
(19) United States
US 2008O155439A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0155439 A1
Stern et al. (43) Pub. Date: Jun. 26, 2008

(54) METHOD AND APPARATUS FOR IMPROVED
INTERACTION WITH AN APPLICATION
PROGRAMACCORDING TO DATA TYPES
AND ACTIONS PERFORMED BY THE
APPLICATION PROGRAM

(76) Inventors: Mark Ludwig Stern, Cupertino,
CA (US); Robert George
Johnston, Cupertino, CA (US);
Elizabeth Ann Robinson Moller,
Boulder Creek, CA (US)

Correspondence Address:
BLAKELY SOKOLOFFTAYLOR & ZAFMAN
1279 OAKMEAD PARKWAY
SUNNYVALE, CA 94085-4040

(21) Appl. No.: 11/496,848

(22) Filed: Jul. 31, 2006

Related U.S. Application Data

(63) Continuation of application No. 10/911,147, filed on
Aug. 3, 2004, which is a continuation of application
No. 10/325,068, filed on Dec. 19, 2002, now Pat. No.
6,807,668, which is a continuation of application No.
09/800,542, filed on Mar. 6, 2001, now Pat. No. 6,535,
930, which is a continuation of application No. 09/003,
079, filed on Jan. 5, 1998, now Pat. No. 6,212,577,

which is a continuation of application No. 08/761,714,
filed on Dec. 6, 1996, now abandoned, which is a
continuation of application No. 08/344,540, filed on
Nov. 23, 1994, now abandoned, which is a continua
tion of application No. 08/025,604, filed on Mar. 3,
1993, now abandoned.

Publication Classification

(51) Int. Cl.
G06F 3/048 (2006.01)

(52) U.S. Cl. .. 71.5/769
(57) ABSTRACT

A method and apparatus for performing actions while select
ing objects on a user interface display. A user may select a first
item in an area of a display controlled by a first process and
drag that item to a second area on a display controlled by a
second process. The second process may negotiate with the
first process to provide certain data types, and based upon
those data types, the second process will determine a list of
actions in hierarchical fashion which may be performed upon
the data. Such actions may include, but are not limited to,
printing, sending electronic mail, and performing other
actions in the computer system. Alternative and primary
actions may also be specified by a user, such as by selecting
various keys on a keyboard or other input device. Further, a
user may specify that the second process display a list of
actions which may be performed upon the selected item and
allow the user to select an action from a list.

1014 1011 1 OOS

Patent Application Publication Jun. 26, 2008 Sheet 1 of 58 US 2008/O155439 A1

Applications Document

120 110

V1/
Orag and Drop HIS

Figure 1a
(Prior Art)

Applications Documents
y 1n

Figure 1b
(Prior Art)

Patent Application Publication Jun. 26, 2008 Sheet 2 of 58 US 2008/O155439 A1

Figure 1c
(Prior Art)

1OO

IT y
Orr a minda Maw

Applications Documents

Systern Folder

Figure 1d
(Prior Art)

Patent Application Publication Jun. 26, 2008 Sheet 3 of 58 US 2008/O155439 A1

230

230

Copy
Past
Paste Special . . .
Clear
Select All

200

21 Oa

Figure 2a
(Prior Art)

age Ko di

220

220a

Patent Application Publication Jun. 26, 2008 Sheet 4 of 58 US 2008/O155439 A1

2O

Figure 2b
(Prior Art)

P. H. C.,

Patent Application Publication Jun. 26, 2008 Sheet 5 of 58 US 2008/015.5439 A1

Paste Special . . .
Clear
Select Al

Figure 2c
(Prior Art)

Page KLX

Patent Application Publication Jun. 26, 2008 Sheet 6 of 58 US 2008/O155439 A1

21 Oa

Figure 2d
(Prior Art)

- - - - - - Doc 2 - - - -

Hero is text

I

22Ob

K-5,

Patent Application Publication Jun. 26, 2008 Sheet 7 of 58 US 2008/O155439 A1

OSPLAY
32 -

MAN STAT1C MASS STORAGE I
MEMORY MEMORY DEVICE
304 306 307

KEYBOARD US 301 :
322 an

PROCESSOR |
302

CURSOR
CONTROL

323

HARO COPY
DEVICE

324.

Figure 3

US 2008/O155439 A1 Jun. 26, 2008 Sheet 8 of 58 Patent Application Publication

urøysÁS uo?ow nesn

Patent Application Publication Jun. 26, 2008 Sheet 9 of 58 US 2008/015.5439 A1

51O.

Dear fasident,

Let me introduce myself as a promler
real estate agent who can serve your
needs. have over twenty years of
experience and have never had a
dissatisfied customer! If you are
planning to sell your house in the near
future, please do not hesitatD to contact
me at (800) BUY-SELL.
Sincerely yours,

SO1

M. Best 500

E ---

Dear Resident,

Let me introduce myself as a premier
real estate agent who can SOrvO your
needs. I havo over twenty years of
experience and have nover had a
dissatisfied customer if you are
planning to sell your house in the near
future, please do not hesitate to contact
me at (800) BUY-SELL.

520

Sinceroly yours,

Patent Application Publication Jun. 26, 2008 Sheet 10 of 58 US 2008/015.5439 A1

510

-et-e Solcitation
Dear Resident,

Let me introduce myself as a premier
real estate agent who can serve your
needs. I have over twenty years of
experience and have never had a
dissatisfied customer if you are
planning to sell your house in the near
future, please do not hesitate to contact
me at (800) BUY-SELL.
Stncerely yours,

Dear Resident,

Let me introduce myself as a premier
real estate agent who can serve your
needs. I have over twenty years of
experience and have nover had a
dissatisfied customer. If you are
planning to sell your house in the near
future, please do not hesitate to Contact
me at (800) BUY-SELL.
Sincerely yours,

501

Figure 5d

Patent Application Publication Jun. 26, 2008 Sheet 11 of 58 US 2008/O155439 A1

Sincerely yours,

.M. test

Figure 6a

Solicitation
Sincerely yours,

.M., eSt

630

610

. Advertisement

Patent Application Publication Jun. 26, 2008 Sheet 12 of 58 US 2008/O155439 A1

Sincerely yours,

..M. Best

Figure 6c

Patent Application Publication Jun. 26, 2008 Sheet 13 of 58 US 2008/O155439 A1

720

Figure 7a

720

Figure 7b 700

Patent Application Publication Jun. 26, 2008 Sheet 14 of 58 US 2008/0155439 A1

710

720

K. C. 750

83. 760

Figure 7c

EEE did
Figure 7d

Patent Application Publication Jun. 26, 2008 Sheet 15 of 58 US 2008/0155439 A1

810

SO citation
Sincerly yours,

830

800

Figure 8a

810

Sincerely yours,

so
840

- - - - sis.

Patent Application Publication Jun. 26, 2008 Sheet 16 of 58 US 2008/O155439 A1

810

Since rely yours,

Figure 8c

810

Soiletation
Sincerely yours,

1830

820

Figure 8d

Patent Application Publication Jun. 26, 2008 Sheet 17 of 58 US 2008/O155439 A1

iii.
910 W.

90S O
11

campo 92O

&
C --

K O SOr Printer

Figure 9a

... Window -
1 Orr 97.3 M in disk 17.7 Mav

Patent Application Publication Jun. 26, 2008 Sheet 18 of 58 US 2008/O155439 A1

SOE uindou EE

90

Figure 9c

90

Figure 9d

Patent Application Publication Jun. 26, 2008 Sheet 19 of 58 US 2008/0155439 A1

1014 1011 1 OOS

Figure 10a

1050

52

Sl

ld

e
Y M

1064 106S

Figure 10b

Patent Application Publication Jun. 26, 2008 Sheet 20 of 58 US 2008/015.5439A1

1101 1102 1100 1103

7 A
F -e Orand Drop

stens 120A Me in disk 27.7 Me avn

KN
1104 Applications oocuments

11 OS

N 1110

Patent Application Publication Jun. 26, 2008 Sheet 21 of 58 US 2008/O155439 A1

- 1210

Patent Application Publication Jun. 26, 2008 Sheet 22 of 58 US 2008/O155439 A1

1300

Figure 13a

Figure 13b

Patent Application Publication Jun. 26, 2008 Sheet 23 of 58 US 2008/O155439 A1

king surn moned two of s advisors for a
test. kingdon. He showed them both a
shiny metal box with two slots in the top, a
Control knob, and a lever, "What do you

Figure 14a

1460 14SO

Orico upon a time, Tnkingdoma not far from
ere king Agnes washio advise

metal box with two slots in the top, a control
nob, and a fever.

Figure 14b

Patent Application Publication Jun. 26, 2008 Sheet 24 of 58 US 2008/O155439 A1

Figure 15a

Figure 15b

Patent Application Publication Jun. 26, 2008 Sheet 25 of 58 US 2008/O155439 A1

1S30

Figure 15c

Figure 15d

Patent Application Publication Jun. 26, 2008 Sheet 26 of 58 US 2008/O155439 A1

1620

... if Drag and DropI.T.,
3 te?t S 129 M in disk 28.2 M available

Applications cr'?
System Folder

Figure 16

Patent Application Publication Jun. 26, 2008 Sheet 27 of 58 US 2008/O155439 A1

shiny metal box with two slots in the top, a
Control knob, and a lever. "What do you

1704

1710 Once upon a time, in a kingdom not far from
here, a king summoned two of his advisors
for a test. He showed thern both a shiny

1703 700
Figure 17

Patent Application Publication Jun. 26, 2008 Sheet 28 of 58 US 2008/O155439 A1

El-Drag and Drop Maller E
SOre Merne

Figure 18a

1860 1850

-- Wrkshet - - y
--A-C-D-
Hi 2 Jan FOb Mar

3 Rent SE
4 Food SES
5 Utilities
Aug.---

7 Entertainment C.
KO 2

1870

Figure 18b

Patent Application Publication Jun. 26, 2008 Sheet 29 of 58 US 2008/O155439 A1

18O

EPrinting E.
Printing Document l 1890

SO
Complete

Figure 18c

1880

1890
21

Complete

Figure 18d

Patent Application Publication Jun. 26, 2008 Sheet 30 of 58 US 2008/015.5439 A1

ete, a king summoned two
test. He showed thern

Slots in the top, a control knob, and
a lever. "What do you think this is?"

Figure 19a

II. Drag and Orop . .
Once upon a time, in a kingdom not
far from here, a king summoned two
of his for a test. HO showed thern
both with two slots in the top, a
control knob, and a lover. "What do

1901

Figure 19b

Patent Application Publication Jun. 26, 2008 Sheet 31 of 58 US 2008/O155439 A1

1910

Eorag and drop.
Once upon a time, in a kingdom not
far from here, a king summoned two
of his for a test. He showed then
both a shiny metal bor with two
Slots in the top a control knob, and
a lever. "What do you think this is?"

9 dvisor, an engine
O ACCEaster," he said. The

1915 would you design an ep
n

The engineer replied, "U
microController, would

Figure 19c

1910

Once upon a time, in a kingdom not
far from here, a king summoned two
Of his for a test. He showed then

The engineer replied, "U
finlerocontroller, would

Figure 19d

US 2008/O155439 A1 Jun. 26, 2008 Sheet 32 of 58 Patent Application Publication

200Z

K d.

US 2008/015.5439 A1 Jun. 26, 2008 Sheet 33 of 58 Patent Application Publication

100?

Patent Application Publication Jun. 26, 2008 Sheet 34 of 58 US 2008/0155439 A1

2O3 2104

Figure 21

Patent Application Publication Jun. 26, 2008 Sheet 35 of 58 US 2008/015.5439 A1

2200

Tracking Handlers

Window Window All Other
"Graphics" "Documents' Windows

2210 2220 22.30

Handler Handler
2211 22.31

Drag Manager

Figure 22

US 2008/O155439 A1 Jun. 26, 2008 Sheet 36 of 58 Patent Application Publication

Patent Application Publication Jun. 26, 2008 Sheet 37 of 58 US 2008/O155439 A1

.

9

s

Patent Application Publication Jun. 26, 2008 Sheet 38 of 58 US 2008/015.5439 A1

Drag ten List

Dig
8 2420

"MOOF
2571

Favor Data
2S71 a

W

T

Drag item
1 724.so

"MOOF
2561

Favor Data
256 a

'drign'
2S6

Favor Data
2563

Flavor Data
2584

Figure 25

Patent Application Publication Jun. 26, 2008 Sheet 39 of 58 US 2008/O155439 A1

Tine Master Control Slave

l l Context Switch
1 - S1

2 -

S 2

Figure 26 (Prior Art)

Patent Application Publication Jun. 26, 2008 Sheet 40 of 58 US 2008/O155439 A1

Figure 27 (Prior Art)

Patent Application Publication Jun. 26, 2008 Sheet 41 of 58 US 2008/O155439 A1

Interactor- I I2 I3

Context Switch

Context Switch

Patent Application Publication Jun. 26, 2008 Sheet 42 of 58 US 2008/O155439 A1

Figure 29

Patent Application Publication Jun. 26, 2008 Sheet 43 of 58 US 2008/O155439 A1

3101 TrackDrag Process

(2 Start 300
302

Determine position of mouse and update
cursor position on display

3103
Determine application which controls

Window under nouse

3104
Layer switch to application owning

window

31 OS
Determine which window is pointed to by

CSO

3.06
Determine handler which controls window

from handler table

3107

No-Ga) Handler(s

Yes

3.108

Switch handler(s)

different?

Figure 30

Patent Application Publication Jun. 26, 2008 Sheet 44 of 58 US 2008/O155439 A1

Track Drag Process
300

3109

Dohangers belong
to different
application?

3.
Switch context to application

New application
valid and active?

3300
DragReceiveProc
for application

34
Received
data?

3.18
Abort feedback

3

e

19
R e t r

Patent Application Publication Jun. 26, 2008 Sheet 45 of 58 US 2008/O155439 A1

Starting A Drag Within Front Window
3200

3201,
Determine cursor position

3202.
O No 3206

Cursor moved three pixels after WaitNextEvent
mouse-down event and

Selection?

Yes

3203
Call NewDrag process to create drag items(s)

and flavor(s)

3204
Call TrackDrag process

3205
TrackDrag adds Translation Manager flavors

to drag item(s)

Figure 32

Patent Application Publication Jun. 26, 2008 Sheet 46 of 58 US 2008/O155439 A1

Process Manager Starting ADrag in A.Background
330 Application's Window

O 00 Recognize mouse-down 3300
event in background application

3302
Background

1 nose-down handler
installed for background application O

3303
Context switch to

background mouse-down
handler

Background Mouse-Down
Handler

3304
Issue background

no useodown event to
background mouse-down

handler

3303
Receive background
no useedown event

3309.
Cursor moved 3305

Background three pixels after
application handler noise-down
called TrackDrag event and

process? election?

Return
Eventot Handled Yes

33 3306
Call NewDrag process to AES5's 'FIRE

3312
Call TrackDrag process

333
TrackDrag adds Translation
Manager flavors to drag

item(s)

334
Return

Event Handled Figure 33a

Patent Application Publication Jun. 26, 2008 Sheet 47 of 58 US 2008/O155439 A1

Starting ADrag In ABackground
Application's Window

3300
TrackDrag

33.5
Context switch to front application .

3.316
Assume background application not drag

2Wale

3317
Switch active application to background application

3318
Send mouse-down event to background application

Figure 33b

Patent Application Publication Jun. 26, 2008 Sheet 48 of 58 US 2008/O155439 A1

3400
8.

3401
Detect Mouse-Up

3403
Cal PragReceiveProc of destination application

3405
DragReceiveProcasks for the

preferred flavors of data

3407

Flavor
available?

Flavor needs translation?

3411
Call Translation
Manager to

translate data

3415

Any other flayors
of interest?

343
Return data

Figure 34

Patent Application Publication Jun. 26, 2008 Sheet 49 of 58 US 2008/0155439 A1

3501
Start Drag Hilite Feedback

3 S02
Copy region

3503
Inset or outset copy by fixed thickness

3S04
Exclusive OR two regions

3505
Draw result on Screen

Figure 35

Patent Application Publication Jun. 26, 2008 Sheet 50 of 58 US 2008/0155439 A1

3601
Start Drag Hilite Scrolling

3602
Erase portions of highlight before scrolling

3603.
Application then scrolls contents of pane or

window

3604
Restore portions of highlight after scrolling

Figure 36a

Patent Application Publication Jun. 26, 2008 Sheet 51 of 58 US 2008/O155439 A1

3 6 O 2

3 6 O

Copy highlight region

3611
Offset copy by scroll amount

36.2
Make difference region from difference of the two regions

363
Offset difference region back by scroll

anot

3614
Erase difference region from screen

Figure 36b

Patent Application Publication Jun. 26, 2008 Sheet 52 of 58 US 2008/015.5439 A1

62
Get the difference region used earlier

3622
Exclusive OR the difference region with the ideal highlight region

3623
Draw result on the screen

Figure 36c

Patent Application Publication Jun. 26, 2008 Sheet 53 of 58 US 2008/015.5439 A1

Zooom Rects()
3700

3702
Copy outline region of dragged objects

3703
Draw frame of region in position + variable

distance closer

3704
Four franes on

screen?
3705

Erase the oldest frame

3706
Drawn C twelve

frames?

3707
Any frames left
on the screen?

Patent Application Publication Jun. 26, 2008 Sheet 54 of 58 US 2008/0155439 A1

Creation of Clipping
3800

3802
Begin with first drag item

3803
Is there an 'hfs'

favor?

804
Store drag item favors into clipping file

807
Step to the next drag item

3305
Move the file system object to the drop

location

3806
Are there more drag items?

Figure 38a

Patent Application Publication Jun. 26, 2008 Sheet 55 of 58 US 2008/O155439 A1

3812

Is there a 'cnan'
favor?

3813
Yes Create a clipping file with

name basept given
cnan' flavor

No

3814
Create a clipping file with name based on PP clipping"

381
Use the E: flavor as

C icon for t

No

3817
Use default icon for clipping file

3818
Store drag item flavors into clipping file

3819
End

Figure 38b

ipping file

Patent Application Publication Jun. 26, 2008 Sheet 56 of 58 US 2008/O155439 A1

381

Begin with first drag item flavor

3823
Yes Is the flavor

senderOnly?

3824
Is the flavor

TMTranslated?

382S
Add flavor to clipping file

3827 3826
Are there nore Step to the next dra p iten flavor favors

Figure 38c

Patent Application Publication Jun. 26, 2008 Sheet 57 of 58 US 2008/O155439 A1

38.31 3817
Start

3832
Begin with first drag item flavor

Yes 3834
Use text icon

No 3835

3833

Is the layor type
TEXT

End

3836
Yes 3837

Is 8: pe Use picture icon

3838
End

3839

Is flavor type YE!yP
Yes 3840

Use sound icon

384
End

Are there nore
favors?

3844
Step to the next
drag item flavor

3843
Use generic icon

Figure 38d

Patent Application Publication Jun. 26, 2008 Sheet 58 of 58 US 2008/O155439 A1

Verb Selection
3900

Scan, flavors and compare with
possible actions by destination

3903

Control key
Selected?

Detect selection of
verb

3904
Option ke Egy

390S
Select Second nost

likely verb

3906
Select most likely, yerb for flavors provided

3909
Request flavor(s) if needed and

perform verbs

Figure 39

US 2008/O 155439 A1

METHOD AND APPARATUS FOR IMPROVED
INTERACTION WITH AN APPLICATION
PROGRAMACCORDING TO DATA TYPES
AND ACTIONS PERFORMED BY THE

APPLICATION PROGRAM

BACKGROUND OF THE INVENTION

0001 1. Field of the Invention
0002 The present invention relates to a method and appa
ratus for the manipulation of data in a computer system and
the visual feedback which is provided thereof. More specifi
cally, the present invention relates to an improved method and
apparatus for selection and information from one location to
another in a user interface display to cause certain actions to
OCCU.

0003 2. Background Information
0004 Existing graphical user interfaces (GUIs) in com
puter systems provide a variety of tools to manipulate infor
mation. One of the key design characteristics of graphical
user interface is the concept of direct manipulation. Tradi
tional disk operating systems used a command line interface
(such as the MS DOS operating system available from
Microsoft Corporation of Redmond, Wash.), and English lan
guage commands are issued by a user in order to cause certain
events to occur. In modern GUIs, files and other information
are directly manipulated by selecting icons representing files
and moving the icons while selected on the computer system
display. In this manner, files may be moved, copied, deleted,
and otherwise manipulated in the file system of the computer.
0005. An example of this process is shown in FIGS. 1a-1d.
For example, in FIG.1a, in a window 100, which is displayed
on a computer system display, the user may select an icon 120
representing a file using a cursor pointer 110 which is under
user control using a mouse, trackball, or other cursor control
device. Once selected the user may move or manipulate the
icon in any manner in order to perform certain actions in the
file system. Icon 120 is shown in its selected state in window
100 of FIG.1a. Then, as is illustrated in FIG.1b, the user may
start to move cursor 110 while the icon is selected causing an
outline image representation of the icon and its file name,
which is illustrated as 130, to be moved on the computer
system display. This allows the user to manipulate the file for
movement within the file system. Then, as is illustrated in
FIG. 1c, the user may move pointer 110 to a subdirectory
entitled “Documents, shown as 140 in FIG. 1c (also known
as a “folder” in the Macintosh(R) brand operating system), for
movement of that file in the file system. When the “folder
icon 140 is pointed to by pointer 110, it becomes shown in its
highlighted state, as is illustrated in FIG. 1c. Then, as is
illustrated in FIG. 1d, when the user deselects the icon (that is,
releases a mouse button or other selection means), the origi
nal icon 120 disappears from the window, and icon 140 is
shown in an unselected State. In addition to the visual repre
sentation on window 100 as is illustrated in FIG. 1d, the file
has been moved from the directory which window 100 rep
resents to the subdirectory “Documents' represented by icon
140. For accessing the file represented by icon 120 at a later
time, the user will selecticon 140 causing a second window to
be displayed representing that subdirectory and be able to
access the file represented by icon 120. Thus, movements
within the file system and reorganization of files in the file
system, known as the HFS (Hierarchical Filing System) in the
Macintosh R brand operating system, may be performed
using this prior art technique.

Jun. 26, 2008

0006 Another prior art implementation of a movement of
information in a graphical user interface Such as that used by
the Macintosh R) brand operating system is illustrated with
reference to FIGS.2a-2d. For example, this is a process which
may be used for transferring text between a window display
ing one set of text (e.g., 210) and a second window with a
second set of text in it (e.g., 220). As is illustrated in FIG.2a.
the user will select a region of text in document 210 utilizing
cursor 200 under control of the cursor control and selection
device and select an option from a pull-down menu 230, such
as “Cut 230a. This is a destructive move operation wherein
the text is removed from document 210 and will be moved to
document 220. This is all illustrated in FIG.2a. Then, the user
will move the cursor to second document 220 in text area
220a and select a region in the text at which he desires the text
to be moved. The cursor in text region 220a will change to a
format known as insertion carat 250 which indicates where
the insertion point will be. Then, as is illustrated in FIG.2c,
the user will use pull-down menu 230 again, selecting a
second option “Paste” 230b to retrieve text 240 from an
intermediate storage device. Such as a clipboard or other type
of intermediate storage buffer, and insert the text at that loca
tion. As is illustrated in FIG.2c, the text is still highlighted as
this is shown immediately after the paste operation. Then, the
highlighting is removed, as is illustrated in FIG. 2d, when the
user selects other regions of the screen to operate in or per
forms other operations. Thus, as is illustrated in FIG. 2d, the
destructive move operation from Document 1210 to Docu
ment 2 220 has been accomplished. As is well-known to those
skilled in the prior art, nondestructive "copy’ operations may
also be performed in a similar manner by selecting other
pull-down menu options on pull-down menus Such as FIGS.
2a and 2c. Note that the documents 210 and 220 may be under
control of a single program, Such as a word processing pro
gram, or may be under control of different application pro
grams, such as one word processing program and a second
word processing program or any other type of application
program. As is well-known to those skilled in the prior art,
transfer among different types of application programs may
be accomplished using the cut and paste operations described
with reference to FIGS. 2a-2d on a variety of architectural
platforms using the intermediate storage buffer known as the
clipboard. Other types of information Such as graphical infor
mation, numeric information, or other types of information
may be transferred in this manner.
0007. Upon viewing FIGS. 1a-1d and 2a-2d, it is apparent
that there is a dichotomy between the two techniques. Users
become used to the manipulation of files in the manner which
is illustrated with reference to FIGS. 1a-1d, however, the user
must learn the use of a second tool known as the “Edit”
pull-down menu illustrated as 230 in FIGS. 2a-2d in order to
perform manipulation of information between windows and/
or application programs and/or files. Thus, there is a need for
improved manipulations of various types of data, especially
between application programs than techniques which exist in
the prior art.

SUMMARY AND OBJECTS OF THE
INVENTION

0008. One of the objects of the present invention is to
provide an improved method and apparatus for manipulating
information in a computer system.
0009. Another of the objects of the present invention is to
provide a consistent user interface for manipulation of infor
mation between and within application programs and within
an operating System.

US 2008/O 155439 A1

0010. Another of the objects of the present invention is to
provide an improved means for providing feedback to a user
of manipulation of information in a computer system.
0011. Another of the objects of the present invention is to
provide an architecture for direct manipulation of data to and
from application programs and files in a file system.
0012. These and other objects of the present invention are
provided for by a method and apparatus formanipulating data
between application programs. A user may select an item in a
first window under control of a first process which specifies
formats in which data from the selected first item may be
provided. The user drags the selected item to a second win
dow, wherein the second window is under control of a second
process. The user deselects the selected item while the item is
located at the second window, and the second process deter
mines if the second process can perform a primary action
based upon a first format of the first item and, if so, then
receives data from the first process in the first format and
performs the primary action using the first format. The action
may include a plurality of actions including Such system
services as printing, sending electronic mail, or other actions
which may be performed in a computer system. The method
further comprises alternative actions and action selection
mechanisms which are activated by a user selecting various
activation means in the computer-controlled display system.
The selection means may include a list of plurality of actions
which can be performed by the second process using the
formats from the first process. The user may select one of the
desired actions from the plurality of actions, and the process
performs the desired action. Any number of a plurality of
actions may be selected from based upon the format of the
first item provided by the first process. Such actions are
known as “verbs” in the preferred embodiment.
0013. Other features, advantages, and novel aspects of the
present invention will become apparent from the detailed
description which follows below.

BRIEF DESCRIPTION OF DRAWINGS

0014. The present invention is illustrated by way of
example and not limitation in the figures of the accompanying
in which like references indicate like elements and in which:
0015 FIGS. 1a-1d show a prior art method for selecting an
icon representing a file and moving it to a second location
using a graphical user interface.
0016 FIGS. 2a-2d show a prior art method of copying text
from a first file on a user interface display to a second file on
the user interface display.
0017 FIG.3 shows a block diagram of a computer system
upon which the methods and apparatus of the preferred
embodiment may be implemented.
0018 FIG. 4 shows the interaction model used by the
preferred embodiment to provide various user interface feed
back during drag-and-drop operations.
0019 FIGS. 5a-5d show an operation which may be
implemented for selecting text from a first application pro
gram and dropping it in a second application program con
taining graphic data.
0020 FIGS. 6a-6c show a sequence of steps which may be
used on a graphical user interface for dragging graphic data
from a first user interface window to a second window con
taining text.
0021 FIGS. 7a-7d show a method for selecting an item
within a user interface window and dragging and dropping

Jun. 26, 2008

that item into a window controlled by the file system to create
a file representative of the item selected.
0022 FIGS. 8a-8d illustrate an example of background
selection used in the user interface of the preferred embodi
ment.

(0023 FIGS. 9a-9d illustrate a method for performing a
system service using the graphical user interface of the pre
ferred embodiment.
0024 FIGS. 10a–11 illustrate the appearance on a display
of a graphical user interface while selecting and dragging
multiple objects.
(0025 FIGS. 12-13b show examples of selection feedback
which may be provided for a graphical object using the user
interface of the preferred embodiment.
0026 FIGS. 14a and 14b show an example of drag feed
back which may be provided for text items.
(0027 FIGS. 15a-15d illustrate autoscrolling which may
be performed upon the graphical user interface of the pre
ferred embodiment.
0028 FIGS. 16-18d illustrate examples of various desti
nation feedback which may be provided by the graphical user
interface of the preferred embodiment.
0029 FIGS. 19a–19d illustrate examples of dragging text
within a single application window and between application
windows.
0030 FIGS. 20a-20d show an example of abort feedback
which illustrates an appearance on a display when an opera
tion cannot be completed Successfully.
0031 FIG. 21 illustrates a selection dialog window which
may be used for selecting verbs or actions to be performed
during a drag-and-drop operation.
0032 FIG. 22 illustrates an example of a tracking handler
registry for various windows which are handled by a particu
lar application program.
0033 FIG. 23 shows a selected item and a series of win
dows which may be traversed during a drag-and-drop opera
tion.
0034 FIG. 24 shows a graphical representation of the data
structure used for maintaining a list of selected items for a
drag operation.
0035 FIG. 25 shows an example of a series of drag items
placed into a drag item list for use during a drag-and-drop
operation.
0036 FIGS. 26 and 27 illustrate the transfer of control and
context Switches which occur between application programs
in typical prior art systems.
0037 FIGS. 28 and 29 illustrate transfers of control which
may be implemented in one embodiment of the present inven
tion.
0038 FIGS. 30 and 31 illustrate the drag tracking process
as performed within the preferred embodiment.
0039 FIG. 32 illustrates a process which is performed in a
normal event loop of an application program for commencing
a drag from an active application program.
0040 FIGS. 33a and 33b illustrate a process which is
performed during the selection and drag of items in a back
ground or inactive application program.
0041 FIG.34 illustrates a flow diagram of a process which

is performed when a drop operation takes place in the pre
ferred embodiment.
0042 FIG. 35 shows a process for a highlighting a region
on a display for improved user interface feedback.
0043 FIGS. 36a-36c illustrate methods for maintaining
highlighting in windows during scrolling operations.

US 2008/015.5439 A1

0044 FIG. 37 shows an example process for providing
abort or completion feedback.
004.5 FIGS. 38a–38d illustrate a process for creating a
clipping file in the file system of the a computer system.
0046 FIG. 39 shows a process implemented for selecting
verbs which may be implemented in one embodiment of the
present invention.

DETAILED DESCRIPTION

0047. A process and apparatus for an improved manipu
lation of data and user feedback in a computer-controlled
display system is described. In the following description,
specific steps, procedures, command options, command
items, and other specifics are set forth in order to provide a
thorough understanding of the present invention. However, it
will be apparent to one skilled in the art that the present
invention may be practiced without these specific details. In
other instances, well-known systems and methods are shown
in diagrammatic, block or flow diagram form in order to not
unnecessarily obscure the present invention.

System of the Preferred Embodiment
0048 Referring to FIG. 3, the computer system upon
which a preferred embodiment of the present invention is
implemented is shown as 300. 300 comprises a bus or other
communication means 301 for communicating information,
and a processing means 302 coupled with bus 301 for pro
cessing information. System 300 further comprises a random
access memory (RAM) or other volatile storage device 304
(referred to as main memory), coupled to bus 301 for storing
information and instructions to be executed by processor 302.
Main memory 304 also may be used for storing temporary
variables or other intermediate information during execution
of instructions by processor 302. Computer system 300 also
comprises a read only memory (ROM) and/or other static
storage device 306 coupled to bus 301 for storing static infor
mation and instructions for processor 302, and a data storage
device 307 such as a magnetic disk or optical disk and its
corresponding disk drive. Data storage device 307 is coupled
to bus 301 for storing information and instructions. Computer
system 300 may further be coupled to a display device 321,
such as a cathode ray tube (CRT) or liquid crystal display
(LCD) coupled to bus 301 for displaying information to a
computer user. An alphanumeric input device 322, including
alphanumeric and other keys, may also be coupled to bus 301
for communicating information and command selections to
processor 302. An additional user input device is cursor con
trol 323, such as a mouse, a trackball, stylus, or cursor direc
tion keys, coupled to bus 301 for communicating direction
information and command selections to processor 302, and
for controlling cursor movement on display 321. Another
device which may be coupled to bus 301 is hard copy device
324 which may be used for printing instructions, data, or other
information on a medium such as paper, film, or similar types
of media. Note, also, that any or all of the components of
system 300 and associated hardware may be used in a pre
ferred embodiment, however, it can be appreciated that any
type of configuration of the system may be used for various
purposes as the user requires.
0049. In the preferred embodiment, computer system 300
is one of the Macintosh R) family of personal computers such
as the Macintosh R. QuadraTM or Macintosh(R) PerformaTM
brand personal computers manufactured by Apple(R) Com

Jun. 26, 2008

puter, Inc. of Cupertino, Calif. (Apple, Macintosh, Quadra,
and Performa are trademarks of Apple Computer, Inc.). Pro
cessor 302 is one of the 68000 family of microprocessors.
such as the 68030 or 68040 manufactured by Motorola, Inc.
of Schaumburg, Ill.
0050. Note that the following discussion of the methods
and apparatus of the preferred embodiment discussed herein
will refer specifically to a series of routines which are com
piled, linked, and then run as object code in computer system
300 during run-time. It can be appreciated by one skilled in
the art, however, that the foregoing methods and apparatus
may be implemented in special purpose hardware devices,
such as discrete logic devices, large scale integrated circuits
(LSI's), application-specific integrated circuits (ASIC’s), or
other specialized hardware. The description here has equal
application to other apparatus having similar function.

User Interface of the Preferred Embodiment

0051. Before discussing the preferred embodiment in
detail, a brief overview of the user interface used in this
system is required. A “windowing or graphical user interface
(GUI) operating environment is used wherein selections are
performed using a cursor control device such as 323 shown in
FIG.3. Typically, an item is “selected” on a computer system
display such as 321 using cursor control device 323 by posi
tioning a cursor, or other indicator, on the screen over (or in
proximity to) an object on the screen and by depressing a
“selection' button which is typically mounted on or near the
cursor control device. The object on the screenis often an icon
which has an associated file or operation which the user
desires to use in some manner. In order to launch a user
application program, in some circumstances, the user merely
selects an area on a computer display represented as an icon
by “double clicking” the area on the screen. A "double click”
selection is an operation comprising, while positioning the
cursor over the desired object (e.g., an icon), two rapid acti
vations of the selection device by the user. “Pull-down” or
“pop-up' menus are also used in the preferred embodiment. A
pull-down or pop-up menu is a selection which is accessible
by depressing the selection button when the cursor is pointing
at a location on a screen such as a menu bar (typically at the
top of the display), and "dragging” (moving cursor control
device 323 while the selection button is depressed) until the
selection the user wishes to access is reached on the pull
down menu. An item is indicated as being 'selected on a
pull-down menu when the item is highlighted or displayed in
“reverse video' (white text on a black background). The
selection is performed by the user releasing the selection
device when the selection he wishes to make is highlighted.
Also, in some GUIs, as is described in the background above,
the “selection' and "dragging of items is provided to move
files about in the file system or perform other system func
tions. These techniques include "dragging and dropping
which comprises making a “selection of an icon at a first
location, "dragging” that item across the display to a second
location, and “dropping (e.g., releasing the selection device)
the item at the second location. This may cause the movement
of a file to a subdirectory represented by the second location.
0052. Note also that GUIs may incorporate other selection
devices, such as a stylus or “pen' which may be interactive
with a display. Thus, a user may “select” regions (e.g., an
icon) of the GUI on the display by touching the stylus against
the display. In this instance, such displays may be touch or
light-sensitive to detect where and when the selection occurs.

US 2008/O 155439 A1

Such devices may thus detect Screen position and the selec
tion as a single operation instead of the “point (i.e., position)
and click (e.g., depress button), as in a system incorporating
a mouse or trackball. Such a system may also lack a keyboard
such as 322 wherein the input of text is provided via the stylus
as a writing instrument (like a pen) and the user handwritten
text is interpreted using handwriting recognition techniques.
These types of systems may also benefit from the improved
manipulation and user feedback described herein.

Overview of the Preferred Embodiment

0053. The preferred embodiment is a series of enhanced
methods and apparatus which allow direct manipulation of
data to and from application programs in the operating and/or
file management system. These methods and apparatus are
implemented using a variety of novel approaches, including,
but no limited to: improved user interface feedback for
manipulation of information in the computer system;
improved architectural functionality for transfer of control to
and from various application programs, handlers, and other
system services which service those application programs;
improved activation and use of system services; combina
tions of immediate data transmission or deferral of time
intensive techniques such as data translation and/or datacom
munication until Such time as required to minimize
interaction delays and increase performance of the manipu
lation actions; and the creation of files representing discrete
portions of files for later use. For the remainder of this appli
cation, in the preferred embodiment, the improved user func
tionality and user feedback is provided via a system toolbox
routine known as the Drag Manager.
0054 The Drag Manager provides capabilities for various
application programs which have interapplication dragging
capability to identify the formats of data that they are capable
of providing information in. These data types will be known,
for the remainder of this application, as “flavors.”

Interaction Model of the Preferred Embodiment

0055. The improved user interface used by the preferred
embodiment may be easily described with reference to the
interaction model of FIG. 4. The interaction model has modi
fied and broadened the use of techniques, such as "dragging
and dropping to provide certain inventive and useful advan
tages. The interaction model comprises several features
which have a richer set of data items and destinations which
may be used for selecting and manipulating (e.g., "dragging
and dropping”) in the user interface of system 300. The inter
action model has several components such as the selection of
an object, which is illustrated as 401, which provides certain
selection feedback displayed upon display 321 to a user oper
ating system 300 which has an improved appearance. Fur
thermore, when a "drag' occurs (a selection which is being
moved on the display), the preferred embodiment comprises
new methods for illustrating to a user that the dragging opera
tion is occurring, as is illustrated by block 402. While the drag
is being performed, improved navigation techniques are pro
vided, as is illustrated by block 405, which provides improved
methods of displaying various information during the move
ment operation on the user interface display, Such as move
ment within windows, etc. Once the destination is arrived at
by the user at the end of the drag operation (for example,
indicated by deactivating the selection signal), then there are
improved user interface objects, illustrated as block 403,

Jun. 26, 2008

which provides improved destination feedback, such as
whether a container can receive an object. This model also
provides certain feedback to the user when destination is
reached, and the operation is completed Successfully when a
“drop' occurs (drop feedback block 404), or the destination is
either invalid or incapable receiving the information by show
ing improved abort feedback (block 406). All of the objects
are under control of user actions and system actions, as is
illustrated by block 410.
0056. For the remainder of this application, the manipula
tion of information in the manner discussed below will be
known as "drag-and-drop sequences.” and these techniques
encompass a wide variety of user interface actions to perform
system services or other actions in the computer system.
0057 Up until now, drag-and-drop sequences that span
windows have been limited to objects characterized as con
tainers. For example, documents arm containers of content,
and these documents could be dragged only across folder
windows (e.g., directories), disk windows (icons representing
media devices), and the main display of the operating system
known as the "Finder. Also, dragging content itself (e.g.,
graphics) has been limited to certain types in a single window.
For example, objects in a graphics application program can be
dragged to another position in the same window, but cannot
be dragged to another controlled by the same application
program. The preferred embodiment makes it easier to elimi
nate these limitations; ideally, users should be able to drag any
content from any window to any other window that accepts
the content's type. This new capability leads to a generaliza
tion of the interaction model, where “objects” and “destina
tions' take on broader meanings.
0.058 Another extension to the prior art drag-and-drop
sequence is the ability to navigate while dragging, as shown in
the interaction model above. This navigation includes open
ing windows, Scrolling, finding, and window hierarchy
changes.

Interapplication Dragging

0059. The preferred embodiment provides for one inter
application dragging of data. That is, users are not limited to
selecting and dragging information within a single applica
tion program but may select and drag this information across
application boundaries to windows control by different appli
cation programs. This is accomplished, in the preferred
embodiment, with all necessary translation of information (if
required) being transparent to the user and deferral of time
intensive tasks, such as data communication and translating,
until actually requested by the receiver. A detailed implemen
tation of this interface will be discussed in more detail below,
however, one example is illustrated with reference to FIGS.
5a-5d. For example, as illustrated in FIG. 5a, two windows
may be present on the display screen, such as 510 and 520.
510 may be a window under control of a word processing
program, and window 520 may be under control of a second
program Such as a computer graphics program. As is illus
trated in FIG. 5a, the user, using the pointing device (e.g.,
323) to control cursor 500 on user interface display 321, may
select a region such as 501 in window 510 which he wishes to
move or copy to a second document window 520, such as that
handled by graphics program. Using well-known techniques,
the user selects text region 501 (e.g., blocks out a region of
text and selects the blocked regions) and starts to move the
text across the window boundary. This is illustrated at FIG.
SE.

US 2008/O 155439 A1

0060. Note that once movement of selected information
501 takes place, the selection changes to an outline represen
tation of a rectangular box having the shape of the blocked
text 501 shown as 505 shown in FIG. 5b. Then, the user
arrives at the destination in window 520 to complete the drag
of the selected information 505 from window 510 to 520, as
illustrated in FIG. 5c. Upon reaching the location in window
520, the selection device is deactivated (e.g., the mouse but
ton is released), and the text or other information which was
present in window 510 is now copied in region 506 in window
520 as illustrated in FIG. 5d. Another interesting behavior to
note from viewing FIGS. 5a-5d is that the “background
application program which is in control of window 520 never
becomes activated. This is illustrated by its title bar 520a
remaining in its inactive representation (e.g., the clear repre
sentation), whereas the front window 510's title bar 510a
remains in the “active' state. In prior art drag-and-drop opera
tions, the destination window becomes the front-most win
dow upon the detection of a selection within the window, and
it tends to obscure the other window(s) shown on the display.
Moreover, the preferred embodiment does not activate the
inactive application program (e.g., controlling window 520),
but instead, allows the hierarchy of windows which was origi
nally displayed, such as illustrated in FIG.5a, to remain the
same. In this way, the original appearance of the display is not
modified in any way, unless the user desires, and drag-and
drop operations do not cause unintended and distracting
changes to the windows on the display.
0061. Other types of data such as graphics may also be
moved in a similar manner. This is illustrated with reference
to FIGS. 6a-6c. First, using the cursor control device 323 to
control cursor 600, the user selects the graphic data to be
moved. Graphic data may be selected using well-known
selection techniques (e.g., by drawing a bounding box). Such
as illustrated as 601 in FIG. 6a. Of course, if the object is a
discrete graphical object. Such as used in object-oriented
drawing programs (e.g., the MacDraw brand drawing pro
gram available from Claris Corporation of Santa Clara,
Calif.), the selection may comprise a single selection of
graphical objects 601 instead of the bouding box method.
Then, the drag commences, as illustrated in FIG. 6b, wherein
outline box 630 of graphics 601 will be displayed during the
drag. Once the user reaches the desired drop location with
cursor 600 and deactivates the selection device, as illustrated
in FIG. 6c, graphic data 640 is copied to window 620. It will
be apparent from the remainder of this specification that the
capability to drag and drop different types of information is
provided only if the sending and receiving applications have
a common format in which data can be transmitted. If there is
no common format in which the dam can be transmitted (e.g.,
text, graphics, Sound, or other types of data), then abort feed
back on the user interface display will be provided from the
destination or receiver application program window. It will be
apparent from the remainder of this specification, however,
that a wide variety of data types will be provided for insertion
into different application programs. In addition, other data
types are available through the use of a system service called
the Translation Manager. Sending applications specify a list
of formats in which the data is or may be provided, and the
Translation Manager appends to that list a list of formats that
it can translate the data into. If the receiving application
program cannot use any of the data types specified by either
the sending application program or the Translation Manager,
then abort feedback is provided on the user display to indicate

Jun. 26, 2008

to the user that the drag-and-drop operation was not success
ful. These operations will be discussed in more detail below.
0062 Another feature which the Drag Manager provides
for is the creation and use of “clippings.” This is illustrated
and described with reference to FIGS. 7a-7c. The user selects,
using cursor 700, a region in a first application program's
window 710 which he desires to drag and drop to a second
location. Upon activation of the selection device, the area is
highlighted, such as 715 shown in FIG.7a, and the user may
move the selected region which the selection device is acti
vated to any region on the computer system display. In the
example shown in FIG.7b, the dragged region 715 is dragged
to the “desktop' illustrated as 720 in FIGS. 7a-7c. In the
preferred embodiment, desktop 720 is the main directory of
the user's mass storage device 307 in the Macintosh R) brand
computer system, however, it may be any file system window,
such as a subdirectory or “folder. Like the example shown in
FIGS. 5a-5d and 6a-6c, desktop 720 is under control of a
second application program, known as the “Finder, which is
the main operating system in the Macintosh R) brand com
puter system. Thus, FIGS. 7a-7c illustrate interapplication
dragging between an application program and the file system
manager. Upon reaching a desired file location (e.g., desktop
720) at which a user wishes the data to reside, the user releases
the selection device. Immediately thereafter, as illustrated in
FIG. 7c, an icon 750 is created at the location of cursor 700
when the selection device was deactivated. The icon repre
sents a file created in the file system which contains the dam
dragged from window 710. As will be discussed in more
detail below, a file is created by the File System Manager
which may be subsequently accessed by the user for insertion
into files under control of other application programs. This
type of icon 750 represents a "clipping which is a file con
taining the selected data dragged out of the application pro
gram window.
0063. The clipping represented by icon 750 contains all

file information which would normally be associated with the
data if the data had been stored as an ordinary file. However,
the creator in the Macintosh R) brand system of the clipping is
the Finder instead of the application program from which the
data originated. Therefore, the selection of the icon-repre
senting the clipping will call a modeless window to be dis
played which allows the user to view the data, however, not
modify the data in any way instead of launching the applica
tion program. The creation of clippings in the manner dis
cussed with reference to FIGS. 7a-7c provides distinct advan
tages over the prior art cut-and-paste buffer described with
reference to FIGS. 2a-2d. Clippings are stored as normal files
in the hierarchical filing system (HFS) and are not retained in
an intermediate memory storage location, such as the clip
board buffer normally used for cut and paste operations.
Because the clipboard is stored in main memory, it is volatile
and is not retained by the computer between user sessions.
Moreover, the prior art clipboard buffer generally only con
tains a single item, and thus an item in the clipboard may be
overwritten by another item. A user may desire to select a
large number of items to be retained for later use in other
application programs or later sessions, and the clipboard
buffer is inadequate for this purpose. Because a clipping is
stored in the computer system's mass media device (e.g., 307
of FIG. 3), it may be retained and used at a later date. In
addition, the creation of a clipping does not cause another
clipping having a different filing name in the computer sys
tem to be overwritten. A large number of clippings may be

US 2008/O 155439 A1

retained by the user in the preferred embodiment for use at a
later time. Clippings have many advantages over the prior art
cut and paste operations and clipboard buffer which are in use
in the prior art.
0064. In addition to the creation of a file in the file system
containing the dragged data, an icon 750 is stored represent
ing the type of data stored within the clipping. Certain default
icons are used in the preferred embodiment for representing
text, graphic data, Sound, Video, etc. Also, clippings have
associated with thema default name, such as 760 illustrated in
FIG. 7c, which may be a standard name supplied by the
application program or a system-assigned name using some
standard convention. The name Supplied by the application
program may identify the application program where the
clipping originated (e.g., for a word processing program, the
clipping may be entitled “Word Clipping 1).
0065. For example, the iconsillustrated as 780-785 in FIG.
7d may be used for representing different types of clippings in
the file system. For example, icons 780,781,784, and 785 are
used as default icons for representing graphics, text, Sound,
and animation data in the preferred embodiment. Icon 782
may be used as a default icon to represent any data type which
the system does not recognize.
0066. One unique aspect of the preferred embodiment's
implementation of clippings is the use of a “proxy' icon. This
is an icon which is Supplied by the application program and
may fill in the dark area illustrated in icon 783 of FIG. 7d. If
a proxy has been Supplied by the application program, than
the proxy icon is used instead of the default icons 780-782 or
784 and 785. This proxy may be representative of the data,
Such as miniature representation of text or graphics selected,
a standard icon used by the application program, or other
representation. This allows the user to easily identify the data
at a later time by simply viewing the icon. This provides
improved interaction and identification of clippings, in addi
tion to the name chosen for the clipping, as discussed above.
The proxy icon may be generated based upon the data or some
default icon which the application provides, as is familiar to
those skilled in the art. The methods and apparatus for creat
ing a clipping, associating an icon with the clipping, and the
naming of a clipping are all discussed in more detail below.

Background Selection

0067. Yet another aspect of the behavior of the preferred
embodiment is that of background selection. In the Macin
tosh R brand operating system, when a selection is made in a
window, the window becomes that active window and is
brought to the front so the user may perform various actions
within the window. In the preferred embodiment, when a
selection has been made in a window controlled by an appli
cation which becomes inactive (e.g., its window goes to the
“back”), the selection changes to a different representation in
order to provide improved control and display of that infor
mation. This is illustrated with reference to FIGS. 8a-8d. For
example, the user may be operating in one window, such as
810, and select some information. The user may then select a
second window 820 to bring that window to the front. 830 was
previously selected information in a similar manner as illus
trated as 501 in FIG.5a. Upon selecting window 820 to bring
it to the foreground, 830 changes to an outline box represen
tation as is illustrated in FIG.8a. Then, the user may select the
information and drag the selected information to a second
window. The select-and-drag operation of the background
window will be performed without bringing the source win

Jun. 26, 2008

dow (e.g., 810) of the drag to the foreground. A typical back
ground select-and-drag operation is performed as illustrated
in FIGS. 8a-8d. As the first step, the user selects, using cursor
800, selected item 830, as is illustrated in FIG.8a. Then, as is
illustrated in FIG. 8b, using cursor control device 323, the
user drags cursor 800 towards window 820, as is illustrated in
FIG. 8b. Again, as in the other drag-and-drop operations, the
selection of region 830 is displayed as an outline box. A
second outline box 840 provides user feedback to illustrate
the information being moved to the second window. As illus
trated in FIG. 8c, box 84.0 may be moved into the second
window 820, such as that controlled by a second active appli
cation program. As illustrated in FIG. 8d, the selection device
may be described while cursor 800 is in window 820, and the
original selected information 830 is copied to window 820.
Note, in FIG. 8d, that region 830 is still maintained in its
selected State even after completion of the drag-and-drop
operation. This will allow the user to do similar drag-and
drop operations using background selection 830 for other
windows on the display. As will be discussed below, all of the
drag-and-drop operations are performed without activation of
any of the background application(s), and as many back
ground selection(s) as necessary may be maintained on the
user interface display.

Invocation of System Services

0068 Another feature provided by the preferred embodi
ment is the invocation of certain system services through the
use of drag-and-drop operations. Thus, as discussed above, in
the preferred embodiment, the drag-and-drop operations
need not be performed wherein destinations represent “con
tainers, but rather, destinations include system services
wherein the drop operation indicates the performance of that
system service. This is illustrated with reference to FIGS.
9a-9d. The user may be viewing a particular window, such as
910 as illustrated in FIG. 9a. To print the document repre
sented by icon 905 in FIG. 9a, the user would select, by
pointing cursor 900 at icon 905, icon 905 using the selection
device. Then, while icon 905 is selected, the user drags, and
the icon is represented in its outline representation 930 shown
in FIG.9b. The dragged box 930 may be to an icon represent
ing a system service. Such as illustrated by Laser Printer icon
920. At FIG. 9c, cursor 900 resides over icon 920 which
indicates that the user desires to print the document repre
sented by icon 905. As illustrated in FIG. 9d, the user releases
the selection device while the cursor is over Laser Printer icon
920 thus causing a process, such as a background printing
system service, to retrieve the document represented by icon
905 and cause it to be printed. In this manner, system services
may be accessed using select, drag, and drop operations. The
system service, such as that controlling the laser printer as
illustrated by icon 920, determines whether the type of data
represented by icon 905 is such that can be used by the system
service (e.g., printed), and if so, then data is retrieved from the
file, and the file has the action performed upon it. In this
instance, the file would be retrieved and sent to the print queue
for printing by the user's computer system. Other system
services may be accessed in an analogous manner, Such as the
sending of electronic mail messages. This action may be
performed by selecting a file containing a message and drop
ping it into an icon representing a mail service, for example,
an icon which looks like a mailbox. Other analogous types of

US 2008/O 155439 A1

operations may be performed using the drag-and-drop opera
tions discussed herein, and certain routines will be discussed
in more detail below.

Feedback During Navigation of Drag Operations

0069 Feedback during the navigation of drag operations
will be discussed with reference to FIGS. 10a-13b. For rep
resenting icons during drag operations, including multiple
icons which are selected, two alternatives are shown with
reference to FIGS. 10a and 10b. For example, with reference
to FIG. 10a, items represented as icons in a window such as
1000 (e.g., 1001-1005) are represented as single-pixel out
lines, each having the shape of the original icon and single
pixel outlines of the name for each icon shown as 1011-1015.
0070. Similarly, as is illustrated in FIG. 10b, icons which
are selected and dragged, such as 1051-1055 in window 1050,
are represented with single-pixel outlines of the icon and the
name associated with each icon are represented as single
pixel outlines, such as 1061-1065. Note that, in either of the
examples of FIG.10a or 10b, the icons and the representative
single-pixel outlines are represented using arbitrary shapes or
the icons and are not represented using rectangular or other
simple outlines as performed in certain prior art systems.
Thus, improved feedback is given to the user during dragging.
Note that the arbitrary shape of the single-pixel outline and
the single-pixel outline of the name is done for one or many
icons, depending on the number selected by the user.
0071. An alternative representation of multiple selections

is shown in FIG. 11. In this instance, if a large number of
items, such as icons 1101-1105, are selected in a window such
as 1100, then a single rectangular single-pixel outline, such as
1110, may be shown. In any event, this provides feedback to
the user that a large amount of information is being selected
and dragged to a second location.
0072 Graphic data, in contrast to an icon, is represented
using either the shape of the graphic (which may an arbitrary
shape) or a rectangular region of similar size to the graphic
itself. In eitherevent, positive feedback is provided to the user
that graphic data is being selected and dragged. For example,
in one instance, the drag feedback of FIG. 12 is used. When a
graphic object, such as 1200, is selected, then a shape (e.g.,
1210) is displayed as the selection, an arbitrary shape repre
senting the graphical object, to provide drag feedback. This is
shown for simple objects. As is illustrated in FIGS. 13a and
13b, alternative methods of showing the selection of the
graphics and the movement during the drag operation is illus
trated. For example, for the graphic illustrated as 1300 in FIG.
13a, a rectangular shape 1310 may be used to represent the
object during the drag. The rectangle is similar in size to the
outer bounds of the object being dragged, however, there is no
interior detail shown of the object during the drag. In contrast,
as is illustrated in FIG. 13b, the outline of the object and
certain interior details are illustrated in dotted outline form
1360 if graphic object 1350 is selected and dragged.

Drag Feedback for Text Objects

0073. Two examples, offeedback for the dragging of text
objects is illustrated with references to FIGS. 14a and 14b.
For example, as shown in FIG. 14a, a selected text region is
represented with a dotted outline of the region, as is illustrated
by 1410 in window 1400. Note that the dotted outline is
consistent for icons, graphics, and text to provide positive
user feedback that a drag is occurring. Similarly, text span

Jun. 26, 2008

ning several lines, such as that shown in FIG. 14b, may be
performed using a dotted outline of the shape of the text as it
appears in window 1450 by a dotted outline 1460. Examples
of the selection of text and the movement thereof within an
application program and the positive user feedback thereof
are provided in application Ser. No. 07/632,318 and applica
tion Ser. No. 07/993,784, which are both assigned to the
assignee of the present invention. Note that there is a distinc
tion between these selection methods and those used in prior
art text selection methods which utilize a “I-beam cursor
whenever the cursor is within a text area, regardless of
whether a portion of text is selected. In the current preferred
embodiment, the I-beam cursor is not displayed when a drag
operation is to be performed, such as the selection (e.g.,
mouse-down event) of an item and the movement of three
pixels while the region is selected. An activation and deacti
vation of the selection device while the cursor is in a window
and no movement will result in an I-beam cursor or insertion
caret at the place in the text in where the selection was made.
This takes place upon the deactivation of the selection device
(a mouse-up event). At any rate, the appearance of the display
for movements of various types of information will not be
discussed further here, however, the functioning thereof will
be discussed below.

Autoscrolling

0074 Another improved aspect of the user interface dis
play which takes place during drag operations is known as
“autoscrolling. Autoscrolling is a technique wherein, during
a drag operation or the selection of items for dragging, por
tions of the window display will "scroll' or move in appear
ance on the display in order to select additional regions or
move the window to a part in which the window is not cur
rently displayed. For example, as is illustrated in FIG. 15a, a
user may use cursor 1500 to select a document and drag that
document to another part of the window or select additional
items in the window. The autoscrolling region for a window is
defined as outer border 1510, as is illustrated in 1520 of FIG.
15b, however, it excludes title bar region 1530 wherein, if the
cursor enters that portion of the window, then autoscrolling is
suspended. Autoscrolling will scroll in the direction of the
portion of the scrolling bar selected while the cursor remains
at that position until no more Scrolling can be performed in the
given window. So, if the cursor resides in the right portion of
scrolling region 1510, then the window scrolls to the right,
and if it is at the left portion of the window, then the window
scrolls to the left.
(0075 Autoscrolling is illustrated with reference to FIGS.
15c and 15d. For example, a selection of an icon may be
performed, as is illustrated in FIG. 15c. The user will drag the
icon until it resides in the scroll bar region 1510. In this
manner, any areas not currently displayed in a window may be
revealed by placing the cursor on the scroll bar during a drag
or range selection operation (e.g., by drawing a rectangle box
to select multiple objects). Thus, the window changes to the
appearance, as is illustrated in 1530 of FIG. 15d. by scrolling
to the right to reveal the “Files' folder 1560.

Destination Feedback

0076 Another feature provided by the preferred embodi
ment is destination feedback. The user is provided with visual
feedback for the destination where the information will be
dropped. This is illustrated with reference to FIGS. 16-19b.

US 2008/O 155439 A1

When dragging takes place, especially into discrete windows
such as illustrated in FIG. 16, if the window (e.g., 1620) can
accept the dragged item, then a single-pixel highlight inset
1610 is displayed when the window is the current location of
the cursor. Another example is illustrated in FIG. 17. For
example, the user may be selecting text 1702 in window 1701
for dragging to a second window 1704. When the cursor
enters the region of window 1704, a highlight inset 1710 is
displayed if the window can receive the dragged information.
This provides feedback to the user that information 1702 may
be dragged to that location (the application program control
ling 1704 can accept the text information). While cursor 1700
resides within the domain of window 1704, the inset high
lighting 1710 is displayed. The preferred embodiment also
provides feedback for subwindows and other user interface
objects, such as icons, spreadsheet cells, and other objects
which are under control of an application program, have a
similar single-pixel inset highlighting to provide additional
feedback to the user, even when interapplication dragging is
talking place. This is illustrated with reference to FIGS.18a
and 18b.

0077. For instance, an electronic mail application may be
controlling the window shown as 1810 in FIG. 18.a. For
example, in the electronic mailer window 1810 illustrated in
FIG. 18a, the user may desire to select such an item as an
electronic mail address to place into “To field 1820. In this
instance, when cursor 1800 enters “To field 1820, then a
single-pixel inset 1825 is displayed within the “To” field to
indicate that that field is capable of receiving the electronic
mail address information or other information which is
selected and dragged as icon 1830. Similarly, as is illustrated
in window 1850 of FIG. 18b, selected data 1860 may be
dropped into the worksheet cell of a spreadsheet displayed in
window 1850, as is illustrated by the highlighting provided as
1870 in window 1850. In either event, destination highlight
ing may be provided for various Subwindows, icons, fields, or
other discrete user interface objects in the preferred embodi
ment when interapplication dragging is taking place to pro
vide positive feedback to the user. The mechanics of this will
be discussed in more detail below with reference to tracking
handlers during the drag and the tracking of the drag through
various windows or other areas on a computer system display.

Drop Feedback

0078. When the user releases the mouse button after drag
ging an object to a destination, a “drop' feedback occurs
informing that the drag-and-drop operation was successful.
This feedback is visual in the preferred embodiment (but also
may be audio, according to an application program's func
tion), and is related to the semantic operation indicated by the
drag-and-drop sequence. Semantics will now be briefly dis
cussed.

Dragging Semantics

0079. Because dragging semantics are intimately related
with drop feedback, it will now be briefly discussed here.
Dragging semantics includes appropriate actions which will
be performed upon dragging between various application
programs and the main operating system window and various
other operating system services controlled. The semantics are
briefly summarized with reference to Table 1 below.

Jun. 26, 2008

TABLE 1

Dragging Semantics

To

File System

Document Same Finder

From Same Different Volume DifferentVolume Service

Document Move Copy Copy Copy
Finder Copy Move Copy Copy

0080 Thus, the general rule is that, if the window repre
sents a different item or location, then the action is interpreted
as a copy operation. In the case of a same document or same
media Volume, then it is interpreted as a move operation. Note
that, in the cases where the action is in doubt, a copy operation
is assumed to avoid any data loss which may occur. Thus, for
the same document or window in which the data resides, the
operation is assumed to be a move operation. Similarly, if it is
the same physical media or same Volume, then it is assumed
that the operation is a move. In all other cases, if the windows
are different or it is between a document and the Finder or a
documentina Finder service, then the operation is assumed to
be a copy operation or performing the Finder service which
the icon or other Finder service performs (e.g., printing, send
ing electronic mail, etc.).

Finder Icons

I0081. When the user drags a document to a folder icon in
the Finder, the behavior of the drop feedback is the reorgani
zation of the document into the folder, the visual component
is the disappearance of the document icon and the unhigh
lighting of the destination folder icon (in the case of a “move”
operation).
I0082 If an icon represents a system service, such as an
electronic mail or printing, the drop feedback is followed by
some indication that the service is being delivered. For
example, if the user drags a document to a printer, the icon
would slowly “fill up' in color as the printing job progresses
towards completion. This is called “progress feedback” and is
represented using a progress bar or other feedback. One
method is illustrated in FIGS. 18c and 18d. For example, as is
illustrated in FIG. 18c, a progress window 1880 may be
displayed upon dropping an item into a system service Such as
a printing routine, as was illustrated in FIGS. 9a-9d. A
progress bar window, such as 1880 shown in FIG. 18c, may be
displayed first. As is illustrated, progress bar 1890 is currently
clear indicating that no printing has yet taken place at this
initial stage. In a short time later, however, as illustrated in
FIG. 1890, it may have a dark region 1895 which fills up the
progress bar indicating the percentage of completion of the
printing job. Other types of system service feedback may be
provided using various techniques well-known to those
skilled in the art.

Graphics

I0083. When dropping graphics, the drop feedback is the
movement of the actual object to the location of the mouse-up
event (the release of the selection device), in the preferred
embodiment. This was illustrated in FIGS. 6a-6c.

US 2008/O 155439 A1

Text

0084. After dropping text, the drop feedback is the move
ment or copying of text from the source to the destination,
accompanied by a series of "Zooming rectangles' from the
source text to the destination text in the preferred embodi
ment. The Zooming rectangles are provided using a routine
Zoom Rects() described below and are displayed only after
the text is rewrapped because the destination text may end up
being a distance away from the exact point where the user
dropped the text. If a “move' operation is in effect, the source
text disappears. In either case, the text is inserted at the
destination is selected and may be performed using the tech
niques disclosed in Ser. No. 07/993,784 assigned to the
assignee of the present invention.

Transferring Selections
0085. After a successful drag-and-drop sequence involv
ing a single window, the selection feedback is transferred
from the source to the destination. This is discussed with
reference to FIGS. 19a and 19b.

I0086. In a single window 1901, as is illustrated in FIG.
19a, selected text 1902 may be desired to be moved. As is
illustrated in FIG. 19b, text 1902 has been moved, and the
region remains selected. This process of copying between
windows is illustrated in FIGS. 19C and 19d.

Background Window Dropping

0087. The results of the process of dragging and dropping
into a background window is illustrated with reference to
FIGS. 19.c and 19d. For example, a user may desire to select
text (e.g., 1915) in a first window 1910, which is active, and
copy that text to a second window 1920, which is not active
(e.g., it may be controlled by an inactive application pro
gram). This can be applied to any type of data being selected,
dragged, and dropped between windows. The results of the
drag and drop are shown in FIG. 19d. As is illustrated, back
ground window 1920 does not become active (e.g., its title bar
1926 is not shown in active state), and region 1925 is shown
in the single-pixel outline representation Surrounding the
copied text 1925 from 1915 from window 1910. The window
is also not brought to the front, in this circumstance.

Abort Feedback

0088 Dropping outside a destination is considered as an
“abort' and is indicated in the preferred embodiment by
Zooming rectangles that originate at the position of the drop
and end at the source's location. If, for some reason, dropping
inside a destination does not result in a successful operation,
Zooming rectangles are used in the preferred embodiment.
This is a form of “negative' drop feedback. This is illustrated
with reference to FIGS. 20-20e.
0089 For example, a user may drag, using cursor 2000, an
icon2020 into a second window 2002, as is illustrated in FIG.
20L. This is folder 2010 which was dragged from window
2001, as is shown by its highlighted state. Then, as illustrated
in FIG. 20b, the abort may be indicated by series of "Zooming
rectangles' 2030 generated by the subroutine Zoom Rects()
discussed below. As is illustrated in FIG. 20c, Zooming rect
angles head back towards the original folder 2010 until the
Zooming rectangles completely disappear from the screen, as
shown in FIG.20d. This is an animated effect indicating to the
user that the drag operation was unsuccessful.

Jun. 26, 2008

Summary of the Behavior of Windows
Independent Windows
0090 When a window is brought to the front, in the pre
ferred embodiment, only that specific window is brought to
the front; the entire window hierarchy belonging to the appli
cation is not brought to the front, as in prior art systems. This
behavior makes it easier to have a source window and desti
nation window side-by-side, especially when the two win
dows belong to different applications.
0091 Even with this behavior, the user is still able to bring
the entire window hierarchy belonging to an application to the
front. This can be done in the preferred embodiment by
choosing the application's menu item in an application menu
of the user interface display. In the case of the Finder, clicking
on the desktop brings the Finder's window hierarchy to the
front. Also, double-clicking on the application's Finder icon
brings the entire window hierarchy of the application to the
front.

Bringing Windows to the Front
0092. In the preferred embodiment, as lady been illus
trated, the release of the selection device (the mouse-up
event) serves as the application-Switching trigger (instead of
the mouse-down event as in the prior art), Subject to certain
exceptions.
0093. If the user clicks inside an inactive window without
dragging at least three pixels between the mouse-down and
mouse-up events (no drag has taken place), the window is
brought to the front. If the user drags wholly inside an inactive
window (i.e., the source and destination are in the same inac
tive window), the window is brought to the front as soon as the
mouse-up event occurs. If the user drags from any window to
another window that is inactive, the inactive window is not
brought to the front after the drag-and-drop sequence is com
pleted. If the drag-and-drop sequence ends at the Finder desk
top, no window is brought to the front. As discussed above,
whenever an inactive window is brought to the front, a back
ground selection (if any) in that window becomes highlighted
as a normal selection, instead of the single-pixel outline rep
resentation.

Drag Verbs
0094. There are three ways in which the user can specify
the drag Verb that is applied to a given drag-and-drop
sequence. The first way is to perform the drag without holding
down any modifier keys. In this case, the most frequently used
or most likely verb is applied. For example, a printing routine
assumes that a print operation is to take place, and the sending
application program and the system service negotiate the type
of data transmitted to allow the information to be printed (see,
discussion below). The second method is when the user per
forms the drag while holding down the Option key. This
method specifies the secondary verb. In most cases, this verb
would be Copy. However, in cases where Copy is not appli
cable, the verb can be something else. Such as overriding the
confirmation dialog when dragging an icon from a remote
read-only volume to the desktop. The third way of specifying
the drag Verb is to hold down the Control key when dragging;
as soon as the dragged object is dropped, a verb selection
dialog appears, as in FIG. 21. The user can choose the verb in
this dialog, or cancel the operation altogether. For example, as
is illustrated in FIG. 21, a dialog window 2110 is displayed.
The user may select, Such as using cursor 2100, a selection
2102 in verb list 2105. As is typical in standard prior art

US 2008/O 155439 A1

Macintosh(R) dialog boxes, the user may either double-click,
using cursor 2100 and the selection device, a selection Such as
2102 to cause the verb to be performed or select “OK” button
2104. To cancel the operation, the user selects “Cancel but
ton 2103. The list of verbs displayed will be a match between
data item flavors, which are specified by the sending applica
tion program, and the service performed by the object at the
destination (e.g., a printing or mail service).

Functional Description

Drag Handlers and Drag Procedures
0095 Application programs supply the Drag Manager
callback routines (e.g., pointers to routines in the program)
that the Drag Manager calls to allow the application to imple
ment dragging. The Drag Manageruses two different types of
callback routines, called drag handlers and drag procedures.
Drag handlers are routines that are installed on windows that
the Drag Manager uses when dragging over that window.
Drag procedures are routines that are used by the Drag Man
ager during a drag regardless of which window the user may
be dragging over. The Drag Manager allows application pro
grams to install the following drag handlers on the program's
windows:

0096 a receive data handler that the Drag Manager calls
when the user finishes a drag in one of an application's
windows

0097 a drag tracking handler that the Drag Manager
calls when the user drags a selection through one of the
application's windows to allow the application to track
the drag within the window

0.098 a constrain mouse handler that the Drag Manager
calls when the user drags a selection through one of the
application's windows to allow the application to
modify the mouse coordinates

0099. The Drag Manager provides a family of InstallHan
dler and RemoveHandler routines that allow an application
program to register handlers of each of these types with the
application. An application can register a different set of
handlers to be used for each window in the application. An
application can also register with the Drag Manager a set of
handlers to be used when a window does not have its own
handlers.
0100 If an application assigns more than one handler of
the same type on the same window, the Drag Manager calls
each of these handler routines in the order that they were
installed. This technique is known as "chaining and allows
the control of various areas in a window, such as icons, Sub
windows, fields, panes, or other user interface objects. FIG.
22 shows an example of the tracking handler registry 2200 for
an application that has installed two handlers 2211 and 2212
for its “Graphics’ window 2210, a single handler 2221 for its
“Documents' window 2220 and a single handler 2231 to be
used for all of the application's other windows. When the
Drag Manager 2280 tracks a drag through the “Documents'
window, handler 2221 is called. When the Drag Manager
tracks a drag through the “Graphics’ window, handler 2211 is
called followed by handler 2212 being called. Finally, if the
Drag Manager tracks a drag through any other window in the
application, handler 2231 is called. For example, handler
2211 and 2212 may be two distinct tracking handlers, one for
the window itself and a second for a specific icon or other
ornament within the window. This may be an additional pane
for a window or other type of object within a window. The

Jun. 26, 2008

“Documents’ window and other windows which are accessed
by the tracking handler registry 2200 for this particular appli
cation program will have only single tracking handlers 2221
and 2231, respectively, associated with them for any and all
actions within windows in those circumstances.
0101 The second type of callback routine that may be
provided to the Drag Manager is a drag procedure. The Drag
Manager uses the following drag procedures:

0102 a send data procedure that the Drag Manager calls
when the receiver application requests a drag item flavor
that the Drag Manager does not currently have the data
cached for

0.103 a drag input procedure that the Drag Manager
calls when sampling the mouse position and keyboard
state to allow the application program to override the
current state of the input devices

0.104 a drag drawing procedure that if provided by the
Sender application program, the Drag Manager calls to
allow the sender application to assume responsibility for
drawing the drag feedback on the screen

Sending Data

0105. When the user chooses a destination for the items
being dragged, the receiving application program may
request from the Drag Manager any number of types of data.
These various types of data are known, in the preferred
embodiment, as drag item “flavors. Flavors may be of any
sort, including ASCII text (flavor type TEXT), styled text
(styl), and rich text (“rtf). Many other flavors may be used,
in the preferred embodiment, according to the data types that
the sending and receiving application programs understand.
Another advantage to the method(s) and apparatus of the
preferred embodiment is that sending application programs
may provide data in addition to flavors. This is done if there is
sufficient time available to provide the data in addition to the
flavor. If the sending application program provided the fla
Vor's data to the Drag Manager when calling one of the
AddFlavor routines, the Drag Manager will simply provide
that data to the receiver.
0106 The application program may have chosen not to
provide the data to the Drag Manager when calling one of the
AddFlavor routines because it might have taken too long to
prepare the data (and, perhaps, cause a user-perceivable per
formance penalty), or there might not have been enough
memory to store the data. In this case, the Drag Manager calls
the DragSendProc (if one was given to the Drag Manager) to
allow the sending application to provide the data to the Drag
Manager only when needed by the receiver, and the flavors
provided act as “promises” which may be fulfilled at such
time that the receiver requests the data.
0107 If the sending application only exports small pieces
of data that are easily generated, the data would presumably
by provided when calling the AddFlavor routines discussed
below and therefore the sender application would not need to
provide a DragSendProc.

Receiving Data

0108. When the user drops a collection of items in one of
a receiving application's windows, the Drag Manager calls all
of the ReceiveDropHandler routines that are installed on the
destination window. This call allows the program to request
the drag item flavors that the receiving application wishes to
accept.

US 2008/O 155439 A1

0109 The receiver application program can inspect the
available flavors by using the CountDragitems, GetItem Ref
erenceNumber, CoundragItemFlavors, GetFlavorType, Get
FlavorFlags and GetFlavorData functions which are
described in more detail below. It receives flavor from the
sender application by calling the GetFlavorData function.
The GetFlavorData function calls the sender's SendataProc
if necessary to get the data for the receiver.

Drag Tracking

0110. While the user drags a collection of items on the
screen, as the mouse passes through one application's win
dows, the Drag Manager calls the DragTrackingHandler rou
tines that are installed on the window under the mouse to
allow the application program to track the drag through its
windows. For example, this allows the highlight or other drag
feedback to take place, as discussed below with reference to
FIGS. 16-18b.
0111. The Drag Manager sends the application's
DragTrackingHandler tracking status messages as the user
moves the mouse. The DragTrackingHandler receives the
following messages from the Drag Manager:

0112 an enter handler message when the focus of a drag
enters a window that is handled by an application's
DragTrackingHandler from any window that is not
handled by the same DragTrackingHandler

0113 an enter window message when the focus of a
drag enters any window that is handled by an applica
tion's DragTrackingHandler

0114 an in window message as the user drags within a
window handled by the application's DragTracking
Handler

0115 a leave window message when the focus of a drag
leaves any window that is handled by an application's
DragTrackingHandler

0116 a leave handler message when the focus of a drag
enters a window that is not handled by an application's
DragTrackingHandler

0117. When an application's handler receives any of these
messages from the Drag Manager, it can use the CountDrag
Items, GetItemReferenceNumber, CountDragItemFlavors,
GetFlavorType and GetFlavorFlags routines to inspect the
drag item flavors that are contained in the drag to determine if
the application program should highlight its window or a
portion of its window.
0118. The in window message can be used to highlight
specific containers within a window or if window contains a
text field, an insertion point within the text field.
0119 The enter window and leave window messages
occur in pairs. These messages are useful for highlighting a
window that can accept the items being dragged.
0120. The enter handler and leave handler messages also
occur in pairs. These messages only occur when the drag
moves between windows that are handled by different rou
tines. These messages are useful for allocating and releasing
memory that the application might need when tracking within
a specific set of windows.
0121 FIG. 23 shows an example of a user dragging a
clippings file from a Finder window 2310 through two win
dows 2320 and 2330 of a word processing application. The
following example demonstrates what tracking messages are
sent to the Finder's tracking handler and an application
requested by icon 2311 during a drag:

Jun. 26, 2008

(0.122 Cursor 2300 at position 2350. The user clicks and
drags on the clippings file and the Finder starts a drag. The
Finder receives an enter handler message followed by an enter
window message. As the user drags within the Finder’s “Clip
pings' window, the Finder receives multiple in window mes
Sages.
(0123 Cursor 2300 at position 2360. When the user drags
into the word processor’s “Untitled 1' window, the Finder
receives a leave window message followed by a leave handler
message. The word processing application then receives an
enter handler message followed by an enter window message.
While the user drags within the application’s “Untitled 1
window 2320, the application program receives in window
messages.
0.124 Cursor 2300 at position 2370 Assuming that both
of the word processor's windows 2320 and 2330 are handled
by the same DragTrackingHandler, when the user drags into
the “Sample Text' window, the word processing application
receives a leave window message followed by an enter win
dow message. It does not receive any enter/leave handler
messages since the same handler routine is used for both
windows. As the user drags within the application’s “Sample
Text' window 2330, the application receives in window mes
Sages.
(0.125 Cursor 2300 at position 2380 When the user
releases the selection device when the cursor is at position
2380, the data transaction occurs. Then the word processing
application receives a leave window message followed by a
leave handler message. Drag tracking is now complete.

Using the Drag Manager

0.126 The Drag Manager allows the user to drag items in
and out of a window or other object controlled by an appli
cation program. Before items can be dragged into or out of a
window, the application program must register a set of drag
handlers for the Drag Manager to use when the application is
involved in dragging. A drag and drop action by the user is
broken down into three discrete steps. The steps are first to
pick up the item or items being dragged, then to track the
selection being dragged through application, windows as the
user searches for a place to drop the selection, and finally to
then drop the item or items at the user's chosen destination.
I0127. This section explains in detail how the Drag Man
ager is used to:

0.128 install and remove drag handlers to and from the
Drag Manager's handler registry for the application's
windows

0.129 prepare the Drag Manager with drag items and
drag item flavors

0.130 start a drag process
0131 track a drag through the application's windows
0132) send data to the receiver of a drag that originated
from an application's windows

0.133 request and receive data flavors from the sender
application when the user drops the selection within an
application's windows

Installing and Removing Drag Handlers
I0134. A drag handler is registered with the Drag Manager
using the InstallHandler functions. There is a separate Install
Handler function for each kind of handler. These functions
are InstallReceiveHandler, InstallTrackingHandler and
InstallConstrainHandler.

US 2008/O 155439 A1

0135 Each of the InstallHandler functions takes a pointer
to a window that the application wants to associate the han
dler with. If NIL is supplied as the window pointer, the Drag
Manager will register the handler in the special area that is
used when a drag occurs in a window that is not registered
with the Drag Manager. Handlers installed in this special area
are called default handlers.

0136. A reference constant may be passed to each of the
InstallHandler functions. This value is stored by the Drag
Manager and is forwarded to each handler's routine when it is
called.

0.137 The following code segment shows how to use the
Install Handler functions to install a default handler for the
application:

OSErr MyInitDrag Manager()
{ OSErr result:

if (result = InstallReceiveHandler(MyDefaultReceiveHandler,
NIL, &myGlobals)) {

return (result);

return(InstallTrackingHandler(MyDefaultTrackingHandler,
NIL., &myGlobals));

0.138. The function MyInitDragManager calls InstallRe
ceiveHandler and InstallTrackingHandler to install default
receive and tracking handlers for the application program. In
the window parameter, NIL is passed to specify that these
handlers should be installed as default handlers. A pointer to
the application's global variables is passed in the reference
constant parameter.
0.139. The following shows how to use the InstallHandler
functions to install handlers for a specific window:

OSErr MyDoNewWindow(WindowPtr*new Window)
{ OSErr result:

WindowPtr theWindow;
if (!(theWindow = GetNewWindow(kMyWindowID, OL, -1L))) {

return (resNotEound);

if (result = InstallReceiveHandler(My ReceiveHandler,
theWindow, &myGlobals)) {

DisposeWindow(theWindow);
return (result);

if (result = InstallTrackingHandler(MyTrackingHandler,
theWindow, &myGlobals)) {

DisposeWindow(theWindow);
return (result);

*newWindow = theWindow;
return(noErr);

0140. The function MyDoNew Window calls all three of
the InstallHandler functions to install a set of drag handlers
for the window that it creates. In DoNew Window, the window
pointer is passed to the InstallHandler functions.
0141. In the scenario created in the last two example func

tions, the Drag Manager will use the MyReceiveHandler and
MyTrackingHandler functions when the focus of a drag
occurs within any window created with the DoNew Window

Jun. 26, 2008

function. Any other windows in the application would use the
My DefaultReceiveHandler and the MyDefaultTrackingHan
dler functions.
0142. To remove a drag handler from the Drag Manager's
handler registry, the RemoveHandler functions arm used. The
following shows how to remove drag handlers:

OSErr MyDoCloseWindow(WindowPtr theWindow)

RemoveReceiveHandler(MyReceiveHandler, theWindow):
RemoveTrackingHandler(MyTrackingHandler, theWindow):
DisposeWindow(theWindow);
return(noErr);

0143. The function MyDoClose Window demonstrates the
use of the RemoveHandler functions. The same routine
address and window pointer is used to remove a handler. If
NIL is used as the window pointer, the Drag Manager will
attempt to remove the handler from the default handler reg
istry.

Beginning a Drag

0144. When the user clicks on an item or a selection of
items in an application and begins to move the mouse without
first releasing the mouse button, the user is making a gesture
to begin dragging the selected objects.
0145 To start a drag, a new drag reference is created by
calling the NewDrag function. The NewDrag function returns
a reference number that the application uses to refer to a
specific drag process in Subsequent function calls to the Drag
Manager.
0146. After creating a new drag reference, drag item fla
Vors can be added to the drag by calling the Drag Manager's
AddFlavor functions.
0147 When all of the data describing the items contained
in the drag has been given to the Drag Manager, the applica
tion calls TrackDrag to actually begin the drag. The following
code segments show how mouse down events and start drag
operations are handled.

OSErr MyDoMouse)own(EventRecord *theEvent)
{ OSErr result = noErr;

short thePart:
WindowPtr theWindow;
Boolean ontem;
thePart = FindWindow(theEvent->where, &theWindow);
switch(thePart) {

case inContent:
if (theWindow == FrontWindow()) {
My DoContentClick(theEvent, theWindow, &onItem);
if (onItem && WaitMouseMoved(theEvent)) {

result = MyDoStartDrag(theEvent, theWindow);

else {
SelectWindow(theWindow):

CaSC . . .

return (result);

0.148. The function MyDoMouse Down above shows a
simplified mouse down event service routine. Only the code
for handling an in Content part code from FindWindow is

US 2008/O 155439 A1

shown. The MyDoContentClick function either selects,
extends the selection or deselects an item in the application's
document window. The onltem parameter it returns is true if
the mouse down event occurred on a draggable item. The
routine then calls WaitiMouseMoved, which is a Drag Man
ager function that waits for the mouse button to be released or
the mouse to move from its mouse down location. It returns
true if the mouse moved. The MyDoStartDrag function,
which is listed below, is called if the user gestures to start a
drag.

OSErr MyDoStartDrag(EventRecord *theEvent, WindowPtr theWindow)
{ OSErr result:

DragReference the Drag:
if (result = NewDrag(&thedrag, (long) theWindow)) {

return (result);

if (result = MyDoAddFlavors(theWindow, the Drag)) {
Disposedrag(the Drag);
return (result);

return (TrackDrag (the Drag));

014.9 The MyDoStartDrag function above first creates a
new drag by calling the NewDrag function. It then calls the
My Do AddFlavors function, which is defined below, to add
the application's drag item flavors to the drag. Finally, Track
Drag is called to perform the drag.
0150. To add drag item flavors to a drag, the AddFlavor
functions are used. The AddFlavor functions require a drag
reference number to add the flavor to. The application pro
gram also provides an item reference number when adding
flavors. The handlers may specify any item reference num
bers when adding items. The same item number is used for
adding flavors to the same drag item. Using a different item
number results in a new item being created.

OSErr MyDoAddFlavors(WindowPtr theWindow,
DragReference the Drag)
{ MyDocumentItem *theItem;

the Item = GetFirstSelected Item (theWindow):
while (theItem) {

AddDragItemFlavor(the Drag, theItem, HOOF,
(Ptri) * (theItem->dataHandler),
GetHandleSize(theItem->dataHandle), O);

AddDragItemFlavor(the Drag, theItem, TEXT, (Ptri) OL, OL, 0):
if (theItem->hasStyles) {

AddDragItemFlavor(the Drag, theItem, 'styl', (Ptri) OL, OL, 0):

AddDragRegionFlavor(the Drag, thetem, the tem->region);
theItem = theItem->nextSelectedItem;

0151. The MyDoAddFlavors function shown above uses
the Drag Manager's AddFlavor functions to add three or four
flavors to the drag for each item that is selected in the window.
0152 The first call to AddDragItemFlavor uses the docu
ment item pointer as the drag item reference number. Since
this is the first flavor added to the drag, a new drag item is
created with that item number. The first flavor for the item is
the application's own internal data type MOOF. A pointerto
the data and the data's size is also passed to the AddDrag
ItemFlavor function.

Jun. 26, 2008

0153. The second call to AddDragItemFlavor uses the
same document item pointer as the drag item reference num
ber. Since this is the same item number as the last call, the
second flavor is added to the same drag item. This flavor is of
type TEXT. Suppose that an application does not want to
create the plain text data unless this flavor is specifically
requested by the receiver of a drag. A NIL pointer and Zero
size is passed to AddDragItemFlavor. By passing NIL, the
Drag Manager will call this application DragSendProc to get
the data later, if needed.
0154) In this example, an item in the selection may have
text styles (such as bold or italic characters), and if it does, it
also adds a styl flavor. Again, the same item number is used
to add the flavor to the same drag item. The flavor data is not
provided; it will only be created if needed.
0155 Finally, AddDragRegionFlavor is called to add the
item's drag region to the item. This region is given in global
coordinates. The Drag Manager uses this region to drag the
dotted outline of the drag on the screen. The receiver may
want to get the region to determine where to place the con
tents of the item.
0156 The MyDoAddFlavors function loops to the next
selected item in its list. When it adds the flavors for the next
item, it will be using a different item number (since the
address of the next item is guaranteed to be different), which
will result in a new drag item being created.
(O157 To illustrate the effect of calling the MyDoAddFla
Vors function defined above, FIGS. 24 and 25 show an
example list of selected items and the resulting drag items and
drag item flavors.
0158 For example, as each item is selected, it is added to
a linked list, as is illustrated by 2400 in FIG. 24. For example,
as each item in windows are selected, drag items are acted to
a selected item list, such as 2400 illustrated in FIG. 24. As
each item is selected, a datum is added, such as 2410, 2420,
and 430, to the selected item list 2400. Each item contains
four fields, each representing different portions of the item
being selected. A first field (e.g., 24.10a, 2420a, and 2430a)
contains an integer representing a reference drag item num
ber. A second field (e.g., 2410b. 2420b, and 2430b) contains
the actual item information, which is shown in more detail
below with reference to FIG. 25. 2410c contains an integer
value representing a number of styles which are added in
addition to a specific flavor of type TEXT. As shown, only
2430c has a value that is non-Zero, indicating that one addi
tional flavor type is promised by the sending process. 2410d.
2420d, and 2430d each contain references to the next drag
item in the list with the last drag item pointer 2430d contain
ing the pointer NIL indicating that no other drag items are
being dragged and tracked by the Drag Manager.
0159. A more detailed view of the drag items in a drag item

list, such as 2500, is illustrated in FIG. 25. For example, drag
item 2410b contains three flavors, MOOF 2561, TEXT
2562, and drgn 2563. Because the application was able to
create flavor data 2561a of type MOOF, field 2561 contains
a flavor data field 2561a. The data type of type TEXT was
notable to be created at the time of the drag, so a DragSend
Proc would need to be invoked in order for the sending appli
cation to provide that data to the receiver. Lastly, 2563 con
tains a drag region so that the Drag Manager may keep track
and provide visual feedback to the user of the dotted drag item
region while the drag is taking place across the user interface
display. This flavor data is provided in field 2563a, which is a
bitmap representation of the item as created by the sending

US 2008/O 155439 A1

application program's handler. Similarly, drag items 2420b
and 2430b contain similar fields, with the exception that drag
item 2430b contains an additional flavor type of type styl in
field 2583, which might be made available to the receiving
application upon the detection of the release of the selection
device (e.g., a mouse-up event), as detected by the Drag
Manager.
0160 The Drag Manager also provides two additional
AddFlavor routines. They are AddHFSFlavor, which adds an
HFSFlavor record given an FSSpec record, and AddAEFla
Vor, which adds the data contained within an AEDesc record,
using the descriptor's data type as the flavor type.

Tracking a Drag

0161. After creating a new drag with NewDrag, adding
drag item flavors to the drag by using the AddFlavor func
tions, and starting the drag with TrackDrag, the Drag Man
ager proceeds by tracking the drag until the user releases the
mouse button.

0162. During the drag, as the user moves the mouse on the
screen, searching for a destination for the drag items, the Drag
Manager sends a sequence of tracking messages to the track
ing handlers that are registered for the window that the mouse
1S OW.

0163 A tracking handler can inspect the drag item flavors
contained in a drag and highlight the application's windows
or part of an application's windows in response to data that the
application can accept.
0164. The next code segment shows an example of a very
simple tracking handler. This tracking handler highlights the
window if any of the drag items contains either the applica
tion’s MOOF flavor or the TEXT flavor. It also calls an
application defined function MyTrackItem UnderMouse that
could be defined to highlight other parts of the window as the
mouse moves through the window.

OSErr MyTrackingHandler(short theMessage, Point mouse,
WindowPtr theWindow, Globals.Ptr myGlobals,
DragReference the Drag)

{
switch(theMessage) {

case kDragEnterHandlerMessags:
myGlobals->canAcceptDrag = IsMyTypeAvailable(thedrag);
break;

case kDragEnterWindowMessage:
if (myGlobals->can AcceptDrag) {

ShowDragHillite(the Drag,
((WindowPeek) theWindow)->contRgn, true);

break;
case kDragInWindowMessage:

if (myGlobals->can AcceptDrag) {
MyTrackItem UnderMouse(mouse, theWindow):

break;
case kDragLeaveWindowMessage:

if (myGlobals->can AcceptDrag) {
HideDragHillite(the Drag);

break;
case kDragLeaveHandlerMessage:

myGlobals->canAccept Drag = false;
break;

Jun. 26, 2008

0.165. The MyTrackingHandler function defined above
Switches on the given message from the Drag Manager. If the
message is kDragEnterHandlerMessage, the routine calls the
application's IsMyTypeAvailable function, which is defined
below, that returns either true or false, depending on whether
or not a type is available that the application window can
accept. The result of this function is stored in the application's
global variable can AcceptDrag.
(0166 When MyTrackingHandler received the
kDragEnterWindowMessage message, it checks its global
can AcceptDrag to determine if the window can accept the
drag. If it can, the Drag Manager utility function Show
DragHilite is called to highlight the window.
0167. When the kDragIn WindowMessage message is
received, if the window can accept the drag, the application's
MyTrackItem UnderMouse is called. Presumably, MyTrack
Item UnderMouse would use the mouse coordinate given by
the Drag Manager to determine if the mouse is over an object
that must also be highlighted.
0168 When the kDragLeaveWindowMessage message is
received, if the window can accept the drag, the Drag Man
ager utility function HideDragHilite is called to remove the
window highlighting.
0169 Finally, when the kDragLeaveHandlerMessage
message is received, the application's global canAcceptDrag
is reset to false.

0170 To determine what drag item flavors are available,
an application calls routines in the Drag Manager known as
CountDragItems, GetItemReferenceNumber, CountDrag
ItemFlavors, GetFlavorType and GetFlavorFlags functions to
determine how many drag items there are, return an item's
reference number (e.g., stored in field 2410a), determine how
many drag item flavors there are in a drag item, return a drag
item flavor's type (e.g., stored in flavor 2561), and the flags
identifying the attributes of a flavor.
0171 The next code segment shows the IsMyTypeAvail
able function which demonstrates the use of these functions.

Boolean IsMyTypeAvailable(DragReference the Drag)
{ short items, index, result:

long flavorFlags;
ItemReference itemID:
CountDragItems (the Drag, &items);
for (index= 1; index<= items; index++) {

GetItemReferenceNumber(the Drag, index, &itemID);
result = GetFlavorFlags(the Drag, itemID, MOOF, &flavorFlags);
if (result == noErr) &&. (flavorFlags & kFlavor Available))

return(true);
result = GetFlavorFlags(the Drag, itemID, TEXT, &flavorFlags);
if (result == noErr) &&. (flavorFlags & kFlavor Available))

return(true);

return(false);

(0172. The IsMyTypeAvailable function defined above
counts the number of items in the drag and begins a loop
through each of the items. It returns true when it encounters
the first item that contains either a MOOF flavor or a
TEXT flavor, which are types (flavors) that this receiver can
handle. The IsMyTypeAvailable function was used to deter
mine if the application should highlight its window. In this
manner, arbitration may be performed between sending and
receiving handlers to test to determine if a type that the
receiving application can receive.

US 2008/O 155439 A1

0173. After the user releases the mouse button, the Drag
Manager proceeded to the data transaction stage to the finish
the drag.

Finishing a Drag

0174. When the user has chosen a final destination for the
items being dragged, the Drag Manager calls any receive drop
handlers installed on the destination window. An application
program's receive drop handler is responsible for accepting
the drag by transferring the information being dragged into
the destination location.
0.175. A receive handler gets a pointer to the destination
window, the handler's reference constant and the drag refer
ence. The receive handler routine can call the CountDrag
Items, GetItemReferenceNumber, CountDragItemFlavors,
GetFlavorType and GetFlavorFLags functions to determine
what data types (flavors) are included in the drag. The Get
FlavorData function can be used to get flavor data from the
sender that the receiver application desires.
0176 The next code segment shows an example receive
handler that attempts to receive a MOOF type and if avail
able inserts it into the destination file's data and then on the
display. If there is no MOOF flavor in the item, the handler
checks to see if a TEXT type is available. If TEXT is
available in the item, the handler gets the TEXT data and
then also checks to see if a styl type is available. If styl is
available, the handler get the styl data also. The handler
inserts the TEXT data and optionally the styl data into the
destination file's data and then on the display.

pascal OSErr MyReceiveHandler(WindowPtr theWindow, unsigned
long handlerRefon, DragReference the Drag)

{ Point mouse:
short items, index, result:
long flavorFlags, dataSize, stylSize:
ItemReference itemID:
Pir the Data, theStyl:
DraggetMouse(&mouse, OL, the Drag);
CountDragItems (the Drag, &items);
for (index = 1; index <= items; index++) {

GetItemReferenceNumber(the Drag, index, &itemID);

// First try to get type MOOF.

result = GetFlavorFlags(the Drag, itemID, MOOF, &flavorFlags);
if ((result == noErr) && (flavorFlags & kFlavor Available)) {

Determine the size of the MOOF data
dataSize = 0:

GetFlavorData (the Drag, itemID, MOOF, OL, &dataSize, OL);
// Allocate space for the MOOF data
the Data = NewPtr(dataSize):
Get the MOOF data

GetFlavorData (the Drag, itemID, MOOF, the Data, &dataSize, OL);
if Put the data into the destination location
MyInsertDataAtPosition (theLData, dataSize, mouse, theWindow):
DisposePtr(theLData);

// Since there is no "MOOF type in the drag, try to get
// TEXT and possibly 'styl.

result = GetFlavorFlags(the Drag, itemID, TEXT, &flavorFlags);
if ((result == noErr) && (flavorFlags & kFlavor Available)) {

Determine the size of the TEXT data
dataSize = 0:
GetFlavorData (the Drag, itemID, TEXT, OL, &dataSize, OL);
// Allocate space for the TEXT data
the Data = NewPtr(dataSize):
Get the TEXT data

15
Jun. 26, 2008

-continued

GetFlavorData(the Drag, itemID, TEXT, the Data, &dataSize, OL);
fi check for 'styl to accompany TEXT
theStyl = OL:
result = GetFlavorFlags(the Drag, itemID, styl, &flavorFlags);

if (result == noErr) && (flavorFlags & kFlavor Available)) {
// Determine the size of the styl data
stylSize = 0;
GetFlavorData (the Drag, itemID, 'styl, OL, &stylSize, OL);
// Allocate space for the styl data
the Data = NewPtr(stylSize):
// Get the styl data
GetFlavorData (the Drag, itemID, 'styl, theStyl,

&stylSize, OL);

MyInsertStylTextAtPoint(theLData, dataSize, theStyl, stylSize,
mouse, theWindow):

DisposePtr(theLData);
if (theStyl)

DisposePtr(theStyl);

return(noErr);

0177. If the receiver of a drag requests a flavor, and if the
sending application provided the flavor data to the Drag Man
ager when adding the flavor with one of the AddFlavor func
tions, the Drag Manager simply provides the data to the
receiver.

(0178 If the sender did not provide the flavor data to the
Drag Manager when adding the flavor, the Drag Manager
calls the sender's DragSendProc to allow the sending appli
cation program to provide the data to the Drag Manager on
demand.

(0179 The Drag Manager calls the DragSendProc with the
requested flavor type, an optional acceptorDescriptor param
eter, the handler's reference constant, and the item and drag
reference numbers. The SetDragItemFlavorData function is
used to provide the requested data to the Drag Manager in the
DragSendProc.

pascal OSErr MySend DataProc(FlavorType theType, const AEDesc
*acceptorDescriptor, unsigned long refcon,
ItemReference theItem, DragReference
the Drag)

{ OSErr result:
Document the Document = (Document *) theItem;
if (theType == TEXT) {

SetDragItemFlavorData (the Drag, theItem, TEXT,
MyGetSelectedTextPtr(theLDocument),
MyGetSelectedTextSize(the Document));

else if (theType == "styl) {
SetDragItemFlavorData (the Drag, theItem, 'styl,

MyGetSelected StylPtr(theLDocument),
MyGetSelected StylSize(theLDocument));

else {
return (bad DragFlavorErr);

return(noErr);

0180. The MySendDataProc function shown above pro
vides both the TEXT and styl flavors to the Drag Manager.
The routine uses the item reference number as a pointer to the
application's Document data structure (this pointer was used
when adding the drag item flavors with AddDragItemFlavor).

US 2008/O 155439 A1

This example routine calls several of its own routines that
would presumably return the memory addresses and data
sizes of both the selected text and the styl data. The Drag
Manager's SetDragItemFlavorData function is called to pass
the requested data to the Drag Manager.

Drag Manager Variables and Routines
0181. This section describes the Drag Manager's con
stants, data structures and routines.
0182. The “Constants’ section describes the constants
received from the Drag Manager and used when calling Drag
Manager routines. The “Data Structures' section shows the
data structures used to refer to drags, drag items, drag item
flavors and to special drag item flavor data. The “Drag Man
ager Routines' section describes Drag Manager routines for
installing and removing drag handlers, creating and disposing
of drag references, adding drag item flavors to a drag, provid
ing drag callback routines, tracking a drag, getting drag item
information, getting drag status information, window high
lighting and Drag Manager related utilities. The "Applica
tion-Defined Routines' section describes the drag handler
functions, the drag callback functions and the Zoom callback
function.

Constants

0183. The constants described in this section are received
from the Drag Manager and used when calling Drag Manager
routines.

Flavor Flags
0184 The following constants are used to provide addi
tional attribute information about drag item flavors. These
constants are used when calling the AddFlavor functions and
can be obtained using the GetFlavorFlags function.

#define kFlavor Available
#define kFlavorSenderOnly
#define kFlavorSenderTranslated
#define kFlavorTMTranslated

Constant Descriptions:
0185 kFlavor Availablet Set if the flavor is available to
the receiver of a drag.
0186 kFlavorSenderOnly Set if the flavor is only avail
able to the sender of a rag. The flavor is visible only if the
receiver is the same application as the sender.
0187 kFlavorSenderTranslated Set if the flavor data is
translated by the sender. This attribute is useful if the receiver
needs to determine if the sender is performing its own trans
lation to generate this data type.
0188 kFlavorTMTranslated Set if the flavor data is pro
vided by the Translation Manager. The Translation Manager
is a second system service which is called during all drag
operations and provides additional flavors and data, if needed,
upon the performance of a drop by translating some flavor
from the sender to one that the receiver can understand. In
short, the Translation Manager adds flavors stored in the drag
item and arbitrates between sender and receiver handlers at
drop time where the data is translated. So, the sender makes
promises about data in the form of flavors and so does the

Jun. 26, 2008

Translation Manager. If a flavor is requested by the receiver
that only the Translation Manager can provide, then a trans
lation is performed at drop time, and the receiver is notified
when the data is ready to be received. Translation of data is
provided in the manner provided in application Ser. No.
07/984, 180, which is assigned to the assignee of the present
invention. Although that application describes translation of
files, the translation of discrete packets of data is performed in
a similar manner. If this flavor is requested, the Drag Manager
will obtain the required data type from the sender and then it
will use the Translation Manager to provide the data that the
receiver requested.

Drag Attributes

0189 The following constants are used to provide addi
tional attribute information about a drag that is in progress.
The attribute flags provide information about the window and
application that the drag is currently occurring in.

#define kDragHasLeftSourceWindow
#define kDragIsInSource Application
#define kDragIsInSourceWindow 4

:

Constant Descriptions:

(0190 kDragHasLeftSourceWindow Set if the drag has
not left the source window since the beginning of the drag.
This flag is useful for providing window highlighting after the
user has moved the mouse outside of the source window.
0191 kDragIsInSourceApplication Set if the drag is
currently in any window that belongs to the application that
started the drag.
0.192 kDragIsInSourceWindow—Set if the drag is cur
rently in the same window that the drag started from.

Special Flavor Kinds

0193 The following constants are used to identify special
flavor kinds that are defined by the Drag Manager.

#define kDragRegionFlavorKind drgn
#define kHFSFlavorkind fs

Constant Descriptions:

0194 kDragRegionFlavorKind The flavor kind for a
drag region flavor. The Drag Manager uses drag region flavors
to determine the shape of each drag item being dragged. The
drag region flavor data is a region in global coordinates of the
item being dragged (for example, S used in the Apple brand
QuickDraw graphics routines). Drag region flavors are cre
ated by calling the AddDragRegionFlavor function.
(0195 kHFSFlavorKind The flavor kind for an HFS (Hi
erarchical Filing System) file system object (e.g., a file being
dragged). The Finder uses HFS flavors when dragging file
system objects. The HFS flavor data is defined by the HFS
Flavor structure defined below. HFS flavors are created by
calling the AddHFSFlavor function.

US 2008/O 155439 A1

Zoom Acceleration

0196. The following constants are used when specifying a
Zoom.Acceleration constant to either the Zoom Rects or
ZoomRegion functions.

#definekzoomNoAccelerate O
#definekzoom.Accelerate 1
#definekzoom Decelerate 2

Constant Descriptions:

0.197 kZoomNoAccelerate Linear interpolation is used
for each frame of animation between the source and destina
tion.

0198 kZoom.Accelerate Increment the step size for
each frame of animation between the Source and destination.
This option produces the visual appearance of the animation
speeding up as it approaches the destination.
0199 kZoom Decelerate Decrement the step size for
each frame of animation between the Source and destination.
This option produces the visual appearance of the animation
slowing down as it approaches the destination.

Data Structure

0200. This section describes the data structures that are
called to identify drags, drag items, drag item flavors and
special drag item flavor dam by application programs.

Drag Reference

0201 The Drag Reference is a reference to a drag object.
Before calling any other Drag Manager routine, a new Drag
Reference must be first created by calling the NewDrag func
tion. The Drag Reference that is returned by NewDrag is used
in all Subsequent calls to the Drag Manager. The Disposedrag
function is used to dispose of a Drag Reference after it is
finished being used.
0202 typedefunsigned long DragReference:

Drag Item Reference

0203 The Drag Item Reference is a reference number
used to refer to a single item in a drag. Drag Item Reference
numbers are created by the sender application when adding
drag item flavor information to a drag. Drag Item Reference
numbers are created by and are only be interpreted by the
sender application.
0204 typedefunsigned long ItemReference:

Flavor Type

0205 The Flavor Type is a four character type that
describes the format of drag item flavor data. The Flavor Type
has the same function as a scrap type; it designates the format
of the associated data. Any scrap type, resource type or even
AppleEvent brand descriptor type may be used.
0206 Four character types consisting of only lower-case

letters are reserved by Apple. A unique type can be guaranteed
by using the registered application signature.

Jun. 26, 2008

0207 typedef ResType FlavorType:
HFS Drag Item Flavor Record
0208. The Drag Manager defines a special data flavor for
dragging file system objects. The HFS (Hierarchical Filing
System) drag item flavor is used when dragging documents
(e.g., files) and folder (e.g., directory) icons in the Finder. The
HFS drag item flavor record is defined by the HFSFlavor data
type.
0209. An HFS drag item flavor is added to a drag by the
sending application program by using the AddHFSFlavor
function.

typedef struct HFSFlavor {
OSType fileType: fi file type
OSType fileCreator; if file creator
unsigned short folFlags; fi Finder flags
FSSpec fileSpec; fi file system specification

} HFSFlavor:

Field Descriptions:
0210 fileType The file type of the object.
0211 fileCreator The file creator of the object.
0212 faFlags—The Finder flags of the object (Finder
flags are defined in the
“Finder Interface’ chapter of the publication “Inside Macin
tosh').
0213 fileSpec The FSSpec record for the object.
Drag Manager Routines
0214. This section describes the Drag Manager routines
are used to start a drag from an application program, gain
control when the user drags an object into one of the appli
cation's windows, support the drag and drop user interface
and to send and receive data as part of a drop transaction.
Installing and Removing Drag Handler Routines
0215. The Drag Manager is called to install or remove
handler routines for an entire application program or for one
of an application program’s windows. The Drag Manager
provides a pair of install/remove functions for each handler
type.
InstallTrackingHandler
0216. The InstallTrackingHandler function is used to
install a tracking handler routine for the Drag Manager to use
while the user drags through an application's windows. The
tracking handler provides feedback in windows controlled by
the application program.

pascal OSErr InstallTrackingHandler
(DragTrackingHandler theTrackingHandler,
WindowPtr theWindow,
unsigned long handlerRefCon);

0217 theTrackingHandler—Pointer to a DragTracking
Handler routine.
0218 theWindow pointer to the window to install the
drag tracking handler for. When the cursor moves into this
window during a drag, the Drag Manager sends tracking
messages to the application program's handler routine. If this
parameter is NIL, the given handler will be installed in the
default handler space for the application (the handler is active
for all windows in the application).

US 2008/O 155439 A1

0219 handlerRefCon. A reference constant that will be
forwarded to the application program's drag tracking handler
routine when it is called by the Drag Manager.
0220. The InstallTrackingHandler function installs a
tracking handler for one of the application's windows. Install
ing a tracking handler allows the application to track the
user's movements through the application's windows during
a drag. More than one drag tracking handler may be installed
on a single window.
0221) The Drag Manager sequentially calls all of the drag
tracking handlers installed on a window when the user moves
the cursor over that window during a drag.
0222 By specifying a value of NIL in theWindow, the
tracking handler is installed in the default handler space for
the application. Drag tracking handlers installed in this way
are called when the user moves the mouse over any window
that belongs to the application.
0223 Multiple drag handler routines of the same kind may
be installed for the same window to determine if subwindows,
etc. may handle the data promised in the drag item(s) and
handle highlighting of destinations, such as Subwindows,
etc., to provide feedback to the user. Each drag handler rou
tine will be called in the chain until a handler handles the
requested task.

Result Codes:

0224

noErr O No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
handlerExistsErr -1860 Handler already exists

InstallReceiveHandler

0225. The InstallReceiveHandler function is used to
install a receive drop handler routine for the Drag Manager to
use when the user releases the mouse button while dragging
over one of the application's windows. This routine will allow
data to be accepted by the destination application.

pascal OSErr InstallReceiveHandler
(ReceiveDrophandler theReceiveHandler,
WindowPtr theWindow,
unsigned long handlerRefCon);

0226 theReceiveHandler—Pointer to a Receive
DropHandler routine.
0227 theWindow—A pointer to the window to install the
receive drop handler for. When a drop occurs over (e.g.,
mouseUp event following a drag) this window, the Drag
Manager calls this routine to allow the application to accept
the drag. If this parameter is NIL, the given handler will be
installed in the default handler space for the application (the
handler will be called if a drop occurs in any window in the
application).
0228 handlerRefCon. A reference constant that will be
forwarded to the application programs receive drop handler
routine when it is called by the Drag Manager.
0229. The InstallReceiveHandler function installs a
receive drop handler for one of the application's windows.

Jun. 26, 2008

Installing a receive handler allows the application to accept a
drag by getting drag item flavor data from the Drag Manager
when the user releases the mouse button while dragging over
one of the application's windows. More than one receive drop
handler may be installed on a single window.
0230. The application program may install multiple drag
handle routines of the same kind for the same window to
allow multiple subwindows, etc. in the application to receive
data. Each drag handler routine in the chain will be called
until a handler handles the requested task.
0231. The Drag Manager sequentially calls all of the
receive drop handlers installed on a window when a drop
occurs in that window until a handler handles the requested
task.
0232 By specifying a value of NIL in theWindow, the
receive drop handler is installed in the default handler space
for the application. Receive drop handlers installed in this
way are called when a drop occurs in any window that belongs
to the application.
Result Codes:

0233

noErr O No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
handlerExistsErr -1860 Handler already exists

InstallConstrainHandler

0234. The InstallConstrainHandler function is used to
install a constrain mouse handler routine for the Drag Man
ager to use when the user releases the mouse button while
dragging over one of the application's windows.

pascal OSErr InstallConstrainHandler
(DragoonstrainHandler theConstrainHandler,
WindowPtr theWindow,
unsigned long handlerRefCon);

0235 theConstrainHandler—Pointer to a DragGonstrain
Handler routine.
0236 theWindow—A pointer to the window to install the
constrain mouse handler for. When the cursor is over this
window, the Drag Manager calls this routine to allow the
mouse coordinates to be constrained by the application. If this
parameter is NIL, the given handler will be installed in the
default handler space for the application (the handler will be
called for all windows in the application).
0237 handlerRefCon. A reference constant that will be
forwarded to the application program's constrain mouse han
dler routine when it is called by the Drag Manager.
0238. The InstallConstrainHandler function installs a con
strain mouse handler for one of the application's windows.
Installing a constrain mouse handler allows the application to
constrain the dragging movement to any degree of freedom
that a user chooses (such as horizontal, vertical or grid move
ment). More than one constrain mouse handler may be
installed on a single window.
0239. The Drag Manager sequentially calls all of the con
strain mouse handlers installed on a window when the user
moves the cursor over that window during a drag.

US 2008/O 155439 A1

0240. By specifying a value of NIL in theWindow, the
constrain mouse handler is installed in the default handler
space for the application. Constrain mouse handlers installed
in this way are called when the user moves the mouse over any
window that belongs to the application.
Result Codes:

0241

noErr O No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
handlerExistsErr -1860 Handler already exists

RemoveTrackingHandler
0242. The RemoveTrackingHandler function is used to
remove a tracking handler routine from one of the applica
tion's windows.

pascal OSErr RemoveTrackingHandler
(DragTrackingHandler theTrackingHandler,
WindowPtr theWindow):

0243 theTrackingHandler—Pointer to a DragTracking
Handler routine.
0244 theWindow—A pointer to the window to remove
the drag tracking handler from. If this parameter is NIL, the
given handler will be removed from the default handler space
for the application.
0245. The RemoveTrackingHandler function removes a
drag tracking handler from one of the application's windows.
0246 By specifying a value of NIL in theWindow, the
tracking handler is removed from the default handler space
for the application (e.g., the chain).
Result Codes:

0247

noErr O No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
handlerNotFoundErr -1861 Drag handler could not be found

RemoveReceiveHandler

0248. The RemoveReceiveHandler function is used to
remove a receive drop handler routine from one of the appli
cation's windows.

pascal OSErr RemoveReceiveHandler
(ReceiveDrophandler theReceiveHandler,
WindowPtr theWindow):

0249 theReceiveHandler Pointer to a Receive
DropHandler routine.
0250 theWindow—A pointer to the window to remove
the receive drop handler from. If this parameter is NIL, the
given handler will be removed from the default handler space
for the application.

Jun. 26, 2008

0251. The RemoveReceiveHandler function removes a
receive drop handler from one of the application's windows.
0252. By specifying a value of NIL in theWindow, the
receive drop handler is removed from the default handler
space for the application.
Result Codes:

0253

noErr O No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
handlerNotFoundErr -1861 Drag handler could not be found

Remove(ConstrainHandler

0254 The Remove(ConstrainHandler function is used to
remove a constrain mouse handler routine from one of the
application's windows.

pascal OSErr RemoveConstrainHandler
(DragoonstrainHandler theConstrainHandler,
WindowPtr theWindow):

0255 theConstrainHandler—Pointer to a DragGonstrain
Handler routine.
(0256 theWindow. A pointer to the window to remove
the constrain mouse handler from. If this parameter is NIL,
the given handler will be removed from the default handler
space for the application.
0257. The Remove(Constrain Handler function removes a
constrain mouse handler from one of the application's win
dows.
(0258 By specifying a value of NIL in theWindow, the
constrain mouse handler is removed from the default handler
space for the application.
Result Codes:

0259

noErr O No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
handlerNotFoundErr -1861 Drag handler could not be found

Creating and Disposing of Drag References
0260 A drag reference is created whenever an application
wishes to start a drag. The drag reference is a token that used
in all Subsequent calls to Drag Manager routines to refer to a
particular drag.
NewDrag
0261 The NewDrag function is used to create a new drag
reference token.

pascal OSErr NewDrag (DragReference the DragRef,
unsigned long senderRefCon);

US 2008/O 155439 A1

0262 the DragRef The drag reference, which NewDrag
fills in before returning.
0263 senderRefCon—A reference constant that will be
forwarded to an application program's drag handler routines
when they are called by the Drag Manager. This constant is
used to pass any data that is wished to be forwarded to the
application program's handler routines.
0264. The NewDrag function allocates a drag object in the
Drag Manager and returns a drag reference token in the the
Drag parameter. This drag reference is used in Subsequent
calls to the Drag Manager to identify the drag. This drag
reference is required when adding drag item flavors and call
ing TrackDrag. All of the application program’s installed drag
handlers receive this drag reference so other Drag Manager
routines can be called within the application program's drag
handlers.

Result Codes:

0265

noErr O No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory

Disposedrag

0266 The Dispose Drag function is used to dispose of a
drag reference token and its associated data when a drag has
been completed or if the drag is no longer needed.
0267 pascal OSErr Dispose Drag (DragReference the Dra
gRef);
0268 the DragRef The drag reference of the drag object
to dispose of
0269. The Disposedrag function disposes of the drag
object that is identified by the given drag reference token. If
the drag reference contains drag item flavors, the memory
associated with the drag item flavors is disposed of as well.
0270 Dispose Drag should be called after a drag has been
performed using TrackDragorifa drag reference was created
but is no longer needed.

Result Codes:

0271

noErr O No error
paramErr -50 Parameter error
bad DragRefErr -1851 Unknown drag reference
dragInUseErr -1853 Drag reference is in use

Providing Drag Callback Procedures

0272 Drag callback procedures are provided to the Drag
Manager when a user wants to override the default behavior
of the Drag Manager. A user can override the mechanisms in
the Drag Manager that provide data to a drop receiver, that
samples the mouse and keyboard and that draws the standard
'dotted outline' drag feedback.

20
Jun. 26, 2008

SetDragSendProc
(0273. The SetDragSendProc function is used to set the
send data procedure for the Drag Manager to use with a
particular drag.

pascal OSErr SetDragSendProc (DragReference the DragRef,
DragSend DataProc theSendProc,
unsigned long theRefCon);

0274 the DragRef The drag reference that SetDrag
SendProc will set the drag send procedure for.
0275 theSendProc The send data routine that will be
called by the Drag Manager when the receiver of a drop
requests the flavor data of a flavor that has not been cached by
the Drag Manager.
0276 theRefCon—A reference constant that will be for
warded to the application program's drag send procedure
when it is called by the Drag Manager. This constant is used
to pass any data that is wished to be forwarded to the appli
cation program's drag send procedure.
0277. The SetDragSendProc function sets the drag send
procedure for the given drag reference. A drag's drag send
procedure is called by the Drag Manager when the receiver of
a drop requests the data of a flavor and the requested flavor
data is not currently cached by the Drag Manager.
0278. The Drag Manager caches drag item flavor data
when the flavor was added to a drag by calling AddDragItem
Flavor. If NIL is passed to AddDragItemFlavor as the data
pointer, the flavor data is not cached and the Drag Manager
will attempt to cache the data by calling the drag send proce
dure.
0279 A drag send procedure is not needed if the applica
tion never passes NIL to AddDragItemFlavor when adding a
drag item flavor to a drag.
Result Codes:

0280

noErr O No error
paramErr -50 Parameter error

SetDragInputProc
0281. The SetDragInputProc function is used to set the
drag input procedure for the Drag Manager to use with a
particular drag.

pascal OSErr SetDragInputProc (DragReference the DragRef,
DragInputProc theInputProc,
unsigned long theRefCon);

0282 the DragRef The drag reference that SetDragIn
putProc will set the drag input procedure for.
0283 theInputProc. The drag input routine that will be
called by the Drag Manager whenever the Drag Manager
requires the location of the mouse, the State of the mouse
button and the status of the modifier keys.
0284 theRefCon—A reference constant that will be for
warded to the application program's drag input procedure
when it is called by the Drag Manager. This constant is used
to pass any data that is to be forwarded to the application
program's drag input procedure.

US 2008/O 155439 A1

0285. The SetDragInputProc function sets the drag input
procedure for the given drag reference. A drag's drag input
procedure is called by the Drag Manager whenever the Drag
Manager requires the location of the mouse, the state of the
mouse button and the status of the modifier keys on the
keyboard. The Drag Manager typically calls this routine once
per cycle through the Drag Manager's main drag tracking
loop.
0286 The application program's drag input procedure
may either modify the current state of the mouse and key
board to slightly alter dragging behavior or entirely replace
the input data to drive the drag completely by itself.

Result Codes:

0287

noErr O No error
paramErr -50 Parameter error

SetDragorawingProc

0288 The SetDragDrawingProc function is used to set the
drag drawing procedure for the Drag Manager to use with a
particular drag.

pascal OSErr SetDrag|DrawingProc (DragReference the DragRef,
Drag|DrawingProc the DrawingProc,
unsigned long theRefCon);

0289 the DragRef The drag reference that Set
DragDrawingProc will set the drag drawing procedure for.
0290 the DrawingProc
0291. The drag drawing routine that will be called by the
Drag Manager to draw, move and hide the “dotted outline'
drag feedback on the screen during a drag.
0292 theRefCon—A reference constant that will be for
warded to the application program's drag drawing procedure
when it is called by the Drag Manager. This constant is used
to pass any data that is wished to be forwarded to the appli
cation program's drag drawing procedure.
0293. The SetDragDrawingProc function sets the drag
drawing procedure for the given drag reference. A drag's drag
drawing procedure is called by the Drag Manager when the
Drag Manager needs to draw, move or hide the "dotted out
line' drag feedback on the screen.
0294 The application program's drag drawing procedure
can implement any type of drag feedback, Such as dragging a
bitmap of the object being dragged.

Result Codes:

0295)

noErr O No error
paramErr -50 Parameter error

Jun. 26, 2008

Adding Drag Item Flavors
0296. The set of AddFlavor routines can be used to create
drag items and to provide the data types for each item. Special
AddFlavor routines can be used to add FSSpec flavors and to
add the data contained within AEDesc records.

AddDragItemFlavor
0297. The AddDragItemFlavor function is used to create
drag items and to add a data flavor to a drag item.

pascal OSErr AddDragItemFlavor (DragReference the DragRef,
ItemReference theItemRef.
FlavorType theType,
Ptr data,
unsigned long dataSize
short flavorFlags);

0298 the DragRef A drag reference.
0299 the ItemRef The drag item reference to add the
flavor to. New drag items are created by providing unique
item reference numbers (e.g., those stored in fields 2561,
2562, etc. in FIG. 25). By using the same item reference
number as in a previous call to AddDragItemFlavor, the flavor
is added to an existing item. Any item reference number may
be used when adding flavors to items.
(0300 theType The data type of the flavor to add. This
may be any four-character scrap, resource or AppleEvent
type. The application's signature is used for a unique type for
the application’s own internal use.
0301 data—A pointer to the flavor data.
0302) dataSize The size, in bytes, of the flavor data.
0303 flavorFlags—A set of attributes to set for this flavor.
0304. The AddDragItemFlavor function adds a drag item
flavor to a drag item. A new drag item is created if the given
item reference number is different than any other item refer
ence numbers. When adding multiple flavors to the same
item, Supply the same item reference number.
0305. In many cases it is easiest to use index numbers as
item reference numbers (1,2,3 ...). Item reference numbers
are only used as unique “key numbers for each item. Item
reference numbers do not need to be given in order nor must
they be sequential. Depending on the application, it might be
easier to use the users own internal memory addresses as item
reference numbers (as long as each item being dragged has a
unique item reference number).
0306 Sometimes it is useful to defer the creation of a
particular data type until a receiver has specifically requested
it (possibly if a lengthy translation is required). This can be
done by passing NL in the data parameter when adding a drag
item flavor. Flavors that are added in this way will cause the
Drag Manager to call the drag's send data procedure if the
flavor is requested to get the data from the application.
0307 All of the drag item flavors must be added to a drag
before calling TrackDrag. Once TrackDrag is called,
AddDragItemFlavor will return cantAddNewFlavorErr when
attempting to add flavors to a drag that is in progress.

Result Codes:

0308

No error
Parameter error

noErr O
paramErr -50

US 2008/O 155439 A1

-continued

memFullErr -108 Not enough memory
bad DragRefErr -1851 Unknown drag reference
flavorExistsErr -1857 Flavor already exists
cantAddNewFlavorErr -1858 Cannot add new flavor

(drag is in progress)

AddEIFSFlavor

0309 The AddHFSFlavor function is used to add an HFS
(Hierarchical Filing System) drag item flavor to a drag.

pascal OSErr AddHFSFlavor (DragReference the DragRef,
ItemReference theItemRef,
FSSpec *fileSpec,
unsigned long flavorFlags);

0310 the DragRef A drag reference.
0311 theItemRef The item reference to add the flavor

to. A new item is created when a new item reference is given.
By using the same item reference as a previously added flavor,
the flavor is added to the same item.
0312 fileSpec—A file system specification.
0313 flavorFlags—A set of attributes to set for this flavor.
0314. The AddHFSFlavor function adds an HFS (Hierar
chical Filing System) flavor to the specified item within the
given drag reference. AddHFSFlavor creates a HFSFlavor
data structure and fills the structure's fields by calling
FSpGetFInfo and then calls AddDragItemFlavor to add a
flavor of type “hfs.

Result Codes:

0315

noErr O No error
nSwErr -35 No such volume
ioFrr -36 IO error
bdNamErr -37 Bad filename
fnfErr -43 File not found
paramErr -50 No default volume
memFullErr -108 Not enough memory
dirNFErr -120 Directory not found or incomplete

pathname
bad DragRefErr -1851 Unknown drag reference
flavorExistsErr -1857 Flavor already exists
cantAddNewFlavorErr -1858 Cannot add new flavor

(drag is in progress)
afpAccessDenied -5000 User does not have the correct access
afpObjectTypeErr -5025 Directory not found or incomplete

pathname

AddAEFlavor

0316. The AddAEFlavor function is used to add an
AppleEvent descriptor as a drag item flavor.

pascal OSErr AddAEFlavor (DragReference the DragRef,
ItemReference theItemRef,
AEDesc the AEDesc,
unsigned long flavorFlags);

Jun. 26, 2008
22

0317 the DragRef A drag reference.
0318 theItemRef The item reference to add the flavor

to. A new item is created when a new item reference is given.
By using the same item reference as a previously added flavor,
the flavor is added to the same item.
0319 fileSpec—An AppleEvent descriptor.
0320 flavorFlags—A set of attributes to set for this flavor.
0321. The AddAEFlavor function takes an AppleEvent
descriptor record and adds a drag item flavor of the descriptor
type containing the descriptor record's data.

Result Codes:

0322

noErr O No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
bad DragRefErr -1851 Unknown drag reference
flavorExistsErr -1857 Flavor already exists
cantAddNewFlavorErr -1858 Cannot add new flavor

(drag is in progress)

AddDragRegionFlavor

0323. The AddDragRegionFlavor function is used to add a
drag region flavor to a drag item.

pascal OSErr AddDragRegionFlavor (DragReference the DragRef,
ItemReference theItemRef,
RgnHandle theRgn);

0324 the DragRef A drag reference.
0325 theItemRef The item reference to add the flavor

to. A new item is created when a new item reference is given.
By using the same item reference as a previously added flavor,
the flavor is added to the same item.

0326 theRgn. A region in global coordinates that is the
outline of the drag item. The AddDragRegionFlavor function
adds a drag region flavor to a drag item. The Drag Manager
uses an item's drag region flavor to draw the “dotted outline'
drag feedback for an item being dragged.
0327 Every drag item should be given a drag region flavor.
Without the drag region flavor, the Drag Manager is able to
render the item on the screen during a drag.

Result Codes:

0328

noErr O No error
paramErr -50 No default volume
memFullErr -108 Not enough memory
bad DragRefErr -1851 Unknown drag reference
flavorExistsErr -1857 Flavor already exists
cantAddNewFlavorErr -1858 Cannot add new flavor

(drag is in progress)

US 2008/O 155439 A1

SetDragItemFlavorData

0329. The SetDragItemFlavor Data function is used to set
the data contained within an existing flavor.

pascal OSErr SetDragItemFlavorData (DragReference the DragRef,
ItemReference theItemRef,
FlavorType theType,
Ptr data,
unsigned long dataSize):

0330 the DragRef A drag reference.
0331 the ItemRef A drag item reference of the item that
contains the flavor a user wishes to set the data for.
0332 theType The data type of the existing flavor to set
the data for.
0333 data—A pointer to the flavor data.
0334 dataSize The size, in bytes, of the flavor data.
0335 The SetDragItemFlavorData function sets a given
flavor's data. Data that was previously contained within a
flavor is completely replaced by the data in the given data
buffer.
0336. This function is commonly used in a scenario where
a flavor's data is not added to the flavor when the flavor is
created using AddDragItemFlavor. Only after the drop
receiver specifically requests the flavor is it necessary to
provide the data using the SetDragItemFlavorData routine.
This method is useful when the data needs to be translated by
the sender and would be to expensive to compute the data
until absolutely required.
0337 This function, unlike the AddFlavor functions, may
be called by an application's handler during a drag.

Result Codes:

0338

noErr O No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
bad DragRefErr -1851 Drag reference is unknown or invalid
badItemRefErr -1852 Item reference is unknown or invalid
bad DragFlavorErr -1855 Drag flavor is unknown

Performing a Drag

0339. The TrackDrag function can be used to track a drag
from within the application.

TrackDrag

0340. The TrackDrag function is used to drag an object or
collection of objects from the application.

pascal OSErr TrackDrag (const EventRecord *theEvent,
DragReference the DragRef);

0341 theEvent. The mouse)own event record that the
application received that resulted in starting a drag.
0342 the DragRef Adrag reference token to perform the
drag operation with.

Jun. 26, 2008

0343. The TrackDrag function performs a drag operation
given the mouse own event and a drag reference token.
0344) The Drag Manager follows the cursor on the screen
with the “dotted outline' drag feedback and sends tracking
messages to applications that have registered drag tracking
handlers The drag item flavor information that was added to
the drag using the AddDragItemFlavor functions is available
to each application that becomes active during a drag.
0345 When the user releases the mouse button, the Drag
Manager calls any receive drop handlers that have been reg
istered on the destination window. An application's receive
drop handler(s) are responsible for accepting the drag and
transferring the dragged data into their application.
Result Codes:

0346)

noErr O No error
paramErr -50 Parameter error
dragInUseErr -1853 Drag reference is in use (already dragging)
dragInProgressErr -1854 Cannot start drag (a drag is in progress)

Getting Drag Item Information
0347 The Drag Manager provides a set of functions that
allows a user to get information about the drag items and drag
item flavors that have been added into a drag reference.
CountDragItems
0348. The CountDragItems function is used to determine
how many drag items are contained in a drag reference. This
is used to obtain a particular drag item

pascal OSErr CountDragItems (DragReference the DragRef,
unsigned short numItems);

0349 the DragRef A drag reference.
0350 numItems. The CountDragItems function returns
the number of drag items in the given drag reference in the
numItems parameter.
0351. The CountDragItems function returns the number
of drag items in a drag reference in the numItems parameter.
Result Codes:

O352

noErr O No error
paramErr -50 Parameter error
bad DragRefErr -1851 Drag reference is unknown or invalid

GetItemReferenceNumber

0353. The GetItemReferenceNumber function is used to
determine the item reference number of a specific item in a
drag reference.

pascal OSErr GetItemReferenceNumber (DragReference the DragRef,
unsigned short index,
ItemReference *the ItemRef);

US 2008/O 155439 A1

0354 the DragRef A drag reference.
0355 index The index of an item in a drag reference to
get the item reference number of
0356 theItemRef The GetItemReferenceNumber func
tion returns the item reference number of the item with the
specified index in the the Item Ref parameter.
0357 The GetItemReferenceNumber function returns the
item reference number of the item with the specified index in
the the ItemRef parameter.
0358 If index is Zero or larger than the number of items in
the drag, paramErr is returned by GetItemReferenceNumber.

Result Codes:

0359

noErr O No error
paramErr -50 Parameter error
bad DragRefErr -1851 Drag reference is unknown or invalid

CountDragItemFlavors

0360. The CountDragItemFlavors function is used to
determine how many drag item flavors are contained in a drag
item in a drag reference. This is used to obtain a particular
drag item by a handler.

pascal OSErr CountDragItemFlavors (DragReference the DragRef,
ItemReference theItemRef,
unsigned short *numFlavors);

0361 the DragRef A drag reference.
0362 theltemRef An item reference number.
0363 numPlavors The CountDragItemFlavors function
returns the number of drag item flavors in the specified drag
item in the numFlavors parameter.
0364 The CountDragItemFlavors function returns the
number of drag item flavors in the specified drag item in the
numFlavors parameter.

Result Codes:

0365

noErr O No error
paramErr -50 Parameter error
bad DragRefErr -1851 Drag reference is unknown or invalid
badItemRefErr -1852 Item reference is unknown or invalid

GetFlavorType

0366. The GetFlavorType function is used to determine
the type of a specific flavor in a drag item.

pascal OSErr GetFlavorType (DragReference the DragRef,
ItemReference theItemRef,
unsigned short index,
FlavorType *theType);

24
Jun. 26, 2008

0367 the DragRef A drag reference.
0368 theltemRef An item reference number.
0369 index The index of a flavor in the specified item to
get the type of
0370 theType The GetFlavorType function returns the
type of the specified flavor in the theType parameter.
0371. The GetFlavorType function returns the type of the
specified flavor in the theType parameter.

Result Codes:

0372

noErr O No error
paramErr -50 Parameter error
bad DragRefErr -1851 Drag reference is unknown or invalid
badItemRefErr -1852 Item reference is unknown or invalid
bad DragFlavorErr -1855 Drag flavor is unknown

GetFlavorFlags
0373 The GetFlavorFlags function is used to determine
the attributes of a specific flavor in a drag item. This is used to
determine if an application can accept a dragged item.

pascal OSErr GetFlavorFlags (DragReference the DragRef,
ItemReference theItemRef.
FlavorType theType,
unsigned long flavorFlags);

0374 the DragRef A drag reference.
0375 theItemRef An item reference number.
0376 theType The flavor type of the flavor to get the
attributes of
0377 flavorFlags—The GetFlavorFlags function returns
the attributes of the specified flavor in the flavorFlags param
eter.

0378. The GetFLavorFlags function returns the attributes
of the specified flavor in the flavorFlags parameter.

Result Codes:

0379

noErr O No error
paramErr -50 Parameter error
bad DragRefErr -1851 Drag reference is unknown or invalid
badItemRefErr -1852 Item reference is unknown or invalid
bad DragFlavorErr -1855 Drag flavor is unknown

GetFlavor Data

0380. The GetFlavorData function is used to get the flavor
data for a specific flavor in a drag item. This obtains the data
for a specified flavor.

pascal OSErr GetFlavorData (DragReference the DragRef,
ItemReference theItemRef.
FlavorType theType,
Ptr dataBuf,
unsigned long dataSize,
AEDesc *acceptorDescriptor);

US 2008/O 155439 A1

0381 the DragRef A drag reference.
0382 theltemRef An item reference number.
0383 theType The flavor type of the flavor to get the
flavor data from.
0384 dataBuf Specifies where the GetFLavorData
function should copy the requested flavor data. The applica
tion is responsible for allocating the memory for the flavor
data and for setting the dataSize parameter to the number of
bytes that has been allocated for the data. If the dataBuf
parameter points to an area of memory that is not large
enough to hold all the data contained in the specified flavor,
GetFlavorData returns as much data as the specified buffer
memory area can hold, returns the amount of data remaining
in the dataSize parameter, and returns the result code drag
Buffers SmallFrr.
0385 dataSize Contains the size of the data (in bytes)
pointed to by the dataBufparameter. If GetFlavorData returns
the result code dragBufferIsSmallErr, the dataSize parameter
contains the number of bytes remaining. GetFlavorData can
be called again to receive the rest of the data.
0386 acceptorDescriptor—An optional AppleEvent
description of the drop location that will be forwarded to the
send data procedure that will be providing the requested
flavor data.
(0387. The GetFlavorData function returns a flavor's data
in a data buffer supplied by the application.
0388 A buffer can be allocated to hold the flavor data and
pass the number of allocated bytes to the GetFlavorData
function. GetFlavorData will return that number of bytes of
data and update the dataSize parameter to the amount of data
bytes remaining in the flavor.
Result Codes:

0389)

noErr O No error
paramErr -50 Parameter error
bad DragRefErr -1851 Drag reference is unknown or invalid
badItemRefErr -1852 Item reference is unknown or invalid
bad DragFlavorErr
dragBufferIsSmallErr

-1855 Drag flavor is unknown
-1856 Specified buffer is too small to receive

data
cantGetFlavorErr -1859 Error while trying to get flavor data

Getting Drag Status Information
0390 The Drag Manager provides a set of functions that
allows a user to get information about a drag that is currently
in progress.
DraggetFlags
0391 The DragGetFlags function is used to get the current
set of drag attribute flags.

pascal OSErr DraggetFlags (unsigned long dragFlags,
DragReference the DragRef);

0392 dragFlags—The DraggetFlags function returns the
drag attribute flags for the given drag reference in the drag
Flags parameter.
0393 the DragRef A drag reference.
0394 The DraggetFlags function returns the drag
attribute flags for the given drag reference in the dragFlags
parameter.

Jun. 26, 2008

Result Codes:

0395

noErr O No error
paramErr -50 Parameter error
bad DragRefErr -1851 Drag reference is unknown or invalid

DraggetMouse
0396 The DragGetMouse function is used to get the cur
rent mouse and pinned mouse locations. This is used to deter
mine whether given areas in a window should be highlighted.

pascal OSErr DragojetMouse (Point *mouse,
Point *pinned Mouse,
DragReference the DragRef);

0397 mouse The DraggetMouse function returns the
mouse location in the mouse parameter. The mouse location
is given in global Screen coordinates.
0398 pinnedMouse The DragGetMouse function
returns the pinned mouse location in the pinned Mouse
parameter. The pinned mouse location is the mouse location
that is being used to draw the “dotted outline' drag region in
its current location. The pinnedMouse location is different
than the mouse location only when the cursor approaches the
edge of the screen and the drag region is "pinned to the edge
of the screen. The pinned mouse location is given in global
screen coordinates.
0399 the DragRef Adrag reference.
0400. The DraggetMouse function returns the mouse
location in the mouse parameter and the pinned mouse loca
tion in the pinnedMouse parameter. All coordinates are given
in global screen coordinates.
0401 NIL may be passed into the mouse or pinnedMouse
parameters if a user wishes to disregard either of these return
values.
0402 Calling DragGetMouse before using the drag in a
TrackDrag call returns (0, 0) as both the mouse and pinned
Mouse locations.

Result Codes:

0403

noErr O No error
paramErr -50 Parameter error
bad DragRefErr -1851 Drag reference is unknown or invalid

DraggetModifiers
04.04 The DraggetModifiers function is used to get the
current set of keyboard modifiers.

pascal OSErr DragojetModifiers (short *modifiers,
short *mouse)ownModifiers,
short *mouseUpModifiers,
DragReference the DragRef);

US 2008/O 155439 A1

04.05 modifiers. The DraggetModifiers function returns
the current keyboard modifiers in the modifiers parameter.
04.06 mouse DownModifiers—The DraggetModifiers
function returns the keyboard modifiers at mouse Down time
in the mouse DownModifiers parameter.
04.07 mouseOpModifiers. The DragGetModifiers func
tion returns the keyboard modifiers at the time of a mouseup
event in the mouseUpModifiers parameter.
0408 the DragRef A drag reference.
04.09. The Drag(GetModifiers function returns the set of
modifier keys at the current time, at mouse own time and at
mouseUp time.
0410 NIL may be passed into the modifiers, mouse Down
Modifiers or mouseOpModifiers parameters if a user wishes
to disregard any of these return values.
0411. NIL may be passed into any of the modifier param
eters if a user wishes to disregard any of the return values of
that parameter.
0412 Calling DragGetModifiers before using the drag in a
TrackDrag call returns Zero in all of the modifier parameters.
Calling DragGetModifiers during a drag, but while the drag is
still tracing returns Zero in the mouseUpModifiers parameter.

Result Codes:

0413

noErr O No error
paramErr -50 Parameter error
bad DragRefErr -1851 Drag reference is unknown or invalid

0414 Window Highlighting Utilities
0415 ShowDraghillite, HideDragHilite, and Updat
eDragHilite functions can be used to highlight parts of the
application's windows during a drag. The DragPreScroll and
DragPostScroll functions can also be used if a user intends to
scroll parts of the window that contain drag highlighting.

ShowDragHilite

0416) The ShowDragHilite function is used to highlight an
area of the window during a drag. The application program's
tracking handler routine should call this ifa drop is allowed at
the current mouse position.

pascal OSErr ShowDragHillite (DragReference the DragRef,
RgnHandle hilliteFrame,
Boolean inside);

0417 the DragRef The drag reference of the drag cur
rently in progress.
0418 frame—A region of the frame of the window, pane,
or shape a user wishes to highlight. This region should be in
the window's local coordinate system.
0419 inside—If true, the highlighting will be drawn
inside the frame shape. Otherwise it will be drawn outside the
frame shape. Note that in either case, the highlight will not
include the boundary edge of the frame.
0420. The ShowDragHilite procedure creates a standard
drag and drop highlight in the window. Only one highlight can
be shown at a time, and if this routine is called when a

26
Jun. 26, 2008

highlight is currently visible, the first one is removed before
the newly requested highlight is shown.
0421. The highlight that is drawn is defined by the hilit
eFrame and inside parameters. The hilliteFrame is the defining
region for the highlight, which is made by creating a two pixel
outline either inset or outset from the region. The inside
parameter determines whether the pixel outline is drawn on
the inside of the region (if true), or outside of the region (if
false). This allows easy highlighting inside a window frame
ora pane, or to highlight outside of a container or object in the
window.
0422 ShowDraghillite assumes that the highlighting
should be drawn in the current port. The application makes
sure that the correct port is set before calling ShowDragHilite.
Also, highlighting drawn by ShowDragHilite is clipped to the
current port. Make Sure that the port's clip region is appro
priately sized to draw the highlighting.
0423. The Drag Manager maintains the currently high
lighted portion of the window if the HideDragHilite and
UpdateDragHilite functions are used. If it is intended to scroll
the window that contains the highlighting, the DragPreScroll
and DragPostScroll functions can be used to properly update
the drag highlighting. This is required because a scroll causes
parts of frame highlighting to be eliminated.

Result Codes:

0424

noErr O No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
bad DragRefErr -1851 Unknown drag reference
dragHilliteErr -1870 Highlight is invalid

HideDragHilite

0425 This routine removes highlighting created with the
ShowDragHilite function.
0426 pascal OSErr HideDragHilite (DragReference the
DragRef);
0427 the DragRef The drag reference that is currently
showing a drag highlight.
0428 The HideDragHilite function is used to move any
highlighting from the window that was shown using the
ShowDragHilite function.
0429 HideDragHilite assumes that the highlighting
should be erased from the current port. The application
should make sure that the correct port is set before calling
HideDraghillite. Also, highlighting erased by HideDragHilite
is clipped to the current port.

Result Codes:

0430

noErr O No error
bad DragRefErr -1851 Unknown drag reference
dragHilliteErr -1870 Highlight is invalid

US 2008/O 155439 A1

0431 DragPreScroll
0432. When scrolling part of the window when drag high
lighting is showing, the DragPreScroll function is used to
remove any drag highlighting that would be scrolled away
from the hilliteFrame given to ShowDragHilite.

pascal OSErr DragPreScroll (DragReference the DragRef,
short dH,
short dV);

0433 the DragRef The drag reference.
0434 dH The horizontal distance intended to be scroll.
0435 dV The vertical distance intended to be scroll.
0436 The DragPreScroll function prepares the window or
pane for scrolling. This function is used if scroll part of the
window using ScrollRector CopyBits is planned.
0437 Scrolling part of the window may inadvertently
move part of the drag highlighting with if DragPreScroll is
optimized to remove from the screen only the parts of the
highlighting that will be scrolled away from the hilliteFrame
region. After calling DragPreScroll with the dH and dV that
will be scrolled, a user can then scroll the window followed by
a call to DragPostScroll which redraws any necessary high
lighting after the scroll. The details of this procedure are
discussed below.
0438 If an offscreen port is used to draw the window into
while scrolling, the HideDragHilite and ShowDraghillite
functions should be used to preserve drag highlighting in the
offscreen port. The DragScroll functions are optimized for
onscreen scrolling.

Result Codes:

0439

noErr O No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
bad DragRefErr -1851 Unknown drag reference
dragHilliteErr -1870 Highlight is invalid

DragPostScroll

0440 The DragPostScroll function is used to restore the
drag highlight after Scrolling part of the window using the
DragPreScroll function.
0441 pascal OSErr DragPostScroll (DragReference the
DragRef);
0442 the DragRef The drag reference.
0443) The DragPostScroll function restores the drag high
light after scrolling part of the window. This routine must be
called following a call to DragPreScroll.

Result Codes:

0444

noErr O No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory

27
Jun. 26, 2008

-continued

bad DragRefErr -1851 Unknown drag reference
dragHilliteErr -1870 Highlight is invalid

UpateDragHilite
0445. The UpdateDragHilite function is used to update a
portion of the drag highlight that was drawn over by the
application.

pascal OSErr UpdateDragHillite (DragReference the DragRef,
RgnHandle updateRgn);

0446 the DragRef The drag reference.
0447 updateRgn—A region that needs to be updated.
Typically the port's updateRgn.
0448. The UpdateDraghillite function redraws the portion
of the drag highlight which intersects the given updateRgn.
This function is used if the application draws into the high
lighted portion of the window during a drag. For example,
dragging over a folder icon in the Finder causes the Finder to
redraw the folder icon in its darkened (selected) color. The
Finder calls UpdateDragHilite to redraw any portion of the
drag highlight that may have intersected with the folder icon.

Result Codes:

0449)

noErr O No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
bad DragRefErr -1851 Unknown drag reference
dragHilliteErr -1870 Highlight is invalid

Drag Manager Utilities

0450. The WaitiMouseMoved function can be used to
determine after a mouse Down event if a drag should be
started, the Zoom Rects and ZoomRegion functions to pro
vide "Zooming animation to provide destination or abort
feedback. TEGetHiliteRgn is used to obtain the highlight
region from a selection in a TextEdit record.

WaitiMouseMoved

0451. When the application receives a mouse Down event
on a draggable object, call WaitMouseMoved to determine if
dragging the object should begin.
0452 Zoom.Acceleration Specifies how the intermediate
animation steps will be calculated. This function can accept
the constants kZoomtoAccelerate, kZoom.Accelerate, or
kZoom Decelerate. Using kZoomNoAccelerate makes the
distance between steps from the source to the destination
equal. Using kZoom.Accelerate makes each step from the
Source to the destination increasingly larger, making the ani
mation appear to speed up as it approaches the destination.
Using kZoom Decelerate makes each step from the Source to
the destination Smaller, making the animation appear to slow
down as it approaches the destination.

US 2008/O 155439 A1

0453 callback—A routine that will be called if there is
extra processor time during the Zoom. If idle time is not
needed during the animation, NIL may be passed by the
handler.
0454 callbackData—A reference constant passed to the
callback routine.
0455 The Zoom Rects function animates a movement
between two rectangles on the Screen. It does this by drawing
gray dithered rectangles incrementally toward the destination
rectangle. This was illustrated with reference to FIGS. 20a
20C.

0456 Zoom Rects draws on the entire screen, outside of
the current port. It does not change any pixels on the Screen
after it has completed its animation. It also preserves the
current port and the port's settings.
0457. Each step of animation will occur no faster than
once per Tick (one sixtieth of a second). If Zoom Rects com
pletes an animation step in less than one Tick, Zoom Rects
calls the callback routine that can use the left over idle time.

Result Codes:

0458

noErr O No error
paramErr -50 Parameter error

ZoomRegion

0459. The Zoom Region function is used to animate a
region's outline from one screen location to another. This
routine provides the same visual feedback that the Finderuses
to "Zoom’ icons when performing a Clean Up operation.

pascal OSErr ZoomRegion (RgnHandle region,
Point zoomDistance,
short ZoomSteps,
short Zoom.Acceleration,
ZoomProc callback,
void *callbackData);

0460 region—A region to animate.
0461. ZoomDistance The horizontal and vertical dis
tance from the starting point that the region will animate to.
0462 ZoomSteps—Specifies the number of animation
steps that are shown between the Source and destination
regions. The minimum number of ZoomSteps is 4. If less than
4 are specified, 4 will be used. The maximum number of
ZoomSteps is 25. If more than 25 are specified, 25 will be
used.
0463 Zoom.Acceleration Specifies how the intermediate
animation steps will be calculated. Can accept the constants
kZoomNoAccelerate, kZoom.Accelerate, or kZoom Deceler
ate. Using kZoomNoAccelerate makes the distance between
steps from the source to the destination equal. Using
kZoom.Accelerate makes each step from the source to the
destination increasingly larger, making the animation appear
to speed up as it approaches the destination. Using kZoom
Decelerate makes each step from the source to the destination
Smaller, making the animation appear to slow down as it
approaches the destination.

28
Jun. 26, 2008

0464 callback—A routine that will be called if there is
extra processor time during the Zoom. If idle time is not
needed during the animation, NIL may be passed. See the
ZoomProc definition below for more details.
0465 callbackData—A reference constant passed to the
callback routine.
0466. The Zoom Region function animates a region from
one location to another on the screen. It does this by drawing
gray dithered regions incrementally toward the destination
region.
0467 ZoomRegion draws on the entire screen, outside of
the current port. It does not change any pixels on the Screen
after it has completed its animation. It also preserves the
current port and the port's settings.
0468. Each step of animation will occur no faster than
once per Tick (one sixtieth of a second). If ZoomRegion
completes an animation step in less than one Tick, Zoom Re
gion calls the callback routine that can use the left over idle
time.

Result Codes:

0469

noErr O No error
paramErr -50 Parameter error

TEGetHiliteRgn

0470 The TEGetHiliteRgn function is used to get the
highlight region from the current selection in a TextEdit
record.

pascal OSErr TEGetHilliteRgn (RgnHandle region,
TEHandle hTE);

region. The TEGetHiliteRgn function computes the Quick
Draw region of the current selection in the given TextEdit
handle. This region is placed into the region parameter that
has already been allocated. This region is in the window's
local screen coordinates.
0471 hTE A TextEdit handle.
0472. The TEGetHiliteRgn function returns in the region
parameter the region of the current selection in the given
TextEdit handle.
0473. TEGetHiliteRgn does not allocate a new region. A
new region must be created with NewRgn before calling
TEGetHiliteRgn. Also, the previous contents of the given are
completely replaced by the TextEdit selection region.
0474. If the given TextEdit handle does not currently have
a selection, TEGetHiliteRgn returns an empty region.

Result Codes:

0475

noErr O No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory

US 2008/O 155439 A1

Application-Defined Routines
0476. This section describes the application-defined rou
tines whose addresses are passed to the Drag Manager. Rou
tines are typically, but not necessarily, defined that the Drag
Manager calls during a drag can be defined to implement
dragging behavior both into and out of the application's win
dows.

Drag Handler Routines
0477 Most of the application's dragging functionality is
implemented through the use of drag handlers. The Drag
Manager calls an application's drag handlers when a drag
originates from one of the application's windows (a Send
Drag handler), while the user drags a collection of items
through one of the application's windows (a tracking han
dler), and when the user drops the items into one of the
application's windows (a receive handler).
DragTrackingHandler
0478 A drag tracking handler has the following syntax:

pascal OSErr DragTrackingHandler (short message,
Point pinned Mouse,
WindowPtr theWindow,
unsigned long handlerRefCon,
DragReference the DragRef);

0479 message—A tracking message from the Drag Man
ager.
0480 pinned Mouse The pinned mouse location, in glo
bal coordinates.
0481 theWindow—A pointer to the window that the
mouse is over.
0482 handlerRefCon. A reference constant that was
provided to InstallTrackingHandler when this handler was
installed.
0483 the DragRef The drag reference of the drag.
0484 The Drag Manager calls the application program's
DragTrackingHandler routine during a drag when the user
moves the mouse over one of the application's windows. The
application program's DragTrackingHandler can determine
what is being dragged by calling the drag item information
functions, such as CountDragItems, CountDragItemFlavors,
GetFlavorType and GetFlavorFlags.
0485 The message parameter can be used to determine
what action the application program's DragTrackingHandler
should take. The message parameter may be one of the fol
lowing values:
Message Descriptions:
0486 kDragEnterHandlerMessage—A call will be
received with this message when the focus of a drag enters a
window that is handled by the application program's
DragTrackingHandler. If the user moves the drag directly to
another window that is handled by the same DragTracking
Handler, a second kDragEnterHandlerMessage is not
received. The application program's DragTrackingHandler
only receives this message when the drag enters the domain of
the procedure after leaving another.
0487 kDragEnterWindowMessage—A call will be
received with this message when a drag enters any window
that is handled by the application program's DragTracking
Handler. This message is sent to the application program's
DragTrackingHandler for each window that the drag may
enter. This message will always be received within a pair of
kDragEnterHandlerMessage and kDragLeaveHandlerMes
Sage calls.

29
Jun. 26, 2008

0488 kDragIn WindowMessages—Calls will be received
with this message as the user is dragging within a window
handled by the application program's DragTrackingHandler.
This message can be used to track the dragging process
through the window. This message will always be received
within a pair of kDragEnterWindowMessage and
kDragLeave WindowMessage calls. The majority of the win
dow highlighting and object tracking will typically be drawn
when this message is received from the Drag Manager.
0489 kDragLeave WindowMessage—A call will be
received with this message when a drag leaves any window
that is handled by the application program's DragTracking
Handler. This message is received after receiving a corre
sponding kDragEnterWindowMessage. This message will
always be received within a pair of kDragEnterHandlerMes
sage and kDrag|LeaveHandlerMessage calls.
0490 kDragLeaveHandlerMessage—A call will be
received with this message when the focus of a drag enters a
window that is not handled by the application program's
DragTrackingHandler. This message is guaranteed to be
received after receiving a corresponding kDragEnterHandler
Message.
0491. When the Drag Manager calls the application pro
gram's DragTrackingHandler, the port will be set to the win
dow that the mouse is over.

ReceiveDropHandler
0492 A receive drop handler has the following syntax:

pascal OSErr ReceiveDrophandler (WindowPtr theWindow,
unsigned long handlerRefCon,
DragReference the DragRef);

the Window—A pointer to the window that the drop occurred
1.

0493 handlerRefCon. A reference constant that was
provided to InstallReceiveHandler when this handler was
installed.
0494 the DragRef The drag reference of the drag.
0495. When the user releases a drag in a window, the Drag
Manager calls any ReceiveDropHandler functions that have
been installed on that window. A user can get the drop loca
tion and what data is being dragged to determine if the win
dow will accept the drop by using the drag information func
tions provided by the Drag Manager.
0496 After the application program's ReceiveDropHan
dler decides that it can accept the drop, use the GetFlavorData
function to get the needed data from the sender of the drag.
0497. When the Drag Manager calls the application pro
gram's ReceiveDropHandler, the port will be set to the win
dow that the mouse is over.

Drag(constrainHandler
0498
Syntax:

A drag constrain mouse handler has the following

pascal OSErr DragoonstrainHandler (Point mouse,
Point *constrainedMouse,
unsigned long handlerRefCon,
DragReference the DragRef);

US 2008/O 155439 A1

0499 mouse The current mouse location in global
screen coordinates.
0500 constrainedMouse The constrainedMouse
parameter, on entry, contains the constrained mouse coordi
nates produced by the last Drag(constrain Handler called or it
contains the mouse coordinates if it is the first Dragconstrain
Handler to be called. The constrainedMouse parameter, on
exit, should be set to the newly constrained mouse location by
the application program's DragconstrainHandler. The con
strainedMouse coordinates are specified in global Screen
coordinates.
0501 handlerRefCon. A reference constant that was
provided to InstallConstrain Handler when this handler was
installed.
0502 the DragRef The drag reference of the drag.
0503 When the mouse moves over a window, any Drag
ConstrainHandlers that are installed on that window are
called sequentially to give each handler the opportunity to
constrain the mouse movement.
0504 The application program's Drag(constrain Handler

is called after the Drag Manager has sampled the rouse loca
tion, but before it uses the mouse location to move the 'dotted
outline' drag region on the screen. The application program's
DragoonstrainHandler can modify the mouse location in any
way, Such as horizontal, diagonal or grid constraint. The Drag
Manager does not, however, use the constrained mouse loca
tion to determine which window to send handler messages to.
0505 If there are more than one constrain mouse handlers
installed on a single window, the handlers will be called
sequentially, where the first handler will receive the real
mouse location in the constrainedMouse parameter, and Sub
sequent handlers will receive the result of the previous han
dler in the constrainedMouse parameter.
0506. When the Drag Manager calls the application pro
gram's DragGonstrainHandler, the port will be set to the
window that the mouse is over.

Drag(callback Procedures
0507. There are several Drag Manager functions that can
be overridden by setting any of several drag callback proce
dures for any given drag. The available drag callback proce
dures override the standard flavor data sending, mouse and
keyboard sampling and 'dotted outline' drag region drawing
functions.

DragSendDataProc
0508
taX:

A drag send data procedure has the following Syn

pascal OSErr DragSend DataProc (FlavorType theType,
const AEDesc *acceptorDescriptor,
unsigned long theRefCon,
ItemReference theItemRef,
DragReference the DragRef);

0509 theType A flavor type being requested by a drop
receiver.
0510 acceptorDescriptor—An optional AppleEvent
description of the drop location that the data will be sent to.
0511 theRef con—A reference constant that was pro
vided when SetDragSendProc was called to install this pro
cedure.
0512 theItemRef The item reference of the item that the
flavor data is being requested from.
0513 the DragRef The drag reference of the drag.

30
Jun. 26, 2008

0514. The Drag Manager calls the application program's
DragSendProc when drag item flavor data is requested by a
drop receiver if the drag item flavor data is not already cached
by the Drag Manager. The SetDragItemFlavorData function
is used to give the Drag Manager the requested data.
0515. The Drag Manager caches all drag item flavor data
that was given in the data pointer when the flavor was added
using the AddDragItemFlavor function. If the data pointer is
NIL when the flavor is added, the Drag Manager will call the
DragSendProc to get the data only if a receiver requests the
data using the GetFlavorData function.
0516 A second scenario where the DragSendProc is
called is when a drop receiver requests a flavor that is trans
lated by the Translation Manager and the source data (which
would be a different type than actually requested by the
receiver) is not already cached by the Drag Manager.
0517. A DragSendDataProc does not need to be provided
if NIL is not ever passed as the data pointer when calling
AddDragItemFlavor.
DragInputProc
0518. A drag input procedure has the following syntax:

pascal OSErr DragInputProc (Point *mouse,
short *modifiers,
unsigned long theRefCon);

0519 mouse On entry, the mouse parameter contains
the physical location of the mouse. On exit, the application
program's DragInputProc returns the desired current mouse
location in the mouse parameter. The mouse location is speci
fied in global Screen coordinates.
0520 modifiers—On entry, the modifiers parameter con
tains the physical state of the keyboard modifiers and mouse
button. On exit, the application program's DragInputProc
returns the desired state of the keyboard modifiers and mouse
button. The modifiers parameter is specified using the same
format and constants as the Event Manager's EventRecord
modifiers field.
0521 the Refcon A reference constant that was pro
vided when SetDragInputProc was called to install this pro
cedure.
0522. Each time the Drag Manager samples the mouse and
keyboard, it calls the DragInputProc (if one has been set by
calling SetDragInputProc) to provide way to modify or com
pletely change the mouse and keyboard input to the Drag
Manager.
0523. When the DragInputProc is called, the mouse and
modifiers parameters contain the actual values from the
physical input devices. The application program's DragInput
Proc may modify these values in any way. The application
programs DragInputProc may simply inhibit the control key
modifier bit to become set or it may completely replace the
mouse coordinates with those generated some other way to
drive the drag itself.
DragDrawingProc
0524. A drag drawing procedure has the following syntax:

pascal OSErr DragrawingProc (short message,
Point pinnedMouse,
unsigned long theRefCon,
DragReference the DragRef);

US 2008/O 155439 A1

0525 message—A drag region drawing message from the
Drag Manager.
0526 pinnedMouse The pinned mouse location, in glo
bal coordinates.
0527 theRef con—A reference constant that was pro
vided when SetDragDrawingProc was called to install this
procedure.
0528 the DragRef The drag reference of the drag.
0529 If the application set a custom drawing procedure
for a drag using the SetDragdrawingProc function, the Drug
Manager calls the application program's DragrawingProc
to perform all drag region drawing operations.
0530. The message parameter is used to determine what
action the application program's Drag|DrawingProc should
take. The message parameter may be one of the following
values:

Message Descriptions:
0531 kDragPrimeDrawing Message—A call will be
received with this message when a drag is being started and it
is time to initialize the application program's drawing proce
dure. Nothing should be drawn to the screen when this mes
sage is received.
0532 kDrag)rawMessage—A call will be received with

this message when the drag feedback should be drawn at the
pinnedMouse location. The Drag Manager port is set Such
that a user can draw to the entire screen. Successive
kDragDrawMessage calls will be received to move the drag
feedback on the screen.
0533 kDragHideMessage Calls will be received with
this message when the drag feedback should be erased from
the pinnedMouse location. The Drag Manager port is set Such
that a user can draw to the entire screen.
0534 kDrag)raw IdleMessage—A call will be received
with this message when the drag region has not moved on the
screen. This message can be used if any type of animation is
being drawn to update the application program's drag region.
The Drag Manager port is set Such that a user can draw to the
entire Screen.
0535 kDragEndDrawingMessage—A call will be
received with this message when the drag has completed and
it is time to deallocate any allocations made during in the
application program's Drag|DrawingProc. After this message
is received, any additional messages will not be received.

Functional Operation

0536 Another inventive feature of the preferred embodi
ment is the definition of a new type of process Switching
mechanism which accelerates the response time of drag-and
drop operations, and thus makes such interapplication drag
ging a truly useful and feasible alternative. Prior art systems
for performing task Switching typically are similar to that
illustrated in FIGS. 26 and 27. For example, the prior art
assumes a single-master slave relationship wherein a master
program retains control, and all slave programs must return
control to the master program upon completing their tasks.
This is briefly illustrated with reference to the timing diagram
of FIG. 26. For example, a master may retain control of the
computer's operation, however, at time t, at such time it is
determined that a slave process should be transferred control
to perform some operations, such as highlighting a window,
selecting text or other type of operation, a context Switch
takes place wherein transfer is controlled to a slave S. The

Jun. 26, 2008

slave S performs some processing for some duration of time
and then, at Some point, returns control back to the master at
time t. Again, the master retains control for a certain interval
and may transfer control to another slave. Such as S. illus
trated at time t, which slave returns control back at time ta.
This type of mechanism may also be illustrated by FIG. 27
which shows the master and slave illustrated as a series of
states wherein each slave process is represented as a state
which always returns back to the master state. Therefore,
control is to be allocated by the master, and control always
returns to the master at the completion of processing by any
slave.
0537. The preferred embodiment assumes a more distrib
uted context Switching apparatus wherein each process in the
computer system is assumed to provide all control for the
display and other necessary processing during the time in
which it is transferred control. In this manner, no control
needs to be returned to master, and each process which is
active in the system transfers complete control of the display
and other actions taking place. This model is known in the
preferred embodiment as the “hot potato model” or “peer-to
peer-to-peer.” This is distinguishable from master/slave or the
server/client control in the prior art, as was illustrated with
reference to FIGS. 26 and 27. The flow of control can be
briefly illustrated by reference to FIGS. 28 and 29. For
example, with reference to FIG. 28, proceeding at time t
wherein a context switch takes place, a first interactor I may
have control. Then, upon detection that a second interactor
needs to obtain control, I performs all necessary functions
for housekeeping prior to leaving that process, and control is
switched at time t1 through use of a context switch to inter
actor I. Similarly, I retains control for a certain duration of
time, and then, at time t, I begins a Switch context again to
a third process 13. This type of context Switching can take
place any and all of the processes in the system with no
process or interactor being required to retain control, as in the
master/slave or server/client relationships.
0538 Yet another view of this model is illustrated with
reference to FIG. 29. For example, interactor I may have
control and transfer that control to I, as illustrated by transi
tion line 2900 in FIG. 29. Further, I may retain control for a
period of time and transfer control to a third interactor I. This
process continues, as discussed above, with no interactor
requiring that another interactor returns control back to it, as
was required in the master/slave relationship. This technique
has performance advantages in that only a single-context
switch to switch control from one interactor to another is
requited. This is distinguishable from the master/slave rela
tionship wherein if control wants to be transferred to a second
slave (e.g., S. in FIG. 26), then control has to be retained from
a first slave (e.g., S), and then control must be transferred to
S. This is illustrated at times t and t in FIG. 26. In contrast,
as is illustrated in FIG. 28, if one interactor desires control,
Such as interactor I at time t, then only a single-context
Switch between interactors I and I need take place at t.
Thus, significant performance advantages are realized by
only performing a single-context Switch per transfer of con
trol from one interactor. Such as I, to a second interactor, Such
as I. This particular type of Switching model is useful when
transfers of context between windows in the user's computer
system need take place. So, for example, to transfer control
from a first interactor, such as I, to a second interactor, such
as I, when the tracking of a mouse goes from a window
handled by interactor I to a second window handled by
interactor I, then a message is merely sent from the Drag
Manager to I causing the second process to assume control.

US 2008/O 155439 A1

0539 For example, the sending application, such as I,
may track the drag, do whatever highlighting is appropriate,
until the mouse moves into a window belonging to another
application program, Such as interactor I. The sending appli
cation program I sends the destination application program
under the mouse event effectively transferring control, and
the receiver, such as I, is now in complete control until the
mouse moves over a window handled by a different applica
tion program Applications thus pass control around like a hot
potato, each is in total control until it decides to pass control
to another application program. Thus, each interactor is
required to only implement the slave functionality and the
functionality to transfer control to a different application
program.

0540 Transfer of control is implemented in the preferred
embodiment using a Process Manager Switch mechanism.
The switch mechanism allows the Drag Manager to effi
ciently change which application context is current. The Drag
Manager uses this mechanism to prepare handlers to receive
messages. This allows it to quickly change which application
has control of the drag by immediately calling the new appli
cation handlers directly in their own context. This is a signifi
cant improvement over Event Manager based messages
which correctly set contexts but are slower because of over
head. In the following discussion, in the preferred embodi
ment, three cases are handled: a selection in a foreground
(currently active) application's window and possible drag, a
selection in a background window and possible drag, and a
drop in a background window. These cases are handled
through the use of a process TrackDrag described with refer
ence to FIGS.30 and 31 and related process at FIGS. 32-34.
(0541. For example, process 3100 of FIGS.30 and 31 illus
trates the transfer of control which occurs in a process known
as TrackDrag, which may occur upon detection of a drag (e.g.,
the selection of an item and movement of three pixels or more
while selected) and the appropriate calls to the handlers. This
process, which starts at step 3101, determines, based upon the
position of the cursor on the user interface display, the posi
tion of the pointing device or mouse at step 3102 and updates
the position of the cursor on the display. It can be determined
at step 3103 which application program controls the window
under the mouse by determining the cursor position in global
coordinates and determining which window is under the cur
sor at step 3103. Each window has associated with it a routine
which controls the window (e.g., the main application pro
gram). Then, at step 3104, a layer Switch to the application
occurs for implementation purposes to allow the Drag Man
ager to determine which window controlled by the applica
tion has been selected. Thus, if an application has several
different registered sets of handlers for different windows
(e.g., 2211 and 2212 of FIG. 22 for window “graphics” or
2221 for window “documents'), then the proper handlers can
be accessed, and a Switch of handlers and/or applications may
be performed. It can then be determined at step 3105 which
window is pointed to by the cursor that is handled by the
application. That is, a single application program may have
several windows displayed, one of which only is handled by
the application, each of which has a set of handlers associated
registered with it in the handler list (see, e.g., FIG.22). Then,
it is determined at step 3107 whether the handler is different,
via its callback and process ID, from the current handlers
loaded at step 3107. If so, then a switch of handlers is per
formed at step 3108. As was discussed with reference to the
messages above, the respective handlers are transmitted mes

32
Jun. 26, 2008

sages indicating whether the handlers are being left or
entered. Thus, the old handler for either the old window or old
application program receives a kLeaveHandler message, and
the new handler receives a kEnterHandler message. If the
handler is not different, as determined at step 3107, then
process 3100 continues at step 3111a in FIG. 31.
0542. Once handlers have been switched at step 3108, it is
determined whether the handler belongs to a different appli
cation program at Step 3109. If so, then an application context
switch is performed at step 3110. This is a limited switch, of
only the context of the application and that the activation of
the application itself. This allows the handler access to any
global variables and routines in the application program (in
the Macintosh R brand operating system known as a Switch to
allow the handler to have access to the A5 global variables of
the application program). This allows the handler to deter
mine, if a background selection was made, the content and
flavors of a drag item or, in the case of a background drop,
allows rewrapping and other reformatting of information in
the background window without activation of the application
program. Thus, the handler can have access to the facilities
provided by the application without activation of the applica
tion. It is then determined whether the new application (e.g.,
the handler of the context) is valid and active at step 3111.
Subsequently, at step 3111a. In Window messages are sent to
the handler(s) to indicate that a window that the handler(s)
control should take action. This occurs if a different handler
was not detected at step 3107 or if the handlers did not belong
to a different application program at step 3109. If any errors
occur, as determined at Step 3112, or the new application was
not valid or not active, as determined at step 3111, then
control is retained at step 3115 by the current application.
This is not fatal, as the application window under the cursor
simply will not be able to receive the dragged data, no han
dlers are called, and the window is not highlighted. If, how
ever, the user causes a mouse-up event (deactivation of the
selection device to indicate a drop), as detected at step 3117.
then process 3100 aborts at step 3118, and abort feedback
may be provided to the user. As will be discussed, and was
referenced above, the process Zoom Rects() may be used for
this purpose to animate that the drag was, in fact, not success
ful. Thus, at step 3119, the TrackDrag process is returned
from at step 3119, as is illustrated in FIG. 31. If a mouse-up
event is not detected at step 3117, then TrackDrag 3100
returns to the top of the loop at step 3102.
0543. If, however, an error was not detected at step 3112
from the activation of the new application program context at
step 3111, then it is determined whether, at step 3113, a
mouse-up event has occurred. This will indicate that the user
wishes to “drop” the dragged data to the window over which
the cursor now resides. In that case, process 3100 proceeds to
call DragReceive process 3400 for the application program.
This is illustrated in more detail with reference to FIG. 34
below. Then, at step 3114, it is determined whether the call to
the DragReceive process for the application program resulted
in the receipt of any data. If not, then step 3114 branches to
step 3118 which provides abort feedback to the user (such as
through the use of Zoom Rects or other user interface func
tion), and process 3100 returns at step 3119. If, however, the
DragReceive process for the application did receive the data,
as determined at step 3114, then the process normally returns
at step 3119 with all the necessary drop completion feedback
being provided by the user by DragReceive process 3400 for
the application program.

US 2008/O 155439 A1

(0544 FIG. 32 illustrates a process 3200 which is per
formed within the normal event loop of a front application
window (the active process) which has already been switched
in and needs to perform a StartDrag process in order to create
drag items or flavors which the sending process can transmit.
Then, at step 3202, the application detects the position of the
cursor and a movement of three pixels after a mouse down
event and a selection. If there is no movement of three pixels
after a selection and mouse-down event, then the normal
event loop continues at WaitNextEvent at step 3206. The
application program uses the process NewDrag provided by
the application program at step 3203 if a drag was detected to
start the drag. The application program's NewDrag process
adds drag items with transmittable flavors at step 3203 and
does not need to be switched in because it is already active and
loaded. The application program then calls the TrackDrag
process at step 3204. Of course, the drag items with transmit
table flavors are only created if the application program is
drag aware, and if it not, then it does not call TrackDrag. The
Translation Manager is invoked at step 3205 by TrackDrag
process 3100 to add flavors to the drag item(s). Based upon
flavors provided by the application program, the Translation
Manager determines other flavors it can provide the data in.
That is, if the type styl was a drag item flavor provided by the
application program and the Translation Manager can pro
vide an rtf, flavor, then the Translation Manager will add the
flavor rtf, to the drag item flavors list in the drag data struc
ture. Then, upon completion, the Drag Manager begins to
track the drag as described TrackDrag process 3100 described
above.

0545. A process for a background application is illustrated
with reference to FIGS. 33a and 33b. This is used in the event
that a drag is started from a window which was inactive or in
the background. Process 3300 of FIGS. 33a and 33b starts at
step 3301 which recognizes the mouse-down event in a back
ground application window. This may be determined by
checking the application program associated with the win
dow where the selection took place. If that application is not
active, then it is considered to be a background selection.
Then, it is determined at step 3302 whether a background
mouse-down handler has been installed for the background
application. If not, then the process proceeds to step 3311 on
FIG. 33b. If there is a background mouse-down handler
installed for the background application program, which is
the most likely case in the case of a drag aware background
application program, then process 3300 proceeds to step
3303. Step 3303 performs a context switch to the background
application program (the background mouse-down event
handler is invoked for the application program, and the A5
global variables are made available), and at step 3304, the
background mouse-down handler is sent the mouse-down
event. The handler receives the event at step 3308 and deter
mines whether the cursor has moved three pixels or more after
a mouse-down event and selection at step 3309. If not, the
handler returns at step 3310 with the flag EvenNothandled.
Otherwise, the handler then proceeds, in a similar manner, to
process 3200 wherein, at step 3311, NewDrag is called to
create drag item(s) and flavors, TrackDrag is called at step
3312, and TrackDrag calls the Translation Manager at step
3313, and the handler returns at step 3314 with the flag
EventHandled.

(0546 FIG. 33b, starting at step 3312, illustrates the case
where a TrackDrag process was not started or a handler was

Jun. 26, 2008

not installed for the background application. In either event,
as shown in FIG. 33b, it is assumed that the mouse-down
event will cause a control Switch to the background applica
tion program wherein a context Switch is performed to the
front application at step 3315 to recognize that the drag pro
cess aborted, and at step 3316, it is assumed that the back
ground application is not drag aware. Then, a Switch is per
formed to the background application program to make it
active at step 3317 (control is transferred entirely to the back
ground application), and a simple mouse-down event is sent
to the background application program at step 3318. The
background application program detects the event in its nor
mal event loop and services the mouse-down event in the
normal manner as the active application program.
(0547 Process 3400 of FIG. 34 shows a sequence of steps
which are performed by the Drag Manager when a mouse-up
event has been detected in the drag tracking process 3100 of
FIGS.30 and 31. For example, at step 3401, a mouse-up event
has already been detected. Then, at step 3403, the DragRe
ceive process of the destination application is invoked. This
allows the destination application program's receive handler
to be invoked which communicates messages to the Drag
Manager to provide the various flavors of data requested by
the receiving process. At step 3405, the DragReceive process
of the background application program requests the flavors of
data from the Drag Manager and thus the sending handler. If
the sending handler can provide the flavor, as detected at Step
3407, then it is determined whether that flavor needs transla
tion at step 3409. If so, then the Translation Manager is
invoked at step 3411 to translate the data, and data is returned
to the DragReceive process at step 34.13. If the flavor does not
need translation, as detected at step 3409, then data is returned
normally and untranslated to the DragReceive process of the
destination application program at step 3413. If there are any
other flavors of interest, as requested by the DragReceive
process at step 3415, then process 3400 continues at step
3405. If, however, there are no other flavors of interest
requested by the DragReceive process of the application pro
gram, then process 3400 is complete at step 3416 and returns.
0548. The foregoing switching mechanism, especially
that described with regards to the tracking process illustrated
in process 3100, assumes that the Drag Manager is in control
and provides all message passing between the various han
dlers in the system. In the current preferred embodiment,
control is typically returned to the Drag Manager in its drag
tracking process 3100 in order to transfer control to a second
set of handlers and/or switch context between application
programs. However, it is anticipated that, in an alternative
embodiment, the methodology set forth in FIGS. 30-34 is
implemented in individual application programs in order to
provide for interapplication dragging and transfer of control
to and from other application programs. Thus, in this manner,
only a single message from the process relinquishing control
to the new process need be made, and the process relinquish
ing control will perform an orderly shutdown and transfer
control. Message passing is kept to a minimum, and perfor
mance can be maximized.

0549. Thus, it can be appreciated by the foregoing discus
sion that process Switching between application programs is
simplified, and performance is enhanced by the use of peer
to-peer-to-per context Switching model described above.
Other advantages, features, and performance enhancements
can be appreciated by one skilled in the art.

US 2008/015.5439 A1

Example User Interface Routines
0550 Certain user interface actions for providing feed
back to a user during drag-and-drop operations can be illus
trated with reference to the process flow diagrams of FIGS.
35-37. For example, FIG.35 illustrates the technique of start
ing a Drag Hilite Feedback which is used for representing
arbitrary shapes during drag feedback. This same technique is
used for representing arbitrary shapes of items during track
ing (e.g., windows, subwindows, fields, spreadsheet cells,
etc.).
0551 For example, as is illustrated in FIG. 35, the Start
Drag Hilite Feedback procedure starts at step 3501. Then, a
region shape is passed by the application's handler to the
StartDragHilite function, such as the icon and title or other
representation of the item and the position of the item. The
passed region is then copied at step 3502. The region is then
inset or outset by a certain fixed thickness at step 3503 (e.g.,
a single pixel outset for selection feedback or two or three
pixel inset for tracking feedback). Then, an exclusive OR is
performed on the original shape and the outset or inset region
at step 3504, and the result is drawn on the screen at step 3505.
The resulting region either insets or outsets the frame of a
possible drag destination or an item during a drag. It also
provides feedback that an arbitrarily shaped area of the screen
can successfully receive a drop. This same technique can also
be used for tracking the drag of the cursor across the user
interface screen and provides arbitrary shapes for feedback to
the user during drag operations.
0552. Other prior art systems sometimes use arbitrary
shapes, however, many use a fixed shape for performing drags
between applications, and some even use them during drags
within their own file system. Thus, this method provides
distinct advantages and improved user feedback over the prior
art.

0553 FIG. 36a-36c illustrate a simple procedure used for
maintaining highlighting during autoscrolling. For example,
at step 3601, the Start Drag Hilite Scrolling procedure is
started. Then, prior to scrolling the data on the display at step
3602, the highlighted portions which will be scrolled out of
the window are erased. A more detailed view of this step is
illustrated with reference to FIG. 36b. For example, during an
autoscrolling operation, depending on the direction which the
autoscrolling is taking place, the highlight region is copied at
step 3610, illustrated in FIG. 36b. Then, the copy which was
made is offset by a scroll amount (e.g., 10 pixels vertically
and 3 pixels horizontally) at step 3611. Then, a difference
region from the difference of the two regions is created at step
3612. The difference region is offset back by a certain scroll
amount at step 3613. Then, at step 3614, the difference region
is erased from the display during the scroll.
0554. At step 3603, as is illustrated in FIG. 36a, the appli
cation then scrolls the contents of the pane or window by the
defined scroll amount. At step 3604, the portions of the high
light after the scrolling are restored at step 3604 are restored.
This is shown in more detail with reference to FIG. 36c. As is
illustrated in 36c, step 3621 is performed to find the difference
region which was used earlier to perform the scroll. Then, at
step 3622, an exclusive OR is made with the difference region
and the ideal highlight region. Finally, at step 3623, the final
highlighting on the display during the scroll is restored, and
the window or frame is highlighted back to the state it was in
prior to the scroll.
0555. Other user interface feedback is provided, as is illus
trated in FIG. 37. This is the abort or completion feedback

34
Jun. 26, 2008

process entitled Zoom Rects. For example, this process starts
at step 3701 wherein the starting and ending drag objects and
locations in global coordinates are passed to the process by
the invoking handler. Then, an outline region of the dragged
object(s) is displayed at step 3702. A frame of the region is
then displayed at step 3703. It is determined at step 3704
whether four frames (the default, or n if specified in the call by
the application's handler) are present on the screen, and, if so,
then the oldest frame is erased at step 3705. If less than 12
frames have been drawn (the minimum to animate feedback),
as determined at step 3706, then another frame is drawn at
step 3703 back and process 3700 repeats steps 3704-3706.
Upon reaching the destination on the display, if any frames
are left on the display at step 3707, then process 3700 pro
ceeds back to step 3705 to erase the oldest frame. Once all the
frames have been erased from the display at step 3708, the
process is complete, and rectangles have been drawn from the
destination to the source location for abort feedback or, alter
natively, in the case of destination feedback, from the source
to the destination location on the display. In either event, an
animated effect is provided to the user on the display similar
to that provided and described with reference to FIGS. 20a
20d.
0556. Other user interface actions performed on the dis
play (e.g., navigation feedback, the progress bar, etc.) are
performed using other techniques well-known to those
skilled in the art.

Clipping

0557. Interapplication dragging is one major feature pro
vided by the preferred embodiment. This includes dragging
between two different application programs, two application
windows, and windows controlled by the file manager or
Finder system service of the Macintosh R brand operating
system. The Finder is also treated as another application
program from the perspective of the operating system, it also
provides a mechanism for receiving dragged data. In the case
of a simple drag and drop to a window in the file system, such
as the desktop or a folder (subdirectory), a clipping is created
which appears and can be manipulated, as described above.
Because this is a special and important instance of interappli
cation dragging, the detailed steps for generating a clipping
will be discussed with reference to FIGS. 38a-38d.
0558. In the preferred embodiment, the Drag Manager
scans through each of the items in the drag item list and
determines whether any are of the type which can be retrieved
and stored as a file. This is shown with reference to FIG.38a.
For instance, the clipping process starts at step 3801 (the
process entry point) and begins with the first drag item at Step
3802. It determines whether this item contains a flavor of type
hfs at step 3803. This allows the receiver to determine
whetherit is a file object being moved, for example, in the file
system. If it is a file system object (it has a flavor of type
“hfs'), as detected at step 3803, then, at step 3805, the file
system object of type hfs is retrieved from the drag item.
Then, the file object is moved, and no clipping has been
created. If, however, there is no flavor type of hfs, as deter
mined at step 3803, then all drag item flavors provided by the
sender are stored into a clipping file at step 3804. This is to
preserve the fidelity of the data for any flavor(s) requested by
a receiver subsequently receiving the clipping. Step 3804 is
shown in more detail with reference to FIG. 38b. If there are
more drag items, as determined at step 3806, then process
3800 proceeds to step to the next drag item at step 3807, and

US 2008/O 155439 A1

steps 3803-3806 are performed repetitively until there are no
more drag items left in the drag item list. Then, process 3800
ends at step 3808.
0559. A more detailed view of step 3804 is illustrated with
reference to FIG. 38b. 38.04 starts at the process entry point
3811 and determines, at step 3812, by examining the flavors,
whether there is a flavor of type 'cnam. This is the name that
the application recommends be given to the clipping. If so,
then the clipping file is created at step 3813 based upon the
cnam flavor data. For example, an application program,
Such as a word processing program, may specify that clip
pings are to entitled “Word Processing Clipping 1.” “Word
Processing Clipping 2. etc. In another embodiment, the word
processing document may give the clipping with the selected
text “This text” the file name “This is text” in the file system.
Any file names of the application's choosing may be specified
in the 'cnam flavor specified by the application program.
0560. Otherwise, if there is no specified 'cnam flavor
indicated by the sending application program, then a clipping
file is created with some default name, such as “Untitled
Clipping, at step 3814. Then, at step 3815, it is determined
whether there is a drag item flavor prxy. This flavor is used
for specifying the default appearance of the icon for the
application's clipping. For example, the application program
may desire to provide a miniature representation of a view of
the clipping, such as a condensed view of a graphics image, or
a miniature image of text. Again, like the naming example,
this is application-dependent. Then if there is a type prxy
flavor in the drag item, then the prxy flavor data is retrieved
and used as the appearance of the icon for the clipping file at
step 3816. Otherwise, a default icon for the clipping file, such
as that for text (e.g., 781 in FIG. 7d) or graphic data (e.g., 780
in FIG. 7d) is used at step 3817. Step 3817 is shown in more
detail with reference to FIG. 38d. In either event, all of the
drag item flavors from the drag item(s) are retrieved from the
sending application, if needed, and stored into the clipping
file at step 3818, as is illustrated in FIG.38b. This is to provide
the highest fidelity for any application program which may
Subsequently desire to drop the clipping into one of its win
dows. This is shown in more detail with reference to FIG.38c.
In any event, upon storage of all the drag item(s) and flavors
into the clipping file, the process ends at step 3819.
0561. A more detailed view of step 3818 of process 3804
in FIG. 38b is illustrated with reference to FIG. 38c. For
example, the process starts at process

Jun. 26, 2008

What is claimed is:
1. A method of manipulating data between application

programs in a computer-controlled display system compris
ing the following steps:

a. a user selecting a first item in a first window, said first
window under control of a first process;

b. said first process specifying formats in which first data
from said first item may be provided;

c. said user dragging said selected first item to a second
window, said second window under control of a second
process;

d. Said user deselecting said selected first item while said
first item is located at said second window;

e. said second process determining if said second process
can perform a primary action based upon a first format of
said formats of said first item, if so, then receiving data
from said first process in said first format and perform
ing said primary action using said first format of said first
item from said first process.

2. The method of claim 1 wherein said second process
comprises a plurality of actions, including said primary
action.

3. The method of claim 2 wherein said plurality of actions
comprises an alternate action.

4. The method of claim 1 further comprising the step of
performing said alternate action using a second format of said
formats of said first item if said second process cannot per
form said first action based upon a first format of said first
item.

5. The method of claim 1 further comprising the steps of:
a. displaying a list of said plurality of actions which can be

performed by said second process upon said formats of
said first item;

b. said user selecting a desired action from said list of
plurality of actions; and

c. said second process performing said desired action using
data based upon a third format of said formats of said
first item.

6. The method of claim 1 wherein said step of said second
process determining if said second process can perform a
primary action comprises determining whether a user has
specified said primary action, and if not, said second process
performing an alternate action using said first item from said
first process.

7. The method of claim 6 wherein said alternate action is
specified by said user selecting an alternate action indication
CaS.

