发明名称

墨水、喷墨记录方法、记录单元、墨盒以及喷墨记录装置

摘要

本发明涉及满足下述条件（A）和（B）的喷墨用墨水，其具有良好的发色性和耐湿性。（A）通过包括下述工序（1）～（3）的方法判定的色差△E为9以下。该判定方法具有下述工序（1）～（3）：（1）施加墨水的工序：施加含有色料、水、水溶性有机溶剂的墨水后，重叠施加将该墨水的色料替换成水的墨水，该水溶性有机溶剂的蒸发率X小于水的蒸发率、吸湿率Y（质量%）为20以上，并且满足Y≥2.8X+10；（2）放置工序：在第1和第2条件下放置记录物；（3）判定工序：通过下式（1）（L1、a1、b1表示上述第2工序的放置前的Lab色度体系的L、a、b，L2、a2、b2表示上述第2工序的放置后的Lab色度体系的L、a、b）所表示的色差（△E）对记录物进行判定。（B）满足Y≤2.8X+10的水溶性有机溶剂的含量的比例为50质量%以上。

\[
\Delta E = \sqrt{(L_1 - L_2)^2 + (a_1 - a_2)^2 + (b_1 - b_2)^2}
\]
1. 一种喷墨用墨水，其至少含有色料和水溶性有机溶剂，其特征在于，满足如下条件(A)和(B):

(A)通过色料的特性判定方法判定的色差$\Delta E$为9以下，该判定方法具有下述工序(1)～(3):

(1)施加模型墨水的工序，该模型墨水含有所述色料，水和水溶性有机溶剂，该水溶性有机溶剂的蒸发率$X$（质量%）小于水的蒸发率，吸湿率$Y$（质量%）为20以上，并且满足$Y \geq 2.8X + 10$，以及重叠施加无色料墨水的工序，该无色料墨水仅将所述模型墨水的色料替换成水，并且模型墨水的施加量比无色料墨水的施加量少。

(2)放置工序：将通过所述工序(1)得到的记录物放置在温度25℃、湿度60%的环境下48小时，然后放置在温度30℃、湿度80%的环境下168小时。

(3)判定工序：通过下式(1)所表示的色差($\Delta E$)，对所述放置168小时前后的记录物进行判定，

$$\Delta E = \sqrt{(L_1 - L_2)^2 + (a_1 - a_2)^2 + (b_1 - b_2)^2}$$ 式(1)

(式(1)中，$L_1$、$a_1$、$b_1$表示所述放置48小时后，放置168小时前的Lab色度体系的$L$、$a$、$b$，$L_2$、$a_2$、$b_2$表示所述放置168小时后的Lab色度体系的$L$、$a$、$b$。)

(B)所述墨水所含有的全部水溶性有机溶剂中的、蒸发率$X$（质量%）和吸湿率$Y$（质量%）满足下式(2)的关系的水溶性有机溶剂的含量的比例为50质量%以上。

$$Y \leq 2.8X + 10$$ 式(2)

(式(2)中，$X$为蒸发率，$Y$为吸湿率。)

2. 根据权利要求1所述的喷墨用墨水，其中，所述色料至少为两种以上，且任一种色料都满足所述条件(A)和(B)。

3. 根据权利要求1或2所述的喷墨用墨水，其中，相对于所述
墨水所含有的全部水溶性有机溶剂的含量，满足上式(2)的水溶性有机溶剂的含量为65质量%以上。

4. 根据权利要求1～3任一项所述的喷墨用墨水，其中，所述色料为下述通式(I)所表示的化合物或其盐。

通式(I)

(通式(I)中，M各自独立地表示氢原子、碱金属、碱土类金属、有机胺的阳离子或铵离子，n各自独立地表示1或2。)

5. 根据权利要求1～4任一项所述的喷墨用墨水，其中，满足上式(2)的水溶性有机溶剂选自乙二醇、二乙二醇、2-吡咯烷酮、1,5-戊二醇、1,6-已二醇和亚乙基脲所组成的组中。

6. 根据权利要求5所述的喷墨用墨水，其中，满足上式(2)的水溶性有机溶剂为乙二醇、2-吡咯烷酮和亚乙基脲。

7. 一种喷墨用墨水，其至少含有色料和水溶性有机溶剂，其特征在于，满足如下条件(A)和(B)：

(A)含有下述通式(I)所表示的化合物或其盐作为色料，

通式(I)

(A)含有下述通式(I)所表示的化合物或其盐作为色料，
（通式(I)中，M各自独立地表示氢原子、碱金属、碱土类金属、有机胺的阳离子或铵离子，n各自独立地表示1或2）

(B)所述墨水所含有的全部水溶性有机溶剂中的蒸发率X(质量%)和吸湿率Y(质量%)满足下式(2)的关系的水溶性有机溶剂的含量的比例为50质量%以上。

\[ Y \leq 2.8X + 10 \] 式(2)

（式(2)中，X为蒸发率，Y为吸湿率。）

8. 根据权利要求7所述的喷墨用墨水，其中，作为所述色料，还含有C.I.直接黄132。

9. 根据权利要求7或8所述的喷墨用墨水，其中，相对于所述墨水所含有的全部水溶性有机溶剂的含量，满足上式(2)的水溶性有机溶剂的含量为65质量%以上。

10. 根据权利要求7～9任一项所述的喷墨用墨水，其中，满足上式(2)的水溶性有机溶剂选自乙二醇、二乙二醇、2-吡咯烷酮、1,5-戊二醇、1,6-己二醇和亚乙基胺所组成的组中。

11. 根据权利要求10所述的喷墨用墨水，其中，满足上式(2)的水溶性有机溶剂为乙二醇、2-吡咯烷酮和亚乙基胺。

12. 一种喷墨用墨水，其至少含有色料和水溶性有机溶剂，其特征在于，所述色料为下述通式(I)所表示的化合物或其盐，所述水溶性有机溶剂选自乙二醇、二乙二醇、2-吡咯烷酮、1,5-戊二醇、1,6-己二醇和亚乙基胺所组成的组中。

通式(I)
（通式(I)中，M各自独立地表示氢原子、碱金属、碱土类金属、有机胺的阳离子或铵离子，n各自独立地表示1或2。）

13. 根据权利要求12所述的喷墨用墨水，其中，作为所述色料，还含有C.I.直接黄132。

14. 根据权利要求12或13所述的喷墨用墨水，其中，相对于所述墨水所含有的全部水溶性有机溶剂的含量，所述水溶性有机溶剂的含量为65质量%以上。

15. 根据权利要求12～14任一项所述的喷墨用墨水，其中，所述水溶性有机溶剂为二乙二醇、2－吡咯烷酮和亚乙基脲。

16. 一种喷墨记录方法，其包括通过喷墨法喷出墨水的工序，其特征在于，所述墨水为权利要求1～15任一项所述的喷墨用墨水。

17. 一种墨盒，其具备容纳墨水的墨水容纳部，其特征在于，所述墨水为权利要求1～15任一项所述的喷墨用墨水。

18. 一种记录单元，其具备容纳墨水的墨水容纳部和用于喷出墨水的记录头，其特征在于，所述墨水为权利要求1～15任一项所述的喷墨用墨水。

19. 一种喷墨记录装置，其具备容纳墨水的墨水容纳部和用于喷出墨水的记录头，其特征在于，所述墨水为权利要求1～15任一项所述的喷墨用墨水。
说明 书

墨水、喷墨记录方法、记录单元、墨盒以及喷墨记录装置

技术领域

本发明涉及作为喷墨用墨水具有良好的发色性、耐湿性以及高可靠性的喷墨用墨水、喷墨记录方法、记录单元、墨盒以及喷墨记录装置。

背景技术

喷墨记录方法是通过在普通纸以及光泽介质等记录介质上施加小墨滴而形成图像的记录方法，随着其价格的低廉化、记录速度的提高，迅速地普及发展。另外，除了其记录图像的图像质量不断提高之外，随着数码相机的迅速普及，作为与银盐照片相匹敌的照片图像的输出方法正广泛应用。

近年来，由于墨滴的极小液化技术以及伴随多种颜色墨水的导入的色域的提高等，图像质量的提高得到比以往更进一步的发展。但另一方面，对色料和墨水的要求变得更高，在发色性的提高以及粘着性、喷出稳定性等可靠性方面要求更严格的特性。

另一方面，作为与银盐照片相比时的喷墨记录方法的问题点，可以列举出所得到的记录物的图像保存性。通常，由喷墨记录方法得到的记录物与银盐照片相比，其图像保存性低，记录物长时间暴露于光、湿度、热、空气中存在的环境气体等中时，存在记录物上的色料发生劣化，图像的色调改变或褪色等问题，为了解决上述问题，迄今为止已经提出了大量的技术方案。

通常，在喷墨记录方法中，使用具有黄色、品红色、青色、黑色等色相的墨水。其中，特别是关于黄色墨水，以往就已认识到需要提高耐光性、耐水性、耐湿性等特性。例如，为了提高这些特性，提出了使用C.I.直接黄173或C.I.直接黄86等具有特定结
构的色料的技术方案（参考例如日本特开平02－233781号公报以及日本特开平04－233975号公报）。但是，虽然通过使用如上所述的色料能够在耐光性、耐水性、耐湿性等方面实现很大的性能提高，但其另一方面，在色调、发色性或可靠性等方面并不是足够的水平。

另外，提出了作为黄色墨水和成套墨水的色料使用C.I.直接黄132的技术方案（参考例如日本特开平11－29729号公报以及日本特开2001－288391号公报）。所述色料由于其发色性良好而被大量用于喷墨用墨水，但是却存在其耐湿性显著恶化的问题。

另外，还提出了通过使用具有特定结构的色料，实现耐湿性的提高的技术方案（参考例如日本特开平11－217529号公报）、以及通过使用多个颜色的成套墨水来进行耐湿性的改善的技术方案（参考例如日本特开平11－180028号公报）。

在上述技术方案中，虽然试图改善耐湿性，但仍然只是依赖于色料的结构。即，在使用具有特定结构的色料来提高耐湿性的技术方案、以及使用多个颜色的成套墨水来改善耐湿性的技术方案中，不能够防止迁移（高温高湿等环境下色调变化所引起的图像劣化）。

另外，还提出了合成具有耐湿性、耐光性、耐水性以及适合于喷墨记录的色相和清晰性的新型色料的技术方案（参考例如日本特开2003－321627号公报）。然而，使用这样的色料时，也存在在某些特定墨水配方中仍不能达到现有的喷墨记录方法所要求的耐湿性的水平的情况。

发明内容

从上述背景出发，本发明人认识到需要一种黄色墨水，其改善具有黄色色调的色料中作为最大问题点的耐湿性，进而发色性
和耐湿性都优异。

本发明人发现在现有的喷墨记录用黄色墨水中所使用的色料存在如下倾向：发色性良好的色料的耐湿性差，相反，耐湿性良好的色料的发色性差。该倾向还与色料的分子量有关。通常，分子量大的色料即使在固定着于记录介质之后与过量的湿度接触，色料也不易在记录介质中移动。其结果是，能够提高耐湿性。另一方面，分子量大的色料由于在其色料结构中对发色没有贡献的部分相对较大，因此每单位质量的发色效率降低。因此，在使用分子量大、耐湿性良好的色料的情况下，必须牺牲发色性。即，为了提高喷墨记录物的图像保存性以达到银盐照片的水平以上，必须同时实现含有黄色色料的墨水中的发色性和耐湿性。

另外，本发明人对迁徙所导致的记录物的色调变化的产生机理进行了探索，并从防止迁徙本身的观点出发进行了如下研究。具体来说，针对已判明由于迁徙而产生记录物的色调变化的特定墨水组成进行了研究。结果发现，根据特定水溶性有机溶剂的有无，迁徙的发生也有大的不同。即，可以认为，在高温高湿环境下，残留于在记录物中的水溶性有机溶剂通过吸收空气中的水分而发生迁徙。

本发明是基于上述见解进行的，本发明人着眼于形成在记录介质上的图像，关注图像形成前的墨水的组成成分与图像形成后存在于记录介质中的水溶性有机溶剂的成分之间的不同，对墨水中所含有的水溶性有机溶剂的各自的特性进行了探求。其结果是，本发明人从残留于记录物中的水溶性有机溶剂所具有的特性的不同，发现了由迁徙所导致的色调变化产生的机理。于是，断定迁徙所导致的色调的变化很大程度上依赖于残留于记录物中的水溶性有机溶剂的总量以及所述水溶性有机溶剂实质上含有水分子的性质，并针对这一点进行了深入研究，从而完成了本发明。
如上所述，本发明人认识到迁移的原因在于色料的耐湿性以及水溶性有机溶剂的相互作用。

因此，本发明的主要目的在于，基于上述认识，着眼于存在于记录物中的水溶性有机溶剂的量，提供一种抑制由迁移所导致的色调变化的新技术。

另外，本发明的另一个目的在于提供一种墨水，其耐湿性优异，并且作为喷墨用墨水的起动喷出稳定性等特性优异。

另外，本发明的另一个目的在于提供一种墨水，其耐湿性优异，并且起动喷出稳定性、图像浓度以及色调都优异。

上述目的是通过如下本发明实现的。即，本发明的喷墨用墨水，其至少含有色料和水溶性有机溶剂，其特征在于，该喷墨用墨水满足如下条件(A)和(B):

(A)通过色料的特性判定方法判定的色差ΔE为9以下，该判定方法具有下述工序(1)～(3):

(1)施加模型墨水的工序，该模型墨水含有所述色料、水和水溶性有机溶剂，该水溶性有机溶剂的蒸发率X（质量%）小于水的蒸发率，吸湿率Y（质量%）为20以上，并且满足Y ≥ 2.8X + 10；以及重叠施加无色料墨水的工序，该无色料墨水是从所述模型墨水仅将色料替换成水而得到的，且且模型墨水的施加量比无色料墨水的施加量少；

(2)放置工序：将通过上述工序(1)得到的记录物放置在温度25℃、湿度60%的环境下48小时，然后放置在温度30℃、湿度80%的环境下168小时；

(3)判定工序：通过下式(1)所表示的色差(ΔE)，对所述放置168小时前后的记录物进行判定，

\[
\Delta E = \sqrt{(L_1 - L_2)^2 + (a_1 - a_2)^2 + (b_1 - b_2)^2}
\]  式(1)
（式(1)中，L₁、a₁、b₁表示所述放置48小时后、放置168小时前的Lab色度体系的L、a、b。L₂、a₂、b₂表示所述放置168小时后的Lab色度体系的L、a、b。）

（B）所述墨水所含有的全部水溶性有机溶剂中的、蒸发率X（质量%）和吸湿率Y（质量%）满足下式(2)的关系的水溶性有机溶剂的含量的比例为50质量%以上。

\[ Y \leq 2.8X + 10 \quad \text{式(2)} \]

（式(2)中，X为蒸发率，Y为吸湿率）

另外，本发明的喷墨记录方法，其特征在于，具有以喷墨方法喷出上述喷墨用墨水的工序。

另外，本发明的墨盒，其特征在于，具备容纳上述喷墨用墨水的墨水容纳部。

另外，本发明的记录单元，其特征在于，具备容纳上述喷墨用墨水的墨水容纳部和用于喷出所述墨水的记录头。

另外，本发明的喷墨记录装置，其特征在于，具备容纳上述喷墨用墨水的墨水容纳部和用于喷出所述墨水的记录头。

根据本发明，提供一种喷墨用黄色墨水，其满足作为喷墨用墨水所要求的发色性、并且在各种记录介质上打印时都具有高耐湿性，并能够提供使用该墨水的喷墨记录方法、记录单元、墨盒、喷墨记录装置。

附图说明

图1为本发明的蒸发率、吸湿率的曲线图。
图2为记录装置的立体图。
图3为记录装置的机构部的立体图。
图4为记录装置的剖面图。
图5为表示将墨罐安装到记录头盒中的状态的立体图。
图6为记录头盒的分解立体图。
图7为表示记录头盒中的记录元件基板的主视图。

具体实施方式

下面通过列举优选的实施方式对本发明进行详细的说明。

另外，在本发明中，在化合物为盐的情况下，盐在墨水中离解成离子而存在，但方便起见，表达为“含有盐”。

<墨水>

本发明所用的迁移是由于色料的耐湿性以及水溶性有机溶剂的相互作用所引起的。下面，针对构成本发明墨水的成分等进行详细说明。

（色料）本发明的喷墨用墨水（以下简称为“墨水”）必须含有通过下述色料的特性判定方法判定的色差（ΔE）为9以下的色料。

[色料的判定方法]

本发明的色料的特性判定方法具有上述工序(1)～(3)，将这些工序分成下述工序(a)～(g)进行更详细的说明。

(a)模型墨水和无色料墨水的调制

调制模型墨水，其含有色料、水和水溶性有机溶剂，该水溶性有机溶剂的蒸发率X（质量%）比水小、吸湿率Y（质量%）为20质量%以上，且满足Y ≥ 2.8X + 10，优选Y > 2.8X + 10（Y ≥ 2.8X + 10的技术含义如后所述）；以及无色料墨水，其在前述组成中以水替换色料而成。通过制成前述组成，形成具有容易发生迁移的条件的墨水。另外，上述组成的目的是为了判定色料的特性（特别是耐湿性），因此，制成满足上述条件的组成是重要的。

另外，本发明的蒸发率X（质量%）如下求得：将5g水溶性有机溶剂放入外径31mm、高15mm的皿中，在温度60℃、湿度10%
的环境下静置192小时后，再次测定水溶性有机溶剂的质量，从减少的水溶性有机溶剂的质量求得蒸发率X值。另外，吸湿率Y（质量%）如下求得：将5g水溶性有机溶剂放入外径31mm、高15mm的皿中，在温度30℃、湿度80%的环境下静置192小时后，再次测定水溶性有机溶剂的质量，从增加的水溶性有机溶剂的质量求得吸湿率Y值。

模型墨水的组成的具体例子，可以列举出以下组成。使用甘油和尿素作为水溶性有机溶剂，使用Acetylenol E－100（川研ファインケミカル制造）作为表面活性剂，使用C.I.直接黄132作为色料，按照下述组成调制出模型墨水。另外，在表1中，给出了甘油和尿素的蒸发率X（质量%）、吸湿率（质量%）以及水（纯水）的蒸发率X（质量%）的值。根据下述表1，甘油和尿素相当于蒸发率比水小、且吸湿率为20质量%以上的水溶性有机溶剂。

### 表1

<table>
<thead>
<tr>
<th>组成</th>
<th>蒸发率[质量%]</th>
<th>吸湿率[质量%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>甘油</td>
<td>10.0</td>
<td>0.0</td>
</tr>
<tr>
<td>尿素</td>
<td>10.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Acetylenol E－100</td>
<td>1.0</td>
<td>—</td>
</tr>
<tr>
<td>C.I.直接黄132</td>
<td>3.0</td>
<td>—</td>
</tr>
<tr>
<td>纯水</td>
<td>76.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

(b)评价用图像的制造

制造评价用图像，其通过将上述得到的模型墨水和无色料墨水重叠而形成图像。所述图像的打印duty可以是任意的，但重要的是使模型墨水和无色料墨水重叠。这是因为，在假定实际环境下的记录物的状态时，通常不会单独使用1种墨水进行打印。即，迁移可以说是在存在多个墨水的状况下发生的。因此，为了再现上述状况，制造模型墨水和无色料墨水重叠形成图像的评价用图像是重要的。另外，更优选模型墨水的施加量少于无色料墨水。
这是由于如果制造通过在上述条件下重叠模型墨水和无色料墨水而形成图像的评价用图像，则在上述记录介质上，相对于色料的水溶性有机溶剂的施加量增多，结果成为容易发生迁移的状态。通过该方法，能够更明确地表示色料所带来的特性（特别是耐湿性）差异，因此能够更明确地判定目标色料的特性（特别是耐湿性）。另外，在本发明中，作为评价用图像，使用上述模型墨水和上述无色料墨水，制造模型墨水和无色料墨水分别在5～100%duty范围以每5%改变duty重叠而形成图像的评价用图像。

在本发明中，在评价色料所带来的特性（特别是耐湿性）时，并不需要使用特定的记录装置和记录介质。只要是将墨水施加到记录介质上的记录装置和可接收墨水的记录介质，其形状就可以是任意的。另外，记录装置的具体例子可以列举出具备容纳墨水的墨水容纳部和用于喷出所述墨水的记录头的记录装置。

(c)初始标准状态的评价用图像的制造

促进存在于上述得到的评价用图像中的水溶性有机溶剂和水的蒸发。在温度T_i°℃、湿度H_i%的环境下将评价用图像放置固定时间，促进存在于评价用图像中的水溶性有机溶剂和水的蒸发，得到初始标准状态的评价用图像。另外，为了促进上述评价用图像中的水溶性有机溶剂和水的蒸发，减少放置评价用图像的环境的绝对水分量是重要的。

其中，在温度T_i°℃、湿度H_i%的环境下的初始标准状态的评价用图像的放置时间重要的是放置固定期间，只要是固定的期间，则该期间的长短可以是任意的。具体来说，优选水溶性有机溶剂和水从评价用图像中的蒸发变少、评价用图像的质量达到固定。例如，在假定实际环境下的记录物状态的温度和湿度即温度T_i°℃为25℃、湿度H_i%为60%的环境下，水溶性溶剂和水从评价用图像中的蒸发是在48小时时大致达到平衡状态的，并确认评价用图
像的质量达到固定的值。

另外，在放置时间少于48小时的情况下，可以认为水溶性有机溶剂和水的蒸发没有达到平衡状态，残留于评价用图像中。其结果是初始标准状态不稳定，因而迁移的发生状态改变、耐湿性的判定精度降低。另外，在放置时间比48小时长的情况下，可以认为虽然能够实现初始标准状态的稳定化，但却更加促进了水溶性有机溶剂和水从评价用图像中的蒸发。其结果是，被认为是导致迁移的原因的残留于评价用图像中的水溶性有机溶剂减少，可吸湿的水溶性有机溶剂变少，因此担心存在不易引起迁移的倾向。出于上述理由，优选在温度T₁℃为25℃、湿度H₁%为60%的环境下放置48小时。可以认为：通过采用上述条件，能够再现与实际环境下的记录物状态相符的水溶性有机溶剂和水的蒸发。另外，存在于温度25℃、湿度60%的环境下的绝对水分量约为13.8g/m³。

(d)初始标准状态的评价用图像的色调测定

测定上述得到的初始标准状态的评价用图像的色调（CIE-La*b*的值）。其目的在于在数值上把握放置固定时间后的初始标准状态的评价用图像的色调。在本发明中，使用分光光度计（Spectrolino; Gretag Macbeth制造），测定初始标准状态的评价用图像的色调。

(e)加速试验后的评价用图像的制造

将上述得到的初始标准状态的评价用图像放置在温度T₂℃、湿度H₂%的环境（高温高湿）下，使迁移加速发生，得到加速试验后的评价用图像。此时的温度和湿度可以是任意的，但T₁<T₂、H₁<H₂。即，通过采用更高温度、更高湿度的条件，使其处于存在于该环境中的绝对水分量较多的状态是重要的。通常，迁移被认为是由于存在于记录物中的水溶性有机溶剂吸湿而发生的。因此，通过增加存在于放置评价用图像的环境下的绝对水分量，使迁移
的发生变得容易，这是重要的。具体来说，通过设定温度T₂℃为30℃以上、湿度H₂%为80%以上，能够增加放置评价用图像的环境下的绝对水分量，是优选的。在本发明中，通过假定实际环境下的记录装置和记录物的状态，设定温度T₂℃为30℃以上、湿度H₂%为80%，再现实际使用者使用时可在记录物中引起迁移的条件。另外，存在于温度30℃、湿度80%的环境下的绝对水分量约为24.3g/m³。

在此，在温度为T₂℃、湿度为H₂%的环境（高温高湿）下的初始标准状态的评价用图像的放置时间是通过追踪评价用图像随时间的色调变化来设定的。具体来说，记录从初始标准状态开始的评价用图像的色调的变化，优选将该变化率变少的点设为温度为T₂℃、湿度为H₂%的环境（高温高湿）下的初始标准状态的评价用图像的放置时间。更优选将几乎看不到色调变化的点设为温度为T₂℃、湿度为H₂%的环境（高温高湿）下的初始标准状态的评价用图像的适当的放置时间。作为一个例子，在温度T₂℃为30℃、湿度H₂%为80%的环境下，色调的变化率变少的点为96小时，几乎看不到色调变化的点为168小时。因此，为了评价迁移，将初始标准状态的评价用图像在温度为T₂℃、湿度为H₂%的环境（高温高湿）下放置96小时以上是重要的。更优选的是，通过将初始标准状态的评价用图像在温度为T₂℃、湿度为H₂%的环境（高温高湿）下放置168小时以上，色调的变化显示出大致固定的值，从而能够更准确地判定料的特性（特别是耐湿性）差异。出于上述理由，优选在温度T₂℃为30℃以上、湿度H₂%为80%的环境下放置时间为168小时。

(f)加速试验后的评价用图像的色调测定

测定上述得到的加速试验后的评价用图像的色调（CIE-La*b*的值）。其目的在于在数值上把握加速试验后的评价用图像
的色调。具体来说，与上述(d)同样，使用分光光度计(Spectrolino; Gretag Macbeth制造)，测定加速试验后的评价用图像的色调。

(g)色差(ΔE)的计算

使用下式(1)，由上述(d)中测定的初始标准状态的评价用图像的色调(CIE－La*b*的值)以及上述(f)中测定的加速试验后的评价用图像的色调(CIE－La*b*的值)计算出色差(ΔE)。

- 初始标准状态的评价用图像在CIE－La*b*色空间的La*b*的值 = (L₁, a₁, b₁)
- 加速试验后的评价用图像在CIE－La*b*色空间的La*b*的值 = (L₂, a₂, b₂)

\[ \Delta E = \sqrt{(L_1 - L_2)^2 + (a_1 - a_2)^2 + (b_1 - b_2)^2} \] 式(1)

通过上述式(1)计算出的色差(ΔE)表示色调的变化量。因此，色差(ΔE)大是指色调的变化大。也就是说，色差(ΔE)越大意味着越容易发生迁移，因此能够根据色差(ΔE)在数值上表示迁移程度。

在本发明中，使用前面叙述的色料的特性判定方法，进行各色料的特性（特别是耐湿性）评价，计算出使用各色料制成的各评价用图像的色差(ΔE)：ΔE1、ΔE2……，必须使用其中最大值的色差(ΔE)为9以下的色料。

[通式(I)所表示的色彩]

本发明的另一个实施方式的特征在于：通过上述色料的特性判定方法判定的色差(ΔE)为9以下的色料是下述通式(I)所表示的化合物或其盐。

通式(I)
（通式（I）中，M各自独立地表示氢原子、碱金属、碱土类金属、有机胺的阳离子或铵离子，n各自独立地表示1或2。）

上述通式（I）所表示的色料的具体例子，可以列举出下表2的结构的化合物。当然，本发明并不限于这些。另外，在表1中，方便起见，磺基的取代位置如下述通式（II）所示那样表示为A环、B环。磺基的取代位置如下述通式（II）所定义。

通式（II）

（通式（II）中，M各自独立地表示氢原子、碱金属、碱土类金属、有机胺的阳离子或铵离子，n各自独立地表示1或2。）

<table>
<thead>
<tr>
<th>例示化合物</th>
<th>取代基的位置</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A环</td>
<td>B环</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4,6</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

上述通式（I）所表示的色料的优选的具体例子，可以列举出下
述例示化合物1。当然，本发明并不限于这些。

例示化合物1

[除通式(I)所表示的色料之外的色料]

在本发明中，出于进一步提高图像浓度、形成更优选的色调等目的，优选使用两种以上色料。作为该色料，特别优选使用通式(I)所表示的色料和C.I.直接黄132。因此，本发明的另一实施方式的特征在于，除了通式(I)所表示的色料之外，还含有C.I.直接黄132作为色料。

[色料的含量]

本发明的喷墨用墨水中的色料的含量相对于墨水的总质量优选为1.0质量%～4.0质量%。在色料的含量低于1.0质量%的情况下，不能充分得到发色性和耐湿性等本发明的效果，在色料的含量超过4.0质量%的情况下，起动喷出稳定性等可靠性以及其它喷墨特性降低。

另外，为了充分得到本发明的效果，通式(I)所表示的色料的含量相对于墨水中的全部色料的总含量优选为10质量%以上。另外，当结合使用C.I.直接黄132的情况下，其含量相对于墨水中的色料的总含量优选为10质量%以上。另外，通式(I)所表示的色料的含量与C.I.直接黄132的比例（通式(I)所表示的色料的含量：C.I.直接黄132的含量）以质量比计优选在0.5：5～2：5的范围。如果通式(I)所表示的色料的比例过少，则难以得到本发明的显著效果，如果过多，则图像浓度容易降低。

[色料的检验方法]
在作为本发明中使用的色料之一例的示化合物1的检验中，可以适用使用高效液相色谱（HPLC）的下述(1)～(3)的检验方法。

(1) 峰的保留时间
(2) (1)的峰的最大吸收波长
(3) (1)的峰的质谱的M/Z（posi、nega）

高效液相色谱的分析条件如下所示。对用纯水稀释成约1000倍的墨水溶液，在下述条件下进行高效液相色谱分析，测定主峰的保留时间（retention time）和峰的最大吸收波长。

- 色谱柱：Symmetry C18 2.1mm×150mm
- 柱温：40℃
- 流速：0.2ml/min
- PDA：210nm～700nm
- 流动相和梯度条件：表3

<table>
<thead>
<tr>
<th></th>
<th>0～5min</th>
<th>5～40min</th>
<th>40～45min</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>A 水</strong></td>
<td>85%</td>
<td>85%→0%</td>
<td>0%</td>
</tr>
<tr>
<td><strong>B 甲醇</strong></td>
<td>10%</td>
<td>10%→95%</td>
<td>95%</td>
</tr>
<tr>
<td>C 0.2mol/l醋酸铵水溶液</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
</tbody>
</table>

另外，质谱的分析条件如下所示。对所得到的峰，在下述条件下测定质谱，分别对posi、nega测定被检测出最强的M/Z。

- 离子化法
- ESI 毛细管电压 3.5kV
  - 去溶剂气体 300℃
  - 离子源温度 120℃
- 检测器：posi 40V 200～1500amu/0.9sec
  - nega 40V 200～1500amu/0.9sec

例示化合物1和C.I.直接黄132的保留时间、最大吸收波长、M/Z（posi）、M/Z（nega）的值如表4所示。在符合表4所示的值
的情况下，可以判断出符合本发明中所使用的色料。

表4

<table>
<thead>
<tr>
<th></th>
<th>保留时间 [min]</th>
<th>最大吸收波长 [nm]</th>
<th>M/Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>例示化合物1</td>
<td>31－32</td>
<td>390－410</td>
<td>938－939，468－469</td>
</tr>
<tr>
<td>C.I.直接黄</td>
<td>33－34</td>
<td>390－410</td>
<td>640－641，319－320</td>
</tr>
</tbody>
</table>

（水溶性有机溶剂）

本发明的墨水中所使用的水溶性有机溶剂必须是蒸发率X（质量％）和吸湿率Y（质量％）满足下式(2)的关系的水溶性有机溶剂的总含量相对于墨水中的水溶性有机溶剂的总含量为50质量％以上。

迁移被认为是由于存在于记录物中的水溶性有机溶剂吸湿而发生的。因此，通过在墨水中含有一定量以上的容易蒸发且吸湿性低的水溶性有机溶剂，能够抑制迁移。但是，仅含有容易蒸发且吸湿性低的水溶性有机溶剂的墨水，往往在喷嘴前端的粘着和起动喷出稳定性等方面存在问题。在本发明中，通过水溶性有机溶剂满足上述组成，抑制了迁移，且抑制了在喷嘴前端的粘着，进而能够得到起动喷出稳定性等优异的墨水。

\[ Y \leq 2.8X + 10 \quad \text{式(2)} \]

（式(2)中，X为蒸发率，Y为吸湿率）

本发明中的蒸发率X（质量％）如下求得：将5g水溶性有机溶剂放入外径31mm、高15mm的皿中，在温度60℃、湿度10％的环境下静置192小时后，再次测定水溶性有机溶剂的质量，从减少的水溶性有机溶剂的质量求得蒸发率X值。另外，吸湿率Y（质量％）如下求得：将5g水溶性有机溶剂放入外径31mm、高15mm的皿中，在温度30℃、湿度80％的环境下静置192小时后，再次测定水溶性有机溶剂的质量，从增加的水溶性有机溶剂的质量求得吸湿率Y值。图1为表示由上述方法计算出的各水溶性有机溶剂的蒸发率和
吸湿率的关系的曲线图。图中，Gly表示甘油、DEG表示二乙二醇、PEG表示聚乙二醇、2P表示2-吡咯烷酮、15PD表示1,5-戊二醇、16HD表示1,6-己二醇、126HT表示1,2,6-己三醇、Urea表示尿素、EtUrea表示亚乙基脲。

调制含有上述各水溶性溶剂的墨水，进行如下实验。调制模型墨水，其含有3质量%作为色料的C.I.直接黄132、20质量%各水溶性有机溶剂、0.5质量%作为表面活性剂的Acetylenol E-100（川研ファインケミカル制造）、剩余部分为水。又，与该模型墨水分开，另外调制出以水替换色料的无色料墨水。制作将所得到的模型墨水和无色料墨水分别在0～100% duty范围改变duty重叠而形成图像的记录物。另外，在记录物的制造中，使用PIXUS950i（佳能制造）作为喷墨打印机、使用专业相纸（SP-101，佳能制造）作为记录介质。

将所得到的记录物放置在温度25℃、湿度60%的环境（常温常湿）下48小时，使水溶性有机溶剂和水从记录介质中蒸发。使用分光光度计（商品名：Spectrolino；Gretag Macbeth制造）测定在温度25℃、湿度60%的环境下放置48小时后的色调（CIE-La*b*的值），求出La*b*的值。然后，通过在温度30℃、湿度80%的环境（高温高湿）下放置168小时，使水溶性有机溶剂发生迁移。使用与前述相同的分光光度计测定在温度30℃、湿度80%的环境下放置168小时后的色调（CIE-La*b*的值），求出水溶性有机溶剂迁移后的La*b*的值。由所得到的结果求出其中最大值的色差（△E）。可以说该色差（△E）越大，高温高湿环境下的色调的变化就越大，耐湿性就越差。

从上述实验结果以及各水溶性有机溶剂的蒸发率与吸湿率的关系可知，它们之间存在相关关系。

迁移是高温高湿等环境下的色调变化所导致的图像劣化。因
此可以认为，环境导致的色差越小，该水溶性有机溶剂的迁移特性就越好。迁移特性良好即耐湿性良好的有机溶剂具有容易蒸发、不易吸湿的特征，即，越是迁移特性良好的水溶性有机溶剂，色差（ΔE）就越小。

\[ ΔE ≤ 5.5 \]

\[ ΔE > 5.5 \]

通常，如果色差（ΔE）为5.5以下，则即使在高温高湿环境下也不会发生迁移所引起的色调变化，是作为图像优选的。相对于此，在色差（ΔE）大于5.5的情况下，在高温高湿环境下迁移所导致的色调变化变得明显，产生图像劣化。通过基于该基准找出各水溶性有机溶剂的迁移与蒸发率和吸湿率之间的关系而得到的关系式为上述式(2)。即，在图1中，在Y = 2.8X + 10的直线的右侧的水溶性有机溶剂，其色差（ΔE）为5.5以下。

另外，通常谋求提高耐湿性的情况下，也可以使用色料的溶解度低的水溶性有机溶剂（不良溶剂）。但是，在本发明所使用的色料中，没有找出迁移与色料对水溶性有机溶剂的溶解度之间的相关性。即，本发明所使用的色料的耐湿性的提高，并不是由色料对水溶性有机溶剂的溶解度所支配的，而是由墨水所含有的水溶性有机溶剂的蒸发率和吸湿性所支配的。

满足上式(2)的关系的水溶性有机溶剂的优选的具体例子，可以列举出乙二醇、二乙二醇、2-吡咯烷酮、1,5-戊二醇、1,6-己二醇、亚乙基脲、N-甲基-2-吡咯烷酮、丁基卡必醇和异丙醇等。其中，优选乙二醇、二乙二醇、2-吡咯烷酮、1,5-戊二醇、1,6-己二醇和亚乙基脲，特别优选亚乙基脲。进而，从提高可靠性等喷墨特性的观点出发，特别优选组合使用亚乙基脲、二乙二醇和2-吡咯烷酮。另外，只要是满足上式(2)的关系式的水溶性有机溶剂，也可以使用上面没有记载的水溶性有机溶剂。
另外，在本发明的墨水中，即使是甘油、尿素和聚乙二醇等不满足上式(2)的水溶性有机溶剂，也可以在可得到添加它们所带来的效果且不损害本发明的目标效果的范围内使用。但是，为了充分得到本发明的效果，满足上式(2)的关系的水溶性有机溶剂的含量相对于墨水中所含有的水溶性有机溶剂的总含量必须为50质量%以上。另外，在满足上述式(2)的关系的水溶性有机溶剂的含量相对于墨水中所含有的水溶性有机溶剂的总含量为65质量%以上的情况下，能够有效地发挥本发明的效果，故优选。

另外，在本发明中，满足上式(2)的水溶性有机溶剂的总含量相对于墨水所含有的全部水溶性有机溶剂的总质量为50质量%以上。如果满足上式(2)的水溶性有机溶剂的含量过少，则不能得到本发明的显著效果。

另一方面，墨水所含有的全部水溶性有机溶剂的总含量相对于墨水总质量优选为10质量%～50质量%。在水溶性有机溶剂的总含量低于10质量%的情况下或者高于50质量%的情况下，可靠性等喷墨特性会恶化。

（添加剂等）

本发明的墨水，还可以根据需要使用尿素以及尿素衍生物等保湿性固体成分作为墨水成分。

另外，在本发明的墨水中，还可以根据需要含有表面活性剂、pH调节剂、防锈剂、防腐剂、防霉剂、抗氧化剂、抗还原剂、蒸发促进剂、螯合剂以及水溶性聚合物等各种添加剂。

＜记录介质＞

使用本发明的墨水形成图像时所使用的记录介质，只要是通过施加墨水进行记录的记录介质就可以使用任何记录介质。

本发明特别适用于通过使色料、颜料等色料吸附到形成墨水接收层内的多孔质结构的微粒中而至少由该吸附后的微粒形成图
像的记录介质中，特别适合于使用喷墨法的情况中。这样的喷墨用记录介质优选通过形成于支撑体上的墨水接收层中的空隙来吸收墨水，即为所谓的吸收型。

吸收型的墨水接收层由多孔质层构成，所述多孔质层以微粒为主体，根据需要含有粘合剂和其它添加剂。微粒的具体例子可以列举出硅石、粘土、滑石、碳酸钙、高岭土、矾土或矾土水合物等氧化铝、硅藻土、氧化铁、水滑石、氧化锌等无机颜料，或尿素甲醛树脂、乙烯树脂、苯乙烯树脂等有机颜料，可以使用这些微粒的1种以上。作为适合作为粘合剂使用的物质，可以列举出水溶性高分子或胶乳。例如，可以使用聚乙烯醇或其改性物、淀粉或其改性物、明胶或其改性物、阿拉伯胶、羧甲基纤维素、羟乙基纤维素、羟丙基甲基纤维素等纤维素衍生物、SBR胶乳、NBR胶乳、甲基丙烯酸酯-丁二烯共聚物胶乳、官能团改性聚合物胶乳、乙烯乙酸乙烯酯共聚物等乙烯类共聚物胶乳、聚乙烯吡咯烷酮、马来酸酐或其共聚物、丙烯酸酯共聚物等，可以根据需要组合两种以上使用。另外，还可以使用添加剂，例如可以根据需要使用分散剂、增稠剂、pH调节剂、润滑剂、流动性改性剂、表面活性剂、消泡剂、脱模剂、荧光增白剂、紫外线吸收剂、抗氧化剂等。

特别是，本发明所优选使用的记录介质优选是以平均粒径为1μm以下的微粒为主体形成墨水接收层的记录介质。作为上述微粒，特别优选可以列举出硅石微粒、氧化铝微粒等。作为硅石微粒优选的是以胶体硅石为代表的硅石微粒。胶体硅石本身可以从市场上购得，特别优选按照例如日本专利第2803134号、日本专利第2881847号所公开的胶体硅石。作为氧化铝微粒的优选的是矾土水合物微粒等。作为这样的矾土水合物微粒的一种，可以列举出下述通式所表示的矾土水合物。
\[ \text{AL}_2\text{O}_3 \cdot n(\text{OH})_{2n} \cdot m\text{H}_2\text{O} \]

（在上式中，n表示1、2或3的整数中的任一个，m表示0~10，优选表示0~5的值。其中，m和n不同时为0。mH_2O在多数情况下还表示与mH_2O晶格的形成无关的可脱离的水相，因此，m可以取整数或非整数的值。另外，如果加热此种材料，则m可以达到0值。）

矾土水合物可以通过美国专利第4,242,271号、美国专利第4,202,870号所记载的烷醇铝的水解、铝酸钠的水解，或者日本特公昭57-44605号公报所记载的在铝酸钠等的水溶液中加入硫酸钠、氯化铝等的水溶液进行中和的方法等公知的方法来制造。

记录介质优选具有用于支撑上述墨水接收层的支撑体。支撑体只要能够由上述多孔质微粒形成墨水接收层、并且提供可通过喷墨打印机等的输送机构输送的刚度，则没有特别的限制，可以使用任何支撑体。具体来说，可以列举出例如以天然纤维素纤维为主体由纸浆原料形成的纸支撑体，由聚酯（例如聚对苯二甲酸乙二酯）、三乙酸纤维素、聚碳酸酯、聚氯乙烯、聚丙烯、聚酰亚胺等材料形成的塑料支撑体，在原纸的至少一面上具有添加了白色颜料等的聚烯烃树脂的树脂涂覆层的树脂涂覆纸（例如：RC纸）。

<成套墨水>

本发明的墨水，在与其它墨水组合形成成套墨水时也可以优选使用。本发明的成套墨水是将本发明的墨水与青色墨水、品红墨水、黄色墨水、黑色墨水等其它墨水一起使用的状态。另外，能够作为成套墨水组合的其它墨水并没有特别的限制。另外，本发明的成套墨水是指多个墨罐成为一体的墨罐本身，这是当然的，还包括将多个单独的墨罐组合使用的情况，进而还包括所述墨罐与记录头成为一体的情况。

<喷墨记录方法>
本发明的墨水特别适合用于具有以喷墨方法喷出墨水的工序的喷墨记录方法中。喷墨记录方法包括：通过对墨水施加力学能而喷出墨水的记录方法，以及通过对墨水施加热能而喷出墨水的记录方法等。特别是在本发明中，优选使用利用热能的喷墨记录方法。

<墨盒>

适合用于使用本发明的墨水进行记录的墨盒，可以列举出具备容纳这些墨水的墨水容纳部的墨盒。

<记录单元>

适合用于使用本发明的墨水进行记录的记录单元，可以列举出具备容纳这些墨水的墨水容纳部和记录头的记录单元。特别是，可以列举出所述记录头对应于记录信号对墨水施加热能，通过所述热能产生墨水液滴的记录单元。

<喷墨记录装置>

适合用于使用本发明的墨水进行记录的记录装置可以列举出对具有容纳这些墨水的墨容纳部的记录头的室内的墨水施加对应于记录信号的热能，通过所述热能产生墨水液滴的装置。

下面，对喷墨记录装置的机构部的大致结构进行说明。根据各个机构的作用，记录装置主体由供纸部、用纸输送部、滑架部、排纸部、清洁部以及保护这些部件的具有外观设计性的外壳部构成。下面，对这些部件进行简要的说明。

图2为记录装置的立体图，另外，图3和图4是用于说明记录装置主体的内部机构的图，图3是从右上部看的立体图，图4是记录装置主体的侧剖面图。

在记录装置内进行供纸时，首先，在包含供纸盘M2060的供纸部，仅将规定张数的记录介质送入到由供纸辊M2080和分离辊M2041构成的辊隙部。所送入的记录介质在辊隙部被分离后，仅
输送最上方的记录介质。被送入到用纸输送部的记录介质被引导到压紧辊保持架M3000和纸引导挡板M3030后，被送入到输送辊M3060和压紧辊M3070这一对中。由输送辊M3060和压紧辊M3070构成的对被LF马达E0002驱动而进行旋转，记录介质通过该旋转在压纸部M3040上进行输送。

在滑架部中，在记录介质上形成图像时，使记录头H1001（图5）配置在目标图像形成位置上，根据来自电气基板E0014的信号，对记录介质喷出墨水。关于记录头H1001的详细结构如后所述，但其结构是可以通过反复交叉进行记录主扫描和副扫描来在记录介质上形成图像的结构。上述记录主扫描由记录头H1001进行记录的同时，使滑架M4000沿着列方向进行扫描，上述副扫描由输送辊M3060使记录介质沿着行方向进行输送。

最后形成图像的记录介质在排纸部处被夹在第1排纸辊M3110与棘轮M3120的侧隙中，被输送而排出到排纸盘M3160上。

另外，在清洁部，为了对图像记录前后的记录头H1001进行清洁，当在使盖M5010与记录头H1001的墨水喷出口紧密接触的状态下使泵M5000产生作用时，从记录头H1001抽吸不需要的墨水等。另外，通过在打开盖M5010的状态下，抽吸残留在盖M5010中的墨水，不会引起残留在墨水导致的粘和随后的弊病。

（记录头的结构）

对记录头盒H1000的结构进行说明。记录头盒H1000具有记录头H1001和搭载墨罐H1900的部件以及用于从墨罐H1900向记录头供给墨水的部件，并且可装卸地搭载于滑架M4000上。

图5是表示对记录头盒H1000安装墨罐H1900的状态的图。记录装置由黄色、品红色、青色、黑色、洋品红色、淡青色和绿色墨水形成图像，因此，墨罐H1900也独立准备7种颜色的份。在上述墨水中，至少一种墨水使用本发明的墨水。并且，如图所示，
分别可以相对于记录头盒H1000自由装卸。另外，墨罐H1900的装卸能够在将记录头盒H1000搭载于滑架M4000上的状态下进行。

图6是记录头盒H1000的分解立体图。在图中，记录头盒H1000由第1记录元件基板H1100和第2记录元件基板H1101、第1平板H1200、第2平板H1400、电气布线基板H1300、墨罐保持架H1500、流路形成部件H1600、过滤器H1700、密封橡胶H1800等构成。

第1记录元件基板H1100和第2记录元件基板H1101为Si基板，通过光刻技术在其一个面上形成了用于喷出墨水的多个记录元件（喷嘴）。向各个记录元件供电的Al等电气布线是通过成膜技术形成的，对应于各个记录元件的多个墨水流路也可以通过光刻技术形成。另外，用于向多个墨水流路供给墨水的墨水供给口在里面开口。

图7为用于说明第1记录元件基板H1100和第2记录元件基板H1101的结构的主视放大图。H2000～H2600为对应于各个不同墨水颜色的记录元件列（以下称为喷嘴列）。在第1记录元件基板H1100中构成有用于供给黄色墨水的喷嘴列H2000、用于供给红色墨水的喷嘴列H2100以及用于供给青色墨水的喷嘴列H2200的对应于这3种颜色的3个喷嘴列。在第2记录元件基板H1101中构成有用于供给淡青色墨水的喷嘴列H2300、用于供给黑色墨水的喷嘴列H2400、用于供给橙色墨水的喷嘴列H2500以及用于供给淡品红色墨水的喷嘴列H2600的对应于这4种颜色的4个喷嘴列。

各个喷嘴列由在记录介质的输送方向上以1200dpi（dot/inch；参考值）的间隔并列的768个喷嘴构成，喷出约2皮升的墨滴。各喷嘴喷出口的开口面积设定为大约100μm²。另外，第1记录元件基板H1100和第2记录元件基板H1101粘结固定在第
1平板H1200上，在此，形成有用于向第1记录元件基板H1100和第2记录元件基板H1101供给墨水的墨水供给口H1201。

而且，在第1平板H1200上粘结固定有具有开口部的第2平板H1400，该第2平板H1400保持有电气布线基板H1300，以便电气布线基板H1300与第1记录元件基板H1100和第2记录元件基板H1101电连接。

电气布线基板H1300施加用于从形成于第1记录元件基板H1100和第2记录元件基板H1101上的各个喷嘴喷出墨水的电信号，并具有对应于第1记录元件基板H1100和第2记录元件基板H1101的电气布线，以及位于该电气布线端部的用于接收来自记录装置主体的电信号的外部信号输入端子H1301。外部信号输入端子H1301定位固定在墨罐保持架H1500的背面一侧。

另一方面，在保持墨罐H1900的墨罐保持架H1500中例如通过超声波熔接固定有流路形成部件H1600，形成了从墨罐H1900通到第1平板H1200的墨水流路H1501。

在与墨罐H1900卡合的墨水流路H1501的墨罐一侧端部设有过滤器H1700，以便能够防止来自外部的灰尘的侵入。另外，在与墨罐H1900卡合的卡合部上安装有密封橡胶H1800，能够防止墨水从卡合部蒸发。

而且，如上述那样通过粘接等将由墨罐保持架H1500、流路形成部件H1600、过滤器H1700和密封橡胶H1800构成的墨罐保持架部，和由第1记录元件基板H1100、第2记录元件基板H1101、第1平板H1200、电气布线基板H1300及第2平板H1400构成的记录头部H1001相结合，由此构成了记录头盒H1000。

另外，在此，作为记录头的一个方式，对使用电热转换装置（记录元件）进行记录的Bubble Jet（注册商标）方式的记录头举出一个例子进行叙述，上述电热转换装置生成用于根据电信号
使墨水产生膜状沸腾的热能。

关于其代表性的结构和原理，优选使用例如美国专利第4,723,129号说明书、美国专利第4,740,796号说明书中所公开的基本原理进行。该方式可适用于所谓请求服务型、连续型等任何方式，特别是，在为请求服务型的情况下，对于与保持有液体（墨水）的薄片和液体流路对应配置的电热转换装置施加至少一个根据记录信息给予超过泡核沸腾的温度急速上升的驱动信号，从而使电热转换装置产生热能，在记录头的热作用面上产生膜状沸腾，结果能够形成与该驱动信号一一对应的液体（墨水）内的气泡，因此是有效的。通过该气泡的成长、收缩，经喷出用开口喷出液体（墨水），形成至少一个液滴。当该驱动信号采用脉冲方式时，能够即时、适当地进行气泡的成长、收缩，因此能够实现响应性特别优异的液体（墨水）的喷出，是更为优选的。

另外，作为利用了第二力学性能的喷墨记录装置的方式，可以例举出这样的请求服务型喷墨记录头，其包括：具有多个喷嘴的喷嘴形成基板、与喷嘴相对配置的由压电材料和导电材料构成的压力产生元件、充满该压力产生元件的周围的墨水；该请求服务型喷墨记录头通过施加电压而使压力产生元件位移，从喷嘴喷出墨水的小液滴。

另外，喷墨记录装置不限于如上述那样的喷墨头与墨罐分体的喷墨记录装置，也可以是喷墨头与墨罐不可分离的一体的喷墨记录装置。另外，墨罐除了相对于喷墨头可分离或不可分离地一体化而搭载在滑架上之外，也可以是设置在装置的固定部件，通过墨水供给部件例如墨水管向记录头供给墨水的形态。另外，在墨罐中设置用于对记录头施加适当的负压的结构的情况下，可以采用在墨罐的墨水容纳部设置吸收体的方式、或者具有挠性的墨水容纳袋和对墨水容纳袋作用扩张其内容积的方向的作用力的弹
簧部的方式等。另外，记录装置除了采用上述串行记录方式以外，
还可以采用在对应于记录介质全宽的范围内整齐排列记录元件而
成的行式打印机构的方式。

[实施例]

下面，使用实施例和比较例对本发明进行更详细的说明，但
是，只要在不超出本发明的精神的范围内，本发明并不受到以下
实施例的任何限制。另外，如果没有特别指定，实施例、比较例
的墨水成分意味着是“质量份”。

<色料的制造>

使重氮化的4－硝基－4′－氨基芪－2,2′－二磺酸与3－氨基
芪－1－磺酸偶联，将其三唑化，将利用使硝基还原成氨基的公知
方法制造的氨基芪三唑溶解于水中，滴加亚硝酸钠、盐酸，进行
重氮化。将其滴加到下述化合物(1)所表示的化合物的水溶液中，
进行偶联，然后使用氯化钠进行盐析。使用亚硝酸钠水溶液将该
化合物进行重氮化，在该混浊液中添加6－氨基芪－2－磺酸水溶
液，将其三唑化，由此得到的物质以氯化钠进行盐析，从而得到
下述例示化合物1所表示的色料。

化合物(1)

\[
\begin{array}{c}
\text{NH} \quad \text{CH}_2 \quad \text{SO}_3 \quad \text{H}
\end{array}
\]

例示化合物1

\[
\begin{array}{c}
\text{Na}_2\text{O}_3\text{S} \quad \text{N} \\
\text{SO}_3\text{Na} \quad \text{SO}_3\text{Na} \quad \text{SO}_3\text{Na} \quad \text{SO}_3\text{Na} \quad \text{SO}_3\text{Na} \quad \text{SO}_3\text{Na} \quad \text{SO}_3\text{Na}
\end{array}
\]

<色料的特性判定>
使用本发明的色料的特性判定方法判定上述得到的例示化合物1和下表5所示的各色料的特性（耐湿性）。

（模型墨水和无色料墨水的调制）

按照下述配方制造包含各色料的模型墨水。

- 各色料 3.0份
- 甘油 9.0份
- 尿素 9.0份
- Acetylenol E - 100 1.0份
（川研ファインケミカル制造）
- 水 剩余部分

接着，调制出在上述组成中将色料替换成水的无色料墨水。

另外，水的蒸发率X（质量%）为100质量%、上述中使用的作为水溶性有机溶剂的甘油的蒸发率X（质量%）为0质量%、尿素的蒸发率X（质量%）为0.1质量%。另外，甘油的吸湿率Y（质量%）为66.9质量%、尿素的吸湿率（质量%）为86.0质量%。因此，甘油和尿素相当于蒸发率比水小、吸湿率为20质量%以上的水溶性有机溶剂。

（评价用图像的制造・色差的计算）

制作评价用图像，其具有模型墨水在0%～100%duty范围、无色料墨水在0～100%duty范围分别以每5%duty改变而重叠的灰度图案。在评价用图像的制造中，使用喷墨打印机（商品名：PIXUS 950i；佳能制造）和记录介质（商品名：SP-101；佳能制造）。将所得到的记录物放置在温度25℃、湿度60%的环境下48小时，然后，使用分光光度计（商品名：Spectrolino；Gretag Macbeth制造），测定重叠的灰度图案部分的色调。另外，在温度30℃、湿度80%的环境下放置168小时，然后使用与上述相同的分光光度计，与上述同样地测定色调。基于下式(1)，由在温度25℃、
湿度60%的环境下放置48小时后的评价用图像的色调和在温度30℃、湿度80%的环境下放置168小时后的评价用图像的色调，计算出各个评价用图像中的色差（ΔE）。

・在温度25℃、湿度60%的环境下放置48小时后的评价用图像（初始标准状态）在CIE-La*b*色空间的La*b*的值 = (L1, a1, b1)

・在温度30℃、湿度80%的环境下放置168小时后的评价用图像（加速试验后）在CIE-La*b*色空间的La*b*的值 = (L2, a2, b2)

\[ \Delta E = \sqrt{(L_1 - L_2)^2 + (a_1 - a_2)^2 + (b_1 - b_2)^2} \] 式(1)

由通过上述式(1)计算出的各个评价用图像的色差，计算出作为其中最大值的色差（ΔE）。结果如表5所示。

<table>
<thead>
<tr>
<th>色料</th>
<th>ΔEmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>例示化合物1</td>
<td>7.5</td>
</tr>
<tr>
<td>C.I.食品黄3</td>
<td>10.4</td>
</tr>
</tbody>
</table>

<墨水的调制>

使用上述得到的例示化合物1和C.I.食品黄3，按照表6所示的配方调制出实施例的墨水A～G以及比较例的墨水H～K。

<table>
<thead>
<tr>
<th></th>
<th>墨水</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>例示化合物1</td>
<td>3.0</td>
</tr>
<tr>
<td>C.I.食品黄3</td>
<td></td>
</tr>
<tr>
<td>乙二醇</td>
<td></td>
</tr>
<tr>
<td>二乙二醇</td>
<td>9.2</td>
</tr>
<tr>
<td>2-吡咯烷酮</td>
<td>5.0</td>
</tr>
<tr>
<td>亚乙基脲</td>
<td>5</td>
</tr>
<tr>
<td>1,5-戊二醇</td>
<td></td>
</tr>
</tbody>
</table>

33
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N-甲基-2-吡咯烷酮</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>丁基卡必醇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>异丙醇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>尿素</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.0</td>
</tr>
<tr>
<td>甘油</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>10.0</td>
</tr>
<tr>
<td>聚乙二醇(*1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Acetylenol E100(*2)</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>サーフィソール104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>PG50(*3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>离子交换水</td>
<td>67.968467.969.969.976.167.558.977.967.960.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*1) 分子量200
(*2) 乙炔二醇环氧乙烷加成物（表面活性剂；川研ファイントミカル制造）
(*3) 表面活性剂；日信化学制造

<打印评价>

准备无色料墨水A～K，其在上述得到的实施例的墨水A～G以及比较例的墨水H～K中，将各个配方的色料成分替换成纯水而得到。在评价中，使用喷墨打印机（商品名：PIXUS 950i；佳能制造）。

(1) 墨水的耐湿性

制作评价用图像，其具有实施例和比较例的墨水在0%～100%duty范围、无色料墨水在0～100%duty范围分别以每5%改变duty而重叠的灰度图案。墨水和无色料墨水的组合为墨水A与无色料墨水A、墨水B与无色料墨水B这种方式。记录介质使用光泽记录介质（SP-101；佳能制造）。将所得到的记录物放置在温度25℃、湿度60%的环境下48小时，然后，使用分光光度计（商品名：Spectrolino；Gretag Macbeth制造），测定重叠的灰度图案部分的色调。另外，将所述记录物放置在温度30℃、湿度80%的环境下168小时，然后，使用与上述同样的分光光度计，与上述同
样地测定色调。基于下式(1)，由在温度25℃、湿度60%的环境下放置48小时后的评价用图像的色调、和在温度30℃、湿度80%的环境下放置168小时后的评价用图像的色调，计算出各个评价用图像中的色差(\(\Delta E\))。

- 在温度25℃、湿度60%的环境下放置48小时后的评价用图像在CIE-\(L^*a^*b^*\)色空间的\(L^*a^*b^*\)的值 = (\(L_1\), \(a_1\), \(b_1\))
- 在温度30℃、湿度80%的环境下放置168小时后的评价用图像在CIE-\(L^*a^*b^*\)色空间的\(L^*a^*b^*\)的值 = (\(L_2\), \(a_2\), \(b_2\))

\[
\Delta E = \sqrt{(L_1 - L_2)^2 + (a_1 - a_2)^2 + (b_1 - b_2)^2}
\]

式(1)

由通过上述式(1)计算出的各个评价用图像的色差，计算出作为其中最大值的色差(\(\Delta E\))，基于下述基准进行墨水的耐湿性评价。结果如表7所示。

A  4.0 \(\geq\) \(\Delta E\)
B  5.5 \(\geq\) \(\Delta E\) > 4.0
C  7.0 \(\geq\) \(\Delta E\) > 5.5
D  \(\Delta E\) > 7.0

(2)起动喷出稳定性

喷墨打印机，其搭载有容纳实施例和比较例墨水的墨盒，在温度15℃、湿度10%的环境下将该喷墨打印机放置1日，然后，在温度15℃、湿度10%的环境下使用所述墨水以50%duty在高品质专用纸（商品名：HR-101；佳能制造）上进行打印。然后，在打印后隔开一定的时间间隔，再次进行与上述同样的打印。测定打印第一次发生明显缺陷或者发生点偏移为止的时间。根据所测定的时间，基于下述基准对起动喷出稳定性进行评价。结果如表7所示。

A 停歇时间为5秒以上
B 停歇时间为3秒以上且小于5秒
C 停歇时间小于3秒

表7

<table>
<thead>
<tr>
<th>实施例</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>比较例</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>黄色墨水</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>X<a href="*4">质量%</a></td>
<td>28.226</td>
<td>228.22</td>
<td>266.22</td>
<td>26</td>
<td>220.02</td>
<td>86</td>
<td>32.21</td>
<td>9.02</td>
<td>88.23</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y<a href="*5">质量%</a></td>
<td>19.219</td>
<td>219.21</td>
<td>3213.21</td>
<td>32</td>
<td>10.01</td>
<td>83</td>
<td>15.2</td>
<td>9.0</td>
<td>19.21</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z<a href="*6">%</a></td>
<td>68.173</td>
<td>368.15</td>
<td>0.45</td>
<td>0.45</td>
<td>0.065</td>
<td>0.0</td>
<td>47.24</td>
<td>7.46</td>
<td>8.14</td>
<td>9.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>耐湿性</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>起动喷出稳定性</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

(*4) 水溶性有机溶剂的总含量[质量%]
(*5) 满足式(2)的水溶性有机溶剂的含量[质量%]
(*6) 在水溶性有机溶剂的总含量中，满足式(2)的水溶性有机溶剂的比例[%]

根据上表7，若对实施例1～7与比较例1、2、4进行比较，则在使用根据色料的特性判定方法判定的色差（ΔE）为9以下的例示化合物1、而且满足式(2)的关系的水溶性有机溶剂的含量相对于墨水中所含有的水溶性有机溶剂的总含量为50质量%以上的情况下，可以得到良好的耐湿性。另外，若对实施例1、2、3、7和实施例4、5、6进行比较，则在满足式(2)的关系的水溶性有机溶剂的含量相对于墨水中所含有的水溶性有机溶剂的总含量为65质量%以上的情况下，可以得到更优异的耐湿性。另外，若对实施例1和实施例3进行比较，则在含有亚乙基基团作为满足式(2)的关系的水溶性有机溶剂的情况下，可以得到良好的耐湿性，并且得到良好的起动喷出稳定性。进而，若对实施例4和实施例5进行比较，则在含有二乙二醇、2-吡咯烷酮、亚乙基基团作为满足式(2)的关系的水溶性有机溶剂的情况下，可以得到良好的耐湿性，并且得到良好的起动喷出稳定性。

＜色料的耐湿性判定＞
使用如下方法判定各种色料的耐湿性。下面，给出耐湿性判定方法的具体例子。

（模型墨水以及无色料墨水的调制）

作为具体的例子，模型墨水使用甘油和尿素作为水溶性有机溶剂，使用Acetylenol E100（川研ファインケミカル制造）作为表面活性剂，并使用C.I.直接黄132作为色料，按如下组成进行调制。

甘油 10质量%  
尿素 10质量%  
Acetylenol E100 1.0质量%  
（川研ファインケミカル制造）  
C.I.直接黄132 3.0质量%  
水 剩余部分  

接着，与上述模型墨水分开，另外调制出以水代替模型墨水的色料部分的无色料墨水。

另外，水的蒸发率为100%，则其中所使用的水溶性有机溶剂甘油的蒸发率X（质量%）为0质量%，尿素的蒸发率X（质量%）为0.1质量%。另外，甘油的吸湿率Y（质量%）为66.9质量%，尿素的吸湿率Y（质量%）为86.0质量%。因此，甘油和尿素相当于蒸发率X（质量%）比水的蒸发率小、吸湿率Y（质量%）为20以上的水溶性有机溶剂。

（模型墨水以及无色料墨水的打印）

在评价用图像的制造中，使用喷墨打印机（商品名：PIXUS 950i；佳能制造）以及记录介质（商品名：SP－101；佳能制造），在温度25℃、湿度60%的环境下打印上述模型墨水与无色料墨水，以便得到以模型墨水的打印duty为10%、无色料墨水的打印duty为70%的总计80%的duty重叠而成的图像。
（记录物的放置）
将上述记录物在温度25℃、湿度60%的环境下放置48小时，然后使用分光光度计（Spectrolino; Gretag Macbeth制造）测定该图像的CIE- Lab值，求出初始标准状态的CIE- La*b*色空间的Lab的值 = (L₁, a₁, b₁)。此时的各值为L₁ = 93.6, a₁ = −7.5, b₁ = 36.8。

然后，将上述记录物在温度30℃、湿度80%的环境下放置168小时，然后使用分光光度计（Spectrolino; Gretag Macbeth制造）测定该图像的CIE- Lab值，求出初始标准状态的CIE- La*b*色空间的Lab的值 = (L₂, A₂, B₂)。此时的各值为L₂ = 93.5, a₂ = −9.6, b₂ = 45.0。

由此确认：
\[\Delta E = \sqrt{(L₁ - L₂)^2 + (a₁ - a₂)^2 + (b₁ - b₂)^2} = 8.5\]

其它色料在温度30℃、湿度80%的环境下放置前后的色差（ΔE）如下表8所示。

<table>
<thead>
<tr>
<th>色料</th>
<th>通过耐湿性判定方法得到的ΔE的最大值</th>
</tr>
</thead>
<tbody>
<tr>
<td>黄色色料Y1</td>
<td>7.5</td>
</tr>
<tr>
<td>直接黄132</td>
<td>8.5</td>
</tr>
<tr>
<td>直接黄142</td>
<td>8.0</td>
</tr>
<tr>
<td>直接黄86</td>
<td>5.0</td>
</tr>
<tr>
<td>直接黄173</td>
<td>4.8</td>
</tr>
<tr>
<td>酸性黄23</td>
<td>9.7</td>
</tr>
</tbody>
</table>

<墨水的调制>
使用上述得到的例示化合物1和各色料，按照表9所示的配方制造实施例的墨水L～U、比较例的墨水V～Y。
<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>例示化合物1</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>3.0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>C.I.直接黄132</td>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td></td>
<td></td>
<td>2.5</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.I.直接黄142</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.I.直接黄86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.I.直接黄173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.I.酸性黄23</td>
<td></td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>乙二醇</td>
<td></td>
</tr>
<tr>
<td>二乙二醇</td>
<td>9.2</td>
<td>9.2</td>
<td>9.2</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>2-吡咯烷酮</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>亚乙基醚</td>
<td>5.0</td>
<td>5.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>1,5-戊二醇</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>N-甲基-2-吡咯烷酮</td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>丁基卡必醇</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>异丙醇</td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>尿素</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>甘油</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>12.0</td>
<td>12.0</td>
<td>10.0</td>
<td>10.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>13.0</td>
<td>5.0</td>
<td>9.0</td>
<td>5.5</td>
</tr>
<tr>
<td>聚乙烯醇(^*1)</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>サーフイノール</td>
<td></td>
</tr>
<tr>
<td>104PG50(^*3)</td>
<td></td>
</tr>
<tr>
<td>离子交换水</td>
<td>67.96</td>
<td>83.96</td>
<td>87.96</td>
<td>96.96</td>
<td>97.61</td>
<td>167.56</td>
<td>74.67</td>
<td>467.462.462</td>
<td>465.1</td>
<td>77.967.965.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（*2）乙炔二醇环氧乙烷加成物（表面活性剂）
（*3）(表面活性剂；日信化学制造)

<打印评价>

准备无色料墨水L～Y，其在上述得到的实施例的墨水L～U以及比较例的墨水V～Y中，将各配方的色料部分替换成纯水而得到。在评价中，使用喷墨打印机（商品名：PIXUS 950i；佳能制造）。

（1）墨水的耐湿性

制作评价用图像，其具有实施例和比较例的墨水在0％～100％duty、无色料墨水在0～100％duty分别以每5％改变duty而
重叠的灰度图案。墨水和无色料墨水的组合为墨水L与无色料墨水L、墨水M与无色料墨水M这样的方式。记录介质使用光泽记录介质（SP - 101；佳能制造）。将所得到的记录物放置在温度25°C、湿度60%的环境下48小时，然后，使用分光光度计（商品名：Spectrolino；Gretag Macbeth制造），测定重叠的灰度图案部分的色调。接着，将所述记录物在温度30°C、湿度80%的环境下放置168小时，然后使用与上述相同的分光光度计，与上述同样地测定色调。基于下式(1)，由在温度25°C、湿度60%的环境下放置48小时后的评价用图像的色调和在温度30°C、湿度80%的环境下放置168小时后的评价用图像的色调，计算出各评价用图像中的色差（ΔE）。

在温度25°C、湿度60%的环境下放置48小时后的评价用图像（初始标准状态）在CIE - La* b* 色空间的La* b* 的值 = (L₁, a₁, b₁)

在温度30°C、湿度80%的环境下放置168小时后的评价用图像（加速试验后）在CIE - La* b* 色空间的La* b* 的值 = (L₂, a₂, b₂)

\[ \Delta E = \sqrt{(L_1 - L_2)^2 + (a_1 - a_2)^2 + (b_1 - b_2)^2} \quad \text{式(1)} \]

由通过上述式(1)计算出的各评价用图像的色差，计算出其中最大值的色差 (ΔE)，基于下述基准对墨水的耐湿性进行评价。结果如表9所示。

A 4.0 > ΔE
B 5.5 > ΔE > 4.0
C 7.0 > ΔE > 5.5
D ΔE > 7.0

(2)起动喷出稳定性

喷墨打印机，其搭载有容纳实施例和比较例墨水的墨盒，在
温度15℃、湿度10%环境下将该喷墨打印机放置1日，然后在温度15℃、湿度10%的环境下，使用所述墨水以50%duty在高品质专用纸（商品名：HR－101；佳能制造）上进行打印。进而，在打印后隔开一定的时间间隔，再次进行与上述同样的打印。测定打印第一次发生明显缺陷或者产生点偏移为止的时间。根据所测定的时间，基于下述基准对起动喷出稳定性进行评价。结果如表9所示。

A 停歇时间为5秒以上
B 停歇时间为3秒以上且小于5秒
C 停歇时间 小于3秒

(3)图像浓度

使用实施例和比较例的墨水，以100%duty进行打印，得到记录物。记录介质使用光泽记录介质（SP－101；佳能制造）。将所得到的记录物自然干燥24小时。使用分光光度计（商品名：Spectrolino；Gretag Macbeth制造），测定打印部的光学浓度，基于下述基准进行图像浓度的评价。结果如表9所示。

A 光学浓度 大于1.85
B 光学浓度 为1.75以上1.85以下
C 光学浓度 小于1.75

(4)色调

使用实施例和比较例的墨水，以100%duty进行打印，得到记录物。记录介质使用光泽记录介质（PR－101，佳能制造）。将所得到的记录物自然干燥24小时。使用分光光度计（商品名：Spectrolino；Gretag Macbeth制造），测定打印部的色饱和度（C）和色相角（h）。另外，色饱和度是基于下式(3)、由CIE－La*b*色空间的a*b*的值计算出来的。色饱和度和色相角基于下述基准进行评价。结果如表10所示。
\[ C = \sqrt{a^2 + b^2} \] 式 (3)

・色饱和度
A C为105以上
B C为95以上且小于105

・色相角（h）
A h大于85且小于90
B h为83以上85以下、或者90以上92一下
C h小于83、或者大于92

表10

<table>
<thead>
<tr>
<th>墨水</th>
<th>实施例</th>
<th>比较例</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>M</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>N</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>O</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>P</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Q</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>R</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>S</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>T</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>U</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>V</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

X[质量%](*4) 28.2 26.2 28.2 26.2 26.2 20.0 28.6 28.2 28.2 33.2 31.0 19.0 28.2 30.5

Y[质量%](*5) 19.2 19.2 19.2 14.2 14.2 10.0 18.6 19.2 19.2 19.2 8.0 9.0 19.2 15.0

Z[质量%](*6) 68.1 73.3 68.1 54.2 54.2 50.0 65.0 68.1 68.1 57.8 25.8 47.4 68.1 49.2

耐湿性
A A A B B B B A A A A

起动喷出稳定性
A B B A B B B B A A A A

图像浓度
A A A A A A A A A A A A

色饱和度（C）
A A A A A A A A A A A A

色相角（h）
A A A A A A A A A A C A

(*4) 水溶性有机溶剂的总含量[质量%]
(*5) 满足式(2)的水溶性有机溶剂的含量[质量%]
(*6) 在水溶性有机溶剂的总含量中，满足式(2)的水溶性有机溶剂的比例 [%]

根据上表10，若对实施例8～17与比较例5、6、8进行比较，则在满足上式(2)的关系的水溶性有机溶剂的含量相对于墨水中所包含的水溶性有机溶剂的总含量为50质量%以上的情况下，可以得到良好的耐湿性。另外，若对实施例8、9、10、14与实施例11、12、13进行比较，则在满足上式(2)的关系的水溶性有机溶剂的含
量相对于墨水中所含的水溶性有机溶剂的总含量为65质量%以上的情况下，可以得到更优异的耐湿性。另外，若对实施例8～14与实施例15～17进行比较，则在图像浓度、色调方面，通过组合使用例示化合物1和C.I.直接黄132，得到耐湿性、起动喷出稳定性、图像浓度以及色调都优异的墨水。另外，若对实施例8和10进行比较，则在含有亚乙基醇作为满足上式（2）的关系的水溶性有机溶剂的情况下，可以得到良好的耐湿性，并且得到良好的起动喷出稳定性。进而，若对实施例11和实施例12进行比较，则在含有二乙二醇、2-吡咯烷酮、亚乙基醇作为满足上式（2）的关系的水溶性有机溶剂的情况下，可以在得到良好的耐湿性的同时得到良好的起动喷出稳定性。

图 1
图 2
图 5
图 7