing device of the

plurality of computing devices.

[0619] In an embodiment, the method further includes permitting the interaction responsive
to a determination that the management policy indicates the interaction between the first
computing device and the second computing device is permitted; and blocking the interaction
responsive to a determination that the management policy indicates the interaction between

the first computing device and the second computing device is not permitted.

[0620] In an embodiment, the management policy indicates whether an enterprise resource
is permitted to be accessed based on device type and the method further includes identifying
a first device type of the first computing device; determining whether the management policy
permits computing devices of the first device type to access the enterprise resource;
permitting the first computing device to access the enterprise resource responsive to a
determination that the management policy permits computing devices of the first device type
to access the enterprise resource; and blocking the first computing device from accessing the
enterprise resource responsive to a determination that the management policy does not permit

the computing device to access the enterprise resource.

[0621] In an embodiment, the management policy indicates whether the enterprise resource
is permitted to be shared based on device type and the method further includes identifying a
second device type of the second computing device; determining whether the management
policy permits the enterprise resource to be shared with computing devices of the second
device type; permitting the first computing device to share the enterprise resource with the
second computing device responsive to a determination that the management policy permits
sharing of the enterprise resource with computing devices of the second device type; and
blocking the first computing device from sharing the enterprise resource with the second
computing device responsive to a determination that the management policy does not permit

sharing of the enterprise resource with computing devices of the second device type.

[0622] In an embodiment, the management policy indicates whether content is permitted to
be transferred between the plurality of computing devices and the method further includes
permitting the first computing device to transfer the content to the second computing device
responsive to a determination that the management policy permits the first computing device
to transfer the content to the second computing device; and blocking the first computing

device from transferring the content to the second computing device responsive to a

WO 2014/058640 PCT/US2013/062636
170

determination that the management policy does not permit the first computing device to

transfer the content to the second computing device.

[0623] In an embodiment, the management policy indicates whether the content is
permitted to be transferred between the plurality of computing devices based on a content

type of the content.

[0624] In an embodiment, the management policy indicates whether one or more
applications are permitted to be launched at the plurality of computing devices and the
method further includes receiving a request to transfer content from the first computing
device to the second computing device; identifying an application capable of presenting the
content; determining whether the management policy permits the application to be launched
at the second computing device; initiating launch of the application at the second computing
device responsive to a determination that the management policy permits the application to
be launched at the second computing device; and blocking launch of the application at the
second computing device responsive to a determination that the management policy does not

permit the application to be launched at the second computing device.

[0625] In an embodiment, the management policy indicates whether the one or more
applications are permitted to be launched at the plurality of computing devices based on a

respective application class associated with each of the one or more applications.

[0626] In an embodiment, the method further includes, responsive to a determination that
the management policy does not permit the application to be launched at the second
computing device, initiating launch of a client agent at the second computing device; and
configuring the client agent to include a virtual application that is capable of presenting the

content.

[0627] In an embodiment, the method further includes, responsive to a determination that
the management policy does not permit the application to be launched at the second
computing device, locating a third computing device of the plurality of computing devices
that the management policy permits to be launched the application; and initiating launch of

the application at the third computing device.

[0628] In another embodiment, an apparatus includes at least one processor; memory
storing a management policy and computer-readable instructions that, when executed by the
at least one processor, cause the apparatus to interconnect a plurality of computing devices

through an orchestration framework that coordinates operation of a computing activity across

WO 2014/058640 PCT/US2013/062636
171

multiple computing devices of the plurality of computing devices, manage interaction
between the plurality of computing devices based on a management policy, and apply the
management policy responsive to receipt via the orchestration framework of a request from a
first computing device of the plurality of computing devices to perform at least a portion of
the computing activity at a second computing device of the plurality of computing devices. In
this example embodiment, the management policy governs the interaction between the

plurality of computing devices.

[0629] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to provide a management interface comprising at least one control

that allows an administrative user to configure the management policy.

[0630] In an embodiment, the management policy indicates whether content is permitted to
be shared between the plurality of computing devices based on a content type of the content;
and the content type includes at least one of document-based content, image-based content,

video-based content, web-based content; and combinations thereof.

[0631] In an embodiment, the management policy indicates whether an application is
permitted to be launched at one of the computing devices based on an application class of the
application; and the application class includes at least one of a first application class
comprising one or more applications capable of presenting document-based content
transferred between the plurality of computing devices, a second application class comprising
one or more applications capable of presenting image-based content transferred between the
plurality of computing devices, a third application class comprising one or more applications
capable of presenting video-based content transferred between the plurality of computing
devices, a fourth application class comprising one or more applications capable of presenting
audio-based content transferred between the plurality of computing devices; a fifth
application class comprising one or more applications capable of presenting web-based

content transferred between the plurality of computing devices, and combinations thereof.

[0632] In an embodiment, the management policy indicates a maximum number of

computing devices a user is permitted to connect via the orchestration framework.

[0633] In an embodiment, the management policy indicates whether a user is permitted to
connect a computing device via the orchestration framework based on a device type of the

computing device.

WO 2014/058640 PCT/US2013/062636
172

[0634] In an embodiment, the management policy indicates whether a computing device of
the plurality of computing devices is permitted to transfer content and whether the computing

device is permitted to receive transferred content.

[0635] In an embodiment, the management policy indicates whether computing devices
that are located at a common location are permitted to interact and whether computing device

that are not located at a common location are permitted to interact.

[0636] In an embodiment, the management policy indicates whether a first computing
device of the plurality of computing devices is permitted to transfer content to a second
computing device of the plurality of computing devices based on a first user role of a first
user associated with the first computing device and a second user role of a second user

associated with the second computing device.

[0637] In a further embodiment, one or more non-transitory computer-readable media
having instructions that, when executed, cause at least one computing device to connect to
one or more computing devices through an orchestration framework that coordinates
operation of a computing activity across the computing device and the one or more
computing devices in a peer-to-peer fashion; obtain a management policy from a policy
manager; provide the management policy to individual computing devices of the one or more
computing devices; and manage peer-to-peer communications between the computing device
and individual computing devices of the one or more computing devices based on the

management policy.

[0638] A fourth set of illustrative embodiments may be directed towards controlling device

access to enterprise resources in an orchestration framework for connected devices.

[0639] In one embodiment, a method includes interconnecting a plurality of computing
devices through an orchestration framework that coordinates operation of a computing
activity across multiple computing devices of the plurality of computing devices; receiving a
request to transfer content from a first computing device of the plurality of computing devices
to a second computing device of the plurality of computing devices; identifying a first data
vault at the first computing device that stores the content; determining whether the first data
vault is encrypted; and instructing the second computing device to store the content in a
second data vault that is encrypted responsive to a determination that the first data vault is

encrypted.

WO 2014/058640 PCT/US2013/062636
173

[0640] In an embodiment, the method further includes, responsive to a determination that
the first data vault is encrypted, encrypting the content using an encryption key before
transferring the content to the second computing device; and providing the encryption key to
the second computing device such that the second computing device is capable of decrypting

the content.

[0641] In an embodiment, the method further includes, responsive to a determination that
the first data vault is not encrypted, instructing the second computing device to store the

content at a third data vault that is not encrypted.

[0642] In an embodiment, the method further includes transmitting to the second
computing device an instruction to delete the content. In this example embodiment, receipt of
the instruction at the second computing device causes the second computing device to delete
at least a portion of the content stored at the second data vault of the second computing

device.

[0643] In an embodiment, the second data vault of the second computing device is an
encrypted data vault that stores encrypted content; the second computing device includes an
unencrypted data vault that stores unencrypted content; and receipt of the instruction at the
second computing device causes the second computing device to delete at least a portion of
the encrypted content from the encrypted data vault and at least a portion of the unencrypted

content from the unencrypted data vault.

[0644] In an embodiment, the orchestration framework is configured to interconnect the
first computing device and the second computing device via at least one of a client-server

communication session, a peer-to-peer communication session, and combinations thereof.

[0645] In another embodiment, an apparatus includes at least one processor; and memory
storing computer-readable instructions that, when executed by the at least one processor,
cause the apparatus to interconnect a plurality of computing devices through an orchestration
framework that coordinates operation of a computing activity across multiple computing
devices of the plurality of computing devices, receive a request to transfer content from a first
computing device of the plurality of computing devices to a second computing device of the
plurality of computing devices, identify a first data vault that stores the content at the first
computing device, and instruct the second computing device to store the content based on the

first data vault when the content is transferred to the second computing device. In this

WO 2014/058640 PCT/US2013/062636
174

example embodiment, the first data vault is one of a first encrypted data vault or a first

unencrypted data vault.

[0646] In an embodiment, the second computing device includes a second encrypted data
vault and a second unencrypted data vault; and the instructions, when executed by the at least
one processor, further cause the apparatus to instruct the second computing device to store
the content in the second encrypted data vault responsive to a determination that the first data
vault is the first encrypted data vault, and instruct the second computing device to store the
content in the second unencrypted data vault responsive to a determination that the first data

vault is the first unencrypted data vault.

[0647] In an embodiment, the first computing device includes a main data store; the first
data vault is the first encrypted data vault; the main data store and the and the first data vault
are separate components; the instructions, when executed by the at least one processor,
further cause the apparatus to determine whether the second computing device includes a
second encrypted data vault, and initiate transfer of the content to the second computing
device responsive to a determination that the second computing device includes the second

encrypted data vault.

[0648] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to block transfer of the content to the second computing device
responsive to a determination that the second computing device does not include the second

encrypted data vault.

[0649] In an embodiment, the instructions, when executed by the at least one processor,
further cause the processor to, responsive to a determination that the second computing
device does not include the second encrypted data vault, locate a third computing device that
includes a third encrypted data vault, initiate transfer of the content to the third computing
device, and instruct the third computing device to store the content in the third encrypted data

vault.

[0650] In an embodiment, the content is stored in a second data vault of the second
computing device; and the instructions, when executed by the at least one processor, further
cause the apparatus to instruct the second computing device to delete at least a portion of the

content stored in the second data vault.

[0651] In an embodiment, the second data vault is a second encrypted data vault; and the

instructions, when executed by the at least one processor, further cause the apparatus to

WO 2014/058640 PCT/US2013/062636
175

instruct the second computing device to delete all of the content stored in the second

encrypted data vault.

[0652] In an embodiment, the second computing device is one of a plurality of computing
devices that store the content; and the instructions, when executed by the at least one
processor, cause the apparatus to track each computing device in the plurality of computing

devices that stores the content.

[0653] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to instruct each computing device in the plurality of computing
devices to delete at least a portion of the content respectively stored at each of the computing

devices.

[0654] In a further embodiment, one or more non-transitory computer-readable media
having instructions that, when executed, cause a computing device to connect to one or more
computing devices through an orchestration framework that coordinates operation of a
computing activity across the computing device and the one or more computing devices;
receive an indication of selected content to transfer to a selected computing device of the
plurality of computing devices wherein the selected content is stored at a first encrypted data
vault of the computing device; display a list of computing devices available for selection as
the selected computing device wherein the list of computing device includes one or more
computing devices that have an encrypted data vault and excludes any computing devices
that do not have an encrypted data vault; receive a selection of one of the computing devices
in the list of computing devices as the selected computing device; and initiate transfer of the
selected content to the selected computing device via the orchestration framework wherein
receipt of the selected content at the selected computing device causes the selected computing

device to store the selected content at a second encrypted data vault.

[0655] In an embodiment, the instructions, when executed, cause the computing device to
encrypt the content with an encryption key before transferring the selected content to the
selected computing device; and providing the selected computing device with the encryption

key such that the selected computing device is capable of decrypting the selected content.

[0656] In an embodiment, the computing device includes a first encrypted data vault and a
first unencrypted data vault; and the instructions, when executed, further cause the computing
device to receive transferred content from a second computing device, and store the

transferred content in one of the first encrypted data vault or the first unencrypted data vault.

WO 2014/058640 PCT/US2013/062636
176

[0657] In an embodiment, the transferred content is encrypted; and the instructions, when
executed, further cause the computing device to receive a transferred encryption key with the

transferred content, and decrypt the transferred content using the encryption key.

[0658] In an embodiment, the transferred content is stored in the first encrypted data vault;
and the instructions, when executed, cause the computing device to delete at least a portion of

the transferred content responsive to receipt of an instruction to delete the transferred content.

[0659] A fifth set of illustrative embodiments may be directed towards single sign-on

access in an orchestration framework for connected devices.

[0660] In one embodiment, a method includes interconnecting a plurality of computing
devices through an orchestration framework that coordinates operation of a computing
activity across multiple computing devices of the plurality of computing devices; identifying
a single sign-on (SSO) credential that a first computing device of the plurality of computing
devices uses to access a resource; and providing the SSO credential to a second computing
device of the plurality of computing devices such that the second computing device is

enabled to access the resource using the SSO credential.

[0661] In an embodiment, the method further includes establishing first user settings at the
first computing device based on the SSO credential; and establishing second user settings at
the second computing device based on the SSO credential. In this example embodiment, the

second user settings match, at least in part, the first user settings.

[0662] In an embodiment, the method further includes configuring a first application at the
first computing device based on the SSO credential; and configuring a second application at
the second computing device based on the SSO credential such that the second application is
configured to have one or more configuration settings that respectively match one or more

configuration settings of the first application.

[0663] In an embodiment, the second computing device is one of a plurality of computing
devices associated with the first computing device and the method further includes providing
the SSO credential to each computing device of the plurality of computing devices. In this
example embodiment, the SSO credential enables each of the computing devices of the

plurality of computing devices to access the resource.

[0664] In an embodiment, the first computing device and the set of computing devices are

associated with a common user.

WO 2014/058640 PCT/US2013/062636
177

[0665] In an embodiment, the resource is a file server and the method further includes
accessing the file server from the first computing device using the SSO credential; sending
content stored at the first computing device to the file server for storage; and notifying the
second computing device that the content is available from the file server using the SSO

credential.

[0666] In another embodiment, an apparatus includes at least one processor; a proxy
configured to enable a first computing device of a plurality of computing devices to access a
resource; memory storing computer-readable instructions that, when executed by the at least
one processor, cause the apparatus to interconnect the plurality of computing devices through
an orchestration framework that coordinates operation of a computing activity across multiple
computing devices of the plurality of computing devices, receive a request from the first
computing device to access the resource, obtain from a resource manager a single sign-on
(SSO) credential for the first computing device using the proxy wherein the SSO credential
enables the first computing device to access the resource; identify a second computing device
of the plurality of computing devices associated with the first computing device, and

automatically enable the second computing device to access the resource.

[0667] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to enable the second computing device to access the resource by

providing the SSO credential to the second computing device.

[0668] In an embodiment, the instructions, when executed by the at least one processor,
further cause the processor to request a unique identifier from the first computing device; and
provide the unique identifier to the resource manager such that the SSO credential

corresponds to the unique identifier.
[0669] In an embodiment, the SSO credential is a session key.

[0670] In an embodiment, the SSO credential is a first SSO credential; the instructions,
when executed by the at least one processor, further cause the apparatus to enable the second
computing device to access the resource by obtaining from the resource manager a second
SSO credential for the second computing device and providing the second SSO credential to
the second computing device. In this example embodiment, he second SSO credential enables

the second computing device to access the resource.

[0671] In an embodiment, the second computing device accesses the resource using the

second SSO credential.

WO 2014/058640 PCT/US2013/062636
178

[0672] In an embodiment, the proxy accesses the resource using the second SSO credential

on behalf of the second computing resource.

[0673] In an embodiment, the second computing device is one of a plurality of computing
devices associated with the first computing device; the instructions, when executed by the at
least one processor, further cause the processor to obtain from the resource manager
respective SSO credentials for each computing device of the plurality of computing devices,
and provide the respective SSO credentials to each of the computing devices of the plurality
of computing devices. In this example embodiment, the respective SSO credentials enable

cach of the computing devices to access the resource.

[0674] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to receive a request from the first computing device to transfer
content to the second computing device; determine whether the second computing device
includes an application capable of presenting the content; and responsive to a determination
that the second computing device does not include an application capable of presenting the
content, initiating launch of a client agent at the second computing device, configuring the
client agent with a virtual application that is capable of presenting the content, and providing
the SSO credential to the client agent such that the client agent is enabled to access the

resource using the SSO credential.

[0675] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to maintain a list of computing devices that identifies one or more
computing devices connected to the apparatus; and maintain a list of login credentials that
identify one or more login credentials respectively associated with the one or more

computing devices.

[0676] In a further embodiment, one or more non-transitory computer-readable media
having instructions that, when executed, cause a computing device to connect to one or more
computing devices through an orchestration framework that coordinates operation of a
computing activity across the computing device and the one or more computing devices;
request access to a resource; receive a single sign-on (SSO) credential in response to receipt
of the request wherein the SSO credential enables the computing device to access the
resource; and provide the SSO credential to a selected computing device of the one or more
computing devices such that the selected computing device is enabled to access the resource

using the SSO credential.

WO 2014/058640 PCT/US2013/062636
179

[0677] In an embodiment, the instructions, when executed, further cause the computing
device to receive a request for a unique identifier from a proxy that obtains the SSO
credential for the computing device; and provide the unique identifier to the proxy responsive

to receipt of the request such that the SSO credential corresponds to the unique identifier.

[0678] In an embodiment, the instructions, when executed, cause the computing device to
apply one or more management policies to a first application at the computing device based
on the SSO credential; and apply the one or more management policies to a second

application at the selected computing device based on the SSO credential.

[0679] In an embodiment, the one or more management policies are selected based on at

least one user role associated with the SSO credential.

[0680] A sixth set of illustrative embodiments may be directed towards an application
management framework for secure data sharing in an orchestration framework for connected

devices.

[0681] In one embodiment, a method includes establishing via an orchestration framework
a connection from a first computing device of a plurality of computing devices to a second
computing device of the plurality of computing devices wherein the orchestration framework
coordinates operation of a computing activity across multiple computing devices of the
plurality of computing devices; submitting from a first policy agent at the first computing
device to a policy manager a request for a management policy; receiving at the first
computing device the management policy from the policy manager responsive to a
determination that the management policy is available from the policy manager; and
providing the management policy to a second policy agent at the second computing device

responsive to receipt of the management policy at the first computing device.

[0682] In an embodiment, the method further includes receiving at the first computing
device a notification indicating that the management policy is not available from the policy

manager.

[0683] In an embodiment, the first policy agent is a first application wrapper that wraps a
first application residing at the first computing device; and the second policy agent is a
second application wrapper that wraps a second application residing at the second computing

device.

WO 2014/058640 PCT/US2013/062636
180

[0684] In an embodiment, the first policy agent is a first management policy enforcement
agent that resides at the first computing device; and the second policy agent is a second

management policy enforcement agent that resides at the second computing device.

[0685] In an embodiment, the first policy agent submits the request for the management
policy responsive to a determination that an application subject to the first policy agent has

been launched.

[0686] In an embodiment, the method further includes applying the management policy
using the first policy agent; and managing communications between a first application
residing at the first computing device and a second application residing at the first computing

device based on the management policy.

[0687] In an embodiment, the method further includes applying the management policy
using the first policy agent; applying the management policy using the second policy agent;
and managing communications between a first application residing at the first computing
device and a second application residing at the second computing device based on the

management policy.

[0688] In another embodiment, an apparatus includes at least one processor; and memory
storing computer-readable instructions that, when executed by the at least one processor,
cause the processor to interconnect a plurality of computing devices through an orchestration
framework that coordinates operation of computing activity across multiple computing
devices of the plurality of computing devices, determine whether a first policy agent at a first
computing device of the plurality of computing devices has received a management policy,
and provide the management policy to a second policy agent at a second computing device of
the plurality of computing devices responsive to a determination that the first policy agent has

received the management policy.

[0689] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to receive a request for the management policy from the first
policy agent of the first computing device; determine whether the management policy is
available; and responsive to a determination that the management policy is available, provide

the management policy to the first policy agent.

[0690] In an embodiment, responsive to the determination that the management policy is
available, the instructions, when executed by the at least one processor, further cause the

apparatus to identify one or more computing devices associated with the first computing

WO 2014/058640 PCT/US2013/062636
181

device; provide the management policy to a respective policy agent at each computing device
of the one or more computing devices. In this example embodiment, the second computing
device is one of the one or more computing devices associated with the first computing

device.

[0691] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to provide a management policy configuration interface
comprising at least one control that allows an administrative user to update an existing

management policy and create a new management policy.

[0692] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to push the management policy to at least one of the first policy
agent of the first computing device or the second policy agent of the second computing

device.

[0693] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to receive a notification from the first policy agent at the first
computing device that an application subject to the first policy agent has launched at the first
computing device; determine whether the management policy is available; and push the
management policy to the first policy agent responsive to a determination that the updated

management policy is available.

[0694] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to receive a request from the first computing device to present
content residing at the first computing device in an application residing at the second
computing device; determining whether the application is subject to at least one policy agent
at the second computing device; and initiating transfer of the content to the application at the
second computing device responsive to a determination that the application is subject to at

least one policy agent residing at the second computing device.

[0695] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to block transfer of the content to the application at the second
computing device responsive to a determination that the application is not subject to at least

one policy agent residing at the second computing device.

[0696] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to responsive to a determination that the application is not subject

to at least one policy agent, locate a second application that is capable of presenting the

WO 2014/058640 PCT/US2013/062636
182

content and that is subject to at least one policy agent, and initiate transfer of the content to

the second application.

[0697] In an embodiment, the second application resides at a third computing device

connected to the apparatus.

[0698] In an embodiment, the instructions, when executed by the at least one processor,
further cause the processor to responsive to a determination that the application is not subject
to at least one policy agent, initiate launch of a client agent that is subject to at least one
policy agent, configure the client agent with a virtual application that is capable of presenting

the content, and initiate transfer of the content to the virtual application.

[0699] In a further embodiment, one or more non-transitory computer-readable media
having instructions that, when executed, cause the computing device to connect to one or
more computing devices through an orchestration framework that coordinates operation of a
computing activity across the computing device and the one or more computing devices;
receive an indication of selected content to transfer to a selected application at a selected
computing device of the one or more computing devices; display a list of computing devices
available for selection as the selected computing device wherein the list of computing devices
includes one or more computing devices that include at least one policy agent that the
selected application is subject to and excludes any computing devices that do not have at least
one policy agent the selected application is subject to; receive a selection of one of the
computing devices in the list of computing devices as the selected computing device; and
initiate transfer of the selected content to the selected application at the selected computing

device via the orchestration framework.

[0700] In an embodiment, respective policy agents at the plurality of computing devices
apply management policies to one or more respective applications respectively residing at the

plurality of computing devices.

[0701] A seventh set of illustrative embodiments may be directed towards an enterprise

application store for an orchestration framework for connected devices.

[0702] In one embodiment, a method includes interconnecting a plurality of computing
devices through an orchestration framework that coordinates operation of a computing
activity across multiple computing devices of the plurality of computing devices; connecting
the plurality of computing devices to an application store configured to deliver one or more

applications to individual computing devices of the plurality of computing devices; receiving

WO 2014/058640 PCT/US2013/062636
183

from a first computing device a request to perform at least a portion of the computing activity
at a second computing device; determining whether to deliver an application from the
application store to the second computing device; and delivering of the application from the
application store to the second computing device responsive to a determination to deliver the

application to the second computing device.

[0703] In an embodiment, determining whether to deliver the application to the second
computing device includes determining whether the second computing device includes the
application capable of performing at least a portion of the computing activity; and
determining to deliver the application from the application store to the second computing
device responsive to a determination that the second computing device does not include the

application.

[0704] In an embodiment, the method further includes maintaining a management policy
that indicates whether individual computing devices of the plurality of computing devices are
permitted to receive the application from the application store and whether individual
computing devices on the plurality of computing devices are permitted to perform at least a

portion of the computing activity.

[0705] In an embodiment, determining whether to deliver the application to the second
computing device includes determining whether the second computing device is permitted to
receive the application based on the management policy; determining to deliver the
application to the second computing device responsive to a determination that the second
computing device is permitted to receive the application; and determining not to deliver the
application to the second computing device responsive to a determination that the second

computing device is not permitted to receive the application.

[0706] In an embodiment, determining whether to deliver the application to the second
computing device includes determining whether the second computing device is permitted to
perform at least a portion of the activity based on the management policy; determining to
deliver the application to the second computing device responsive to a determination that the
second computing device is permitted to perform at least a portion of the computing activity;
and determining not to deliver the application to the second computing device responsive to a
determination that the second computing device is not permitted to perform at least a portion

of the computing activity.

WO 2014/058640 PCT/US2013/062636
184

[0707] In an embodiment, the application is an unmanaged application and the method
further includes modifying the unmanaged application to include a policy agent such that the
unmanaged application becomes a managed application. In this embodiment, the policy agent

is configured to enforce the management policy during operation of the managed application.

[0708] In another embodiment, an apparatus includes at least one processor; an application
store configured to deliver one or more applications to individual computing devices of a
plurality of computing devices; and memory storing computer-readable instructions that,
when executed by the at least one processor, cause the apparatus to interconnect the plurality
of computing devices through an orchestration framework that coordinates operation of a
computing activity across multiple computing devices of the plurality of computing devices,
determine, responsive to receipt of a request from a first computing device, whether to deliver
an application from the application store to a second computing device, and initiate delivery
of the application from the application store to the second computing device responsive to a

determination to deliver the application to the second computing device.

[0709] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to recommend one or more applications for delivery to the second

computing device based on a capability of the second computing device.

[0710] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to recommend one or more applications for presenting video
content responsive to a determination that the second computing device is capable of
presenting video content; recommend one or more applications for presenting audio content
responsive to a determination that the second computing device is capable of presenting
audio content; and recommend one or more applications for document editing responsive to a

determination that the second computing device is capable of editing a document.

[0711] In an embodiment, the apparatus further includes a management policy that
indicates whether individual computing devices of the plurality of computing devices are
permitted to receive the application from the application store and whether individual
computing devices on the plurality of computing devices are permitted to perform at least a

portion of the computing activity.

[0712] In an embodiment, the instructions, when executed by the at least one processor,
further cause the apparatus to initiate delivery of a client agent from the application store to

the second computing device responsive to a determination that the second computing device

WO 2014/058640 PCT/US2013/062636
185

is not permitted to receive the application or responsive to a determination that the second
computing device is not permitted to perform at least a portion of the computing activity; and
configure the client agent with a virtual application that is capable of performing at least a

portion of the computing activity.

[0713] In an embodiment, the application is an unmanaged application; the instructions,
when executed by the at least one processor, further cause the apparatus to modify the
unmanaged application to include a policy agent such that the unmanaged application
becomes a managed application; and the policy agent is configured to enforce the

management policy during operation of the managed application.

[0714] In an embodiment, the application store tracks which applications are delivered to

individual computing devices of the plurality of computing devices.

[0715] In a further embodiment one or more non-transitory computer-readable media
having instructions that, when executed, cause a computing device to connect to one or more
computing devices through an orchestration framework that coordinates operation of a
computing activity across the computing device and the one or more computing devices;
connect to an application store configured to deliver one or more applications to the
computing device and the one or more computing device; and submit a request via the
orchestration framework to perform at least a portion of the computing activity at a selected
computing device of the one or more computing devices. In this example embodiment, the
orchestration framework determines whether to deliver an application from the application
store to the selected computing device responsive to receipt of the request; and the
application store delivers the application to the selected computing device responsive to a

determination to deliver the application to the selected computing device.

[0716] In an embodiment, the one or more computing devices are subject to a management
policy that respectively indicates whether the one or more computing device are permitted to
receive the application from the application store and whether the selected computing device

are permitted to perform at least a portion of the computing activity.

[0717] In an embodiment, the instructions, when executed, cause the computing device to
display a list of computing devices available for selection as the selected computing device;
and wherein the list of computing devices is based on the management policy such that the

list of computing devices includes one or more computing devices that are permitted to

WO 2014/058640 PCT/US2013/062636
186

receive the application from the application store and excludes any computing devices that

are not permitted to receive the application from the application store.

[0718] In an embodiment, the instructions, when executed, cause the computing device to
display a list of computing devices available for selection as the selected computing device.
In this example embodiment, the list of computing devices is based on the management
policy such that the list of computing devices includes one or more computing devices that
are permitted to perform at least a portion of the computing activity and excludes any
computing devices that are not permitted to perform at least a portion of the computing

activity.

[0719] In an embodiment, the instructions, when executed, cause the computing device to
display a list of computing devices available for selection as the selected computing device.
In this example embodiment, the list of computing devices is based on the computing activity
to be performed at the second computing device such that the list of computing devices
includes one or more computing devices capable of performing at least a portion of the
computing activity and excludes any computing devices that are not capable of performing at

least a portion of the computing activity.

[0720] In an embodiment, the request is a request to present content associated with the

computing activity at the second computing device.

[0721] In an embodiment, the orchestration framework is configured to interconnect the
computing device and the one or more computing devices via at least one of a client-server

communication session, a peer-to-peer communication session, and combinations thereof.

[0722] Additional and alternative embodiments will be appreciated with the benefit of this
disclosure. Furthermore, although the subject matter has been described in language specific
to structural features and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the specific features or acts
described above. Rather, the specific features and acts described above are described as

example implementations of the following claims.

WO 2014/058640 PCT/US2013/062636
187

CLAIMS
What is claimed is:

1. A method comprising:

interconnecting a plurality of computing devices through an orchestration framework
that coordinates operation of a computing activity across multiple computing devices of the
plurality of computing devices;

receiving a request to transfer content from a first application at a first computing
device of the plurality of computing devices to a second application at a second computing
device of the plurality of computing devices;

determining whether to initiate transfer the content based, at least in part, on a first
operation mode of the first application and a second operation mode of the second
application;

initiating transfer of the content from the first application to the second application
responsive to a determination that the first operation mode is the same as the second
operation mode; and

wherein the first operation mode and the second operation mode are one of a plurality
of operation modes that include a managed operation mode and an unmanaged operation

mode.

2. The method of claim 1 further comprising:

initiating transfer of the content responsive to a determination that the first operation
mode is the unmanaged operation mode and that the second operation mode is the managed
operation mode; and

blocking transfer of the content responsive to a determination that the first operation
mode is the managed operation mode and that the second operation mode is the unmanaged

operation mode.

3. The method of claim 1 further comprising blocking transfer of the content from the first
application to the second application responsive to a determination that the first operation

mode is not the same as the second operation mode.

WO 2014/058640 PCT/US2013/062636
188

4. The method of claim 1 further comprising:

determining that the first operation mode is the managed operation mode and that the
second operation mode is the unmanaged operation mode;

instructing the second application to change the second operation mode to the
managed operation mode; and

initiating transfer of the content after the second application changes the second

operation mode to the managed operation mode.

5. The method of claim 1 further comprising:

receiving a request from the first application to copy the content to a virtual clipboard;

determining whether to initiate copy the content to the virtual clipboard based on the
first operation mode of the first application;

initiating copy of the content to the virtual clipboard responsive to a determination
that the first operation mode is the managed operation mode; and

blocking copy of the content to the virtual clipboard responsive to a determination

that the first operation mode is the unmanaged operation mode.

6. The method of claim 5 further comprising:

receiving a request from the second application to paste the content from the virtual
clipboard;

determining whether to paste the content from the virtual clipboard based on the
second application;

initiating paste of the content from the virtual clipboard responsive to a determination
that the second operation mode is the managed operation mode; and

blocking paste of the content from the virtual clipboard responsive to a determination

that the second operation mode is the unmanaged operation mode.

7. The method of claim 1 further comprising:

identifying one or more applications at the second computing device wherein the
respective operation modes of the one or more application match the first operation mode of
the first application at the first computing device; and

notifying the first application of the first computing device that the one or more

applications are available for selection as a destination for the content.

WO 2014/058640 PCT/US2013/062636
189

8. An apparatus comprising:
at least one processor;
memory storing computer-readable instructions that, when executed by the at least
onge processor, cause the apparatus to
interconnect a plurality of computing devices through an orchestration
framework that coordinates operation of a computing activity across multiple
computing devices of the plurality of computing devices,
receive a request to transfer content from a first computing device of the
plurality of computing devices to a second computing device of the plurality of
computing device,
determine whether to initiate launch of an application capable of presenting
the content at the second computing device based, at least in part, on a first operation
mode of the first computing device and a second operation mode of the second
computing device, and
initiate launch of the application at the second computing device responsive to
a determination that the first operation mode is the same as the second operation
mode; and
wherein the first operation mode and the second operation mode are one of a plurality
of operation modes that include a managed operation mode and an unmanaged operation

mode.

9. The apparatus of claim 8 wherein the instructions, when executed by the at least one
processor, further cause the apparatus to:

determine that the first operation mode of the first computing device is the managed
operation mode; and

set an operation mode of the application as the managed operation mode after the

application is launched at the second computing device.

10. The apparatus of claim 8 wherein the instructions, when executed by the at least one
processor, further cause the apparatus to block launch of the application at the second
computing device responsive to a determination that the first operation mode is not the same

as the second operation mode.

WO 2014/058640 PCT/US2013/062636
190

11. The apparatus of claim 8 wherein the instructions, when executed by the at least one
processor, further cause the apparatus to:

apply a management policy when determining whether to initiate launch of the
application; and

wherein the determination of whether to initiate launch of the application is based, at
least in part, on the respective operation modes of the first computing device and the second

computing device.

12. The apparatus of claim 11 wherein:

the management policy permits launch of the application when the first operation
mode of the first computing device is the same as the second operation mode of the second
computing device;

the management policy permits launch of the application when the first operation
mode of the first computing device is the unmanaged operation mode and the second
operation mode of the second computing device is the managed operation mode; and

the management policy does not permit launch of the application when the first
operation mode of the first computing device is the managed operation mode and the second

operation mode of the second computing device is the unmanaged operation mode.

13. The apparatus of claim 8 wherein the instructions, when executed by the at least one
processor, cause the apparatus to:

apply a first management policy to determine whether a first computing device is
permitted to copy to a virtual clipboard based on a first operation mode of the first computing
device; and

apply a second management policy to determine whether a second computing device
is permitted to paste from the virtual clipboard based on a second operation mode of the

second computing device.

WO 2014/058640 PCT/US2013/062636
191

14. One or more non-transitory computer-readable media storing instructions that, when
executed, cause a computing device to:

connect to one or more computing devices through an orchestration framework that
coordinates operation of a computing activity across the computing device and the one or
more computing devices;

receive an indication of selected content to transfer to a selected computing device of
the one or more computing devices;

display a list of computing devices available for selection as the selected computing
device wherein the list of computing devices is based on an operation mode of the computing
device and the operation mode is one of a plurality of operation modes that include a
managed operation mode and an unmanaged operation mode; and

initiating transfer of the selected content to the selected computing device via the

orchestration framework.

15. The computer-readable media of claim 14 wherein:

the list of computing devices includes at least one selectable computing device having
an operation mode that is the same as the operation mode of the computing device; and

the list of computing devices excludes any computing device having an operation

mode that is not the same as the operation mode of the computing device.

16. The computer-readable media of claim 14 wherein:
the operation mode of the computing device is the managed operation mode; and
the list of computing devices includes at least one selectable computing device having

an operation mode that is the managed operation mode.

17. The computer-readable media of claim 14 wherein:
the operation mode of the computing device is the unmanaged operation mode; and
the list of computing devices includes at least one selectable computing device having

an operation mode that is the managed operation mode or the unmanaged operation mode.

WO 2014/058640 PCT/US2013/062636
192

18. The computer-readable media of claim 14 wherein the instructions, when executed,
further cause the computing device to:

launch an application responsive to receipt of an instruction via the orchestration
framework wherein the instruction indicates a desired operation mode for the application;

set the operation mode of the application to the desired operation mode; and

provide a notification via the orchestration framework indicating that the application

has been launched with the desired operation mode.

19. The computer-readable media of claim 18 wherein the instructions, when executed,
further cause the computing device to:

receive transferred content via the orchestration framework responsive to receipt of
the notification indicating that the application has been launched with the desired operation
mode; and

present the transferred content using the application.

20. The computer-readable media of claim 14 wherein the orchestration framework is
configured to interconnect the computing device and the one or more computing devices via
at least one of a client-server communication session, a peer-to-peer communication session,

and combinations thereof.

WO 2014/058640

/

143

AN -
. 111 g
TM/ i
|
\
PROCESSOR NETWORK INTERFACE d
RAM ROM INPUTIOUTPUT]
115
13 MEMORY
(IPERATING SYSTEM dh
CONTROL LOGIC T N
103 OTHER APPLICATIONS TN
<> N
S
131 N N 128
DR2

PCT/US2013/062636

N_ 117
N_ 119

| 123
125
| 127

- 121

FIG. 1

WO 2014/058640 PCT/US2013/062636

2143
VA
203 | |Processor| | 217
| 50 D Memory
—~ (/28
A5 1 RAM Operating System
207 || RoM 219 o |11 2 _
input/ Applications
209 || Qutput .
Moduis
223 || LAN interface(s) | | WAN Interface(s) |~ 27 (=
2060
JZAN AN .
\\
200
7230

COMPUTER NETWORK

PCT/US2013/062636

3/43

WO 2014/058640

_
g1¢ Aomsp [eosAYd 80¢ 90¢ PO _
{S)105530014 (S)ooraay BRI |
[| 1E018AG g [e01SAY4 1e018AYg |
104w 2IRMPIEH “
vig¢ woisAs Sunriod
70§ Josiarndiyy
J—— — e =
| O 1143 9t _ | H37¢ H97L | _ V8l Yolt
| | O s0ssas0ig 7y SSICY _ | | € 105830014 o P | | ¥ Hosse001g ¥ YSI(Y _
| [BOLEA FRIEA _ | [EBRLEA JRILIEA “ _ R A [PTEA "
| H H ! b] T
| L o |
S0 _ 783 orIg 5|0
| e ESOPUD |1 fugee VSO MO “ _ PTE OIS 8100 “
" _ “ _ “ oze Foig ronuo| |
_ _ _
bree__ocumornenuia| legee goumonnennal lviee | voumompemal

FOAISS UOTIRZIFRNIA

PCT/US2013/062636

WO 2014/058640

4/43

d
jsualy
HAOMIBN
O I D
ssiy abrioig
SICMISN @
a g @
WOWISES Eloiilats
HIDAIBN @
Y
ssiy E
$AOMISN -
—— \v J
20V \
t T
\ \
qgly Qy0y

{
siue)g

HIOMIBN

0
usuis|g

HICAMIBHN

a
abricig

3)
sBei0)s

g9
JustLeg
SHIOMIEN

7
usuis|g
HICAMIBHN

——=

g)
abpims

WO 2014/058640 PCT/US2013/062636
5/43

T N N N R R N RN R N R R NN N N R R N O R R N M W M mmmm

[20] A [

e s s o ey g
2 s oo

g T -
e £ &8 e NN S (e B R P
B a § § s

o
.

574
Fli= 5

P

{E= 2

Ped
[w8
o, =

¥ v

i

ig} inte

ol \.;::- g
[WN] : N

,..
e
2

P

PCT/US2013/062636

WO 2014/058640

6/43

-

b

e
&

SRR,
LY

138005

A rrrrrrd

N

WSS

wgrreerarees

o
<

AN o

£
b

o

iy

LoArrrorrrrerre,

:

A

Ltk

WO 2014/058640 PCT/US2013/062636
7143

—

Use Cases

- move applications and content, e.g.,
web pages, applications, email,
calendar, conferencing, office
applications, videos

/- push webpage to another device,
.g., video 10 a tablet computer

- send window o another device

- ¢opyipaste to send content io a
document, &.¢., via one-touch

- online meeting spread across devices

Alternative 1—Iconic Device Selector Alternative 2—Vertical Scrolling Menu

Lorem ipsum dolor sit
Phone armet, consectetur
adipiscing elit. Nulla non
suscipit fslis.

Tablet Palientesque nec melus
quis nist commodo
DOSUErS & non mauris.

Alternative 3—Device Pecking

PCT/US2013/062636

WO 2014/058640

8/43

23BGRIE(
880

8 Ol

B0IAIBS PNOD JaAI083Y wasAsgng JBAI0R8Y WRSASGNS
uoneonddy 80U8SaId uoneonddy S0UBSRId
MBS B0 B0BUSIY| JByoune AOBLSIUY Jjsyoune]
%mmﬂwﬂmaz UONBASBUDIO uoeoioN || uoneoyddy uoeoyioN || uoneoyddy
FBLB weby 20BUGIY] wieby
a4 PRI HONRIISBUDIN 34 PR LORBASSUYND
8jge suoydueu
o o elge] ydpeug
wewabeuspy mo_;ma
BOIAS(] . IDAI0SY wasAsgng JBACSOY warsAsgng
uonesyddy BIB8BIH uonesyddy BIIBSBU
_ _ GBS JBuouneT SORYBIY IBUOUNET
OURIUHO opeaydd zatlite oneoydd
g 1551 soBpal HONRDHION HOLEIHCOY LHOBEIUNON HOHBOOOY
. ; 2ii4 PRoio || eoepewy wiaby aoRUBIL waby
ali4 PNoio HoBRASsUI0 il PRoiG HOLRSBYDID
Agidsiy wiooy abie doyde
. A0IN0OSSYH
38enEEg 56RO

aMAa(]

PHOID

PCT/US2013/062636

WO 2014/058640

9/43

Rt Ty
1880

aseqEe(

AUIAB(]

aseqEe(
SNy

V6 'Ol

SIS PROID

ROIABCT WS susyduBLIL

SONBS 183 Somes
g Jasq) UONEASBUNIO)
a0iAB(] JobBu

Bipue
auibu sy awmﬁ%

waly uonBasSaysIo

AOABC JUSHT) UCISIAIS | HEWS

0BG 8OIAIDS

UORBION UONEASBUI)
T

SOIASS 195 o
ERPERY LDRRASBLI0
S0IMIBS 80IAISS
SO0 A0IAS(]

> A S0RLaH

BUAIEG SBNY 8li4 PROID

SOIAES UORBASSYID)

JOBUSS LONOW

FDINIBG IS SOINES
IS5 850 HOURASBUDID)
OIS Joiersuen)
20IAR(] 1ohBu

Bpue

owbuz sory c%ﬁ/w

wehy UonRISSUID

PCT/US2013/062636

WO 2014/058640

10/43

asegRiR(J8Sh

€6 "Old

8SEqRIE]
30180

BSEGRIEQ s8Ny

S0IN0SDY
sfeiorg pnon

h 4

soiaq Bunndwion

weby

Y

somaq Bunnduion

wshy

UONBASSLMIO

UOISSeS
UONEOITULICS
1994-01-188,4

UOBBIRSYMIQ

WO 2014/058640

1143

Select file o share
1002

PCT/US2013/062636

A 4

initiate cross-device requast
1004

Launch multi-device client
1006

|

Present list of destinations for seleciad file
1008

Automatically retrieve shared file from file
sharing service
1030

y

Launch application and digplay file
1028

4

Retrieve shared file from file sharing service
1026

1000

Select destination
1010

y

Upload selected file to Rle sharing service
1012

y

Notify cloud service of shared file
1014

Notify destination of shared file
1016

A
v Parsonal device?
¢ 1018

|
N

v

Display notification of shared file at destination
1028

Accept?
4
N 7 1022 /4

y

|
N

v
Wait
1024

WO 2014/058640

PCT/US2013/062636

12/43

Sglect URL to share
1102

Select destination from list of destinations
1108

y

initiate cross-device request
1104

Upload URL fo cloud service
1110

X

Launch multi-device client
1106

Notify destination of shared URL

1142

Automatically launch web browser and request
URL
1124

A
, Y Personal device?
1114

l
N

v

Display notification of shared URL at
destination
1118

y

Launch web browser and initiate request for
URL
1122

Accept?
D 1118 /4

1100

l
N

v
Wait
1120

WO 2014/058640

13/43

PCT/US2013/062636

Receive notification of shared file al cloud
semvice
1302

Select and copy content to share
1202

y
Determine whether destination device is
capable of opening shared file
1304

initiate cross-device request
1204

Capable of opening fe?
1308

Launch multi-device client
1206

Y

Launch application, download file, and open
file
1308

Upload selected content to global clipboard at
cloud service
1208

Launch virtual environment
1310

Notify devices connected to cloud service of
new content in global clipboard
1210

v

Configure virual environment with capability to
open fls
1312

y

Receive request for content in global dlipboard
1212

Frovide file to virtual environment
1314

y

Dowrdoad content in global clipboard to
requesting device
1214

Launch virtualized application and open file
1316

Paste downloaded content into application at
requesting device
1216

y

Launch virtualization client at destination
device
1318

Connect t¢ virual environment via
virtuglization client
1320

~ FIG.13

1300

PCT/US2013/062636

WO 2014/058640

14/43

Gl "old

2051
3
uoiemddy
2051 1051 0041
2 d A4
uaneoddy uonesddy uonemddy
0051
v \\.. .
oL ﬂ_ wmﬁ.w
5018 ddy B ady
< N,,ﬂ
F4%5 4%
ASniEE Uy /;/.. —
Tl 3oAES WINT OITFL 82inad SHaory

WO 2014/058640

15/43

PCT/US2013/062636

Present a plurality of applications
1602

Datect an account o be accessed
1702

v

Receive a selection for one of the plurality of
applications
1604

Determine an account fype for the account to be
accessed
1704

Determine a context for the selected application
1606

Compare account type 1o account type policy
1706

!

Determing an operation mode for the selecled

Determing an operation mode based on the

application based on the context comparison
1608 1708
Run the selected application in the determined FIG. 17

operation mode
1610

FIG. 16

Determine location for a mobile device
1807

Monitor whether a predetermined application is
running on a device
1902

Compare determined location fo location policy
1804

Compare monitored application to policy
1904

Determine an operation mode based on the

Determine an gperation mode based on the

comparison comparison
1806 1906
FiG. 19

FIG. 18

WO 2014/058640

PCT/US2013/062636

16/43

Deatect one or more nebwork connections for a
davice
2002

Compare detected network conneclions to network
connection policy
2004

Destermine an operation mode based on the
comparison
2006

FIG. 20

Detect one or more settings for a mobile
device
2102

Compare detected settings to setfings
policy
2104

Determine an operafion mode based on
the comparison
2106

FIG. 21

Monitor, while a selected application is running, ong
or more contexts for the selected application

2202

Determine a change in operation mode based on
the monitoring

2204

Switch the operation mode for the selected
application

2206

FIG. 22

PCT/US2013/062636

WO 2014/058640

17/43

0SEZ 1) unupy

€€ Oid

vee Jedomasg
uopeanddy

gger 1]

- 967
v Zi8Z

7ite
uoieoyddy siigop

9iee
;

!

7
viEe

80IA8(SYIGON

PCT/US2013/062636

WO 2014/058640

18/43

55V
Baies ASv

vove
aios dddy

e Oid

TGYe
oSS Y

@

vz iBAalsg WKS

A7
Hnes
poieys

774
1Bl
AIE

OLve

47zve x\
L baverr

.:}'11.11.\1(1|tl\\\1111\ Lﬂ\\.

{

‘ VAT
STAB BUCOK

WO 2014/058640 PCT/US2013/062636
19/43

ERAM
Server
2550 }

¥
5 g
| & Policy-Aware 5
Keys V S s 2
TFom ™ || Interception Layer | =
Lrrem (H 2520

Frivate App Vault
2822b

Shared Vaull
2542

FIG. 25

PCT/US2013/062636

WO 2014/058640

20/43

74T

e

8¢ "Old

INENT DNILAN0S
HOLNGH
RO 1A eTye 1H0d
v LNIDY SEINLNG 090
yE9z - I Yl
SNOLIYOTTdely 2097 =
YMLACS
TSN o= - —_—
8197 7 g2 50 i
ET =R . -
— . p192
v aovduay | SE9C oy Alddg
WS SHOMLIN e PUETITON,
Ly oLez - 8092 Losz ©
z19z
WEN
s A0
- Ovog Geoz A wﬁi&@mgﬁ WAL IE
MINWINGD INFANCOG U038 0892 azaz
S S HINIAE YA
;)
SNOILTY ST 8707 2oz =
WICENEY A FOVSHILNI SN
\\\\\\\\\\\ THEOH :
7 -
@wmm .S\mN A @Q@N
<ol - HOSSII0Ud
808¢ 209z <

WO 2014/058640 PCT/US2013/062636

2143

. 2520

Mobile Bevics

2748

Memaory

- 2750a

Key Store

~ 27500

Secure Launcher

i E -~ 2750¢
/ Secure Virtuad Machine
2750d

2750 il

Secure Containeyr

*

»"| Enterprise App "

Entarprise App
26182 — 2760
Mative Code
Security Coda } ™

.| Personal App
Personal App

2618b e

FIG. 27

PCT/US2013/062636

WO 2014/058640

22143

($74374
20IN0S8Y

8¢ Did

GLed
B0IAISS UCHRINUBLNY

(3188
BOIAB(] AXOId

5097
aoiAB(] UBID

PCT/US2013/062636

WO 2014/058640

23/43

6d Did

‘uoneisdo L L9 d asidwod

o} ejep apmncid o) ‘sufus
1sord Ag Ajsnoucdyosuise
BIQBHED St @SUOUES L OPESBO0I

sbuspeyDLoybusS Hoddns of Japio u
IS AXDId uoEIRd(OMd 01 BigRleAR
51 yJomsiueid Juswsbeusy ddy woy

158nb8) d} | H PUNCOU O] 8oUsIRI8Y

I
CHSSYEOYE5R30d T

]

]

MG AXGU LotiESd g
7/

SE6T

{19sgns} TIN5 ’

d _J\

I i

d

N

QEGT 8Py
UonesRUBLINY

auigugiessed |)

174

2401543
ZIN

0162
NS uoiRIROOMd

uonRe adnHdssnInid

|
|
|
i
I

3*

TOBE Momeuiel 4]

wisluabeuepy ddy HU

lheg aoiAa(] AX0id

1senbaydiin %

S06c¢ eone UsiD

PCT/US2013/062636

WO 2014/058640

24/43

9L0e
SDBILSD
10181 40 15anbal pusg

| |
\\\\\\\\\\\\

gLoe

!

{00t Bid)
A

p FIOT AN

AN

B £ BIQRIBAR

N Aevuoisseg

\\\\\\\\

G10¢

AXCid =
10 UoHRINUBLINEG 188nbay

JETNEIS

UONEoNUBUINTY/80N058

FRINOSBY
101 188nhal pIBMIO

> sigeneae
$81E0IIBY Ajnusp|

80OOC

J00C
SO S1BDNUSYINY

20.N0SeJ IO 1Senbal pusg

A

(2408

AXOic]

AXNCid DBINUBUINY

$

c00¢
lesn sronusyIny

e

PCT/US2013/062636

WO 2014/058640

25/43

TI0C UoIssas
LUOHEDNUSUINE DU
{DBIBOIUBUINE 10U AXCid

NETNETS

arot slgejeagun
aunjeubis sjepu

(008 B4}

0T0T 1sanhsu
Ul LOHBULIOIN IXBIUCO
LOIBOHUSLINE SpNoU

9e0te
ainmeubis

mounm sbesssw puss

N A
FEOT cpsylsn

LIOIBULIONL S
IXEUOT) /

i

i

8208
simeubis

J01 18anbsl s1BIBUSD

/

G200 8uuN0osoy
Uis Axoud o1eonuswyine
O} @IR0IILSD B 10888

FAS Y
LORBULIO

IXSILOD 10BXT

et

UONEoNUBUTY /80N050 s

a0
SSIROUILISD BIUB|IRAR
Buneosipu sbessaw pusg

¥

i

PCT/US2013/062636

WO 2014/058640

26/43

TGOC AT UDISSSS
DHEA UC DBSEQ 82uN0Sa.
£3188nbal SPIAtUd

450

-

8G0L
sl O
S0UNCSeL peisanbsy pusg

090¢
> 80.UN0s8.

i

YGOET ASY
U0ISSSS BUISh 804N0sa.

pEIsenbas UIRIaD

4

50t

AXCid OF pUOS
pUR ASY UOISSES S1BiBURD

»\M&ﬁ>

_/ 050E \

ASy UDISSDS BI0IQ

grie

sJpiea aumeubig /

FETNETS

UONEoNUBUITY /30N058]

simeubis ypm obessaw
LICEHIUSUINE pUSg

i

9v0L
aimeubis 1R

0R1S8Nhas SAIRISY

(372915

AXOId

asinmeubis
ynm sbhessail pusy

A

V0%
SIBOHILISO Yim uBIg

UBHG

T

WO 2014/058640 PCT/US2013/062636

27143

ELECTRONKC MOBILE DEVICE
{E G SMART PHIONE, TABLEY BTG

USER INTERFACZE
{E.G., TOUCH INSPLAY}

MERMORY

GEMERAL CLIFBOARD

HIDDEN ENCRYPTED PASTERACGARD

OTHER MEMORY CONSTRUCTER
(E.G. Q?ER&T N“ "\‘s ‘«TE*‘«‘

‘: b%L TE%’TFELE% E”{f_ 3

FROCERSING CIRCUTRY
CONSTRUCTED AND ARRANGED TG (B
CONVEY DATA BETWEEN SECURE APPS Vi&
THE HIDDEN ENCRYPTED PASTEBQARD, aND
() PROVIDE UNSECURE APPSWITH ACCESS
T THE GENERAL CLIPBOARE

FIG. 31A

HIDDER ENCRYFTED PASTERGARE

WHICH
DECRYPTS
DETAT DATA UPON

T COPYING PASTING

WO 2014/058640

28/43

PCT/US2013/062636

o

RIDOEN EMNORYFPTED PASTEBOARD

GEMNEHAL CLIPBUARD

a. Copy data from unsecure application to
general clipboard

v

b. Secure application receives notice of copy
gvent

v

¢. Secure application reads data from general
cliphoard

Y

d. Secure application encrypts data to form
encrypted data

v

&. Secure application writes encrypted data to
the hidden encrypted pasteboard

v

f. Encrypted data available for use by secure
applications

FIG. 31C

EXAMPLE DATA SHARING FLOW

N7
A\

G

‘ N R e -»'\\‘-‘\\\ e ;)

Y
5,

b
b
B
%

FIG. 31D

WO 2014/058640

29/43

PCT/US2013/062636

FIG. 32

WO 2014/058640

30/43

Recsive request to transfer content from
originating computing device {o destination
computing device

PCT/US2013/062636

Receive request {0 transfer content from
originating computing device to destination
computing device

Determine operation mode of originating
computing device and destination computing
device

v

Operation modes
the same?

Y
v

/_N_

Initiate launch of application at and transfer of
content to destination computing device

{(¥iginating computing
device in managed

operation mode?

Y

l

%N_

Instruct destination computing device o enter
into managed operation mode

Block fransfer of content to destination
computing device

—~ FIG. 33
3300

A
Initiate launch of application at other
computing device and transfer of content to
other computing device

<_.

Recsive request to transfer content from
originating computing device {o destination
computing device

~ FIG. 34

3400

Determine originating computing device in

Determine operation mode of originating
computing device and destination computing
device

Originating computing
device in unmanaged
operation mode?

I
Y

/_

A 4
initiate launch of application at other
computing device and transfer of content to
other computing device

gperation mode?

managed operation mode

N

‘f l

A
Destination computing
device in managed

Block fransfer of content to destination

(J

3500

computing device

FIG. 35

WO 2014/058640

31/43

Receive request from computing device to
copy content to virtual clipboard

y

Determine operation mode of computing
device

Managed N
operation mode?

|
Y
4

PCT/US2013/062636

Do not permit computing device o copy
content o virtual cliphoard

Permit computing device to copy confent to
virtual clipboard

Receive request (o paste content from virtual
cliphoard from compuding device

'

Determine operation mode of computing
device

Do not permit computing device to paste
content from virtual clipboard

5

3600

Managed
«——N :
operation mode?

[
Y
\ 4

Permit computing device to paste content from
virtual clipboard

Receive selection of content io fransfer to
another computing device

FIG. 36

Determine operation mode of computing

Create list that includes computing devices
having same operation mode and excludes
devices not having same operation mode

davice

identify computing devices available for

Receive selection of computing device
included in list as destination device

selection as a destination computing device
hased on operation mode

Initiate launch of application at other

S

3700

computing device and transfer of content to
other computing device

FIG. 37

WO 2014/058640 PCT/US2013/062636
32/43

Regsive from computing device request for
management policy

v

Provide management policy to computing
device

v

identify additional computing devices
connecied to computing device

Broadcast and distribute management policy to
additional computing devices connected o
computing device

Receive reguest from a computing device to
perform an action

v

Apply management policy to determine
whether management policy permits action

v

/ Action permitted? F
I

Y
\ 4
N
Permit computing device to carry out action
Block computing device from carrying out <_
action

3800 FIG. 38

WO 2014/058640 PCT/US2013/062636
33/43

Receive request from computing device to

Receive request from computing device t :)
eoeive request from compuling device o share enterprise resource with another

access enterprise resource computing device
v
Apply management policy to determine Apply management policy to determine
whether computing device is permitted to whether computing device is permitted o
access enterprise resource share enterprise resource
v v
Access Sharing
permitted? permitted?
l I
N N
+ ® + ® B
Do not permit computing device 1o access ¥ | Donot permit computing device fo share
be puing ' enterprise resource with other computing
enterprise resource devi
gvice
.| Permit computing device to access enterprise Pemmit computing device (o share

— L enterprise resource with other computing

Fesource device

Receive request from computing device {0
content from enterprise resource with ancther
computing device

Apply management policy to determine
whether computing device is permitted to
transfer content from enterprise resource

v

Transfer
permitted?

I
N

4
Y Do not permit computing device fo transfer

content from enterprise resource to other
computing device

Permit computing device to transfer content
—» from enterprise resource to other computing
device

3000
FIG. 39

WO 2014/058640 PCT/US2013/062636
34/43

Receive reguest from computing device to
transfer content to another computing device

v

identify an application capabile of presenting
the content

Determine whether management policy
permits faunch of application at other
computing device

Launch of
ﬁ/ application /
permitted?
v
v
N Iniliate launch of application at other
computing device and transfer of content o

other computing device

Biock launch of application at and transfer of
content fo destination computing device

A
Alternative VIRTUAL Iniliate launch of client agent at other
—») ;
approach? APP. computing device

A

DIFFERENT
COMPUTING Configure client agent with virtual
DEVICE application capable of presenting content

v

\ 4

Locate different computing device
management policy permits {o launch
application

Initiate fransfer of content fo virtual
application of client agent at other
computing device

initiate launch of application at different
computing device and transfer of content o
different computing device

4000 FIG. 40

WO 2014/058640
35/43

Receive management policy at computing
device

Apply management policy io determing
whether user can connect new computing
device {0 cloud server

y
Determine whether new device is permifted fo
be connected to cloud server based on
maximum number of permilted devices

PCT/US2013/062636

Maximum number of
connecied devices

axceaded?

Deny request 1 connect new
computing device to cloud server

I
N

v
Determine whether new device is permitted to

be connected fo cloud server based on device
type of new device

Device type

permitted? N

Deny request 1o connect new
computing device o cloud server

I
v
\ 4
Delermine whether device is co-located with
other devices connected to cloud server

New device at

, N—>p
conmimon location?

Deny request {o connect new
computing device to cloud server

i
Y

v

Permit new computing device o be connecled
to cloud server

FIG. 41

4100

WO 2014/058640

36/43

PCT/US2013/062636

Receive request from computing device o
transfer content fo another computing device

identify data vaull at computing device that

stores the conient

y

Delermine whether other computing device

Determine data vault type of data vaull that

stores the content

4

Data vault types
match?

includes a data vault having the same dala
Y

vaull type
4

%Nﬁ

Deny request to content to other computing
device

y

Permit computing device to transfer contentio
other computing device

Locate alternalive computing device with data
vault having matching data vault type

Instruct other compuiting device to store
content in data vault having matching data
vault type

v v
, . Seleci alternative computing device as
Encrypt content using encryption key destination for content
v
Initiate transfer of content to other computing g
device
4200

Provide other computing device with

encryption key

FIG. 42

Receive request from computing device o

identify data vault at computing device that

transfer content fo another compuiing device

Encrypted or /

stores the content

v

Determine data vaull type of data vault that

/

ENCRYPTED

unencrypted data 2
vault type? /

stores the corient

UNENCRYPTED————

l

Instruct other computing device o store
content in encrypled data vault

A
4300

y
instruct other computing device that it may
store content in an encrypled or
unencrypted data vault

FIG. 43

WO 2014/058640

37743

PCT/US2013/062636

Receive an instruction fo wipe content
transferred between computing devices

Identify computing devices that store the
content

A

Determine whether wipe instruction indicates
all content or specific content

Determing whether wipe instruction indicates
all data vaulls or specific data vault

Select data vaull at computing device

-

Select content at selected data vault

A

Delele content from data vault based on wipe

instruction
A
N / More content to
‘ / wipe?
f
Y
\ 4
More data vaulis fo Select next content at dala vault based on
wipe? wipe instruction
I
Y
\ 4

Select next data vault at computing device

= 1

More compuiing
devices to wipe?
l
‘}!

\ 4

/_N_,

Select next computing device

/J

4400

Conclude content wipe

FIG. 44

WO 2014/058640 PCT/US2013/062636
38/43

Receive selection of content to transfer fo
another computing device

Identify data vault al computing device that
stores the content

Determine data vault type of data vault that
stores the content

identify computing devices available for
selection as a destination computing device
based on data vaull type

include computing devices having the same
data vaull type and exclude computing devices
not having the same data vault type

Receive selection of computing device
included in list as destination device

Initiate fransfer of content to other computing
device

y
instruct selected computing device to store

content in data vaul! having matching dala
vault type

4500 =1z, 45

WO 2014/058640

39/43

PCT/US2013/062636

Submit request to resource manager for

Provide o resource manager signature of

acoess to enterprise resource

A

computing device requesting access o
resrouce

Apply user seltings at the computing device

Obtain 5SSO credential that corresponds 1o

hased on the 880 credential

signature

A

Apply application settings at the computing

identify a set of computing devices associated

device based on the 550 credential

with and connected to the computing device

v

Select a computing device o receive the 5SSO0
credential

v

Select next computing device

S

4600

<—\{I#

devices?
I

Provide the SSO credential to the selected
N

computing device
v

Additional computing
Access the enterprise resource using the S80C
credential

FIG. 46

Reguest 550 credential from resource

manager for access to enterprise resource

Receive 550 credential at computing device

y

Automatically request respective 85O
gredentials for each of the computing devices <

identify set of computing devices associated

in the set of computing devices

with and connected to computing device

Receive individual S50 credentials for each of

Access the resource from one of the

y

the computing devices in the set of computing
devices

computing devices using the respeclive S50
credential for the computing device

47%06 FIG. 47

WO 2014/058640

Y

4/43

PCT/US2013/062636

Determine application subject to policy agent

has launched

A 4

Submit reguest for management policy from
policy manager

ﬁ/ Available? /4—

|
N

v

Provide notification that management policy is
not available

v

Determine whether requesied management
policy is available from policy manager

Receive management policy from policy

manager

Identify set of inferconnected computing
devices

v

Provide management policy o each of the

interconnected computing devices

Identify set of inferconnected computing
devices

Manage interaction between the

inferconnected compuiting devices using the
policy agent and the management policy

Manage interaciion between applications at
the interconnected computing devices using
the policy agent and the management policy

5

4800

FIG. 48

Receive updated policy information at policy

management interface

| ldentify a computing device that is associated

with an updated management policy

'

identify a set of computing devices associated

and interconnected with the computing device
that received the updated management policy

Push the updated management policy fo the
computing device

Push the updated management policy 1o sach
of the associated and inferconnscted
computing devices

J

4800

FIG. 49

WO 2014/058640

4143

Receive a request to fransfer contentirom a

PCT/US2013/062636

computing device to another computing device

Create list that includes computling devices

Identify a set of computing devices
interconnected with the computing device

y

having a policy agent and excludes devices
not having a policy agent

A

Receive seiection of computing device

Determine whether the computing devices
include one or more respective policy agents

included in list as destination device

Permit fransfer of content to selected
computing device

3

A
Initiate launch of application at selected
computing device and fransfer of content to
selected computing device
4

Select alternative application as destination for
transferred content

A
Y
I
Altermnative
application
available?
I
N

4

Determine whether alternative computing

Determine whether an application capable of
presenting the content at computing device is
subject to the policy agent

Y

Subject to policy
ageni?

|
N

v

Deny request to transfer content to selected
computing device

Determine whsther alternative application is
available at selected computing device and
subject to policy agent

41— 5000

device i3 available and includes application
subject to palicy agent

Alternative

Initiate launch of a client agent subject i
policy agent at the selected computing device

v

computing device

available?
|
N
v
Select alternative computing

gevice as destination for

fransferred content

Configure client agent with virtual application
capable of presenting content

v

initiate transfer of content io the virtual
application of the client agent at the selected
computing device

FIG. 50

WO 2014/058640 PCT/US2013/062636
42/43

Request at least a portion of a computing
activity be performed at another computing
device

Inferconnect computing devices via
orchestration framework

y

A

Determine whether the selected computing
device includes an application capable of
performing the computing activity

Select the computing device to perform the
computing activity

y

Includes capable Initiate liaunch ’of application at sek?(:ted
Y— computing device and perform portion of

i
application” computing activity

!
N

v

Determine desired approach fo enable VIRTUAL
computing device to perform computing activity APP.

DOWNLOAD
AFP.

| |

Locate application at enterprise appiication initiate launch of client agent at selected
storefront capable of performing the computing computing device

aclivity

A

Downdoad application capable of performing

the computing activity to selected computing Configure client agent with virtual application

capable of performing computing activity

device
A X
Initiate launch of downloaded application at Perform computing activity with virtual
selected computing device and perform portion application of client agent at selected
of computing aclivity computing device

I FIG. 51

WO 2014/058640 PCT/US2013/062636
43/43

Receive request to perform at least a portion of
a computing activity at ancther computing
device

Determine application capable of performing
computing activity

identify compuling devices available for
selection as computing device to perform
computing activity

Prasent list of computing devices available for
selection

A
Receive selection of computing device that

includes application or permitted to receive
application from application storefront

A
Initiate launch of the application at the selected
computing device or downiload of application fo
selected compuling device

Perform at least a portion of the computing
aclivity at the selected computing device

VA0 FIG. 52

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/062636
A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F21/53 GO6F9/54
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 6 883 098 B1 (ROMAN JOHN S [US] ET AL) 1-20
19 April 2005 (2005-04-19)
the whole document
A US 2007/226773 Al (POULIOT SEBASTIEN [CA]) 1-20
27 September 2007 (2007-09-27)
the whole document
A US 2007/199051 Al (PARIKH SUJAL S [US] ET 1-20
AL) 23 August 2007 (2007-08-23)
the whole document
A US 2008/066177 Al (BENDER ERNEST S [US]) 1-20
13 March 2008 (2008-03-13)
the whole document
_/ -

See patent family annex.

Further documents are listed in the continuation of Box C.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international

- "X" document of particular relevance; the claimed invention cannot be
filing date

considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

20 December 2013

Date of mailing of the international search report

10/01/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Wiltink, Jan Gerhard

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/062636

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

ET AL) 14 August 2008 (2008-08-14)
the whole document

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2012/066691 Al (BRANTON PAUL KEITH 1-20
[GB]) 15 March 2012 (2012-03-15)
the whole document
A US 20117239125 A1 (KRISTENSEN KRISTIAN H 1-20
[US] ET AL) 29 September 2011 (2011-09-29)
the whole document
A US 2010/146523 Al (BRIGAUT LAURENT [CA] ET 1-20
AL) 10 June 2010 (2010-06-10)
the whole document
A US 2008/196038 Al (ANTONIO MICHAEL J [US] 1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/062636
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6883098 Bl 19-04-2005 AU 6564601 A 21-03-2002
SG 101472 Al 30-01-2004
Us 6883098 Bl 19-04-2005
US 2007226773 Al 27-09-2007 NONE
US 2007199051 Al 23-08-2007 NONE
US 2008066177 Al 13-03-2008 CN 101140532 A 12-03-2008
US 2008066177 Al 13-03-2008
US 2012066691 Al 15-03-2012 EP 2428894 Al 14-03-2012
US 2012066691 Al 15-03-2012
US 2011239125 Al 29-09-2011 NONE
US 2010146523 Al 10-06-2010 NONE
US 2008196038 Al 14-08-2008 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - description
	Page 100 - description
	Page 101 - description
	Page 102 - description
	Page 103 - description
	Page 104 - description
	Page 105 - description
	Page 106 - description
	Page 107 - description
	Page 108 - description
	Page 109 - description
	Page 110 - description
	Page 111 - description
	Page 112 - description
	Page 113 - description
	Page 114 - description
	Page 115 - description
	Page 116 - description
	Page 117 - description
	Page 118 - description
	Page 119 - description
	Page 120 - description
	Page 121 - description
	Page 122 - description
	Page 123 - description
	Page 124 - description
	Page 125 - description
	Page 126 - description
	Page 127 - description
	Page 128 - description
	Page 129 - description
	Page 130 - description
	Page 131 - description
	Page 132 - description
	Page 133 - description
	Page 134 - description
	Page 135 - description
	Page 136 - description
	Page 137 - description
	Page 138 - description
	Page 139 - description
	Page 140 - description
	Page 141 - description
	Page 142 - description
	Page 143 - description
	Page 144 - description
	Page 145 - description
	Page 146 - description
	Page 147 - description
	Page 148 - description
	Page 149 - description
	Page 150 - description
	Page 151 - description
	Page 152 - description
	Page 153 - description
	Page 154 - description
	Page 155 - description
	Page 156 - description
	Page 157 - description
	Page 158 - description
	Page 159 - description
	Page 160 - description
	Page 161 - description
	Page 162 - description
	Page 163 - description
	Page 164 - description
	Page 165 - description
	Page 166 - description
	Page 167 - description
	Page 168 - description
	Page 169 - description
	Page 170 - description
	Page 171 - description
	Page 172 - description
	Page 173 - description
	Page 174 - description
	Page 175 - description
	Page 176 - description
	Page 177 - description
	Page 178 - description
	Page 179 - description
	Page 180 - description
	Page 181 - description
	Page 182 - description
	Page 183 - description
	Page 184 - description
	Page 185 - description
	Page 186 - description
	Page 187 - description
	Page 188 - description
	Page 189 - claims
	Page 190 - claims
	Page 191 - claims
	Page 192 - claims
	Page 193 - claims
	Page 194 - claims
	Page 195 - drawings
	Page 196 - drawings
	Page 197 - drawings
	Page 198 - drawings
	Page 199 - drawings
	Page 200 - drawings
	Page 201 - drawings
	Page 202 - drawings
	Page 203 - drawings
	Page 204 - drawings
	Page 205 - drawings
	Page 206 - drawings
	Page 207 - drawings
	Page 208 - drawings
	Page 209 - drawings
	Page 210 - drawings
	Page 211 - drawings
	Page 212 - drawings
	Page 213 - drawings
	Page 214 - drawings
	Page 215 - drawings
	Page 216 - drawings
	Page 217 - drawings
	Page 218 - drawings
	Page 219 - drawings
	Page 220 - drawings
	Page 221 - drawings
	Page 222 - drawings
	Page 223 - drawings
	Page 224 - drawings
	Page 225 - drawings
	Page 226 - drawings
	Page 227 - drawings
	Page 228 - drawings
	Page 229 - drawings
	Page 230 - drawings
	Page 231 - drawings
	Page 232 - drawings
	Page 233 - drawings
	Page 234 - drawings
	Page 235 - drawings
	Page 236 - drawings
	Page 237 - drawings
	Page 238 - wo-search-report
	Page 239 - wo-search-report
	Page 240 - wo-search-report

