发明名称
用于诊断和治疗的方法和化合物

摘要
本发明提供了用于癌症诊断和预后的方法。本发明还提供了在例如这样的方法中使用的结合剂和试剂盒。本发明还涉及组合物、制造所述组合物的方法及其应用方法，包括在癌症的治疗和诊断中的应用，所述癌症包括胰腺癌、淋巴瘤、肝癌、甲状腺癌和乳腺癌。本发明的可应用于治疗癌症的组合物包括反义 RNA 和小抑制 RNA（siRNA）。
1. 在对象中诊断癌症的方法，所述方法包括下列步骤：
 i) 提供待测试的分离的生物学样品；
 ii) 检测所述样品中是否存在 Ciz1b- 变体多肽；
 其中所述样品中存在所述 Ciz1b- 变体多肽指示所述对象患有癌症。
2. 权利要求 1 的方法，其中所述癌症选自肺癌、淋巴癌、肾癌、乳腺癌、肝癌、膀胱癌和
 甲状腺癌。
3. 用于在对象中早期检测肺癌的方法，所述方法包括下列步骤：
 i) 提供待测试的分离的生物学样品；
 ii) 检测所述样品中是否存在 Ciz1b- 变体多肽；
 其中所述样品中存在所述 Ciz1b- 变体多肽指示所述对象患有癌症。
4. 用于在以前进行过肺癌治疗的对象中检测肺癌复发的方法，所述方法包括下列步骤：
 i) 从所述对象提供待测试的分离的生物学样品；
 ii) 检测所述样品中是否存在 Ciz1b- 变体多肽；
 其中所述样品中存在所述 Ciz1b- 变体多肽指示所述对象中肺癌的复发。
5. 在具有肺结节的对象中诊断癌症的方法，所述方法包括下列步骤：
 i) 提供待测试的分离的生物学样品；
 ii) 检测所述样品中是否存在 Ciz1b- 变体多肽；
 其中所述样品中存在所述 Ciz1b- 变体多肽指示所述对象患有癌症。
6. 在怀疑患有肺炎或肺癌的对象中将肺癌与肺炎差异诊断的方法；
 i) 从所述对象提供待测试的分离的生物学样品；
 ii) 检测所述样品中是否存在 Ciz1b- 变体多肽；
 其中所述样品中存在所述 Ciz1b- 变体多肽指示所述对象患有癌症。
7. 权利要求 1 至 6 任一项的方法，其中所述癌症是非小细胞肺癌 (NSCLC)。
8. 权利要求 1 至 6 任一项的方法，其中所述肺癌是小细胞肺癌 (SCLC)。
9. 权利要求 7 的方法，其中所述肺癌是 0 期 NSCLC。
10. 权利要求 7 的方法，其中所述肺癌是 1A 期 NSCLC。
11. 权利要求 7 的方法，其中所述肺癌是 1B 期 NSCLC。
12. 权利要求 8 的方法，其中所述肺癌是局限期 SCLC。
13. 权利要求 5 的方法，其中所述肺结节的直径小于约 20mm。
14. 权利要求 13 的方法，其中所述肺结节小于约 15mm。
15. 权利要求 14 的方法，其中所述肺结节小于约 10mm 或为约 10mm。
16. 权利要求 15 的方法，其中所述肺结节小于约 7.5mm。
17. 权利要求 16 的方法，其中所述肺结节在约 5mm 至约 10mm 之间。
18. 权利要求 1-17 任一项的方法，其中所述方法包括对所述对象的肺进行成像的步骤。
19. 权利要求 18 的方法，其中所述成像还包括执行胸部 X-射线、计算机断层 (CT) 扫
 描、磁共振成像 (MRI) 扫描或正电子发射断层 (PET) 扫描的步骤，并且其中所述成像单独不
 足以进行癌症的所述诊断。
20. 权利要求 19 的方法，其中所述成像包括执行胸部 X-射线的步骤。
21. 权利要求 19 的方法，其中所述成像包括执行计算机断层（CT）扫描的步骤。
22. 权利要求 21 的方法，其中所述 CT 扫描是低剂量螺旋计算机断层 CT 扫描。
23. 权利要求 19 的方法，其中所述成像包括执行 MRI 扫描的步骤。
24. 权利要求 19 的方法，其中所述成像包括执行 PET 扫描的步骤。
25. 在进行肺癌治疗的对象中指示癌细胞死亡的方法，其中所述方法包括下列步骤：
i）在所述治疗之前和之后从所述对象提供待测试的分离的生物学样品；
ii）检测在所述治疗之前和之后所述生物学样品中存在的所述 Ciz1b- 变体多肽的量；
其中在治疗之后所述 Ciz1b- 变体多肽的量增加指示肿瘤细胞死亡。
26. 权利要求 1-25 任一项的方法，其中所述 Ciz1b- 变体多肽包含氨基酸序列
DEEEIEVSRDIS (SEQ ID NO:8)。
27. 权利要求 26 的方法，其中所述 Ciz1b- 变体多肽包含 SEQ ID NO:22 的氨基酸序列。
28. 权利要求 1-27 任一项的方法，其中所述生物学样品是组织、血液、血浆、痰液、支气
管肺泡灌洗液、支气管肺泡刷检物或尿液。
29. 权利要求 28 的方法，其中所述生物学样品是组织。
30. 权利要求 29 的方法，其中所述组织是肺组织。
31. 权利要求 28 的方法，其中所述生物学样品是血液。
32. 权利要求 31 的方法，其中所述生物学样品是分离的 CTC。
33. 权利要求 28 的方法，其中所述生物学样品是血浆。
34. 权利要求 28 的方法，其中所述生物学样品是痰液。
35. 权利要求 28 的方法，其中所述生物学样品是支气管肺泡灌洗液。
36. 权利要求 28 的方法，其中所述生物学样品是尿液。
37. 权利要求 1-29 和 33-36 任一项的方法，其中所述 Ciz1b- 变体多肽是细胞外多肽。
38. 权利要求 33 的方法，其中测试小于 100 μL 的所述生物学样品中所述 Ciz1b- 变体
多肽的存在。
39. 权利要求 38 的方法，其中测试小于 50 μL 的所述生物学样品中所述 Ciz1b- 变体多肽的存在。
40. 权利要求 39 的方法，其中测试小于 25 μL 的所述生物学样品中所述 Ciz1b- 变体多肽的存在。
41. 权利要求 40 的方法，其中测试小于 10 μL 的所述生物学样品中所述 Ciz1b- 变体多肽的存在。
42. 权利要求 40 的方法，其中测试小于 5 μL 的所述生物学样品中所述 Ciz1b- 变体多肽的存在。
43. 权利要求 41 的方法，其中测试小于 1 μL 的所述生物学样品中所述 Ciz1b- 变体多肽的存在。
44. 权利要求 41 的方法，其中测试 0.5-5 μL 之间的所述生物学样品中所述 Ciz1b- 变体多肽的存在。
45. 权利要求 41 的方法，其中测试 0.25-5 μL 之间的所述生物学样品中所述 Ciz1b- 变体多肽的存在。
46. 权利要求41的方法，其中测试0.25-2μL之间的所述生物学样品中所述Ciz1b-变体多肽的存在。

47. 权利要求41的方法，其中测试0.5-1.5μL之间的所述生物学样品中所述Ciz1b-变体多肽的存在。

48. 权利要求41的方法，其中测试约1μL的生物学样品中所述Ciz1b-变体多肽的存在。

49. 权利要求1-48任一项的方法，其中所述方法还包括将所述生物学样品与Ciz1b-变体多肽结合剂相接触的步骤。

50. 权利要求49的方法，其中所述Ciz1b-变体多肽结合剂是抗体或其抗原结合片段。

51. 权利要求50的方法，其中所述抗体是多克隆抗体。

52. 权利要求50的方法，其中所述抗体是单克隆抗体。

53. 权利要求50的方法，其中所述抗原结合片段选自Fab, Fab’, F(ab’)_2, scFv或sdAb。

54. 权利要求49的方法，其中所述Ciz1b-变体多肽结合剂是核酸适体。

55. 权利要求49的方法，其中所述Ciz1b-变体多肽结合剂是肽适体。

56. 权利要求49的方法，其中所述Ciz1b-变体多肽结合剂是肽模拟物。

57. 权利要求49-56任一项的方法，其中所述Ciz1b-变体多肽结合剂特异性结合包含氨基酸序列SEQ ID NO:22的Ciz1b-变体多肽。

58. 权利要求57的方法，其中所述Ciz1b-变体多肽结合剂特异性结合包含SEQ ID NO:8的氨基酸序列的Ciz1b-变体多肽。

59. 权利要求57的方法，其中所述Ciz1b-变体多肽结合剂特异性结合跨越外显子14b和15的表位。

60. 权利要求58的方法，其中所述结合剂与包含SEQ ID NO:8的氨基酸序列的Ciz1b-变体多肽特异性结合的亲和性比所述结合剂与包含SEQ ID NO:23的氨基酸序列的Ciz1多肽结合的亲和性高至少100倍。

61. 权利要求60的方法，其中所述结合剂与所述Ciz1b-变体多肽特异性结合的亲和性比所述结合剂与所述Ciz1多肽结合的亲和性高至少1,000倍。

62. 权利要求60的方法，其中所述结合剂与所述Ciz1b-变体多肽特异性结合的亲和性比所述结合剂与所述Ciz1多肽结合的亲和性高至少10,000倍。

63. 权利要求49-62任一项的方法，其中所述结合剂不特异性结合SEQ ID NO:23的氨基酸序列。

64. 权利要求49-63任一项的方法，其中所述方法还包括将所述生物学样品与第二Ciz1b-变体多肽结合剂相接触的步骤，其中所述第二Ciz1b-变体多肽结合剂识别跨越外显子14b和15的表位之外的其他表位。

65. 权利要求64的方法，其中所述第二Ciz1b-变体多肽结合剂是抗体或其抗原结合片段。

66. 权利要求65的方法，其中所述抗体是多克隆抗体。

67. 权利要求65的方法，其中所述抗体是单克隆抗体。

68. 权利要求65的方法，其中所述抗原结合片段选自Fab, Fab’, F(ab’)2, scFv或sdAb。

69. 权利要求64的方法，其中所述第二Ciz1b-变体多肽结合剂是核酸适体。
70. 权利要求 64 的方法，其中所述第二 Ciz1b- 变体多肽结合剂是肽适体。
71. 权利要求 64 的方法，其中所述第二 Ciz1b- 变体多肽结合剂是肽模拟物。
72. 权利要求 1-71 任一项的方法，其中所述方法还包括将所述 Ciz1b- 变体多肽固定在固体支持物上的步骤。
73. 权利要求 72 的方法，其中所述固体支持物是珠子。
74. 权利要求 72 的方法，其中所述固体支持物是微量滴定板。
75. 权利要求 64-74 任一项的方法，其中所述方法还包括将所述第二 Ciz1b- 变体多肽结合剂固定在固体支持物上的步骤。
76. 权利要求 75 的方法，其中当所述第二 Ciz1b- 变体多肽结合剂结合于所述固体支持物时，所述第二 Ciz1b- 变体多肽结合剂的结合将所述 Ciz1b- 变体多肽固定在所述固体支持物上。
77. 权利要求 1-76 任一项的方法，其中所述方法是夹心测定法。
78. 权利要求 77 的方法，其中所述方法是夹心免疫测定法。
79. 权利要求 1-78 任一项的方法，其中所述方法是 ELISA。
80. 分离的 Ciz1b- 变体多肽结合剂，其特异性结合 Ciz1b- 变体多肽。
81. 权利要求 80 的结合剂，其中所述 Ciz1b- 变体多肽结合剂特异性结合包含氨基酸序列 SEQ ID NO:22 的 Ciz1b- 变体多肽。
82. 权利要求 81 的结合剂，其中所述 Ciz1b- 变体多肽结合剂特异性结合包含 SEQ ID NO:8 的氨基酸序列的 Ciz1b- 变体多肽。
83. 权利要求 80 的结合剂，其中所述 Ciz1b- 变体多肽结合剂特异性结合跨越外显子 14b 和 15 的表位。
84. 权利要求 82 的结合剂，其中所述结合剂与包含 SEQ ID NO:8 的氨基酸序列的 Ciz1b- 变体多肽特异性结合的亲和性比所述结合剂与包含 SEQ ID NO:23 的氨基酸序列的 Ciz1 多肽结合的亲和性高至少 100 倍。
85. 权利要求 84 的结合剂，其中所述结合剂与所述 Ciz1b- 变体多肽特异性结合的亲和性比所述结合剂与所述 Ciz1 多肽结合的亲和性高至少 1,000 倍。
86. 权利要求 84 的结合剂，其中所述结合剂与所述 Ciz1b- 变体多肽特异性结合的亲和性比所述结合剂与所述 Ciz1 多肽结合的亲和性高至少 10,000 倍。
87. 权利要求 80-86 任一项的结合剂，其中所述结合剂不特异性结合 SEQ ID NO:23 的氨基酸序列。
88. 权利要求 80-87 任一项的 Ciz1b- 变体多肽结合剂，其中所述结合剂是分离的抗体或其抗原结合片段。
89. 权利要求 88 的抗体，其中所述抗体是多克隆抗体。
90. 权利要求 88 的抗体，其中所述抗体是单克隆抗体。
91. 权利要求 88 的抗原结合片段，其中所述抗原结合片段选自 Fab、Fab’、F(ab’)2、scFv 或 sdAb。
92. 权利要求 80-87 任一项的 Ciz1b- 变体多肽结合剂，其中所述第二 Ciz1b- 变体多肽结合剂是核酸适体。
93. 权利要求 80-87 任一项的 Ciz1b- 变体多肽结合剂，其中所述第二 Ciz1b- 变体多肽...
结合剂是肽适体。

94. 权利要求80-87任一项的Ciz1b-变体多肽结合剂，其中所述第二Ciz1b-变体多肽
结合剂是肽模拟物。

95. 分离的细胞，其表达权利要求80-91任一项的Ciz1b-变体多肽结合剂。

96. 分离的人类自身抗体，其特异性结合Ciz1b-变体多肽。

97. 在对象中诊断癌症的方法，所述方法包括下列步骤：
 i）提供待测试的分离的生物学样品；
 ii）检测含有编码Ciz1b-变体的核苷酸序列的mRNA；
 iii）检测含有编码Ciz1b-固定结构域的核苷酸序列的mRNA；
 iv）对含有编码所述Ciz1b-复制结构域的核苷酸序列的所述mRNA与含有编码所述Ciz1
固定结构域的核苷酸序列的所述mRNA的相对表达水平进行比较，其中至少2倍的相对表达
差异指示存在癌细胞。

98. 通过对Ciz1b复制结构域与Ciz1固定结构域的表达进行比较而在对象中诊断癌症
的方法，所述方法包括下列步骤：
 i）提供待测试的分离的生物学样品；
 ii）检测含有编码Ciz1b-复制结构域的核苷酸序列的mRNA；
 iii）检测含有编码Ciz1b-固定结构域的核苷酸序列的mRNA；
 iv）对含有编码所述Ciz1b-复制结构域的核苷酸序列的所述mRNA与含有编码所述Ciz1
固定结构域的核苷酸序列的所述mRNA的相对表达水平进行比较，其中至少2倍的相对表达
差异指示存在癌细胞。

99. 通过对含有Ciz1b-复制结构域的多肽与含有Ciz1b-固定结构域的多肽的表达进行比
较而在对象中诊断癌症的方法，所述方法包括下列步骤：
 i）提供待测试的分离的生物学样品；
 ii）检测含有编码Ciz1b-复制结构域和所述Ciz1b-固定结构域；
 iii）对所述样品中存在的所述Ciz1b-复制结构域与所述Ciz1b-固定结构域的相对水平进
行比较，其中Ciz1b-复制结构域与所述Ciz1b-固定结构域的相对水平的差异超过2倍指示存
在癌症。

100. 通过对Ciz1b-复制结构域与Ciz1b-固定结构域的表达进行比较来指示癌症患者的预
后的方法，所述方法包括下列步骤：
 i）提供待测试的分离的生物实体组织样品，其中所述组织与实体肿瘤相邻；
 ii）检测含有编码Ciz1b-复制结构域的核苷酸序列的mRNA；
 iii）检测含有编码Ciz1b-固定结构域的核苷酸序列的mRNA；
 iv）对含有编码所述Ciz1b-复制结构域的核苷酸序列的所述mRNA与含有编码所述Ciz1
固定结构域的核苷酸序列的所述mRNA的相对表达水平进行比较，其中至少2倍的相对表达
差异指示较差的预后。

101. 通过对含有Ciz1b-复制结构域的多肽与含有Ciz1b-固定结构域的多肽的表达进行比
较来指示癌症患者的预后的方法，所述方法包括下列步骤：
 i）提供待测试的分离的生物实体组织样品，其中所述组织与实体肿瘤相邻；
 ii）检测含有组织样品中的所述Ciz1b-复制结构域和所述Ciz1b-固定结构域；
 iii）对所述样品中存在的所述Ciz1b-复制结构域与所述Ciz1b-固定结构域的相对水平进
行比较，其中Ciz1b-复制结构域与所述Ciz1b-固定结构域的相对水平的差异超过2倍指示较
差的预后。
102. 用于在对象中对癌症进行诊断或预后的抗体，所述抗体包括下列步骤：(a) 定量检测源自于对象的生物样品中 Ciz1 蛋白，以及 (b) 将在所述对象的样品中检测到的所述 Ciz1 蛋白的水平与在对照样品中检测到的蛋白水平进行比较，其中与对照样品相比在对象的样品中检测到的 Ciz1 蛋白水平提高是对象患有癌症的指示。

103. 用于检测生物样品中的抗 Ciz1 抗体的方法，所述方法包括下列步骤：(a) 将含有抗 Ciz1 抗体的样品与含有 Ciz1 蛋白抗原的样品在使免疫特异性抗原-抗体结合反应能够发生的条件下进行接触；以及 (b) 检测所述样品中所述抗 Ciz1 抗体与所述 Ciz1 蛋白的免疫特异性结合。

104. 权利要求 103 的方法，其中检测所述样品中的所述抗 Ciz1 抗体的步骤包括使用与特异性针对所述样品中的抗 Ciz1 抗体相结合的信号组分。

105. 权利要求 103 的方法，其中通过免疫测定法测定所述样品中抗 Ciz1 抗体的存在，所述免疫测定法包括下列步骤：(a) 将一种或多种 Ciz1 蛋白固定在固体基材上；(b) 将所述固体基材与样品相接触；以及 (c) 检测所述样品中特异性针对所述 Ciz1 蛋白的抗 Ciz1 抗体的存在。

106. 用于在对象中对癌症进行诊断和预后的试剂盒，所述试剂盒包含用于检测生物学样品中 Ciz1 多肽的存在的组分。

107. 权利要求 106 的试剂盒，其中用于检测 Ciz1 多肽的存在的所述组分是 Ciz1 结合剂。

108. 权利要求 106 的试剂盒，其中所述 Ciz1 多肽是 Ciz1b 变体多肽。

109. 权利要求 106-108 任一项的试剂盒，其中用于检测 Ciz1 多肽的组分是抗 Ciz1 抗体。

110. 权利要求 109 的试剂盒，其中所述抗 Ciz1 抗体是标记的抗体。

111. 权利要求 110 的试剂盒，其中标记物是放射性标记物、荧光标记物、比色标记物或酶标记物。

112. 权利要求 109 的试剂盒，其还包含与抗 Ciz1 抗体免疫特异性结合的标记的第二抗体。

113. 用于检测生物学样品中抗 Ciz1 自身抗体的存在的试剂盒，所述试剂盒包含用于检测所述生物样品中所述抗 Ciz1 抗体的存在的组分。

114. 权利要求 113 的试剂盒，其中所述组分是 Ciz1 抗原。

115. 权利要求 114 的试剂盒，其中 Ciz1 抗原是标记的抗原。

116. 权利要求 113 或 114 的试剂盒，其中所述 Ciz1 抗原被连接于固相。

117. 分离的反义寡核苷酸、siRNA 或 shRNA，其靶向 Ciz1b 变体 mRNA。

118. 药物组合物，其包含权利要求 117 的反义寡核苷酸、siRNA 或 shRNA 以及药学可接受的赋形剂。

119. 权利要求 118 的药物组合物，其中所述反义寡核苷酸、siRNA 或 shRNA 通过 Ciz1 的跨越外显子 14b 与 15 的连接处的核苷酸序列靶向 Ciz1b 变体 mRNA。

120. 降低细胞中 Ciz1b 变体 mRNA 的表达的方法，所述方法包括将表达 b 变体 mRNA 的细胞与降低 b 变体 mRNA 的量的权利要求 117 的反义寡核苷酸、siRNA 或 shRNA 相接触的步骤。
121. 降低哺乳动物中 b-变体 mRNA 的表达的方法，所述方法包括向所述哺乳动物施用降低 b-变体 mRNA 的量的包含权利要求 117 的反义寡核苷酸、siRNA 或 shRNA 的组合物的步骤。
用于诊断和治疗的方法和化合物

【0001】相关申请

【0003】参考文献引用
【0004】美国临时申请61/370,479,61/372,981和61/442,823、PCT申请PCT/GB2010/000204和GB申请0901837.5在此予以全文引作参考。

背景技术
【0005】Cip1相互作用锌指蛋白1（Ciz1）（NCBI参考序列：NM_001131016.1）是细胞增殖所需要的。Ciz1定位于早S期中形成DNA复制位点的核基质结合焦点，并与包括周期蛋白A/CDK2、周期蛋白E/CDK2和p21cip1的细胞周期调控物相结合促进DNA复制的起始。在转录的情形中，Ciz1是雌激素反应性基因，其本身是雌激素受体（ER）的正辅助因子，能够增强ER向目标染色质的募集。在小鼠和人中，Ciz1被可选地剪接产生保守的同种型。正常Ciz1蛋白包含至少两个确定的功能性结构域，即“复制”结构域和“固定”结构域。

【0006】本发明部分涉及在包括小细胞肺癌（SCLC）、非小细胞肺癌（NSCLC）、淋巴瘤、甲状腺癌、肾癌和肝癌的癌症中发现Ciz1外显子14的可选剪接。本发明还涉及在包括NSCLC、乳腺癌、结肠癌、肾癌、肝癌、膀胱癌和甲状腺癌的癌症中发现复制或固定结构域的过量表达以及结构域表达与癌症期的关联性。本发明致力于解决对开发诊断测试和治疗方法的持续不断的需求，所述诊断测试和治疗方法基于Ciz1基因表达中的这些分子异常情况通过新的生物标志物和靶点来提高患有癌症例如肺癌患者的存活率。

【0007】发明概述
【0008】一方面，本发明涉及在对象中诊断癌症的方法，所述方法包括下列步骤：
【0009】i）提供待测试的分离的生物学样品；
【0010】ii）检测所述样品中是否存在Ciz1b-变体多肽；
【0011】其中存在所述Ciz1b-变体多肽指示所述对象患有癌症。
【0012】在一个实施方案中，所述癌症选自肺癌、淋巴瘤、肾癌、乳腺癌、肝癌、膀胱癌和甲状腺癌。

【0013】一方面，本发明涉及用于在对象中早期检测肺癌的方法，所述方法包括下列步骤：
【0014】i）提供待测试的分离的生物学样品；
【0015】ii）检测所述样品中是否存在Ciz1b-变体多肽；
【0016】其中所述样品中存在所述Ciz1b-变体多肽指示所述对象患有癌症。
【0017】一方面，本发明涉及用于在以前进行过肺癌治疗的对象中检测肺癌复发的方法，所述方法包括下列步骤：

9
i）从所述对象提供待测试的分离的生物学样品；

ii）检测所述样品中是否存在 Ciz1b 变体多肽；

其中所述样品中存在所述 Ciz1b 变体多肽指示所述对象中肿瘤的复发。

一方面，本发明涉及在具有肺结节的对象中诊断癌症的方法，所述方法包括下列步骤：

i）提供待测试的分离的生物学样品；

ii）检测所述样品中是否存在 Ciz1b 变体多肽；

其中所述样品中存在所述 Ciz1b 变体多肽指示所述对象患有癌症。

i）从所述对象提供待测试的分离的生物学样品；

ii）检测所述样品中是否存在 Ciz1b 变体多肽；

其中所述样品中存在所述 Ciz1b 变体多肽指示所述对象患有癌症。

在在本发明方法的一个实施方案中，所述癌症是非小细胞肺癌（NSCLC）。在另一个实施方案中，所述肺癌是小细胞肺癌（SCLC）。在另一个实施方案中，所述肺癌是 0 期 NSCLC。在另一个实施方案中，所述肺癌是 IA 期 NSCLC。在另一个实施方案中，所述肺癌是 IB 期 NSCLC。在另一个实施方案中，所述肺癌是 IIIA 期 SCLC。在另一个实施方案中，所述肺癌是 IIIB 期 SCLC。在另一个实施方案中，所述肺癌是 IIIC 期 SCLC。

在所述方法的一个实施方案中，所述肺结节直径小于约 20mm。在另一个实施方案中，所述肺结节直径小于约 15mm。在另一个实施方案中，所述肺结节直径小于约 10mm 或约 10mm。在另一个实施方案中，所述肺结节直径小于约 7.5mm。在另一个实施方案中，所述肺结节直径小于约 5mm 至约 10mm 之间。

在一个实施方案中，所述方法包括对所述对象的肺进行成像的步骤。在另一个实施方案中，所述成像还包括执行胸部 X- 射线、计算机断层（CT）扫描、磁共振成像（MRI）扫描或正电子发射断层（PET）扫描的步骤，并且其中所述成像单独不足以进行癌症的所述诊断。在另一个实施方案中，所述成像包括执行胸部 X- 射线的步骤。在另一个实施方案中，所述成像包括执行计算机断层（CT）扫描的步骤。在另一个实施方案中，所述 CT 扫描是低剂量螺旋计算机断层 CT 扫描。在另一个实施方案中，所述成像包括执行 MRI 扫描的步骤。在另一个实施方案中，所述成像包括执行 PET 扫描的步骤。

一方面，本发明涉及在进行肺癌治疗的对象中指示癌细胞死亡的方法，其中所述方法包括下列步骤：

i）在所述治疗之前和之后从所述对象提供待测试的分离的生物学样品；

ii）测定所述治疗之前和之后所述生物学样品中存在的所述 Ciz1b 变体多肽的量；

其中在治疗之后所述 Ciz1b 变体多肽的量增加指示肿瘤细胞死亡。

在所述方法的一个实施方案中，所述 Ciz1b 变体多肽包含氨基酸序列 DEEEIEVRSRDIS (SEQ ID NO:8)。在另一个实施方案中，所述 Ciz1b 变体多肽包含 SEQ ID NO:22 的氨基酸序列。

在所述方法的一个实施方案中，所述生物学样品是组织、血液、血浆、痰液、支气管肺泡灌洗液或尿液。在另一个实施方案中，所述生物学样品是组织。在另一个实施方案中，
所述组织是肺组织。在另一个实施方案中，所述生物学样品是血液。在另一个实施方案中，所述生物学样品是分离的 CTC。在另一个实施方案中，所述生物学样品是血浆。在另一个实施方案中，所述生物学样品是痰液。在另一个实施方案中，所述生物学样品是支气管肺泡灌洗液。在另一个实施方案中，所述生物学样品是尿液。在本发明方法的一个实施方案中，所述 Cizlb- 变体多肽是细胞外多肽。

[0038] 在所述方法的一个实施方案中，测试小于 100 μL 的所述生物学样品中所述 Cizlb- 变体多肽的存在。在另一个实施方案中，测试小于 50 μL 的所述生物学样品中所述 Cizlb- 变体多肽的存在。在另一个实施方案中，测试小于 25 μL 的所述生物学样品中所述 Cizlb- 变体多肽的存在。在另一个实施方案中，测试小于 10 μL 的所述生物学样品中所述 Cizlb- 变体多肽的存在。在另一个实施方案中，测试小于 5 μL 的所述生物学样品中所述 Cizlb- 变体多肽的存在。在另一个实施方案中，测试小于 1 μL 的所述生物学样品中所述 Cizlb- 变体多肽的存在。在另一个实施方案中，测试小于 0.5-5 μL 之间的所述生物学样品中所述 Cizlb- 变体多肽的存在。在另一个实施方案中，测试 0.25-5 μL 之间的所述生物学样品中所述 Cizlb- 变体多肽的存在。在另一个实施方案中，测试 0.25-2 μL 之间的所述生物学样品中所述 Cizlb- 变体多肽的存在。在另一个实施方案中，测试 0.5-1.5 μL 之间的所述生物学样品中所述 Cizlb- 变体多肽的存在。在另一个实施方案中，测试约 1 μL 的生物学样品中所述 Cizlb- 变体多肽的存在。

[0039] 在一个实施方案中，所述方法还包括将所述生物学样品与 Cizlb- 变体多肽结合剂相接触的步骤。在另一个实施方案中，所述 Cizlb- 变体多肽结合剂是抗体其或其抗原结合片段。在另一个实施方案中，所述抗体是多克隆抗体。在另一个实施方案中，所述抗体是单克隆抗体。在另一个实施方案中，所述抗原结合片段选自 Fab,Fab’,F(ab’),scFv 或 sdAb。在另一个实施方案中，所述 Cizlb- 变体多肽结合剂是核酸适体。在另一个实施方案中，所述 Cizlb- 变体多肽结合剂是肽适体。在另一个实施方案中，所述 Cizlb- 变体多肽结合剂是肽模拟物。

[0040] 在所述方法的一个实施方案中，所述 Cizlb- 变体多肽结合剂特异性结合包含氨基酸序列 SEQ ID NO :22 的 Cizlb- 变体多肽。在另一个实施方案中，所述 Cizlb- 变体多肽结合剂特异性结合包含 SEQ ID NO :8 的氨基酸序列的 Cizlb- 变体多肽。在另一个实施方案中，所述 Cizlb- 变体多肽结合剂特异性结合跨越外显子 14b 和 15 的表位。在另一个实施方案中，所述结合剂以与包含 SEQ ID NO :8 的氨基酸序列的 Cizlb- 变体多肽特异性结合的亲和性比所述结合剂与包含 SEQ ID NO :23 的氨基酸序列的 Cizlb- 变体多肽结合的亲和性高至少 100 倍。在另一个实施方案中，所述结合剂与所述 Cizlb- 变体多肽特异性结合的亲和性比所述结合剂与所述 Cizlb- 多肽结合的亲和性高至少 1,000 倍。在另一个实施方案中，所述结合剂与所述 Cizlb- 变体多肽特异性结合的亲和性比所述结合剂与所述 Cizlb- 多肽结合的亲和性高至少 10,000 倍。在另一个实施方案中，所述结合剂不特异性结合 SEQ ID NO :23 的氨基酸序列。

[0041] 在一个实施方案中，所述方法包括将所述生物学样品与第二 Cizlb- 变体多肽结合剂相接触的步骤，其中所述第二 Cizlb- 变体多肽结合剂识别跨越外显子 14b 和 15 的表位之外的其他表位。在另一个实施方案中，所述第二 Cizlb- 变体多肽结合剂是抗体或其抗原结合片段。在另一个实施方案中，所述抗体是多克隆抗体。在另一个实施方案中，所述抗
体是单克隆抗体。在另一个实施方案中，所述抗原结合片段选自 Fab、Fab’、F(ab’)2、scFv 或 sdAb。在另一个实施方案中，所述第二 Cizlb- 变体多肽结合剂是核酸适配体。在另一个实施方案中，所述第二 Cizlb- 变体多肽结合剂是肽适体。在另一个实施方案中，所述第二 Cizlb- 变体多肽结合剂是肽模拟物。

在一个实施方案中，所述方法还包括将所述 Cizlb- 变体多肽固定在固相支持物上的步骤。在另一个实施方案中，所述固相支持物是珠子。在另一个实施方案中，所述固相支持物是微量滴定板。在另一个实施方案中，所述方法还包括将所述第二 Cizlb- 变体多肽结合剂固定在固相支持物上的步骤。在另一个实施方案中，当所述第二 Cizlb- 变体多肽结合剂结合到固相支持物时，所述第二 Cizlb- 变体多肽结合剂将所述 Cizlb- 变体多肽固定在所述支持物上。在另一个实施方案中，所述方法是夹心测定法。在另一个实施方案中，所述方法是夹心免疫测定法。在另一个实施方案中，所述方法是 ELISA。

一方面，本发明涉及分离的 Cizlb- 变体多肽结合剂，其特异性结合 Cizlb- 变体多肽。

在一个实施方案中，所述 Cizlb- 变体多肽结合剂特异性结合包含氨基酸序列 SEQ ID NO:22 的 Cizlb- 变体多肽。在另一个实施方案中，所述 Cizlb- 变体多肽结合剂特异性结合包含 SEQ ID NO:8 的氨基酸序列的 Cizlb- 变体多肽。在另一个实施方案中，所述 Cizlb- 变体多肽结合剂特异性结合跨越外显子 14b 和 15 的表位。在另一个实施方案中，所述结合剂与包含 SEQ ID NO:8 的氨基酸序列的 Cizlb- 变体多肽特异性结合的亲和性比所述结合剂与包含 SEQ ID NO:23 的氨基酸序列的 Cizlb 多肽结合的亲和性高至少 100 倍。在另一个实施方案中，所述结合剂与所述 Cizlb- 变体多肽特异性结合的亲和性比所述结合剂与所述 Cizl 多肽结合的亲和性高至少 1,000 倍。在另一个实施方案中，所述结合剂与所述 Cizlb- 变体多肽特异性结合的亲和性比所述结合剂与所述 Cizlb 多肽结合的亲和性高至少 10,000 倍。在另一个实施方案中，所述结合剂不特异性结合 SEQ ID NO:23 的氨基酸序列。在另一个实施方案中，所述结合剂是分离的抗体或其抗原结合片段。在另一个实施方案中，所述抗体是多克隆抗体。在另一个实施方案中，所述抗体是单克隆抗体。在另一个实施方案中，所述抗原结合片段选自 Fab、Fab’、F(ab’)2、scFv 或 sdAb。在另一个实施方案中，所述结合剂是核酸适配体。在另一个实施方案中，所述结合剂是肽适体。在另一个实施方案中，所述结合剂是肽模拟物。

一方面，本发明涉及分离的细胞，其表达本发明的 Cizlb- 变体多肽结合剂。

一方面，本发明涉及分离的人类自身抗体，其特异性结合 Cizlb- 变体多肽。

一方面，本发明涉及在对象中诊断癌症的方法，所述方法包括下列步骤：

(i) 提供待测试的分离的生物学样品；

(ii) 确定所述生物学样品中是否存在 Cizlb- 变体转录本，其中所述 Cizlb- 变体转录本的存在指示所述生物学样品中存在的癌细胞。

一方面，本发明涉及通过对 Cizl 复制结构域与 Cizl 固定结构域的表达进行比较而诊断癌症的方法，所述方法包括下列步骤：

(i) 提供待测试的分离的生物学样品；

(ii) 检测包含编码 Cizl 复制结构域的核苷酸序列的 mRNA；

(iii) 检测包含编码 Cizl 固定结构域的核苷酸序列的 mRNA；
iv) 对包含编码所述 Cizl 复制结构域的核酸序列的所述 mRNA 与包含编码所述 Cizl 固定结构域的核酸序列的所述 mRNA 的相对表达水平进行比较;其中至少 2 倍的相对表达差异指示存在癌细胞。

[0055] 一方面,本发明涉及通过对包含 Cizl 复制结构域的多肽与包含 Cizl 固定结构域的多肽的表达进行比较而在对象中诊断癌症的方法,所述方法包括下列步骤:

i) 提供待测试的分离的生物学样品;

ii) 检测所述 Cizl 复制结构域和所述 Cizl 固定结构域;

iii) 对所述样品中存在的所述 Cizl 复制结构域与所述 Cizl 固定结构域的相对水平进行比较;其中 Cizl 复制结构域与所述 Cizl 固定结构域的相对水平的差异超过 2 倍指示存在癌症。

[0059] 一方面,本发明涉及通过对包含 Cizl 复制结构域与 Cizl 固定结构域的表达进行比较来指示癌症患者的预后的提示方法,所述方法包括下列步骤:

i) 提供待测试的分离的生物实体组织样品,其中所述组织与实体肿瘤相邻;

ii) 检测包含编码 Cizl 复制结构域的核酸序列的 mRNA;

iii) 检测包含编码 Cizl 固定结构域的核酸序列的 mRNA;

iv) 对包含编码所述 Cizl 复制结构域的核酸序列的所述 mRNA 与包含编码所述 Cizl 固定结构域的核酸序列的所述 mRNA 的相对表达水平进行比较;其中至少 2 倍的相对表达差异指示较差的预后。

[0064] 一方面,本发明涉及通过对包含 Cizl 复制结构域的多肽与包含 Cizl 固定结构域的多肽的表达进行比较来指示癌症患者的预后的提示方法,所述方法包括下列步骤:

i) 提供待测试的分离的生物实体组织样品,其中所述组织与实体肿瘤相邻;

ii) 检测所述组织样品中的所述 Cizl 复制结构域和所述 Cizl 固定结构域;

iii) 对所述样品中存在的所述 Cizl 复制结构域与所述 Cizl 固定结构域的相对水平进行比较;其中 Cizl 复制结构域与所述 Cizl 固定结构域的相对水平的差异超过 2 倍指示较差的预后。

[0068] 一方面,本发明涉及用于在对象中对癌症进行诊断或预后的提示方法,所述方法包括下列步骤:(a) 定量检测源自于对象的生物学样品中的 Cizl 蛋白;以及(b) 将在所述对象的样品中检测到的所述 Cizl 蛋白的水平与在对照样品中检测到的蛋白水平进行比较,其中与对照样品相比在对象的样品中检测到的 Cizl 蛋白水平提高是对象患有癌症的指示。

[0069] 一方面,本发明涉及用于检测生物样品中的抗 Cizl 抗体的方法,所述方法包括下列步骤:(a) 将含有抗 Cizl 抗体的样品与含有 Cizl 蛋白抗原的样品在使免疫特异性抗原-抗体结合反应能够发生的条件下进行接触;以及(b) 检测所述样品中所述抗 Cizl 抗体与所述 Cizl 蛋白的免疫特异性结合。

[0070] 在一个实施方案中,所述方法包括检测所述样品中的所述抗 Cizl 抗体的步骤,所述步骤包括使用与特异性针对所述样品中的抗 Cizl 抗体的抗体相结合的探信号组分。在另一个实施方案中,通过免疫测定法测定所述样品中抗 Cizl 抗体的存在,所述免疫测定法包括下列步骤:(a) 将一种或多种 Cizl 蛋白固定在固体基材上;(b) 将所述固体基材与所述样品相接触;以及(c) 检测所述样品中特异性针对所述 Cizl 蛋白的抗 Cizl 抗体的存在。

[0071] 一方面,本发明涉及用于在对象中对癌症进行诊断和预后的试剂盒,所述试剂盒
说明书记

包含用于检测生物学样品中 Ciz1 多肽的存在组分。在所述试剂盒的一个实施方案中，用于检测 Ciz1 多肽的存在组分是 Ciz1 结合剂。在另一个实施方案中，所述 Ciz1 多肽是 Ciz1 β 变体多肽。在另一个实施方案中，用于检测所述 Ciz1 多肽的所述组分是抗 Ciz1 抗体。在另一个实施方案中，所述抗 Ciz1 抗体是标记的抗体。在另一个实施方案中，标记物是放射性标记物、荧光标记物、比色标记物或酶标记物。在另一个实施方案中，所述试剂盒包含与所述抗 Ciz1 抗体免疫特异性结合的标记的第二抗体。

0072 一方面，本发明涉及用于检测生物学样品中抗 Ciz1 自身抗体的存在组分。所述试剂盒包含用于检测所述生物学样品中所述抗 Ciz1 抗体的存在组分。在所述试剂盒的一个实施方案中，所述组分是 Ciz1 抗原。在另一个实施方案中，所述 Ciz1 抗原是标记的抗原。在另一个实施方案中，所述 Ciz1 抗原被连接于固相。

0073 本发明还涉及组合物、制造所述组合物的方法及其应用方法，包括在癌症的治疗和诊断中的应用。

0074 一方面，本发明涉及反义寡核苷酸或 siRNA 或 shRNA，其靶向包含在本文中被称为外显子 14b（SEQ ID NO：3）的外显子 14 的变体的 Ciz1 的 mRNA。Ciz1 外显子 14b 与被称为外显子 14a（SEQ ID NO：1）的全长外显子 14 相比，在 3’末端缺少 24 个核苷酸。表达外显子 14b 不是外显子 14a（a- 变体）的 Ciz1 转录本被称为 Ciz1β 变体或简称 b- 变体。

0075 本发明的各个方面提供了适用于降低细胞中 b- 变体转录本的表达的化合物。

0076 一方面，本发明提供了反义寡核苷酸，其通过 Ciz1 的跨越外显子 14b 与 15 的接合处（SEQ ID NO：7 的 25-26 位核苷酸）的核苷酸序列靶向 Ciz1β 变体转录本。

0077 另一方面，本发明提供了 siRNA 或 shRNA，其通过 Ciz1 的跨越外显子 14b 与 15 的接合处（SEQ ID NO：7 的 25-26 位核苷酸）的核苷酸序列靶向 Ciz1β 变体转录本。

0078 另一方面，本发明提供了包含本发明的反义寡核苷酸的组合物。

0079 另一方面，本发明提供了包含本发明的 siRNA 或 shRNA 的组合物。

0080 另一方面，本发明提供了包含本发明的反义寡核苷酸以及药学可接受的赋形剂的药物组合物。

0081 另一方面，本发明提供了包含本发明的 siRNA 或 shRNA 以及药学可接受的赋形剂的药物组合物。

0082 另一方面，本发明提供了降低细胞中 b- 变体转录本的表达的方法，所述方法包括将表达 b- 变体转录本的细胞与降低 b- 变体的量的本发明的反义寡核苷酸、siRNA 或 shRNA 相接触的步骤。另一方面，本发明提供了降低非人类哺乳动物中 b- 变体转录本的表达的方法，所述方法包括向所述哺乳动物施用降低 b- 变体的量的包含本发明的反义寡核苷酸、siRNA 或 shRNA 的组合物的步骤。

0083 另一方面，本发明提供了降低人类中 b- 变体转录本的表达的方法，所述方法包括向所述哺乳动物施用降低 b- 变体的量的包含本发明的反义寡核苷酸、siRNA 或 shRNA 的组合物的步骤。

0084 在一个实施方案中，本发明的反义寡核苷酸、siRNA 或 shRNA 降低人类或人类细胞中 Ciz1β 变体转录本的表达，但是不降低包含外显子 14a 的 Ciz1 转录本的表达。另一方面，本发明提供了检测 b- 变体转录本的方法，所述方法包括将 b- 变体转录本与互补于所述 b- 变体转录本的全部或一部分的核酸在适合于所述 b- 变体转录本与所述核酸之间发生杂
交的条件下相接触的步骤，以及检测与所述 b- 变体转录本结合的所述核酸的步骤。在一个实施方案中，所述核酸是本发明的反义寡核苷酸或包含本发明的反义寡核苷酸的核酸序列。在一个实施方案中，互补于所述 b- 变体转录本的核酸，与所述 b- 变体转录本的全部或包括 Ciz1 的跨越外显子 14b 与 15 的接合处（SEQ ID NO:7 的 25-26 位核苷酸）的核苷酸序列的一部分杂交。在一个实施方案中，互补于所述 b- 变体转录本的核酸，与 SEQ ID NO:7 的核苷酸序列的全部或包括 SEQ ID NO:7 的 25-26 位核苷酸的一部分杂交。在一个实施方案中，所述反义寡核苷酸与 b- 变体杂交，但是不与 a- 变体转录本杂交。

[0085] 另一方面，本发明提供了制造本发明的化合物的方法。

[0086] 序列简述

[0087] SEQ ID NO:1 是被称为外显子 14a 的全长 Ciz1 外显子 14 的核苷酸序列。

[0088] SEQ ID NO:2 是被称为外显子 14a 的全长 Ciz1 外显子 14 的多肽序列。

[0089] SEQ ID NO:3 是在本文中被称为外显子 14b 的 Ciz1 外显子 14 的变体的核苷酸序列，其缺少外显子 14 的 3’ 末端的 24 个核苷酸。

[0090] SEQ ID NO:4 是被称为外显子 14b 的变体 Ciz1 外显子 14 的氨基酸序列，其缺少外显子 14 的 C0OH 末端的 8 个氨基酸残基。

[0091] SEQ ID NO:5 是 Ciz1 外显子 15 的核苷酸序列。

[0092] SEQ ID NO:6 是 Ciz1 外显子 15 的氨基酸序列。

[0093] SEQ ID NO:7 是 Ciz1b- 变体转录本的跨越外显子 14b 与 15 的剪接接合处的这部分的核苷酸序列。

[0094] SEQ ID NO:8 是 Ciz1b- 变体多肽的跨越外显子 14b 与 15 的剪接接合处的这部分的氨基酸序列。

[0095] SEQ ID NO:9 是复制结构域（外显子 3 中的甲硫氨酸至外显子 9 的末端）的氨基酸序列。

[0096] SEQ ID NO:10 是复制结构域的一部分（外显子 5-9）的氨基酸序列。

[0097] SEQ ID NO:11 是复制结构域的进一步限制化的一部分（外显子 5-9，不包括外显子 8 的内部部分）的氨基酸序列。

[0098] SEQ ID NO:12 是复制结构域（外显子 3 中的甲硫氨酸至外显子 9 的末端）的核苷酸序列。

[0099] SEQ ID NO:13 是复制结构域的一部分（外显子 5-9）的核苷酸序列。

[0100] SEQ ID NO:14 是复制结构域的进一步限制化的一部分（外显子 5-9，不包括外显子 8 的内部部分）的核苷酸序列。

[0101] SEQ ID NO:15 是固定结构域的氨基酸序列。

[0102] SEQ ID NO:16 是固定结构域的一部分的氨基酸序列。

[0103] SEQ ID NO:17 是固定结构域的进一步限制化的一部分的氨基酸序列。

[0104] SEQ ID NO:18 是固定结构域的核苷酸序列。

[0105] SEQ ID NO:19 是固定结构域的一部分的核苷酸序列。

[0106] SEQ ID NO:20 是固定结构域的进一步限制化的一部分的核苷酸序列。

[0107] SEQ ID NO:21 是外显子 14a 和 15 的氨基酸序列。

[0108] SEQ ID NO:22 是外显子 14b 和 15 的氨基酸序列。
SEQ ID NO:23 是 Ciz1a- 变体多肽的跨越外显子 14a 与 15 的剪接接合处的这部分的氨基酸序列。

详细描述

本发明涉及化合物和组合物以及制造所述化合物和组合物的方法及其应用方法。本发明的化合物和组合物例如可用于治疗和诊断癌症，包括肺癌、乳腺癌、结肠癌、肾癌、肝癌和淋巴瘤。

一方面，本发明涉及仅靶向 Ciz1 的 b- 变体转录本的反义寡核苷酸、siRNA 或 shRNA。

另一方面，本发明涉及包含仅靶向 Ciz1 的 b- 变体转录本的反义寡核苷酸、siRNA 或 shRNA 的组合物。

另一方面，本发明涉及包含本发明的反义寡核苷酸、siRNA 或 shRNA 以及药学可接受的赋形剂的药物组合物。

另一方面，本发明涉及使用 siRNA 或 shRNA 来降低 Ciz1b- 变体转录本的表达水平的方法。当在本文中使用时，术语"沉默"或"抑制"在指称基因表达时，是指基因表达的降低。术语"转录本"是指转录的 RNA 产物。在一个实施方案中，转录本是 mRNA。

本发明还涉及通过化学合成制备本发明的反义寡核苷酸、siRNA 或 shRNA 的方法。

本发明的反义寡核苷酸适合于检测 Ciz1b- 变体转录本的表达。一方面，所述反义寡核苷酸适合于降低哺乳动物细胞中 Ciz1b- 变体转录本的水平。本发明的反义寡核苷酸还适合于通过在 mRNA 水平上降低基因表达来降低由 Ciz1b- 变体 mRNA 编码的 Ciz1b- 变体蛋白的表达。

本发明的 siRNA 或 shRNA 适合于降低 Ciz1b- 变体转录本的水平。本发明的 siRNA 或 shRNA 还适合于通过在 mRNA 水平上降低基因表达来降低由 Ciz1b- 变体 mRNA 编码的蛋白的表达。

反义设计：适用于降低 Ciz1b- 变体转录本的水平的反义寡核苷酸是长度为 12 至 50 个核苷酸并包含与 SEQ ID NO:7 互补的至少 8 个连续核苷酸的单链寡核苷酸，所述连续核苷酸包括 SEQ ID NO:7 的 25-26 位核苷酸。

在实施方案中，反义寡核苷酸与 SEQ ID NO:7 之间的互补性使得反义寡核苷酸能够与包括 SEQ ID NO:7 的 25-26 位核苷酸的 SEQ ID NO:7 序列在严格杂交条件下杂交，其中“严格杂交”在本文中被定义为下面的杂交条件：400mM NaCl, 40mM PIPES pH6.4, 1mMEDTA, 70°C。

反义寡核苷酸的核苷酸可以是脱氧核糖核苷酸、核糖核苷酸、修饰的核糖核苷酸或其组合。当反义寡核苷酸被用于通过 RNaseH 降解 mRNA 时，通常至少一些核苷酸是脱氧核糖核苷酸。

siRNA 设计：本发明的 siRNA 包含两条核酸链，第一条是反义链和第二条是正义链。核酸通常由核糖核苷酸或修饰的核糖核苷酸构成，然而核苷酸可以包含脱氧核糖核苷酸 (DNA)。siRNA 还包含由反义链的全部或一部分和正义链的全部或一部分形成的双链核酸部分或双链体区。反义链的与正义链形成双链体区的这部分是反义链双链体区或简称反义双链体区，正义链的与反义链形成双链体区的这部分是正义链双链体区或简称正义双链体区。双链体区被定义为起始于反义链与正义链之间形成的第一碱基对，终止于反义链与
正义链之间形成的最后一个小碱基对，并包括第一个和最后一个碱基对。siRNA 在双链体区任一侧上的这部分是侧翼区。正义链在反义双链体区任一侧上的这部分是反义侧翼区。正义链在反义双链体区的 5'侧上的这部分是反义 5'侧翼区。正义链在反义双链体区的 3'侧上的这部分是反义 3'侧翼区。正义链在正义双链体区任一侧上的这部分是正义侧翼区。正义链在正义双链体区的 5'侧上的这部分是正义 5'侧翼区。正义链在正义双链体区的 3'侧上的这部分是正义 3'侧翼区。

[0124]使用本发明的 siRNA 或 shRNA 或其他相关设计进行的 RNAi 涉及在全部或一部分反义链与 SEQ ID NO:7 的核苷酸序列的包括 25-26 位核苷酸的这部分（“靶核酸”或“靶序列”）之间形成双链体区。更具体来说，“靶序列”是 SEQ ID NO:7 的包括 25-26 位核苷酸并与反义链形成双链体区的这部分，其被定义为起始于反义链与 SEQ ID NO:7 之间形成的第一个碱基对，终止于反义链与 SEQ ID NO:7 之间形成的最后一个碱基对。

[0125]反义链与正义链之间形成的双链体区可以但不必定与反义链和靶序列之间形成的双链体区相同。也就是说，正义链可以具有与靶核酸不同的序列，然而，反义链必须能够在生理条件下与正义链和靶核酸两者形成双链体结构。

[0126]在一个实施方案中，反义链与靶核酸之间的互补性是完全的（在任一核酸中没有核苷酸错配或增加/缺失的核苷酸）。在一个实施方案中，反义双链体区（反义链的与正义链形成双链体区的这部分）与靶核酸之间的互补性是完全的（在任一核酸中没有核苷酸错配或增加/缺失的核苷酸）。在另一个实施方案中，反义双链体区与靶核酸之间的互补性不是完全的。

[0127]在一个实施方案中，本发明的 siRNA 包含双链体区，其中反义双链体区具有 1,2 或 3 个不与正义双链体区中的核苷酸碱基配对的核苷酸，并且其中所述 siRNA 适用于降低 b- 变体转录本的表达。在另一个实施方案中，反义链具有 1,2 或 3 个不与正义链碱基配对的核苷酸，并且其中包含所述反义链的 siRNA 适用于降低 b- 变体转录本的表达。缺少碱基配对是由于碱基之间缺少互补性（即无 Watson-Crick碱基配对），或者由于不存在相应的核苷酸以致产生凸起或突出端。

[0128]在一个实施方案中，反义双链体区与正义双链体区在紧接杂交条件下杂交，其中“紧接杂交条件”被定义为：400mM NaCl, 40mMPIPES pH6.4, 1mM EDTA, 70°C。在另一个实施方案中，反义双链体区与靶核酸在紧接杂交条件下杂交。在另一个实施方案中，反义双链体区与正义双链体区和靶核酸两者在紧接杂交条件下杂交。

[0129]与本发明的 siRNA 类似，本发明的反义寡核苷酸可以与靶核酸完全互补，并且至少部分互补。在反义寡核苷酸与靶核酸之间的碱基互补性方面不是必然需要完全匹配，然而
而，反义寡核苷酸与靶核酸必须能够在生理条件下杂交。在一个实施方案中，反义寡核苷酸与靶核酸之间的互补性是完全的（在任一链中没有核苷酸错配或增加/缺失的核苷酸）。在另一个实施方案中，反义寡核苷酸与靶核酸之间的互补性不是完全的。在另一个实施方案中，反义寡核苷酸与靶核酸序列在严格杂交条件下杂交。

[0130] 长度：本发明的一个方面涉及构成反义寡核苷酸或siRNA的核酸和特定区域的长度。

[0131] 在某些实施方案中，本发明涉及反义寡核苷酸，其长度为12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50个核苷酸，包含与SEQ ID NO:7互补的至少8个连续核苷酸并包括25-26位核苷酸。

[0132] 在某些实施方案中，本发明涉及分离的反义寡核苷酸，其包含与SEQ ID NO:7互补的12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50个核苷酸，并包括25-26位核苷酸。

[0133] 在某些实施方案中，本发明涉及反义寡核苷酸，其由与SEQ ID NO:7互补的12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50个连续核苷酸构成，并包括SEQ ID NO:7的25-26位核苷酸。

[0134] 在一个实施方案中，本发明涉及包含反义链和正义链的siRNA；

[0135] 其中所述反义链和所述正义链的长度各自独立地小于或等于30个核苷酸；

[0136] 其中所述反义链包含正义双链体区；

[0137] 其中所述正义双链体区包含至少8个连续核苷酸的核苷酸序列，其中所述连续核苷酸包括SEQ ID NO:7的至少16个连续核苷酸的核苷酸序列。

[0138] 其中所述反义链包含反义双链体区；

[0139] 其中所述反义双链体区具有等于或大于所述正义双链体区的核苷酸长度，并且

[0140] 其中所述反义双链体区包含与所述正义双链体区互补的核苷酸序列。

[0141] 在一个实施方案中，本发明涉及包含反义链和正义链的siRNA；

[0142] 其中所述反义链和所述正义链的长度各自独立地小于或等于30个核苷酸；

[0143] 其中所述正义链包含正义双链体区；

[0144] 其中所述正义双链体区包含至少18个连续核苷酸的核苷酸序列，其中所述连续核苷酸包括SEQ ID NO:7的至少16个连续核苷酸的核苷酸序列。

[0145] 其中所述反义链包含反义双链体区；

[0146] 其中所述反义双链体区具有等于或大于所述正义双链体区的核苷酸长度，并且

[0147] 其中所述反义双链体区包含与所述正义双链体区互补的核苷酸序列。

[0148] 在一个实施方案中，本发明涉及包含反义链和正义链的siRNA；

[0149] 其中所述反义链和所述正义链的长度各自独立地小于或等于25个核苷酸；

[0150] 其中所述正义链包含正义双链体区；

[0151] 其中所述正义双链体区包含至少16个连续核苷酸的核苷酸序列，其中所述连续核苷酸包括SEQ ID NO:7的25-26位核苷酸；

[0152] 其中所述反义链包含反义双链体区；
其中所述反义双链体区具有等于所述反义双链体区的核苷酸长度，并且
其中所述反义双链体区包含与所述反义双链体区互补的核苷酸序列。
在一个实施方案中，本发明涉及包含反义链和正义链的siRNA；
其中所述反义链和所述正义链的长度各自独立地小于或等于25个核苷酸；
其中所述正义链包含反义双链体区；
其中所述正义双链体区包含含有SEQ ID NO:7的至少18个连续核苷酸的核苷酸序列，其中所述连续核苷酸包括SEQ ID NO:7的25-26位核苷酸；
其中所述反义链包含反义双链体区；
其中所述反义双链体区具有等于所述反义双链体区的核苷酸长度，并且
其中所述反义双链体区包含与所述反义双链体区互补的核苷酸序列。
在一个实施方案中，本发明涉及包含反义链和正义链的siRNA；
其中所述反义链和所述正义链的长度各自独立地为18-25个核苷酸；
其中所述正义链包含反义双链体区；
其中所述正义双链体区包含含有SEQ ID NO:7的至少16个连续核苷酸的核苷酸序列，其中所述连续核苷酸包括SEQ ID NO:7的25-26位核苷酸；
其中所述反义链包含反义双链体区；
其中所述反义双链体区具有等于所述反义双链体区的核苷酸长度，并且
其中所述反义双链体区包含与所述反义双链体区互补的核苷酸序列。
在一个实施方案中，本发明涉及包含反义链和正义链的siRNA；
其中所述反义链和所述正义链的长度各自独立地为18-25个核苷酸；
其中所述正义链包含反义双链体区；
其中所述正义双链体区包含含有SEQ ID NO:7的至少18个连续核苷酸的核苷酸序列，其中所述连续核苷酸包括SEQ ID NO:7的25-26位核苷酸；
其中所述反义链包含反义双链体区；
其中所述反义双链体区具有等于所述反义双链体区的核苷酸长度，并且
其中所述反义双链体区包含与所述反义双链体区互补的核苷酸序列。
在一个实施方案中，本发明涉及包含反义链和正义链的siRNA；
其中所述反义链和所述正义链的长度各自独立地为19-23个核苷酸；
其中所述正义链包含反义双链体区；
其中所述正义双链体区包含含有SEQ ID NO:7的至少18个连续核苷酸的核苷酸序列，其中所述连续核苷酸包括SEQ ID NO:7的25-26位核苷酸；
其中所述反义链包含反义双链体区；
其中所述反义双链体区具有等于所述反义双链体区的核苷酸长度，并且
其中所述反义双链体区包含与所述反义双链体区互补的核苷酸序列。
在一个实施方案中，本发明涉及包含反义链和正义链的siRNA；
其中所述反义链和所述正义链的长度各自为19-25个核苷酸；
其中所述正义链包含反义双链体区；
其中所述正义双链体区包含含有SEQ ID NO:7的至少19个连续核苷酸的核苷酸序列，其中所述连续核苷酸包括SEQ ID NO:7的25-26位核苷酸；
其中所述反义链包含反义双链体区；
其中所述反义双链体区具有等于所述正义双链体区的核苷酸长度，并且
其中所述反义双链体区包含与所述正义双链体区互补的核苷酸序列。
在一个实施方案中，本发明涉及包含反义链和正义链的 siRNA；
其中所述反义链和所述正义链的长度各自为 19-23 个核苷酸；
其中所述正义链包含正义双链体区；
其中所述正义双链体区包含含有 SEQ ID NO :7 的至少 19 个连续核苷酸的核苷酸序列，其中所述连续核苷酸包括 SEQ ID NO :7 的 25-26 位核苷酸；
其中所述反义链包含反义双链体区；
其中所述反义双链体区具有等于所述正义双链体区的核苷酸长度；并且回
其中所述正义双链体区包含与所述正义双链体区互补的核苷酸序列。
在一个实施方案中，本发明的 siRNA 或 shRNA 的反义链包含与选自下列的核苷酸序列互补的核苷酸序列：
5’ AAGAAGAAGAGGUGUGACG3’；
5’ AAGAAGAAGAGGUGUGACG3’；
5’ AAGAAGAAGAGGUGUGACG3’；
5’ AAGAAGAAGAGGUGUGACG3’；
5’ AAGAAGAAGAGGUGUGACG3’。
末端（突出端和平末端）：另一方面涉及 siRNA 的末端设计。本发明的 siRNA 可以包含突出端或者是平末端的。当在本文中使用时，“突出端”具有其在本领域中的正常和习惯的含义，即双链核酸中延伸到互补链的末端核苷酸之外的单链核酸部分。术语“平末端”包括两条链终止于同一位置的双链核酸，不论末端核苷酸是否碱基配对。
在一个实施方案中，平末端的末端核苷酸是碱基配对的。
在一个实施方案中，平末端的末端核苷酸不配对。
在一个实施方案中，本发明的 siRNA 在一个末端处具有 1、2、3、4 或 5 个核苷酸的突出端，并在另一个末端处具有平末端。
在一个实施方案中，siRNA 在两个末端处都具有 1、2、3、4 或 5 个核苷酸的突出端。
在一个实施方案中，siRNA 在两个末端处都是平末端的。
在一个实施方案中，siRNA 在由正义链的 5’—末端和反义链的 3’—末端所定义的末端处是平末端的。
在一个实施方案中，siRNA 在由正义链的 3’—末端和反义链的 5’—末端所定义的末端处是平末端的。
在一个实施方案中，siRNA 在由正义链和反义链中任一条链或两条链上的 3’—或 5’—末端处包含 1、2、3、4 或 5 个核苷酸的突出端。
在一个实施方案中，siRNA 在反义链上具有 1、2、3、4 或 5 个核苷酸的 3’—突出端，并且在另一个末端处是平末端的。
在一个实施方案中，siRNA 在正义链上具有 1、2、3、4 或 5 个核苷酸的 3’—突出端，并且在另一个末端处是平末端的。
在一个实施方案中，siRNA 在反义链上具有 1, 2, 3, 4 或 5 个核苷酸的 3’- 突出端，并且在另一个末端处是平末端的。

在一个实施方案中，siRNA 在反义链上具有 1, 2, 3, 4 或 5 个核苷酸的 5’- 突出端，并且在另一个末端处是平末端的。

在另一个实施方案中，siRNA 在反义链上具有 1, 2, 3, 4 或 5 个核苷酸的 3’- 突出端，并且在正义链上具有 1, 2, 3, 4 或 5 个核苷酸的 3’- 突出端。

在另一个实施方案中，siRNA 在反义链上具有 1, 2, 3, 4 或 5 个核苷酸的 5’- 突出端，并且在正义链上具有 1, 2, 3, 4 或 5 个核苷酸的 5’- 突出端。

对碱基部分的修饰；另一方面涉及对碱基部分的修饰。本发明的核酸的一个或多个核苷酸可以包含修饰的碱基。“修饰的碱基”是指在 1’ 位置处腺嘌呤、鸟嘌呤、胞嘧啶或尿嘧啶之外的其他核苷酸碱基。

在另一个实施方案中，本发明的反义寡核苷酸、siRNA 或 shRNA 包含至少一个含有修饰的碱基的核苷酸。

在另一个实施方案中，本发明的核酸包含修饰的核苷酸，其中修饰的核苷酸包含修饰的碱基，其中修饰的碱基选自 2- 氨基腺苷、2-6- 二氨基嘌呤、次黄苷、吡啶 -4- 酮、吡啶 -2- 酮、苯基、假尿嘧啶、2, 4, 6- 三甲氧基苯、3- 甲基尿嘧啶、二氢尿苷、苯基、氨基苯基、5- 甲基胞苷（例如 5- 甲基胞苷）、5- 甲基尿苷（例如 5- 甲基尿苷）、5- 卤代尿苷（例如 5- 溴尿苷）、6- 氨基乙嘧啶、6- 碳环碳苷（例如 6- 甲基尿苷）、丙炔、苯苷、2- 硫代尿苷、4- 硫代尿苷、胞苷、假尿苷（wybutoxosine）、4- 乙酰胞苷、5-（羧基羟甲基）尿苷、5’- 羧基甲基氨基甲基 -2- 硫代尿苷、5- 羧基甲基氨基甲基尿苷、β-D- 半乳糖苷硫苷、β-D- 甲基胺苷、1- 甲基次黄苷、2-2- 二甲基鸟苷、3- 甲基胞苷、2- 甲基腺苷、2- 甲基尿苷、N6- 甲基腺苷、7- 甲基鸟苷、5- 甲氧基氨基甲基 -2- 硫代尿苷、5- 甲基氨基甲基尿苷、5- 甲基氨基甲基尿苷、5- 甲氧基尿苷、5- 甲基 -2- 硫代尿苷、2- 甲基硫代 -N6- 异戊烯基腺苷、β-D- 甘露糖苷硫苷、尿苷 -5- 氧乙酰、2- 硫代胞苷、N4-ethanocytosine、8- 羟基 -N6- 甲基腺嘌呤、4- 乙酸胞嘧啶、5- 氢尿嘧啶、5- 溴尿嘧啶、5- 羧基甲基氨基甲基 -2- 硫代尿嘧啶、5- 羧基甲基氨基甲基尿嘧啶、二氢尿嘧啶、N6- 异戊基 - 腺嘌呤、1- 甲基假尿嘧啶、1- 甲基鸟嘌呤、2, 2- 二甲基鸟嘌呤、2- 甲基鸟嘌呤、3- 甲基胞嘧啶、N6- 甲基腺嘌呤、5- 甲氧基氨基甲基 -2- 硫代尿嘧啶、β-D- 甘露糖苷硫苷、5- 甲氧基氨基甲基尿嘧啶、2- 甲基硫代 -N6- 异戊烯基腺苷、尿嘧啶 -5- 氧乙酸甲酰、假尿嘧啶、2- 硫代胞苷、5- 甲基 -2- 硫代尿嘧啶、2- 硫代尿嘧啶、5- 羧基尿嘧啶、N8- 尿嘧啶 -5- 氧乙酸甲酰、尿嘧啶 -5- 氧乙酸、硫苷、2- 硫代胞嘧啶、5- 丙氨尿嘧啶、5- 丙基胞嘧啶、5- 乙基胞嘧啶、5- 乙基胞嘧啶、5- 丁基尿嘧啶、5- 戊基尿嘧啶、5- 戊基胞嘧啶和 2, 2- 二氨甲嘌呤、甲基假尿嘧啶、1- 甲基鸟嘌呤、1- 甲基胞嘧啶。

另一方面，本发明的反义寡核苷酸、siRNA 或 shRNA 包含脱碱基核苷酸。当在本文中使用时，术语“脱碱基”是指在 1’ 位置处缺少碱基或用其他化学基团代替碱基的部分，例如 3’, 3’- 连接或 5’, 5’- 连接的脱氧脱碱基核糖衍生物。当在本文中使用时，具有“修饰的碱基”核苷酸不包括脱碱基核苷酸。

对糖部分的修饰；另一方面涉及对糖部分的修饰。本发明的反义寡核苷酸、siRNA 或 shRNA 的一个或多个核苷酸可以包含修饰的核糖部分。

其中 2’-OH 被取代的 2’- 位置处的修饰包括选自下列的非限制性实例：烷基，取代
烷基，烷芳基，羟基，-F，-Cl，-Br，-CN，-CF3，-OCF3，-OCN，-O-烷基，-S-烷基，-O-烯丙基，-S-烯丙基，HS-烷基-OH，-O-烯基，-S-烯基，-N-烯基，-SO-烷基，-烷基-SH，-烷基-OH，-O-烷基-OH，-O-烷基-SH，-S-烷基-OH，-S-烷基-SH，-烷基-S-烷基，-烷基-O-烷基，-ONO2，-NO2，-N，-NH，烷基氨基，二烷基氨基，氨基烷基，氨基烷氧基，氨基酸，氨基酰基，-ONH2，-O-氨基烷基，-O-氨基酸，-O-氨基酰基，杂环烷基，-杂环烷氧基，-氨基烷基氨基，-胺基烷基氨基，-取代的甲硅烷基，-甲氧基乙基，-（MOE），烯基和炔基。其中2'羟基通过例如亚甲基桥连接到同一核酸的4'碳的“锁”核苷酸（LNA）也被包括作为本发明的2’修饰。优选的取代基是2’-甲氧基乙基，2'–OCH3，2’-O-烯丙基，2’-C-烯丙基和2’-氟。[0224] 在一个实施方案中，本发明的siRNA在反义链上的3,5,7,9,11,13,15和17位核苷酸处和正义链上的4,6,8,10,12,14和16位核苷酸处包含2’-OCH3修饰，其中所述反义链从5’-3’进行编号，所述正义链从3’-5’进行编号。[0225] 在一个实施方案中，本发明的siRNA在反义链上的7,9,11和13位核苷酸处和正义链上的8,10和12位核苷酸处包含2’-OCH3修饰，其中所述反义链从5’-3’进行编号，所述正义链从3’-5’进行编号。[0226] 在一个实施方案中，本发明的siRNA在反义链上的7,9和11位核苷酸处和正义链上的8,10和12位核苷酸处包含2’-OCH3修饰，其中所述反义链从5’-3’进行编号，所述正义链从3’-5’进行编号。[0227] 在另一个实施方案中，反义链包含1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24或25个2’-脱氧核苷酸。[0228] 在另一个实施方案中，正义链包含1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24或25个2’-脱氧核苷酸。[0229] 在另一个实施方案中，反义链包含1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24或25个2’-氟核苷酸。[0230] 在另一个实施方案中，正义链包含1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24或25个2’-氟核苷酸。[0231] 在另一个实施方案中，反义链中所述嘀咯核苷酸是2’-O-甲基五碳苷酸。在另一个实施方案中，反义链中所述呋喃核苷酸是2’-O-甲基五碳苷酸。在另一个实施方案中，反义链中所述吡啶核苷酸是2’-脱氧嘧啶核苷酸。在另一个实施方案中，反义链中所述嘌呤核苷酸是2’-脱氧嘌呤核苷酸。在另一个实施方案中，反义链中所述嘧啶核苷酸是2’-氟嘧啶核苷酸。在另一个实施方案中，反义链中所述嘧啶核苷酸是2’-氟嘧啶核苷酸。
嘌呤核苷酸。在另一个实施方案中，反义双链体区中的嘧啶核苷酸是 2’－氟嘧啶核苷酸。
在另一个实施方案中，反义双链体区中的嘌呤核苷酸是 2’－氟嘌呤核苷酸。在另一个实施
方案中，正义双链体区中的嘧啶核苷酸是 2’－0－甲基嘧啶核苷酸。在另一个实施方案中，
正义双链体区中的嘌呤核苷酸是 2’－0－甲基嘌呤核苷酸。在另一个实施方案中，正义双链
体区中的嘧啶核苷酸是 2’－脱氧嘧啶核苷酸。在另一个实施方案中，正义双链体区中的嘌
呤核苷酸是 2’－脱氧嘌呤核苷酸。在另一个实施方案中，正义双链体区中的嘧啶核苷酸是
2’－氟嘧啶核苷酸。在另一个实施方案中，正义双链体区中的嘌呤核苷酸是 2’－氟嘌呤核
苷酸。在另一个实施方案中，正义双链体区中的嘧啶核苷酸是 2’－脱氧嘧啶核苷酸。在另一个实
施方案中，反义双链体侧翼区中的嘧啶核苷酸是 2’－0－甲基嘧啶核苷酸。在另一个实施方
案中，反义双链体侧翼区中的嘌呤核苷酸是 2’－脱氧嘌呤核苷酸。在另一个实施方案中，
反义双链体侧翼区中的嘧啶核苷酸是 2’－氟嘧啶核苷酸。在另一个实施方案中，反义双链
体侧翼区中的嘌呤核苷酸是 2’－氟嘌呤核苷酸。在另一个实施方案中，反义双链体侧翼区中
的嘧啶核苷酸是 2’－脱氧嘧啶核苷酸。在另一个实施方案中，反义双链体侧翼区中的嘌
呤核苷酸是 2’－氟嘌呤核苷酸。在另一个实施方案中，反义双链体侧翼区中的嘧啶核苷酸是
2’－氟嘧啶核苷酸。在另一个实施方案中，反义双链体侧翼区中的嘌呤核苷酸是 2’－氟嘌
呤核苷酸。

[0232] 对磷酸酯骨架的修饰；另一要方面涉及对磷酸酯骨架的修饰。本发明的核酸的
所有或一部分核苷酸可以按如在未修饰的核酸中所存在的磷酸二酯键连接在一起。然而，本发明的核酸可以包含修饰的磷酸二酯键连接键。反义寡核苷酸或 siRNA 的反义链或
正义链的磷酸二酯连接键可以被修饰成独立地包括至少一个选自氮和磷的杂原子。在一个
实施方案中，将核糖核苷酸与相邻核糖核苷酸相连的磷酸酯键被修饰的基团代替。在一个
实施方案中，一个或多个将核糖核苷酸与相邻核糖核苷酸相连的磷酸酯基团被硫代磷酸
酯、烷基磷酸酯、二硫代磷酸酯、磷酸酯、烷基硫代磷酸酯、氨基磷酸酯、氨基甲酸酯、磷酸
三酯、氯基乙酯、酯或羧酸基酯代替。在一个实施方案中，代替磷酸酯基团的修饰的基团选自
硫代磷酸酯、甲基磷酸酯或氨基磷酸酯基团。在一个实施方案中，代替磷酸酯基团的修饰
的基团选自硫代磷酸酯、甲基磷酸酯或氨基磷酸酯基团。在一个实施方案中，反义寡核苷酸或
siRNA 的反义链的所有核苷酸通过磷酸二酯键连接在一起。在另一个实施方案中，siRNA 的
反义双链体区的所有核苷酸通过磷酸二酯键连接在一起。在另一个实施方案中，siRNA 的
正义链的所有核苷酸通过磷酸二酯键连接在一起。在另一个实施方案中，siRNA 的正义双
链体区的所有核苷酸通过磷酸二酯键连接在一起。在另一个实施方案中，siRNA 的正义双
链体区包含 1,2,3,4,5,6,7,8,9 或 10 个修饰的磷酸酯基团。在另一个实施方案中，siRNA 的正义双
链体区包含 1,2,3,4,5,6,7,8,9 或 10 个修饰的磷酸酯基团。在另一个实施方案中，siRNA 的正义双
链体区包含 1,2,3,4,5,6,7,8,9 或 10 个修饰的磷酸酯基团。在另一个实施方案中，siRNA 的正义双
链体区包含 1,2,3,4,5,6,7,8,9 或 10 个修饰的磷酸酯基团。
含一个或多个修饰的核苷酸、脱碱基核苷酸、无环或脱氧核糖核苷酸的核酸分子。

[0234] 在一个实施方案中，反义寡核苷酸或 siRNA 的正义和反义链两者的 5’-和 3’-末端核苷酸是未修饰的。在另一个实施方案中，siRNA 的正义链的 5’-末端核苷酸是修饰的。在另一个实施方案中，siRNA 的反义链的 3’-末端核苷酸是修饰的。在另一个实施方案中，siRNA 的正义链的 3’-末端核苷酸是修饰的。在另一个实施方案中，siRNA 的正义链的 3’-末端核苷酸是修饰的。在另一个实施方案中，siRNA 的反义链的 3’-末端核苷酸和 siRNA 的正义链的 3’-末端核苷酸是修饰的。在另一个实施方案中，siRNA 的正义链的 3’-末端核苷酸和 siRNA 的正义链的 5’-末端核苷酸是修饰的。在另一个实施方案中，siRNA 的反义链的 3’-末端核苷酸和 siRNA 的正义链的 5’-和 3’-末端核苷酸两者是修饰的。

[0235] 在另一个实施方案中，反义寡核苷酸或 siRNA 的反义链的 5’-末端核苷酸被磷酸化。在另一个实施方案中，siRNA 的正义链的 5’-末端核苷酸被磷酸化。在另一个实施方案中，siRNA 的反义链和正义链两者的 5’-末端核苷酸被磷酸化。在另一个实施方案中，siRNA 的反义链的 5’-末端核苷酸被磷酸化，并且正义链的 5’-末端核苷酸具有游离羟基（5’-OH）。在另一个实施方案中，siRNA 的反义链的 5’-末端核苷酸被磷酸化，并且正义链的 5’-末端核苷酸是修饰的。

[0236] 对 5’-和 3’-末端核苷酸的修饰不限于这些末端核苷酸上的 5’和 3’位置。对末端核苷酸的修饰的实例包括但不限于生物素、反向（脱氧）脱碱基、氨基、氧、氮、溴、CN、CF、甲基、乙基、羧酸酯、硫代、C3 至 C10 低级烷基、取代的低级烷基、烷芳基或芳烷基、OCF3、OCN、O-、S- 或 N- 烷基、O-,S- 或 N- 烷基、SOCH3、SO2CH3、ONa、NO2、N3、杂环烷基、杂烷烷基、氨基烷基或其取代的甲硅烷基等，其被描述在例如 PCT 专利申请 W099/54459、欧洲专利 EP0586520B1 或 EP061892B1 中。所述专利申请和专利在此以其全文引用为参考。当在本文使用时，“烷基”是指 C1-C12 烷基，“低级烷基”是指 C1-C6 烷基，包括 C1-C2、C3-C4、C5-C6 和 C6-烷基。

[0237] 另一方面，反义寡核苷酸的 5’-末端、反义链的 5’-末端、正义链的 5’-末端、反义寡核苷酸的 3’-末端、反义链的 3’-末端或正义链的 3’-末端被共价连接到前体药物部分。在一个实施方案中，所述部分在内含体中被切断。在一个实施方案中，所述部分在细胞质中被切断。

[0238] 在另一个实施方案中，反义链或正义链中任一条链或两条链的末端 3’-核苷酸或两个末端 3’-核苷酸是 2’-脱氧核苷酸。在另一个实施方案中，2’-脱氧核苷酸是 2‘-脱氧-嘧啶。在另一个实施方案中，2’-脱氧核苷酸是 2’-脱氧-胸苷。在另一个实施方案中，反义链或正义链中任一条链或两条链的末端 3’-核苷酸或两个末端 3’-核苷酸不碱基配对，即它们是一个或两个核苷酸的突出端。在一个实施方案中，反义和正义链两者的 3’末端具有 -TT 二核苷酸的突出端。

[0239] 本发明的一个方面涉及反义寡核苷酸的修饰以形成 gapmer。“gapmer”被定义为具有两侧非脱氧核苷酸区段的 2‘-脱氧寡核苷酸区的反义寡核苷酸。中央区被称为“间隙（gap）”。侧翼区段被称为“翼”。每个翼可以是一个或多个非脱氧核苷酸单体。在一个实施方案中，gapmer 是两侧为 5 个非脱氧核苷酸翼的 10 个脱氧核苷酸的间隙。这被称为 5-10-5gapmer。本领域技术人员可以容易地认识到其他构造。在一个实施方案中，翼包含 2’-O-(2’-甲基乙基) (2’-MOE) 修饰的核苷酸。在另一个实施方案中，gapmer 具
有硫代磷酸酯骨架。在另一个实施方案中，gapmer 具有 2′-MOE 羟和硫代磷酸酯骨架。本领域技术人员可以容易地认识到其他合适的修饰。

[0240] shRNA 和连接的 siRNA；另一方面涉及 shRNA 和连接的 siRNA。在本发明中，双链结构可以由两条分离的链即反义链和正义链形成。然而在本发明中，反义链和正义链也可以彼此共价连接。这样的连接可以发生在分别形成反义链和正义链的任何核酸链之间。这样的连接可以通过共价或非共价连接来形成。共价连接可以通过用优选选自亚甲基基和双官能团化合物的化合物将两条链分别连接一次或数次以及在一个或数个位置处连接来形成。这样的双官能团化合物优选选自双 (2-氯乙基) 胺、N-乙酰基 -N'-(p-乙酰基苯甲酰基) 乙胺、4-硫代尿嘧啶和补骨脂素。

[0241] 一方面，本发明的 siRNA 的反义链和正义链通过环结构相连。在一个实施方案中，所述环结构由非核酸聚合物构成。在另一个实施方案中，所述非核酸聚合物是聚乙二醇。在另一个实施方案中，反义链的 5′-末端连接到正义链的 3′-末端。在另一个实施方案中，反义链的 3′-末端连接到正义链的 5′-末端。

[0242] 在另一个实施方案中，本发明的 siRNA 的反义链和正义链通过由核酸构成的环连接。当在本文中使用时，核苷酸 (LNA) (Elayadi 和 Corey (2001) Curr Opin Investig Drugs. 2 (4): 558-61) 和肽核酸 (PNA) (被综述在 Faseb J. (2000) 14:1041-1060 中) 被视为核酸，并且也可以被用作形成环的聚合物。在一个实施方式中，核酸是核糖核酸。在一个实施方案中，核酸是脱氧核糖核酸。在一个实施方案中，siRNA 的反义链的 5′-末端连接到 siRNA 的正义链的 3′-末端。在另一个实施方案中，siRNA 的反义链的 3′-末端连接到 siRNA 的正义链的 5′-末端以形成 shRNA。环由最小长度为 4 个的核苷酸或核苷酸类似物构成。在某些实施方案中，环由 4、5、6、7、8、9、10、11、12、13、14 或 15 个核苷酸或核苷酸类似物构成。在另一个实施方案中，环的核苷酸序列是反义链的一部分。在另一个实施方案中，环的核苷酸序列是正义链的一部分。在另一个实施方案中，环的核苷酸序列是异源序列，即不与靶序列相同或互补。

[0243] 可以将核糖核酸构建物整合到适合的表达载体系统中。优选情况下，载体包含用于表达 RNA1 的启动子。优选情况下，相应的启动子是 pol III，更优选情况下，启动子是 U6、H1、7SK 启动子，如 Good 等，(1997) Gene Ther, 4, 45-54 中所述。

[0244] 制造方法：可以使用本领域中的常规方法来生产本发明的核酸，所述方法包括化学合成或在体外 (例如失控转录) 或体内表达核酸。在一个实施方案中，使用固相化学合成来生产反义寡核苷酸或 siRNA。在另一个实施方案中，使用表达载体来生产核酸。在一个实施方案中，表达载体在靶细胞中产生本发明的核酸。因此，这样的载体可用于药物的制造。用于合成本文描述的核酸分子的方法对于本领域技术人员来说是已知的。

[0245] 在一个实施方案中，所述 siRNA 或 shRNA 是适用于真核表达的表达载体的一部分；优选情况下，所述 siRNA 或 shRNA 可操作地连接于至少一个启动子序列。

[0246] 在另一个实施方案中，本发明的所述表达盒被提供有至少两个启动子，所述启动子转录所述核酸分子的正义链和反义链两者。

[0247] 在本发明的另一个实施方案中，所述表达盒包含核酸分子，其中所述分子包含与第二部分相连的第一部分，其中所述第一部分和第二部分在其序列的至少一部分上是互补。
的，并且其中所述核酸分子的转录产生 RNA 分子，所述 RNA 分子通过所述第一部分和第二部分的互补碱基配对形成双链区，由此形成 shRNA。

【0248】“启动子”是本领域公知的术语，并且用于简便起见，包括仅作为示例提供的下述特点。增强子元件是通常存在于基因的转录起始位点的 5′侧的顺式作用核酸序列(增强子也可以存在于基因序列的 3′侧或甚至位于内含子序列中)。增强子起到增加与增强子相连的基因的转录速率的作用。增强子活性对已被显示出特异性结合于增强子元件的反式作用转录因子敏感。转录因子的结合/活性(请参见《真核转录因子》(Eukaryotic Transcription Factors)，David S Latchman,Academic Press Ltd, San Diego)对许多生理/环境信号敏感。

【0249】启动子元件还包括所谓的 TATA 盒和 RNA 聚合酶起始选择序列，所述 RNA 聚合酶起始选择序列起到选择转录起始位点的作用。这些序列也结合起来促进 RNA 聚合酶的转录起始选择等作用的多肽。

【0250】改造还包括提供可选择标记和自主复制序列，其有利于将所述载体维持在真核细胞或原核宿主中。自主维持的载体被称为游离型载体。

【0251】促进载体编码基因的表达的改造包括提供转录终止/多腺苷酸化序列。表达控制序列还包括所谓的基因座控制区 (LCR)。它们是在测定转基因构建物时为所连接的基因提供不依赖于位置的拷贝数依赖性表达的调控元件。LCR 包括使转入基因与相邻异染色质的沉默效果隔离的调控元件，Grosvd 等，Cell (1987)，51:975-985。

【0253】病毒或“病毒载体”作为治疗剂的使用在本领域中是公知的。此外，许多病毒通常作为载体用于外源基因的递送。通常使用的载体包括幼儿园的有包膜或无包膜的 DNA 和 RNA 病毒，优选选自反转录病毒科 (retroviridae)、杆状病毒科 (baculoviridae)、细小病毒科 (parvoviridae)、脉瘤病毒科 (herpesviridae)、痘病毒科 (poxviridae)、腺病毒科 (adenoviridae) 或小核糖核酸病毒科 (picornnaviridae)。也可以使用利用了每种实际载体性质的有利要素的嵌合载体(参见例如 Feng 等，(1997) Nature Biotechnology 15:866-870)。这样的病毒载体可以是野生型的，或者通过重组 DNA 技术被修饰成复制缺陷的、条件复制的或有复制能力的。

将不复制。这样的载体的实例被描述在 1997 年 12 月 16 日授权的 Henderson 等的美国专利 No. 5,698,443 和 1999 年 2 月 16 日授权的 Henderson 等的美国专利 No. 5,871,726 中。所述专利的全部教导内容在此引为参考。

【0256】在一个实施方案中，所述载体包括基本上是肺或癌症特异性的启动子。优选情况下，所述启动子优先在肿瘤细胞中是有活性的。

【0257】递送/制剂：反义寡核苷酸和 siRNA 可以通过本领域技术人员已知的各种方法以体外和体内两种方式递送至细胞，所述方法包括与细胞直接接触（“裸”递送）或通过与促进靶向或递送至细胞的一种或多种试剂相组合。这样的试剂和方法包括 lipoplex、脂质体、离子电渗、水凝胶、环糊精、纳米囊、微球和纳米球以及蛋白质载体（例如 Bioconjugate Chem.（1999）10：1068-1074 和 W000/53722）。

【0258】核酸组合物可以通过包括静脉内、皮下、肌内或皮内注射或吸入的各种手段进行局部或全身的体内递送。

【0259】本发明的分子可用作药剂。优选情况下，药剂防止、调节对象中疾病状态的出现或治疗所述疾病状态（在一定程度上缓解症状，优选所有症状）。在治疗癌症的情况下，所述治疗降低了对象中的肿瘤负荷或肿瘤质量。

No. 6, 395, 713 和 PCT W094/02595 (其中每个和此以其全文引为参考)。本发明的核酸也可以与其他治疗性化合物组合使用，可以分开或同时施用，例如作为组合的单位剂量。在一个实施方案中，本发明包括药物组合物，所述药物组合物在生理/药物可接受的赋形剂例如稳定剂、防腐剂、稀释剂、缓冲剂等中包含一种或多种本发明的核酸。

[0262] 适合于递送本发明的核酸的递送制剂的实例包括 W028137758 (US28317839A1) 和 W02904622A2 中所公开的制剂，所述每个专利以其全文引为参考。

[0264] 在一个实施方案中，PTD 是重复三次的 HIV-1 tat 蛋白 (RRKRRQRRRR) 的一部分。在一个实施方案中，DRBD 包含 RNA 酶的蛋白激酶 (PKR) 或 PKR 蛋白 (也称为真核转录起始因子 2-a 激酶 2 (EIF2AK2) 和 PRKR) 的 65 个氨基酸的部分 (FFMEELNTYRKQGVLKQ QELPNSGPPHD RRFTFQV11DGREFPPEGGRSKKEAANAAKAVEIL NKE)。在其他实施方案中，PTD 是疱疹病毒 VP22 蛋白、包含人免疫缺陷病毒 (HIV) Tat 蛋白的多肽、包含触足蛋白的同源结构域 (AnpHD) 的多肽及其功能片段。在其他实施方案中，DRBD 包含选自组蛋白、REDA-4 蛋白、鱼精蛋白以及下列 dsRNA 结合蛋白 (括号中为登记号) 的序列：PKR (AAA36409, AAA61926, Q03963), TRBP (P97473, AAA36765), PACT (AAC25672, MMM49947, NP609646), Staufen (AAD17531, AAF98119, AAD17529, P25159), NFAR1 (AF167569), NFAR2 (AF167570, AAF31446, AAC71052, AAA9960, AAA19961, AAG22859), SPNR (A20832, AAF59924, A57284), RHA (CAAT1668, ACO5725, AAF57297), NREBP (AA07692, AAF32120, AAF54409, T33856), kanadapatin (AA19277, AAB8891, AAF55852, NP499172, NP198700, BAB19354), HYLL (NP63850), hypasonic leaves (C505659, BAB00641), ADAR1 (AAB97118, P55266, AAK16102, AAB51687, AF051275), ADAR2 (P78563, P51400, AAK17102, AAF63702), ADAR3 (AFA70964, AAF18682, AAF68984), TENR (XP059592, CAA59168), RNase III (AFA05588, AAF59169, Z81070Q02555/S55784, P05797) 和 Dicer (BAAT8691, AF408-401, AAF56056, S41474, AA03534, Q0884), DCR1-4 (AY071926), FLJ20399 (NP060273, BAB26260), CG1434 (AAFA48360, EAA12065, CAA21662), CG13139 (XP059208, XP143416, XP110450, AAF52926, EEA14824), DGRK6 (BABA83032, XP10167), CG1800 (AAF57175, EAA08039), FLJ20036 (AAH22270, XP134159), MPR-L45 (BAB14234, XP129893), CG2109 (AAFA52025, CG12493 (NP647927), CG10630 (AAFA5777), CG17686 (AAD50502), T22A3.5 (CAB03384) 以及登记号 EAA14308。

[0265] 另一种适合的递送系统是 Calando Pharmaceuticals (以前的 Insert Therapeutics 和控股公司 Arrowhead Research Corporation 的子公司) 基于环糊精的递送，其被称为 RNAi/寡核苷酸纳米粒子递送 (RONDEL) 技术。
RONDEL的直链环糊精是通过将环状寡糖与含有化学连接基团的阳离子相连而形成的共聚物。存在于连接基团和末端基团中的胺和咪唑有助于在内涵体中的释放。这种被称为含环糊精聚阳离子（CDP）的聚合物与siRNA的有效载荷缩合。

环糊精分子的内核或核心是疏水的，并可用于包含疏水性化合物。形成的复合物被称为包含物。在RONDEL制剂中，环糊精亚基的疏水核心被用于锚定金刚烷-PEG偶联物分子。PEG与金刚烷偶联，然后PEG-金刚烷偶联物与直链环糊精（CDP）组合。为了将纳米粒子靶向特定细胞类型，将配方偶联在PEG-金刚烷分子的PEG部分上，形成金刚烷-PEG-配方偶联物。在RONDEL的情况下，人转铁蛋白（TF）是可以使用的配体的一个实例，因为大多数细胞在细胞表面上表达转铁蛋白受体。

本发明的组合物以有效量施用。"有效量"是单独或与其他剂型一起产生所需响应的组合物的量。在治疗特定疾病如癌症的情况下，所需响应是抑制疾病的进展。这可以包括仅暂时减缓疾病的进展，但是在更优选的情况下，它包括永久终止疾病的进展。这可以通过常规方法来监测。

当然，这样的量将取决于待治疗的具体病症、病症的严重性、包括年龄、性别、体重、个体患者参数、治疗的持续时间、同时进行的治疗（如果有的话）的性质、具体施用途径以及在卫生从业人员的知识和专业技术范围内的类似因素。这些因素对于本领域的普通技术人员来说是公知的，并且可以通过只是常规的实验来阐明。一般说来，优选使用各个组分或其组合的最大剂量，也就是说，符合合理医学判断的最高安全剂量。然而，本领域的普通技术人员应该理解，出于医学原因、心理学原因或事实上任何其他原因，患者可能坚持较低的剂量或可耐受的剂量。

在上述方法中使用的药物组合物优选为无菌的，并在适合于向患者施用的单个重量或体积中含有对于产生所需响应来说有效的量的本发明药物。

向对象施用的本发明的siRNA/shRNA的剂量可以根据不同参数，特别是根据所使用的施用方式和对象的状态来选择。其他因素包括所需的治疗时间长度。如果在所施加的初始剂量下对象中的响应不充分，则可以在患者耐受性许可的程度下使用更高的剂量（或通过不同的、更集中的递送途径提供更高的有效剂量）。

本发明的药物和药物组合物的剂量水平可以由本领域技术人员通过常规实验来确定。在一个实施方案中，单位剂量含有在约0.01mg/kg和约100mg/kg体重之间的核酸。在一个实施方案中，核酸剂量为约10mg/kg和约25mg/kg体重。在一个实施方案中，核酸剂量为约1mg/kg和约10mg/kg体重。在一个实施方案中，核酸剂量为约0.5mg/kg和约5mg/kg体重。在另一个实施方案中，核酸剂量为约0.1mg/kg和约1mg/kg体重。在另一个实施方案中，核酸剂量为约0.1mg/kg和约1mg/kg体重。在另一个实施方案中，siRNA/shRNA的剂量在1nM-1μM之间。在某些实施方案中，剂量可以在1nM-500nM、5nM-200nM和10nM-100nM的范围内。用于施用组合物的其他方案对于本领域的普通技术人员来说是已知的，其中剂量、注射时间安排、注射点、施用方式等随着上述因素而变。应考虑的哺乳动物施用组合物（例如用于测试目的或兽医治疗目的）在与上述基本上相同的条件下进行。当在本文中使用时，对象是哺乳动物，优选为人，包括非人类灵长类动物、牛、马、猪、绵羊、山羊、狗和啮齿动物。

在施用时，以药学可接受的量并以药学可接受的组合物施加本发明的药物制剂。术语"药学可接受"是指不影响活性成分的生物学活性的有效性的无毒性材料。这样的制剂常规情况下可以含有盐、缓冲剂、防腐剂、相容性载体和任选的其他治疗剂。方便情况
下，药物组合物可以以单剂型存在，并且可以通过药物学领域中公知的任何方法来制备。 [0280] 在一个实施方案中，药物组合物是无菌水性悬液或溶液。在另一个实施方案中，药物组合物是无菌可注射水性悬液或溶液。在一个实施方案中，药物组合物是冷冻干燥形式。在一个实施方案中，药物组合物包含冷冻干燥的 lipoplex，其中所述 lipoplex 包含本发明的核酸。在一个实施方案中，药物组合物包含 lipoplex 的水性悬液，其中所述 lipoplex 包含本发明的核酸。

[0281] 本发明的药物组合物和药物可以被施用于哺乳动物。在一个实施方案中，哺乳动物选自人类、狗、猫、马、牛、猪、山羊、绵羊、小鼠、大鼠、仓鼠和豚鼠。在一个实施方案中，哺乳动物是人类。在另一个实施方案中，哺乳动物是非人类哺乳动物。

[0282] 当在本文中使用时，术语“癌症”或“癌性”是指细胞具有自主生长的能力，即以快速增殖的细胞生长为特征的异常状态或状况。所述术语指包括所有类型的癌性生长或致瘤过程、转移性组织或恶性转化的细胞、组织或器官，而不论组织病理学类型或侵袭期如何。术语“癌症”包括各种器官系统的恶性肿瘤，例如影响例如肺、乳腺、甲状腺、淋巴、胃肠道和泌尿生殖系统的恶性肿瘤，以及癌肿，癌肿包括的恶性肿瘤例如为大多数结肠癌、肾细胞癌、前列腺癌和/或睾丸癌、非小细胞肺癌、小肠癌和食管癌。当在本文中使用时，术语“癌症复发”是指在身体内不能检测到癌细胞的一段时间后检测到癌症或癌症的返回。术语“癌”是本领域公知的，是指上皮或内分泌系统的恶性肿瘤，包括呼吸系统癌、胃肠道癌、生殖泌尿系统癌、睾丸癌、乳腺癌、前列腺癌、内分泌系统癌和黑色素瘤。示例性的癌包括从子宫颈、肺、前列腺、乳腺、头颈、结肠和卵巢的组织形成的癌。术语“癌”还包括癌肉瘤，其包括例如由癌性组织和肉瘤组织构成的恶性肿瘤。“癌”是指源自于有性组织或其中肿瘤细胞形成可识别的有性结构的癌。术语“癌”是本领域公知的，并且是指间质来源的恶性肿瘤。进一步的实例包括肺癌如小细胞肺癌或非小细胞肺癌。其他类型的肺癌包括神经内分泌癌、肉瘤和不同组织起源的转移癌。

[0283] 根据本发明的另一方面，提供了在对象中诊断癌症的方法，所述方法包括：

[0284] i）提供待测试的分离的生物样品；

[0285] ii）确定所述生物样品中是否存在 Ciz1b- 变体转录本；

[0286] 其中存在所述 Ciz1b- 变体转录本指示所述对象中存在癌症。

[0287] 在一个实施方案中，所述对象是人。

[0288] 在一个实施方案中，所述癌症是癌症复发。

[0289] 已在数种癌症中检测到 Ciz1b- 变体，包括肺癌（NSCLC 和 SCLC 两者）、乳腺癌、甲状腺癌、膀胱癌、肝癌、肾癌、淋巴癌和白血病。在一个实施方案中，所述癌症是肺癌。在一个实施方案中，所述癌症是 NSCLC。在一个实施方案中，所述癌症是 SCLC。在一个实施方案中，所述癌症是乳腺癌。在一个实施方案中，所述癌症是甲状腺癌。在一个实施方案中，所述癌症是大唾液腺癌。在一个实施方案中，所述癌症是乳腺癌。在一个实施方案中，所述癌症是乳腺癌。在一个实施方案中，所述癌症是乳腺癌。在一个实施方案中，所述癌症是乳腺癌。在一个实施方案中，所述癌症是乳腺癌。在一个实施方案中，所述癌症是乳腺癌。在一个实施方案中，所述癌症是乳腺癌。在一个实施方案中，所述癌症是乳腺癌。
实施方案中，所述淋巴瘤是结外边缘区 B 细胞淋巴瘤。在另一个实施方案中，所述淋巴瘤是脾边缘区 B 细胞淋巴瘤。在另一个实施方案中，所述淋巴瘤是套细胞淋巴瘤。在另一个实施方案中，所述癌症是白血病。在另一个实施方案中，所述白血病是慢性淋巴细胞白血病。在另一个实施方案中，所述白血病是慢性淋巴细胞白血病。

[0290] 在一个实施方案中，所述生物学样品选自：实体组织样品，血液，血浆，血清，痰液，尿液或支气管肺泡灌洗液。在另一个实施方案中，所述样品是实体组织样品。在另一个实施方案中，所述样品是血液。在另一个实施方案中，所述样品是血浆。在另一个实施方案中，所述样品是血清。在另一个实施方案中，所述样品是痰液。在另一个实施方案中，所述样品是尿液。在另一个实施方案中，所述样品是支气管肺泡灌洗液。在另一个实施方案中，所述生物学样品是循环的肿瘤细胞（CTC）。在另一个实施方案中，所述生物学样品中的 Ciz1b 变体转录本是细胞外的，即存在于细胞外部。

[0291] 在一个实施方案中，所述方法使用聚合酶链反应（PCR）来检测 Ciz1b 变体转录本的存在。在另一个实施方案中，在 PCR 中使用核苷酸引物来扩增跨越外显子 14b 与外显子 15 之间的接合处的核酸部分。在另一个实施方案中，使用 PCR 扩增的核酸产物包含核苷酸序列 5’TGACCTACCTGATCTCT3’。在另一个实施方案中，使用 PCR 扩增的核酸包含核苷酸序列 5’GATATATCTCTGGACCTACCTGATCTCTCTTCTCAC3’。在另一个实施方案中，所扩增的核酸产物具有正常的配对控制。

[0292] 在一个实施方案中，所述癌症是淋巴瘤、肺癌、乳腺癌、肾癌、甲状腺癌或结肠癌。在另一个实施方案中，所述癌症是小细胞肺癌（SCLC）。在另一个实施方案中，所述癌症是非小细胞肺癌。在另一个实施方案中，所述癌症是乳腺癌。在另一个实施方案中，所述癌症是肾癌。在另一个实施方案中，所述癌症是淋巴瘤。在另一个实施方案中，所述癌症是结肠癌。

[0293] 在一个实施方案中，用不切开核酸序列 5’GAAGAAGAGATCGAGGTGAGGTTCCA3’ 的限制性内切酶消化所述扩增产物。

[0294] 在一个实施方案中，所述限制性内切酶是 CAC81。

[0295] 在另一个实施方案中，所述核酸核苷酸引物对被改造成特异性扩增包含核酸序列 GAAGAAGAGATCGAGGTGAGGTTCCA 的核酸分子。

[0296] 在另一个实施方案中，所述引物对中的所述核酸核苷酸引物之一包含核酸序列 5’GAAGAAGATCGAGGTGAGGTC3’ 或由所述序列构成。

[0297] 在另一个实施方案中，所述核酸核苷酸引物对包含下列核酸序列或由其构成：

[0298] 5’GAAGAAGATCGAGGTGAGGTC3’；和

[0299] 5’GAAGAAGATCGAGGTGAGGTC3’。

[0300] 在另一个实施方案中，使用包含核酸序列 5’TGCACCTACCTGATCTCTCTTCTA3’ 或由其构成的寡核酸探针来检测含有序列 GAAGAAGAGATCGAGGTGAGGTTCCA 的扩增产物。

[0301] 在本发明的优选方法中，所述生物学样品包含肿瘤。

[0302] 在另一个实施方案中，所述诊断与适用于被诊断的癌症的治疗方案相组合。

[0303] 在另一个实施方案中，所述治疗方案包括使用抗癌剂。

[0304] 在另一个实施方案中，所述抗癌剂选自：顺铂，卡铂，伊立替康，拓扑替康，喜树碱，依托泊苷，多柔比星，紫杉醇，多西他赛，吉西他滨和长春瑞滨。

[0305] 在另一个实施方案中，所述抗癌剂是本发明的 siRNA 或 shRNA。
[0306] 在另一个实施方案中，所述治疗方案包括施用至少一种 siRNA 或 shRNA，并且分开、同时或相继地施用化疗剂。
[0307] 在另一个实施方案中，所述癌症是肺癌。在另一个实施方案中，所述肺癌是小细胞肺癌。在另一个实施方案中，所述肺癌是小细胞肺癌。
[0308] 在本发明的一个方面，提供了在患有癌症的人中检测从 Ciz1b- 变体 mRNA 翻译的 Ciz1b- 变体多肽的存在和方法。所述方法包括下列步骤：
[0309] i) 提供待测试的分离的生物学样品；
[0310] ii) 检测所述 Ciz1b- 变体多肽的存在。
[0311] 在一个实施方案中，所述生物学样品是血浆。
[0312] 在一个实施方案中，所述癌症是肺癌。
[0313] 在本发明的一个方面，提供了通过检测从 Ciz1b- 变体 mRNA 翻译的 Ciz1b- 变体多肽的存在而在对象中诊断癌症的方法。所述方法包括下列步骤：
[0314] i) 提供待测试的分离的生物学样品；
[0315] ii) 检测所述 Ciz1b- 变体多肽的存在，其中存在所述 Ciz1b- 变体多肽指示存在癌症。
[0316] 在一个实施方案中，所述对象是人。
[0317] 在一个实施方案中，所述生物学样品是血浆。
[0318] 在一个实施方案中，所述癌症是癌症复发。
[0319] 在一个实施方案中，所述癌症是肺癌。
[0320] 在本发明的一个实施方案中，提供了通过检测从 Ciz1b- 变体 mRNA 翻译的 Ciz1b- 变体多肽的存在而在对象中诊断癌症的方法。所述方法包括下列步骤：
[0321] i) 提供待测试的分离的生物学样品；
[0322] ii) 将所述生物学样品与特异性结合所述 Ciz1b- 变体多肽的抗体或其抗原结合段相接触；
[0323] iii) 检测与所述 Ciz1b- 变体多肽结合的所述抗体或抗原结合段的片段的存在，其中存在所述 Ciz1b- 变体多肽指示存在癌症。
[0324] 在一个实施方案中，所述癌症是癌症复发。
[0325] 在一个实施方案中，所述对象是人。
[0326] 在一个实施方案中，所述抗体特异性结合于所述 Ciz1b- 变体多肽，但是不特异性结合从包含外显子 14a 的 mRNA 翻译的 Ciz1 多肽。
[0327] 在一个实施方案中，所述生物学样品选自：实体组织样品、血液、血浆、血清、痰液、尿液或支气管肺泡灌洗液。在另一个实施方案中，所述生物学样品是实体组织样品。在另一个实施方案中，所述生物学样品是血液。在另一个实施方案中，所述生物学样品是血浆。在另一个实施方案中，所述生物学样品是血清。在另一个实施方案中，所述生物学样品是痰液。在另一个实施方案中，所述样品是尿液。在另一个实施方案中，所述生物学样品是支气管肺泡灌洗液。在另一个实施方案中，所述生物学样品是循环的肿瘤细胞 (CTC)。在另一个实施方案中，所述生物学样品中的 Ciz1b- 变体转录本是细胞外的，即存在于细胞外部。
[0328] 在一个实施方案中，所述癌症是肺癌。在另一个实施方案中，所述肺癌是 NSCLC。在另一个实施方案中，所述肺癌是 0 期 NSCLC。在另一个实施方案中，所述肺癌是 I 期 NSCLC。
在另一个实施方案中，所述肺癌是 II 期 NSCLC。在另一个实施方案中，所述肺癌是 III 期 NSCLC。在另一个实施方案中，所述肺癌是 IV 期 NSCLC。在另一个实施方案中，所述肺癌是 SCLC。在另一个实施方案中，所述肺癌是局限期 SCLC。在另一个实施方案中，所述肺癌是广泛期 SCLC。在另一个实施方案中，所述肺癌是乳腺癌。在另一个实施方案中，所述肺癌是甲状腺癌。在另一个实施方案中，所述肺癌是鳞状甲状腺癌。在另一个实施方案中，所述肺癌是淋巴瘤。在另一个实施方案中，所述肺癌是 B 细胞淋巴瘤。在另一个实施方案中，所述肺癌是霍奇金淋巴瘤。在另一个实施方案中，所述肺癌是弥漫性大 B 细胞淋巴瘤。在另一个实施方案中，所述肺癌是滤泡性淋巴瘤。在另一个实施方案中，所述肺癌是间变性大细胞淋巴瘤。在另一个实施方案中，所述肺癌是结外边缘区 B 细胞淋巴瘤。在另一个实施方案中，所述肺癌是套细胞淋巴瘤。在另一个实施方案中，所述肺癌是白血病。在另一个实施方案中，所述肺癌是慢性淋巴细胞白血病。在另一个实施方案中，所述肺癌是慢性淋巴细胞白血病。在另一个实施方案中，所述肺癌是浆细胞白血病。在另一个实施方案中，所述肺癌是骨髓瘤。在另一个实施方案中，所述肺癌是白血病。

[0329] 在一个实施方案中，所述 b- 变体多肽是蛋白水解切开的 Ciz1b - 变体多肽片段。在另一个实施方案中，所述多肽片段包含由外显子 14b 和 15 编码的多肽序列。在另一个实施方案中，所述多肽片段包含氨基末端序列 DEEEIEVRSRDIS。在一个实施方案中，取决于降解程度，所述片段在 8% SDS-PAGE 上以约 50-60kDa 之间的表观分子量迁移。在另一个实施方案中，所述片段在 8% SDS-PAGE 上以约 50kDa 的表观分子量迁移。在一个实施方案中，所述抗体特异性结合于包括由外显子 14b 和外显子 15 两者编码的氨基酸残基的连续序列。在一个实施方案中，所述抗体特异性结合于 Ciz1b - 变体多肽，但是不特异性结合于包含外显子 14a 的 mRNA 翻译的 Ciz1 多肽。在一个实施方案中，所述抗体与 Ciz1b - 变体多肽特异性结合的亲和性比所述抗体与从包含外显子 14a 的 mRNA 翻译的 Ciz1 多肽结合的亲和性高至少 10 倍。在一个实施方案中，所述抗体与 Ciz1b - 变体多肽结合的亲和性比所述抗体与从包含外显子 14a 的 mRNA 翻译的 Ciz1 多肽结合的亲和性高至少 100 倍。在一个实施方案中，所述抗体与 Ciz1b - 变体多肽结合的亲和性比所述抗体与从包含外显子 14a 的 mRNA 翻译的 Ciz1 多肽结合的亲和性至少 1,000 倍。在一个实施方案中，所述抗体与 Ciz1b - 变体多肽结合的亲和性比所述抗体与从包含外显子 14a 的 mRNA 翻译的 Ciz1 多肽结合的亲和性至少 100,000 倍。在一个实施方案中，所述抗体与 Ciz1b - 变体多肽特异性结合于氨基酸序列 DEEEIEVRSRDIS。
施方案中，所述抗体特异性结合于氨基酸序列DEEEEDEDEEEEIEVRSRDISREEWKGSE，但
是不特异性结合于氨基酸序列DEEEEDEDEEEEIEVRSRDISREEWKGSE。在另一
个实施方案中，所述抗体特异性结合于氨基酸序列EDEDEDEEEEIEVRSRDISREEWKG，但
是不特异性结合于氨基酸序列EDEDEDEEEEIEVRSRDISREEWKG。在另一个实
施方案中，所述抗体特异性结合于氨基酸序列DEDEDEEEEIEVRSRDISREEWKG，但
是不特异性结合于氨基酸序列EDEDEDEEEEIEVRSRDISREEWKG。在另一个实
施方案中，所述抗体特异性结合于氨基酸序列DEDEDEEEEIEVRSRDISREEWKG，但
是不特异性结合于氨基酸序列EDEDEDEEEEIEVRSRDISREEWKG。在另一个实
施方案中，所述抗体特异性结合于氨基酸序列EDEDEDEEEEIEVRSRDISREEWKG，但
是不特异性结合于氨基酸序列EDEDEDEEEEIEVRSRDISREEWKG。在另一个实
施方案中，所述抗体特异性结合于氨基酸序列EDEDEDEEEEIEVRSRDISREEWKG，但
是不特异性结合于氨基酸序列EDEDEDEEEEIEVRSRDISREEWKG。在另一个实
施方案中，所述抗体特异性结合于氨基酸序列EDEDEDEEEEIEVRSRDISREEWKG，但
是不特异性结合于氨基酸序列EDEDEDEEEEIEVRSRDISREEWKG。在另一个实
施方案中，所述抗体特异性结合于氨基酸序列DEDEDEEEEIEVRSRDISREEWKG，但
酸序列 DEEEIEVRSRD，但是不特异性结合于氨基酸序列 DEEEIEVEEELCKQVR SRD。在另一个实施方案中，所述抗体特异性结合于氨基酸序列 EIEVSR，但是不特异性结合于氨基酸序列 EIEVEEELCKQVR SRD。

[0332] 在本发明的另一方面，提供了产生本发明的单克隆抗体或其抗原结合片段的杂交瘤细胞系。

[0333] 本发明的另一方面是预测或确定通过胸部 X-射线、计算机断层 (CT) 扫描 (包括低剂量螺旋 CT 扫描)、磁共振成像 (MRI)、正电子发射断层 (PET) 扫描或其他成像方法观察到的肺结节是否是恶性的方法。肺结节，即肺中的小组织块，是相当常见的。尽管大多数肺结节是非恶性 (良性) 的，但某些代表了早期肺癌。在胸部 X-射线或 CT 扫描上，肺结节通常显现出圆形的白色阴影。肺结节的尺寸通常为约 1/5 英寸至 1 英寸，或 5 毫米 (mm) 至 25mm。

[0334] 一方面，本发明提供了通过检测 Ciz1b- 变体多肽的存在来预测或确定肺结节是否是恶性的方法，所述方法包括下列步骤：

[0335] i) 从具有肺结节的人提供待测试的分离的生物学样品；
[0336] ii) 将所述生物学样品与 Ciz1b- 变体多肽结合剂例如特异性结合所述 Ciz1b- 变体多肽的抗体或其抗原结合片段相接触；
[0337] iii) 检测与所述 Ciz1b- 变体多肽结合的所述 Ciz1b- 变体多肽结合剂 (抗体或抗原结合片段) 的存在，其中存在所述 Ciz1b- 变体多肽指示存在肺癌。

[0338] 在一个实施方案中，所述生物学样品是血浆。

[0339] 本发明的另一方面是用于在对象中早期检测肺癌的方法，所述方法包括下列步骤：

[0340] i) 提供待测试的分离的生物学样品；
[0341] ii) 检测 Ciz1b- 变体多肽的存在；
[0342] iii) 其中存在所述 Ciz1b- 变体多肽指示存在癌症。

[0343] 在一个实施方案中，所述肺癌是 0 期、IA 期或 IB 期 NSCLC。NSCLC 可以是 0 期至 IV 期。0 期被定义为原位癌。在 IA 期中，癌症仅在肺中，并且为 3cm 或更小。在 IB 期中，癌症 (a) 大于 3cm 但不大于 5cm，(b) 已扩散至支气管。和 / 或 (c) 已扩散至肺膜的最内层。SCLC 存在两个期，局限期和广泛期疾病。局限期 SCLC 对象具有局限于起源的单侧胸、纵隔或锁骨上淋巴结的肿瘤，在本领域中是公知的，并且通过国家癌症研究所 (National Cancer Institute) (NCI) (Bethesda, MD, USA) 出版的《医生数据咨询》(Physician Data Query) (PDQ) 来确定，所述文献以其全文引为参考。

[0344] 仅使用放射学，通常难以差异诊断肺炎和癌性病变。本发明的另一方面提供了通过检测本发明的 Ciz1b- 变体多肽的存在来差异诊断患者患有肺炎还是肺癌的方法，所述方法包括下列步骤：

[0345] i) 提供待测试的分离的生物学样品；
[0346] ii) 将所述生物学样品与特异性结合所述 Ciz1b- 变体多肽的抗体或其抗原结合片段相接触；
[0347] iii) 检测与所述 Ciz1b- 变体多肽结合的所述抗体或抗原结合片段的存在，其中存在所述 Ciz1b- 变体多肽指示存在癌症。

[0348] 在一个实施方案中，所述生物学样品选自：实体组织样品，血液，血浆，血清，痰液，
尿液或支气管肺泡灌洗液。在另一个实施方案中，所述生物学样品是实体组织样品。在另一个实施方案中，所述生物学样品是血液。在另一个实施方案中，所述生物学样品是血浆。在另一个实施方案中，所述生物学样品是血浆。在另一个实施方案中，所述生物学样品是尿液。在另一个实施方案中，所述生物学样品是支气管肺泡灌洗液。在另一个实施方案中，所述生物学样品是循环的肿瘤细胞（CTC）。在另一个实施方案中，所述癌症是肺癌。在另一个实施方案中，所述癌症是NSCLC。在另一个实施方案中，所述癌症是SCLC。

[0349] 本文中公开的用于检测癌症的方法具有在1个标准偏差下至少70%、至少75%、至少80%、至少85%、至少90%或至少94%的灵敏度。本文公开的用于检测癌症的方法具有在1个标准偏差下至少70%、至少75%、至少80%、至少85%或至少90%的特异性。灵敏度被定义为：(被正确诊断为患有癌症的对象的数量)/(患有癌症的对象的总数)×100 (在1SD下)。
特异性被定义为：(被正确诊断为患有无患有癌症的对象的数量)/(对象的总数)×100 (在1SD下)。

[0350] 使用所有可能的时间间隔下的灵敏度对1个特异性绘制ROC (受试者工作特性)曲线，以产生ROC曲线下面积(AUC)。出于方便，可以使用基于网络的计算器，例如可以在http://www.jrocfit.org获得的(用于连续分布数据的格式5)。

[0351] 大多数癌症疗法（放射、小分子药物或生物药物）是细胞毒性，通过触发凋亡或通过坏死或两者的组合来杀死细胞。此外，这些疗法一般对癌细胞不是完全特异的，取决于具体疗法和患者以或高或低的程度杀死正常细胞。非特异性杀死正常细胞引起剂量依
赖性副作用。正常细胞被杀死的程度随着患者而变，使得难以预测患者将经受剂量限制性毒性时的剂量。确定或预测患者何时已达到或将达到限制性治疗剂量的能力，将产生更好的患者护理。非特异性细胞毒性或剂量依赖性细胞毒性的程度可以通过将癌细胞死亡时释放的生物标志物的量与癌细胞或正常细胞死亡时释放的生物标志物的量进行比较来间接确定。一方面，本发明提供了通过将肿瘤细胞死亡时释放的Cizlβ-变体多肽的量与肿瘤细胞或正常细胞两者死亡时释放的细胞死亡生物标志物的量进行比较来测定由于治疗表达Cizlβ-变体多肽的癌症时所施用的癌症疗法引起的非特异性细胞毒性。Cizlβ-变体多肽与细胞死亡生物标志物的比率越低，非特异性细胞毒性越高。一方面，所述方法包括下列步骤：

[0352] i) 提供待测试的分离的生物学样品；
[0353] ii) 测定所述生物学样品中存在的所述Cizlβ-变体多肽的量，其中存在所述Cizlβ-变体多肽指示癌细胞的细胞毒性；
[0354] iii) 测定细胞死亡生物标志物的量，其中所述细胞死亡生物标志物指示癌细胞和正常细胞两者的细胞毒性；
[0355] iv) 将所述Cizlβ-变体多肽的量与所述细胞死亡生物标志物的量进行比较。
[0356] 在一个实施方案中，所述生物学样品选自：实体组织样品，血液，血浆，血清，痰液，尿液或支气管肺泡灌洗液。在另一个实施方案中，所述生物学样品是实体组织样品。在另一个实施方案中，所述生物学样品是血液。在另一个实施方案中，所述生物学样品是血浆。在另一个实施方案中，所述生物学样品是痰液。在另一个实施方案中，所述样品是尿液。在另一个实施方案中，所述生物学样品是支气
管肺泡灌洗液。
[0357] 在一个实施方案中，所述细胞死亡生物标志物是凋亡的生物标志物。在另一个实施方案中，所述细胞死亡生物标志物是坏死的生物标志物。在另一个实施方案中，所述细胞死亡生物标志物是凋亡和坏死两者的生物标志物。在另一个实施方案中，所述细胞死亡生物标志物是细胞角蛋白 18（CK18）。在另一个实施方案中，所述方法测定全长 CK18 的量。在另一个实施方案中，所述方法测定半胱天冬氨酸酶（caspase）切开的 CK18 的量。用于测定全长 CK18 和半胱天冬氨酸酶切开的 CK18 两者的抗体和试剂盒是可商购的。例如，用于检测半胱天冬氨酸酶切开的 CK18 的 M30AP0PT0SENSE 和用于检测全长 CK18 的 6SELISA 可以从 Peviva AB（Bromma, 瑞典）商购。在另一个实施方案中，所述细胞死亡生物标志物是核小体 DNA（nDNA）（也被称为组蛋白结合的 DNA）。用于测定 nDNA 的抗体和试剂盒是可商购的，例如细胞死亡检测 ELISA 可以从 Roche Diagnostics 商购。在另一个实施方案中，所述细胞死亡标志物是亲环蛋白 A。

[0358] 本发明的另一方面是通过测定在治疗过程之前的所述 Ciz1b- 变体转录本或多肽与在治疗过程期间和之后中任一或两种时间点的所述 Ciz1b- 变体转录本或多肽的相对量而在对象中确定癌症疗法的功效的方法。当在本文中使用时，“治疗过程”是指需要遵从一段特定时间的治疗方案。在一个实施方案中，所述方法包括下列步骤：

[0359] i) 在用所述癌症疗法治疗之前，从所述对象提供待测试的第一分离的生物样品；

[0360] ii) 在用所述癌症疗法治疗的过程期间，从所述对象提供待测试的第二分离的生物样品；

[0361] iii) 将每种所述生物样品单独与特异性结合所述 Ciz1b- 变体多肽的抗体或其抗原结合片段相接触；

[0362] iv) 测定每种所述生物样品中存在的所述 Ciz1b- 变体多肽的量；其中与第一样品相比第二样品中 Ciz1b- 变体多肽的量增加指示所述癌症疗法的功效。

[0363] 在另一个实施方案中，所述方法包括下述步骤：

[0364] i) 在用所述癌症疗法治疗之前，从所述对象提供待测试的第一分离的生物样品；

[0365] ii) 在用所述癌症疗法治疗的过程之后，从所述对象提供待测试的第二分离的生物样品；

[0366] iii) 将每种所述生物样品单独与特异性结合所述 Ciz1b- 变体多肽的抗体或其抗原结合片段相接触；

[0367] iv) 测定每种所述生物样品中存在的所述 Ciz1b- 变体多肽的量；其中与第一样品相比第二样品中 Ciz1b- 变体多肽的量降低指示所述癌症疗法的功效。

[0368] 在其他实施方案中，对上述方法进行修改以检测 Ciz1b- 变体转录本而不是 Ciz1b- 变体多肽。

[0369] 根据本发明的另一方面，提供了一种试剂盒，其包含用于检测含有核酸序列 5’GAGAGAGAGCGGGAGGGUCGAGA3’ 的 mRNA 分子的寡核苷酸引物和探针。

[0370] 在本发明的一个实施方案中，所述试剂盒包含含有下列核酸序列或由其构成的寡核苷酸引物和探针：5’ GAAGAGATCGGAGGTAGGC3’ 和 5’ TGGACCTACCTCGATCTCTCTTC3’。
[0371] 在本发明的优选实施方案中，所述试剂盒还包含热稳定 DNA 聚合酶和三磷酸脱氧核苷酸。在另一个实施方案中，所述试剂盒包含选择性扩增所述核酸分子所需的说明书。

[0372] 根据本发明的另一方面，提供了通过对照包含编码 Ciz1 复制结构域的核苷酸序列的 mRNA 与包含编码 Ciz1 固定结构域的核苷酸序列的 mRNA 的表达进行比较而在对象中诊断癌症的方法，所述方法包括下列步骤：

[0373] i) 提供待测试的分离的生物学样品；

[0374] ii) 检测包含编码 Ciz1 复制结构域的核苷酸序列的 mRNA 的存在；

[0375] iii) 检测包含编码 Ciz1 固定结构域的核苷酸序列的 mRNA 的存在；

[0376] iv) 对包含编码所述 Ciz1 复制结构域的核苷酸序列的所述 mRNA 与包含编码所述 Ciz1 固定结构域的核苷酸序列的所述 mRNA 的相对表达进行比较；其中至少 2 倍的相对表达差异指示了癌症。

[0377] 在本发明的一个实施方案中，提供了通过对包含 SEQ ID NO:12 的核苷酸序列的 mRNA 与包含核苷酸序列 SEQ ID NO:18 的 mRNA 的表达进行比较而在对象中诊断癌症的方法，所述方法包括下列步骤：

[0378] i) 提供待测试的分离的生物学样品；

[0379] ii) 检测包含 SEQ ID NO:12 的核苷酸序列的 mRNA 的存在；

[0380] iii) 检测包含 SEQ ID NO:18 的核苷酸序列的 mRNA 的存在；

[0381] iv) 对包含 SEQ ID NO:12 的核苷酸序列的所述 mRNA 与包含 SEQ ID NO:18 的核苷酸序列的所述 mRNA 的相对表达进行比较；其中至少 2 倍的相对表达差异指示了癌症。

[0382] 在本发明的另一个实施方案中，提供了通过对包含 SEQ ID NO:13 的核苷酸序列的 mRNA 与包含核苷酸序列 SEQ ID NO:19 的 mRNA 的表达进行比较而在对象中诊断癌症的方法，所述方法包括下列步骤：

[0383] i) 提供待测试的分离的生物学样品；

[0384] ii) 检测包含 SEQ ID NO:13 的核苷酸序列的 mRNA 的存在；

[0385] iii) 检测包含 SEQ ID NO:19 的核苷酸序列的 mRNA 的存在；

[0386] iv) 对包含 SEQ ID NO:13 的核苷酸序列的所述 mRNA 与包含 SEQ ID NO:19 的核苷酸序列的所述 mRNA 的相对表达进行比较；其中至少 2 倍的相对表达差异指示了癌症。

[0387] 在本发明的另一个实施方案中，提供了通过对包含 SEQ ID NO:14 的核苷酸序列的 mRNA 与包含核苷酸序列 SEQ ID NO:20 的 mRNA 的表达进行比较而在对象中诊断癌症的方法，所述方法包括下列步骤：

[0388] i) 提供待测试的分离的生物学样品；

[0389] ii) 检测包含 SEQ ID NO:14 的核苷酸序列的 mRNA 的存在；

[0390] iii) 检测包含 SEQ ID NO:20 的核苷酸序列的 mRNA 的存在；

[0391] iv) 对包含 SEQ ID NO:14 的核苷酸序列的所述 mRNA 与包含 SEQ ID NO:20 的核苷酸序列的所述 mRNA 的相对表达进行比较；其中至少 2 倍的相对表达差异指示了癌症。

[0392] 在一个实施方案中，所述方法使用聚合酶链反应（PCR）来检测所述 Ciz1 复制和固定结构域的存在。在另一个实施方案中，所述方法还包括下列步骤：形成包含所述样品和适合于扩增所述 Ciz1 复制结构域的全部或一部分的寡核苷酸引物对以及适合于扩增所述 Ciz1 固定结构域的全部或一部分的寡核苷酸引物对的制备物，以及对所述样品进行聚合酶
链反应。
[0393] 在一个实施方案中，所述癌症是肺癌、乳腺癌、肾癌、甲状腺癌、黑色素瘤、肝癌、膀胱癌或结肠癌。在一个实施方案中，所述癌症是非小细胞肺癌(NSCLC)。在另一个实施方案中，所述癌症是乳腺癌。在另一个实施方案中，所述癌症是肝癌。在另一个实施方案中，所述癌症是结肠癌。
[0394] 在一个实施方案中，扩增Ciz1 复制结构域的所述寡核苷酸引物对选自：CACAACGCGCCCATCCCAATT和CCTCTACCAACCCCAAATCG；以及ACACACCAAGACCAAGATTTACCGCTGGAGTGCGTTTCTCT。
[0395] 在另一个实施方案中，用包含下述序列的寡核苷酸来检测所述扩增的复制结构域：GCCAGGCTCTGCTCAGGACC或CCTGCCAGAAGCAATGCC。
[0396] 在另一个实施方案中，扩增Ciz1 固定结构域的所述寡核苷酸引物对选自：CAGGGGCTAAAGGACAAAG和GCTTCCCTCAGGCCCTCTCGG；以及CGAGGGTGATGAAGAAGAGA和CCACCTGAGTGTGTCTCAGA。
[0397] 在另一个实施方案中，用包含下述序列的寡核苷酸来检测所述扩增的固定结构域：TGTCACCTGTGGCCACGAACGGGACCCAGAGTCCA或ACTGCTGCTCTCGGTGGCACA。
[0398] 在另一个实施方案中，所述方法与本发明的Ciz1b- 变体转录本的表达分析相组合。
[0399] 在本发明的优选方法中，所述诊断方法与本发明的治疗方法相组合。
[0400] 在本发明的一个方面，提供了通过对包含Ciz1 复制结构域的多肽与包含Ciz1 固定结构域的多肽的表达进行比较而在对象中诊断癌症的方法，所述方法包括下列步骤：
[0401] i）提供待测试的分离的生物样品；
[0402] ii）检测所述Ciz1 复制结构域和Ciz1 固定结构域的存在；
[0403] iii）对所述样品中存在的所述Ciz1 复制结构域与所述Ciz1 固定结构域的相对量进行比较；其中Ciz1 复制结构域与所述Ciz1 固定结构域的相对量的差异超过2 倍指示存在癌症。
[0404] 在本发明的实施方案中，提供了通过对包含SEQ ID NO:9 的氨基酸序列的Ciz1 多肽与包含SEQ ID NO:15 的氨基酸序列的Ciz1 多肽的表达进行比较而在对象中诊断癌症的方法，所述方法包括下列步骤：
[0405] i）提供待测试的分离的生物样品；
[0406] ii）检测包含SEQ ID NO:9 的氨基酸序列的所述Ciz1 多肽和包含SEQ ID NO:15 的氨基酸序列的Ciz1 多肽的存在；
[0407] iii）对所述样品中存在的包含SEQ ID NO:9 的氨基酸序列的所述Ciz1 多肽与包含SEQ ID NO:15 的氨基酸序列的所述Ciz1 多肽的相对量进行比较；其中包含SEQ ID NO:9 的氨基酸序列的所述Ciz1 多肽与包含SEQ ID NO:15 的氨基酸序列的所述Ciz1 多肽的相对量的差异超过2 倍指示存在癌症。
[0408] 在本发明的另一个实施方案中，提供了通过对包含SEQ ID NO:10 的氨基酸序列的Ciz1 多肽与包含SEQ ID NO:16 的氨基酸序列的Ciz1 多肽的表达进行比较而在对象中诊断癌症的方法，所述方法包括下列步骤：
[0409] i）提供待测试的分离的生物样品；
检测包含 SEQ ID NO:10 的氨基酸序列的所述 Ciz1 多肽和包含 SEQ ID NO:16 的氨基酸序列的 Ciz1 多肽的存在；

对所述样品中包含的所述 SEQ ID NO:10 的氨基酸序列的所述 Ciz1 多肽和包含 SEQ ID NO:16 的氨基酸序列的所述 Ciz1 多肽的相对量进行比较，其中包含 SEQ ID NO:10 的氨基酸序列的所述 Ciz1 多肽和包含 SEQ ID NO:16 的氨基酸序列的所述 Ciz1 多肽的相对量的差异超过 2 倍指示存在癌症。

在本发明的另一个实施方案中，提供了通过对包含 SEQ ID NO:11 的氨基酸序列的 Ciz1 多肽与包含 SEQ ID NO:17 的氨基酸序列的 Ciz1 多肽的表达进行比较而在对象中诊断癌症的方法，所述方法包括下列步骤：

1）提供待测试的分离的生物样品；
2）检测包含 SEQ ID NO:11 的氨基酸序列的所述 Ciz1 多肽和包含 SEQ ID NO:17 的氨基酸序列的 Ciz1 多肽的存在；
3）对所述样品中包含的所述 SEQ ID NO:11 的氨基酸序列的所述 Ciz1 多肽和包含 SEQ ID NO:17 的氨基酸序列的所述 Ciz1 多肽的相对量进行比较，其中包含 SEQ ID NO:11 的氨基酸序列的所述 Ciz1 多肽和包含 SEQ ID NO:17 的氨基酸序列的所述 Ciz1 多肽的相对量的差异超过 2 倍指示存在癌症。

在本发明的另一个实施方案中，提供了通过对包含 Ciz1 复制结构域的多肽与包含 Ciz1 固定结构域的多肽的表达进行比较而在对象中诊断癌症的方法，所述方法包括下列步骤：

1）提供待测试的分离的生物样品；
2）将所述生物样品与特异性结合所述 Ciz1 多肽复制结构域的抗体或其抗原结合片段相接触；
3）将所述生物样品与特异性结合所述 Ciz1 多肽固定结构域的抗体或其抗原结合片段相接触；
4）检测与所述 Ciz1 多肽复制结构域结合和与所述 Ciz1 多肽固定结构域结合的所述抗体或抗原结合片段的存在；
5）对所述样品中包含的所述 Ciz1 多肽复制结构域与所述 Ciz1 多肽固定结构域的相对量进行比较，其中所述 Ciz1 多肽复制结构域与所述 Ciz1 多肽固定结构域的相对量的差异超过 2 倍指示存在癌症。

在一个实施方案中，存在比固定结构域多至少 2 倍的复制结构域指示转移性癌症。

根据本发明的另一方面，提供了一种试剂盒，其包含适合于特异性扩增包含 Ciz1 的复制结构域和 Ciz1 的固定结构域的核酸分子的寡核苷酸引物。}

[0424] 在本发明的一个实施方案中，扩增复制结构域的所述寡核苷酸引物是：

```
CACAACGCTGCTCAATG
```
和

```
CCTTCCAGCCAGACTTG
```
或

```
ACACCCAGGAGACCAAGTTACC
```
和

```
TGCTGAAGTCCTTTCTTCC
```

[0425] 在本发明的一个优选方法中，扩增固定结构域的所述寡核苷酸引物是：

```
CAGGCGTATAGAGGAA
```
和

```
GGCTTCCAGCCAGACTTG
```
或

```
CGAGGGTGATGAAGAAGAGGA
```
和

```
CCCCTGAGTTGCTCTGATA
```

41
[0426] 在本发明的优选实施方案中，所述试剂盒包括检测扩增的 Ciz1 复制结构域的寡核苷酸探针，其选自：GCCAGTCCTTGCTGGGCC 或 CCCTGCCGAGGGACTGCCC。

[0427] 在本发明的优选实施方案中，所述试剂盒包括检测扩增的 Ciz1 固定结构域的寡核苷酸探针，其选自：GGGCTTCATCTTGGCCAGCA、CACGGCACCAGGAGTGCA 或 CACTGCAAGTCTGGGGCCA。

[0428] 根据本发明的另一方面，提供了一种试剂盒，其包含特异性结合 Ciz1 蛋白的复制结构域的第一抗体或其抗原结合片段，以及特异性结合 Ciz1 蛋白的固定结构域的第二抗体或其抗原结合片段。

[0429] 本发明的另一方面涉及包括 Ciz1 复制结构域和固定结构域的 mRNA）的检测的上述方法在表示癌症患者的风险后中的应用。在某些实施方案中，上述方法测定与肿瘤相邻的组织而不是肿瘤自身的相对水平，其中复制结构域比固定结构域多至少 2 倍的患者与差异小于 2 倍的患者相比，具有较差的预后。在某些实施方案中，相邻组织在肿瘤边缘的 20mm、15mm、10mm 或 5mm 之内。

[0430] 在本发明的优选实施方案中，所述抗体是单克隆抗体。

[0431] 与本发明的 Ciz1 多肽结合的抗体优选是单特异性抗体例如单克隆抗体或其抗原结合片段。术语“单特异性抗体”是指对特定靶例如表位表现出单一结合特异性和亲和性的抗体。该术语包括“单克隆抗体”，单克隆抗体是指作为单一的分子物质从例如均质的分离细胞群产生的抗体。“单克隆抗体组合物”是指在包含单一的抗体分子物质的组合物中的抗体或其片段的制备物。在一个实施方案中，单克隆抗体由哺乳动物细胞产生。一种或多种单克隆抗体物质可以相组合。本发明的抗体可以是重组抗体，或通过杂交瘤技术产生的抗体。

[0432] 结合 Ciz1 多肽的抗体可以是全长的（例如 IgG（例如 IgG1、IgG2、IgG3、IgG4）、IgM、IgA（例如 IgA1、IgA2）、IgD 和 IgE），或者可以只包括抗原结合片段（例如 Fab、F（ab’）2 或 scFv 片段），例如不包括 Fc 结构域或 CH2、CH3 或 CH4 序列。抗体可以包括两条重链免疫球蛋白和两条轻链免疫球蛋白，或者可以是单链抗体。抗体可以任选包括选自 κ、λ、a、γ、δ、ε 或 μ 恒定区基因的恒定区。结合本发明的 Ciz1 多肽的抗体可以包括基本上来自于人类抗体例如人类 IgG1 恒定区或其部分，或者来自于另一物种的重链和轻链恒定区，所述另一物种包括但不限于小鼠、大鼠、狗、猫、山羊、绵羊、牛、马、鸡或豚鼠。

[0433] 在一个实施方案中，抗体（或其片段）是重组或修饰的抗体，例如嵌合、人源化、去免疫化或体外产生的抗体。当在本文中使用时，术语“重组”或“修饰”的抗体意在包括通过重组手段制备、表达、产生或分离的所有抗体，例如使用转染到宿主细胞中的重组表达载体表达的抗体，从重组的组合抗体文库分离的抗体，从人类免疫球蛋白基因的转基因动物（例如小鼠）分离的抗体，或通过涉及免疫球蛋白基因序列与其他 DNA 序列的剪接的任何其他手段制备、表达、产生或分离的抗体。这样的重组抗体包括人源化、CDR 移植、嵌合、去免疫化、体外产生的抗体，并可以任选包括源自于人类种系免疫球蛋白序列的恒定区。

[0434] 当在本文中使用时，术语“抗体”是指包含至少一个免疫球蛋白可变结构域或免疫球蛋白可变结构域序列的蛋白。例如，抗体可以包含重（H）链可变区（在本文中缩写为 VH）和轻（L）链可变区（在本文中缩写为 VL）。在另一个实例中，抗体包含两个重（H）链可变区和两个轻（L）链可变区。在另一个实例中，抗体是骆驼单结构域 VH 抗体。术语“抗体”涵盖
抗体的抗原结合片段（例如单链抗体、Fab 片段、F(ab') 2、F don 片段、Fv 片段和 dAb 片段）以及完整的抗体。

【0437】 当在本文中使用时，“免疫球蛋白可变结构域序列”是指能够形成免疫球蛋白可变结构域的结构的氨基酸序列。例如，所述序列可以包括天然存在的可变结构域的全部或部分氨基酸序列。例如，所述序列可以省略 1 个、2 个或更多个 N-或 C-端氨基酸、内部氨基酸，可以包含一个或多个插入的氨基酸或附加的末端氨基酸，或者可以包括其他变化。在一个实施方案中，包含免疫球蛋白可变结构域序列的多肽可以与另一个免疫球蛋白可变结构域序列结合，以形成结合靶的结构（或“抗原结合位点”），例如与本发明的 Ciz1 多肽相互作用，例如结合或抑制本发明的 Ciz1 多肽（例如 b-变体）的结构。

【0438】 抗体的 VH 或 VL 链还可以包含重链或轻链恒定区的全部或一部分，由此分别形成免疫球蛋白重链或轻链。在一个实施方案中，抗体是两条免疫球蛋白重链和两条免疫球蛋白轻链的四聚体，其中免疫球蛋白重链和轻链通过例如二硫键相连。重链恒定区包括 3 个结构域 CH1, CH2 和 CH3。轻链恒定区包括 CL 结构域。轻链和轻链的可变区含有与抗原相互作用的结合结构域。抗体的恒定区典型地介导抗体与包括免疫系统的各种细胞（例如效应细胞）和经典补体系统的第一成员（C1q）的宿主组织或因子的结合。术语“抗体”包括 IgA、IgG、IgE、IgD、IgM 类型（及其亚型）的完整免疫球蛋白。在一个实施方案中，抗体是 IgA。在另一个实施方案中，抗体是 IgG。在另一个实施方案中，抗体是 IgE。在另一个实施方案中，抗体是 IgD。免疫球蛋白的轻链可以是 κ 或 λ 类型的。在一个实施方案中，抗体被糖基化。抗体可以为抗体依赖性细胞毒性（或补体介导的细胞毒性）性的作用。

【0439】 抗体的一个或多个区域可以是人类的或效果上是人类的。例如，一个或多个可变区可以是人类的或效果上是人类的。例如，一个或多个 CDR 可以是人类的，例如 HC CDR1、HC CDR2、HC CDR3、LC CDR1、LC CDR2 和 LC CDR3。每个轻链 CDR 可以是人类的。HC CDR3 可以是人类的。一个或多个构架区可以是人类的，例如源于人类体细胞，例如产生免疫球蛋白的造血细胞或非造血细胞。在一个实施方案中，人类序列是种系序列，例如由种系核酸编码的。
一个或多个恒定区可以是人类的或效果上是人类的。在另一个实施方案中，构架区的至少70,75,80,85,90,92,95或98%（例如FR1,FR2和FR3合起来，或FR1,FR2,FR3和FR4合起来）或整个抗体可以是人类的或效果上是人类的。例如，FR1,FR2和FR3合在一起可以与由编码轻链或重链序列的基因座的人类种系V区段编码的人类序列至少70,75,80,85,90,92,95,98或99%一致。

[0440] 抗体的全部或一部分可以由免疫球蛋白基因或其编码编码。示例性的免疫球蛋白基因包括κ、λ、α（IgA1和IgA2）、γ（IgG1、IgG2、IgG3、IgG4）、δ、ε和μ恒定区基因以及无免疫球蛋白可变区基因。全长免疫球蛋白轻链（约25kd或214个氨基酸）在NH2-端（约110个氨基酸）由可变区基因编码，在COOH-端由κ或λ恒定区基因编码。全长免疫球蛋白重链（约50kd或446个氨基酸）类似地由可变区基因（约116个氨基酸）和上述其他恒定区基因之一例如γ（编码约330个氨基酸）编码。轻链是指包含轻链可变结构域的任何多肽。重链是指包含重链可变结构域的任何多肽。

[0442] “人源化”免疫球蛋白可变区是包括足够数量的人类构架氨基酸位置使得所述免疫球蛋白可变区在正常人中不引发免疫应答的免疫球蛋白可变区。“人源化”免疫球蛋白的描述包括例如美国专利6,407,213和美国专利6,407,213和美国专利No.5,693,762。

[0443] “效果上是人类的”免疫球蛋白可变区是包括足够数量的人类构架氨基酸位置使得所述免疫球蛋白可变区在正常人中不引发免疫应答的免疫球蛋白可变区。“效果上是人类的”抗体是包括足够数量的人类氨基酸位置使得所述抗体在正常人中不引发免疫应答的抗体。

[0444] 当在本文中使用时，“结合亲和性”是指表观结合常数或Kd。结合亲和性可以被表示为解离常数（Kd），其为Kd的倒数。靶结合剂例如抗体，对于特定靶分子可以例如具有小于10^-5、10^-6或10^-7的Kd。结合亲和性的差异（例如用于特异性或其他的比较）可以为例如至少1.5、2.5、10、50、100或1000倍。例如，结合Ciz1多肽的蛋白可以优先结合于Ciz1-变体，与包含由外显子14a而不是14b编码的氨基酸序列的另一种Ciz1多肽的结合相比较至少1.5、2.5、10、50、100或1000倍。结合Ciz1多肽的蛋白也可以是物种特异性或物种通用性的（例如能够结合来自于一个以上物种的本发明的Ciz1多肽，或者可以特异性针对人类Ciz1多肽例如人类Ciz1-变体）。

[0445] 结合亲和性可以通过各种方法来测定，包括平衡透析、平衡结合、凝胶过滤、
ELISA, 表面等离子体共振或光谱术(例如使用荧光测定法)。这些技术可用于测定作为配体(或靶)浓度的函数的结合和游离配体的浓度。结合配体的浓度([结合])通过下述方程与游离配体的浓度([游离])和靶上用于配体的结合位点的浓度相关联,其中(N)是每个靶分子的结合位点的数量:

\[[\text{结合}] = \frac{[\text{游离}]}{(1 + [\text{靶}])} \]

尽管Ka的定量测定是常规的,但并不总是必需进行Ka的精确测定,因为有时获得亲和性的定量测定就已足够,例如使用ELISA或FACS分析的方法测定的测定值与Ka成正比,因此可用于比较,例如确定较高的亲和性是否比比率高例如2.5、10、20或50倍。典型地在0.01M HEPES pH7.4, 0.15M NaCl, 3mM EDTA 和 0.005% (v/v) 表面活性剂P20 中评估结合亲和性。

在用于载体或其抗原结合部分的重组表达的示例性系统中, 将编码抗体重链和抗体轻链两者的重组表达载体, 通过例如磷酸钙介导的转染导入到 dhfr-CHO 细胞中。在重组表达载体中, 将抗体重链和轻链基因各自可操作地连接于增强子 / 启动子调控元件 (例如
源自于SV40、CMV、腺病毒等，例如CMV增殖子/AdMLP启动子调控元件或SV40增殖子/AdMLP启动子调控元件），以驱动基因的高水平转录。重组表达载体还携带DHFR基因，DHFR基因允许使用氨甲喋呤选择/扩增来选择已转染有关载体的CHO细胞。对所选的转化体宿主细胞进行培养，以允许抗体重链和轻链的表达，并从培养基回收完整抗体。使用标准的分子生物学技术来制备重组表达载体，转染宿主细胞，选择转化体，培养宿主细胞和从培养基回收抗休。例如，某些抗体可以通过用蛋白A或蛋白G进行亲和层析来分离。

[0452] 可以改变密码子的使用以适应于宿主细胞的密码子偏倚，例如对于CHO细胞来说，它可以被改造成适应于中国地鼠（Cricetulus griseus）基因的密码子偏倚。此外，在可能时，可以避免具有非常高（＞80%）或非常低（＜30%）GC含量的区域。在优化过程中，避免下述顺式作用序列基序：内部TATA盒；chi位点和核糖体进入位点；富含AT或富含GC的序列区段；ARE、INS、CRS序列元件；重复序列和RNA二级结构；以及（隐蔽的）剪接供体和受体位点、分支点。可以使用两个终止密码子以确保有效终止。序列的密码子优化可以按照Sharp, P. M., Li, W. H., Nucleic Acids Res. 15 (3), 1987来评估。可以使用标准密码子适应指数（CAI）。稀有密码子包括质量级在0-40之间的密码子。

[0453] 适体。在一个实施方案中，本发明的特征在于靶蛋白结合剂例如适体。适体可以是核酸适体或肽适体。当在本文中使用时，术语“核酸适体”是指具有包括至少5个核苷酸的内部非双链核酸结构的构成的核酸分子。适体可以是具有自身互补性区域的单链核酸分子。“肽适体”是存在于并且存在在被限制在稳健的亲和性蛋白支架中的短肽序列（Evans等，Journal of Biology 2008, 7:3, 以其全文引为参考）。核酸支架对插入的肽链加的三维构象限制与未经限制的肽序列相比，事实上增加了适体对酶的亲合性。示例性适体包括与本发明的Ciz1多肽（例如b-变体）结合的核酸分子和肽。在许多情况下可以使用特定适体代替抗体。还包括与本发明的Ciz1多肽结合的其他肽。本发明中还包括肽样分子例如肽。“类肽”或聚-N-取代甘氨酸是其侧链与肽骨架的氮原子而不是α-碳（如在氨基酸中那样）连接的一类肽模拟物。也可以使用T-细胞受体作为靶结合剂。

[0454] 术语“结合剂”是指能够在实验条件下与本发明的Ciz1多肽（例如Ciz1b-变体）结合的试剂，并且包括但不限于抗体及其抗原结合片段、核酸适体和肽适体，所述抗原结合片段包括但不限于Fab、Fab′、F(ab′)2, scFv或单结构域抗体（sdAb）（也被称为纳米抗体）。Ciz1多肽结合剂具有体外和体内诊断用途。例如，测定源自于对象的样品中Ciz1多肽的水平，可用于诊断疾病例如癌症。此外，Ciz1多肽水平的检测和定量可以在预后上用于对疾病的进展进行分期以及评估被用于治疗癌症对象的药剂的功效。

[0455] 一方面，从怀疑患有特定癌症或有癌症风险的对象获得可能含有Ciz1多肽的生物学样品，例如肺组织或其他生物组织。使用本领域技术人员已知的各种溶解混合物中的任一种来溶解全部组织或细胞的等分试样。例如，可以通过添加裂解缓冲液来溶解组织，所述裂解缓冲液在蒸馏的去离子水中包含（每升）8M尿素、20ml Nonidet P-40表面活性剂、20ml两性电解质（pH3.5-10）、20m12-巯基乙醇和0.2mM苯基甲基磺酰氟（PMSF）。

[0456] 一方面，本发明提供了用于在体外（例如生物学样品如组织，组织活检物例如癌性组织）或体内（例如在对象中体内成像）检测本发明的Ciz1多肽的存在检测方法。所述方法包括：(i) 将样品与本发明的Ciz1多肽的结合剂（例如抗体、抗原结合片段或适体）相接触；以及(ii) 检测Ciz1多肽结合剂与样品之间的结合物的形成。所述方法还可以包括
将参比样品（例如对照样品）与结合剂相接触，以及确定结合剂与样品之间的化合物的形成相对于结合剂与参比样品之间的化合物的形成的程度。相对于对照样品或对象，样品或对象中化合物的形成的变化例如统计学显著性变化可以指示样品中存在本发明的Cizl多肽（例如β-变体）。可以用可检测物质直接或间接标记本发明的Cizl多肽的结合剂，以促进结合或未结合的抗体的检测。适合的可检测物质包括各种酶、辅基、荧光物质、发光物质和放射性物质。

[0457] 在本文描述的方面的某些实施方案中，特异性针对Cizl多肽的试剂例如抗体或其抗原结合片段，天然或重组配体、小分子或修饰部分直接标记有标签，以促进修饰的检测。当在本文中使用时，术语“标记物”或“标签”是指能够产生指示生物样品中存在靶例如存在特定修饰的可检测信号的组合物。适合的标记物包括荧光分子、放射性同位素、核苷酸头发团、酶、底物、化学发光部分、磁性粒子、生物发光部分、肽标签（c-Myc，HA，VSV-G，HSV，FLAG，V5或HIS）等。因此，标记物的方法可以通过鉴定Cizl多肽的方法所需的光谱学、光化学、生物化学、免疫化学、电化学或化学手段来检测的任何组合物。在本文描述的方面的某些实施方案中，修饰部分本身可以被直接标记。例如，人们可以使用放射性标记物或荧光标记物，以便无需使用抗体就可以直接（或与其他修饰组合）读出蛋白修饰。当然，也可以对抗体进行标记以帮助它们的直接检测。

[0458] 当在本文中使用时，术语“标记的抗体”或“抗标记的抗体”包括通过可检测手段标记的抗体，并且包括但不限于荧光、酶、放射性和化学发光标记的抗体。也可以用可检测标签例如c-Myc，HA，VSV-G，HSV，FLAG，V5或HIS来标记抗体，所述标签可以使用特异性针对前述标签的抗体例如抗c-Myc抗体来检测。也可以用酶（例如碱性磷酸酶，酸性磷酸酶，辣根过氧化物酶，β-半乳糖苷酶和核糖核酸酶）来标记抗体。标记结合的多种方法在本领域中是已知的并且可以被使用。用于标记在本发明方法中使用的抗体的荧光标记物或标签的非限制性实例包括羟基香豆素、琥珀酰亚胺酯、氨基香豆素、琥珀酰亚胺酯、甲氧基香豆素、琥珀酰亚胺酯，Cascade Blue，酰肼，太平洋蓝，马来酰亚胺，太平洋橙，萤光黄，NBD，NBD-X，R-藻红蛋白（PE），PE-Cy5偶联物（CyChrome，R670，Tri-Color，量子红，PE-Cy7偶联物，Red613，PE-德克萨斯红，PerCP，甲藻素叶绿素蛋白，TruRed（PerCP-Cy5.5，偶联物），FluorX，荧光素异硫氰酸酯（FITC），BODIPY-FL，TRITC，X-罗丹明（XTRITC），丽丝胺罗丹明B，德克萨斯红，别藻蓝蛋白（APC），APC-Cy7偶联物，Alexa Fluor350，Alexa Fluor405，Alexa Fluor430，Alexa Fluor488，Alexa Fluor500，Alexa Fluor514，Alexa Fluor532，Alexa Fluor546，Alexa Fluor555，Alexa Fluor568，Alexa Fluor594，Alexa Fluor610，Alexa Fluor633，Alexa Fluor647，Alexa Fluor660，Alexa Fluor680，Alexa Fluor700，Alexa Fluor750，Alexa Fluor790，Cy2，Cy3，Cy3B，Cy3.5，Cy5，Cy5.5或Cy7。各种适合的荧光剂和发色团被描述在Stryer（1968）Science，162:526和Brand，L等，（1972）Annual Review of Biochemistry，41:843-868中。可以用荧光发色基团通过常规方法步骤来标记结合蛋白，所述常规方法步骤例如在美国专利No. 3, 940, 475, 4, 289, 747和4, 376, 110中所公开的。在一个实施方案中，荧光剂是酚染料，其包括荧光素和罗丹明类。在另一个实施方案中，荧光化合物是染胺类。在用荧光团或发色团标记后，可以例如使用荧光显微术，使用结合蛋白来检测样品中本发明的Cizl多肽的存在或定位。在一个实施方案中，荧光显微术是共聚焦或反卷积显微术。类似地，生物发光化合物可用于标记Cizl抗体。生物发光
蛋白的存在通过检测发光的存在来确定。用于标记目的的重要生物发光化合物是萤光素、萤光素酶和水母发光蛋白。

[0459] 在本发明的特定实施方案中，生物学样品中 Ciz1 多肽的水平可以通过二维凝胶电泳来分析。二维电泳的方法对于本领域技术人员来说是已知的。将生物学样品例如组织样品荷载到电泳胶上，用于在第一维中等电聚焦分离，这是根据电荷来分离蛋白。可以利用许多第一维凝胶制备物，包括用于基于载体两性电解质的分离的管状凝胶，或用于固定梯度分离的凝胶条。在第一维分离后，将蛋白转移到第二维凝胶上，随后进行平衡步骤并使用 SDS PAGE 进行分离，该 SDS PAGE 根据分子量来分离蛋白。当将源自于不同对象的生物学样品进行比较时，从各个生物学样品（包括来自于正常对照的样品）制备多个凝胶。

[0461] 生物学样品中 Ciz1 多肽水平的检测也可用于在治疗期间监测潜在的抗癌剂的功效。例如，可以在治疗之前和期间测定 Ciz1 多肽的产生水平。通过对整个治疗中 Ciz1 的表达进行比较，可以追踪药剂的功效。表现出功效的药剂是随着使用所述药剂的治疗的推进，降低 Ciz1 多肽的产生水平的那些药剂。

[0462] Ciz1 多肽结合剂与本发明的 Ciz1 多肽（例如 b- 变体）之间的复合物的形成，可以通过测定或显现与 Ciz1 多肽结合的结合剂或未结合的结合剂来检测。本发明的测定法例如免疫测定法包括竞争性和非竞争性（“夹心”）测定法。本发明的免疫测定法包括但不限于使用各种技术例如蛋白质印迹、放射免疫测定法、ELISA（酶联免疫吸附测定法）、“夹心”免疫测定法、免疫沉淀测定法、沉淀反应、凝胶扩散沉淀反应、免疫扩散测定法、凝集测定法、补体结合测定法、免疫放射测定法、免疫荧光测定法、蛋白质 A 免疫测定法、流式细胞术或组织免疫组织化学等的测定系统。此外，为了标记 Ciz1 多肽结合剂，样品中本发明的 Ciz1 多肽的存在可以通过使用标记有可检测物质的标准品和未标记的 Ciz1 多肽结合剂进行的竞争免疫测定法来测定。在这种测定法的一个实例中，将生物学样品、标记的标准品和 Ciz1 多肽结合剂合并，并测定与未标记的结合剂结合的标记的标准品的量。样品中本发明的 Ciz1 多肽的量与结合于 Ciz1 多肽结合剂的标记的标准品的量成反比。

[0463] 组织学分析。可以使用 Ciz1 多肽结合剂（例如抗体，其抗原结合片段或单体）来执行免疫组织化学。例如，在抗体的情况下，可以将抗体合成化具有标记物（例如纯化或表位标签），或者可以例如通过偶联标记物或与标记物结合的基团对抗体可检测地进行标记。例如，可以将螯合剂连接于抗体。然后将抗体与组织学制备物例如在显微镜载片上的固定组织切片相接触。在温育以便结合后，洗涤制备物以去除未结合的抗体。然后使用例如显微术分析制备物，以鉴定抗体是否与制备物结合。所述方法可用于评估细胞或组织（例如癌细胞或实体肿瘤组织样品）。在结合后，抗体（或其他多肽或肽）可以是未标记的。在结合并洗
蛋白质阵列。Ciz1 多肽结合剂也可以被固定在阵列（例如蛋白质阵列或微阵列）上。所述阵列可以被用作诊断工具，例如用于筛选医学样品（例如分离的细胞、血液、血浆、血清、尿液、痰液、组织活检物等）。当然，所述阵列也可以包括其他结合蛋白，例如与本发明的 Ciz1 多肽或其他靶分子结合的蛋白。

例如，列阵可以是抗体的阵列。例如在 De Wildt（同上）中所述的。产生结合蛋白的细胞可以以阵列形式生长在滤膜上。诱导多肽生产，并将表达的多肽固定到滤膜上所述细胞的位置处。可以将蛋白质阵列与标记的靶相接触，以确定靶与每个固定的多肽的结合程度。如果靶是未标记的，则可以使用夹心方法，例如使用标记的探针来检测未标记的靶的结合。关于阵列的每个位置处的结合程度的信息可以作为分布图被储存在例如计算机数据库中。可以生产多个同样的蛋白质阵列，并用于比较例如靶和非靶的结合分布图。

FACS（荧光活化细胞分选）。Ciz1 多肽结合剂可用于标记细胞或蛋白质，例如生物学样品如患者样品中的细胞或蛋白质。结合蛋白也可以被连接于（或可连接于）荧光化合物。然后可以使用荧光活化细胞分选对细胞进行分选（例如可以从 Becton Dickinson Immuno cytometry Systems, San Jose Calif. 获得的分选器；也参见美国专利 No. 5,627,037,5,030,002 和 5,137,809）。当细胞通过分选器时，激光束激发荧光化合物，同时检测器通过检测光对通过的细胞进行计数并确定荧光化合物是否连接于细胞。可以对结合于每个细胞的标记物的量进行定量和分析，以对样品进行表征。分选器也可以使细胞转向并将被结合蛋白结合的细胞与未被结合的细胞分开。可以对分开的细胞进行培养和/或表征。

体内成像。在另一个实施方案中，本发明提供了用于检测体内的表达 Ciz1 多肽（例如 b- 变体）的癌性组织或其残余物的存在和方法。所述方法包括：向对象施用 Ciz1 多肽结合剂；以及检测对象中的 Ciz1 多肽结合剂。所述检测可以包括确定复合物形成的位置或时间。所述方法可以包括对对象例如对象身体的区域进行扫描或以其他方式进行成像。另一种方法包括：(i) 向对象（例如患有癌症或肿瘤性疾病的患者）施用与可检测标记物偶联的结合 Ciz1 多肽的抗体；(ii) 将对象暴露于用于检测与表达 Ciz1 多肽的组织或细胞结合的所述可检测标记物的手段。例如，所述方法可用于显现从患者中已死亡或垂死的癌细胞释放的 Ciz1b- 变体。可以通过例如 NMR 或其他断层照相手段对对象进行成像。可用于诊断性成像的标记物的实例包括放射性标记物例如 131I、111In、125I、99mTc、32P、125I、3H、14C 和 188Rh，荧光标记物例如荧光素和罗丹明，放射性标记物，可以通过正电子发射断层（“PET”）扫描仪检测的发射正电子的同位素，化学发光剂例如萤光素，以及酶标记物例如过氧化物酶或磷酸酶。也可以使用短程辐射发射体例如可以通过短程检测器探头检测的同位素。可以使用已知技术将结合剂用这样的试剂进行标记。例如，对于与

[0469] 放射标记的结合剂也可用于体外诊断测试，同位素标记的蛋白的稳定性取决于半衰期，放射性标记物的同位素纯度以及标记物掺入到蛋白质中的方式。

[0470] 本发明中还包括试剂盒，所述试剂盒包含与本发明的 Ciz1 多肽结合的结合剂以及用于诊断应用的说明书，所述诊断应用例如使用靶结合剂(例如抗体或其抗原结合片段，或其他多肽或肽或诱体)在体外对例如样品例如来自于患有癌症或肿瘤性疾病患者的组织活检物或细胞中的本发明的 Ciz1 多肽进行检测，或在体内通过例如对对象进行成像来检测本发明的 Ciz1 多肽。试剂盒还可以含有至少一种其他试剂，例如标记物或其他诊断剂。对于体内应用来说，结合蛋白可以被配制成药物组合物。

[0471] 在一个实施方案中，本发明提供了以小于 1×10^{-8} 的亲和性 K_a 与本发明的人类 Ciz1 多肽或抗原结合的分离的抗体或其抗原结合片段。在另一个实施方案中，本发明提供了以小于 5×10^{-8} 的亲和性 K_a 与本发明的人类 Ciz1 多肽或抗原结合的分离的抗体或其抗原结合片段。在另一个实施方案中，本发明提供了以小于 1×10^{-8} 的亲和性 K_a 与本发明的人类 Ciz1 多肽或抗原结合的分离的抗体或其抗原结合片段。在另一个实施方案中，分离的抗体或其抗原结合片段是人类抗体或其抗原结合片段。在另一个实施方案中，分离的抗体或其抗原结合片段是大鼠抗体或其抗原结合片段。在另一个实施方案中，分离的抗体或其抗原结合片段是兔抗体或其抗原结合片段。在另一个实施方案中，分离的抗体或其抗原结合片段是豚鼠抗体或其抗原结合片段。在另一个实施方案中，分离的抗体或其抗原结合片段是兔抗体或其抗原结合片段。在另一个实施方案中，分离的抗体或其抗原结合片段是山羊抗体或其抗原结合片段。在另一个实施方案中，分离的抗体或其抗原结合片段是绵羊抗体或其抗原结合片段。在另一个实施方案中，分离的抗体或其抗原结合片段是牛抗体或其抗原结合片段。在另一个实施方案中，分离的抗体或其抗原结合片段是马抗体或其抗原结合片段。在另一个实施方案中，分离的抗体或其抗原结合片段是鸡抗体或其抗原结合片段。在另一个实施方案中，分离的抗体或其抗原结合片段是猪抗体或其抗原结合片段。在另一个实施方案中，分离的抗体或其抗原结合片段是猫科动物抗体或其抗原结合片段。在另一个实施方案中，分离的抗体或其抗原结合片段是犬科动物抗体或其抗原结合片段。在另一个实施方案中，分离的抗体或其抗原结合片段是骆驼抗体或其抗原结合片段。在另一个实施方案中，分离的抗体或其抗原结合片段是人类抗体或其抗原结合片段，并且是重组的。

[0472] 本发明的一个方面是提供筛选方法，所述方法基于对象的生物学样品中 Ciz1 自身抗体或循环的免疫复合物(CIC)的升高的水平的检测，用于癌症的检测和预后评估，用于具有癌症诱因的对象的鉴定，以及作为药物功效的替代标志物用于监测经历癌症治疗的患者，并用于检测复发。术语“自身抗体”是由对象的免疫系统产生的针对一种或多种对象自身的蛋白的抗体。术语“抗 Ciz1 自身抗体”或“Ciz1 自身抗体”是指特异性针对 Ciz1 的自身抗体。本发明还提供了用于检测作为癌症的诊断或预后指示物的 Ciz1 自身抗体(游离的，或者与 Ciz1 抗原形成复合物)的方法。在一个实施方案中，所述 Ciz1 多肽是 Ciz1b- 变体多肽。

[0473] 本发明涉及通过检测来自于患有癌症或具有癌症高风险的对象(例如吸烟者，具
有 COPD、癌症的遗传诱因的患者）的生物学样品中的 Ciz1 多肽或针对 Ciz1 多肽抗原的自
身抗体，对癌症进行诊断评估和 / 或预后。在一个实施方案中，用于测定抗 Ciz1 自身抗体
的所述生物学样品选自：血液、血浆、血清、痰液、尿液或支气管肺泡灌洗液。在另一个实施
方案中，所述样品是血液。在另一个实施方案中，所述样品是血浆。在另一个实施方案中，
所述样品是血清。在另一个实施方案中，所述样品是痰液。在另一个实施方案中，所述样品
是尿液。在另一个实施方案中，所述样品是支气管肺泡灌洗液。在一个实施方案中，所述癌
症是肺癌、乳腺癌、甲状腺癌、膀胱癌、肝癌、肾癌、淋巴瘤和白血病。在一个实施方案中，所
述癌症是肺癌。在另一个实施方案中，所述癌症是 NSCLC。在另一个实施方案中，所述癌
症是 SCLC。在另一个实施方案中，所述癌症是乳腺癌。在另一个实施方案中，所述癌症是甲
状腺癌。在另一个实施方案中，所述甲状腺癌是髓样甲状腺癌。在另一个实施方案中，所述甲
状腺癌是大嗜酸性细胞癌。在另一个实施方案中，所述甲状腺癌是乳头状甲状腺癌。在另
一个实施方案中，所述甲状腺癌是滤泡性甲状腺癌。在另一个实施方案中，所述癌症是淋巴
瘤。在另一个实施方案中，所述淋巴瘤是 B 细胞淋巴瘤。在另一个实施方案中，所述淋巴瘤
是霍奇金淋巴瘤。在另一个实施方案中，所述淋巴瘤是弥漫性大 B 细胞淋巴瘤。在另一个实
施方案中，所述淋巴瘤是滤泡性淋巴瘤。在另一个实施方案中，所述淋巴瘤是间变性大细胞
淋巴瘤。在另一个实施方案中，所述淋巴瘤是结外边缘区 B 细胞淋巴瘤。在另一个实施方
案中，所述淋巴瘤是脾边缘区 B 细胞淋巴瘤。在另一个实施方案中，所述淋巴瘤是套细胞淋
巴瘤。在另一个实施方案中，所述癌症是白血病。在另一个实施方案中，所述白血病是慢性
淋巴细胞白血病。在另一个实施方案中，所述白血病是毛细胞白血病。所述生物学样品中
Ciz1 多肽或针对 Ciz1 多肽的自身抗体的增加的水平的检测，构成了用于癌症筛选、诊断和
预后的新策略。在一个实施方案中，所述 Ciz1 多肽是 Ciz1b- 变体多肽。在一个实施方案
中，所述针对 Ciz1 多肽的自身抗体是针对 Ciz1b- 变体多肽。在一个实施方案中，所述自身
抗体特异性结合于包括由外显子 14b 和外显子 15 两者编码的氨基酸残基的连续表位。在另
一个实施方案中，所述自身抗体特异性结合于 Ciz1b- 变体多肽，但是不特异性结合从包
含外显子 14a 的 mRNA 翻译的 Ciz1 多肽。在另一个实施方案中，所述自身抗体与 Ciz1b- 变
体多肽特异性结合的亲和性比所述自身抗体与从包含外显子 14a 的 mRNA 翻译的 Ciz1 多肽
结合的亲和性高至少 10 倍。在一个实施方案中，所述自身抗体与 Ciz1b- 变体多肽特异性结
合的亲和性比所述自身抗体与从包含外显子 14a 的 mRNA 翻译的 Ciz1 多肽特异性结合的亲
和性高至少 100 倍。在另一个实施方案中，所述自身抗体与 Ciz1b- 变体多肽特异性结合的亲
和性比所述自身抗体与从包含外显子 14a 的 mRNA 翻译的 Ciz1 多肽特异性结合的亲和性高
至少 1000 倍。在另一个实施方案中，所述自身抗体与 Ciz1b- 变体多肽特异性结合的亲和性
比所述自身抗体与从包含外显子 14a 的 mRNA 翻译的 Ciz1 多肽特异性结合的亲和性高至少
10000 倍。在另一个实施方案中，所述自身抗体与 Ciz1b- 变体多肽特异性结合的亲和性比所
述自身抗体与从包含外显子 14a 的 mRNA 翻译的 Ciz1 多肽特异性结合的亲和性高至少 100000
倍。在另一个实施方案中，所述自身抗体与 Ciz1b- 变体多肽特异性结合的亲和性比所述自
身抗体与从包含外显子 14a 的 mRNA 翻译的 Ciz1 多肽特异性结合的亲和性高至少 1000000 倍。在
另一个实施方案中，所述自身抗体与 Ciz1b- 变体多肽特异性结合的亲和性比所述自身抗体与
从包含外显子 14a 的 mRNA 翻译的 Ciz1 多肽特异性结合的亲和性高至少 10000000 倍。在另一个实
施方案中，所述自身抗体特异性结合于氨基酸序列 DEEEIEVRSRDIN。在一个实施方案中，所
述自身抗体特异性结合于氨基酸序列 DEEEIEVRSRDIN，但是不特异性结合于氨基酸序列
DEEEIE、VRSRDIN 或 DEEEIEVEEELCKQVRSRDIN。在一个实施方案中，所述自身抗体特异性结
合于氨基酸序列 EGDEEEEDDEEEEIEVRSRDIN。在另一个实施方案中，所述自身抗体特异性结
合于氨基酸序列 EGDEEEEDDEEEEIEVRSRDIN。在另一个实施方案中，所述自身抗体特异性结
合于氨基酸序列 EGDEEEEDDEEEEIEVRSRDIN。
方案中，所述自身抗体特异性结合于氨基酸序列DEEEDEDEEEEIEVRSRDISREEWKGSE，但是不特异性结合于氨基酸序列DEEEDEDEEEEIEVVEELCKQVRSRDISREEWKGSE。在另一个实施方案中，所述自身抗体特异性结合于氨基酸序列DEEEDEDEEEEIEVRSRDISREEWKGSE，但是不特异性结合于氨基酸序列DEEEDEDEEEEIEVVEELCKQVRSRDISREEWKG。在另一个实施方案中，所述自身抗体特异性结合于氨基酸序列DEEEDEDEEEEIEVRSRDISREEWKG。在另一个实施方案中，所述自身抗体特异性结合于氨基酸序列DEEEDEDEEEEIEVVEELCKQVRSRDISREEWKG，但是不特异性结合于氨基酸序列DEEEDEDEEEEIEVRSRDISREEW。在另一个实施方案中，所述自身抗体特异性结合于氨基酸序列DEEEDEDEEEEIEVVEELCKQVRSRDISREEW。在另一个实施方案中，所述自身抗体特异性结合于氨基酸序列DEEEDEDEEEEIEVRSRDISREEW，但是不特异性结合于氨基酸序列DEDEEDEEEIEVRSRDISREEW。在另一个实施方案中，所述自身抗体特异性结合于氨基酸序列DEDEEDEEEIEVRSRDIS，但是不特异性结合于氨基酸序列DEDEEDEEEIEVRSRDISREEW。在另一个实施方案中，所述自身抗体特异性结合于氨基酸序列DEDEEDEEEIEVRSRDIS，但是不特异性结合于氨基酸序列DEDEEDEEEIEVRSRDISREEW。在另一个实施方案中，所述自身抗体特异性结合于氨基酸序列DEDEEDEEEIEVRSRDIS。在另一个实施方案中，所述自身抗体特异性结合于氨基酸序列EIEVRSR，但是不特异性结合于氨基酸序列EIEVRSR。在另一个实施方案中，所述自身抗体特异性结合于氨基酸序列EIEVRSR。
疫沉淀测定法。在一个实施方案中，所述生物学样晶是肺组织样晶。在一个实施方案中，所述Cizl多肽是Cizl1-变体多肽。

[0480] 一方面，本发明提供了用于在对象中诊断癌症的方法，所述方法包括：(a)定量检测源自于对象的生物学样晶中Cizl自身抗体的水平；(b)检测对照样晶中Cizl自身抗体的水平；以及(c)将在对象的样晶中检测到的Cizl自身抗体的水平与在对照样晶中检测到的Cizl自身抗体的水平进行比较，其中与对照样晶相比在对象的样晶中检测到的Cizl自身抗体的水平增加指示对象患有癌症。在一个实施方案中，所述癌症是肺癌。在另一个实施方案中，所述癌症是SCLC。在一个实施方案中，使用免疫测定法来检测所述Cizl自身抗体。在一个实施方案中，所述免疫测定法是免疫沉淀测定法。在一个实施方案中，所述样晶是肺组织样晶。在一个实施方案中，所述Cizl自身抗体是针对Cizl1-变体的自身抗体。

[0481] 本发明提供了基于对象中Cizl自身抗体的检测而对疾病例如癌症进行诊断和诊断后的方法。所述方法例如可以通用于来自患有癌症的样晶的生物学样晶以及来自于年龄与性别匹配但没有癌症的对照的生物学样晶来验证。从患有或怀疑患有特定癌症或怀疑具有发生癌症的诱因的对象获得可能含有自身抗体的生物学样晶，例如尿液、血液、血清或血浆。例如可以从无症状的对象获得相应的体液作为对照。

[0482] 根据本发明，对Cizl多肽抗原具有反应性的自身抗体的测定可用于疾病例如癌症的诊断。此外，自身抗体水平的监测可以在预后上用于疾病进展的分期和用于检测复发。来自于对象的尿液、血液、血清或血浆或其他生物学样晶中自身抗体的检测可以通过许多方法中的任一种来实现。这样的方法包括免疫测定法，免疫测定法包括但不限于使用各种技术例如蛋白质印迹、放射免疫测定法、ELISA（酶联免疫吸附测定法）、“夹心”免疫测定法、竞争性免疫测定法、免疫沉淀测定法、沉淀反应、凝胶扩散沉淀反应、免疫扩散测定法、凝集测定法、补体结合测定法、免疫放射测定法、荧光免疫测定法、蛋白A免疫测定法和流式细胞术等的测定系统，并包括本文中别处公开的其他方法。

[0483] 这样的免疫测定法通过包括以下步骤的方法来进行：将源自于对象的尿液、血液、血清或血浆样晶与含有Cizl多肽抗原的样晶在使得免疫特异性抗—抗体结合能够发生的条件下相接触，以及检测或测量由自身抗体引起的任何免疫特异性结合的量。可以将尿液、血液、血清或血浆样品中自身抗体的水平与来自于没有该病症的对象的类似生物学样晶中存在的水平、其中不存在抗原的样品中存在的水平或其中存在不同抗原的样品中存在的水平进行比较。

领域中公知的蛋白质分离技术从天然来源纯化 Ciz1 多肽,例如从细胞纯化 Ciz1 多肽。这样的纯化技术可以包括但不限于分子筛层析和/或离子交换层析。在实践中,微量滴定板、珠子或膜可以方便地用作 Ciz1 抗原的固体支持物。表面可以被预先制备好并储存。在一个实施方案中,所述 Ciz1 抗原结合于微量滴定板,在另一个实施方案中所述 Ciz1 抗原结合于珠子,在另一个实施方案中所述 Ciz1 抗原结合于膜。在另一个实施方案中, Ciz1 抗原不结合于固体支持物,使得 Ciz1 抗原与自身抗体的结合发生在液相中。在一个实施方案中, 使用标记的抗原结合分子例如抗体或反体来检测 Ciz1 抗原—自身抗体复合物。优选情况下,所述抗原结合剂是抗原。标记的抗原结合剂可以特异性针对 Ciz1 抗原,例如在液相的情况下,或者特异性针对自身抗体。在一个实施方案中,标记的抗原结合剂是抗人类抗体的抗体,即特异性针对人类抗体的抗体。为了促进低亲和性 Ciz1 自身抗体的结合,可以将 Ciz1 抗原多聚体化成二聚体、三聚体、四聚体等。在一个实施方案中, 使用链亲合素将 Ciz1 抗原多聚体化成四聚体 (McLaughlin, K. 等,《交换流程》(Protocol Exchange) (Nature Publishing), 2007 年 1 月 29 日在线出版)。

【0485】在一个实施方案中,用于检测 Ciz1 自身抗体的 Ciz1 抗原包含氨基酸序列 EGDEEEEDDEEEEEIEVRSRDISREEWKGSETY。在一个实施方案中,用于检测 Ciz1 自身抗体的多肽或肽包含氨基酸序列 EGDEEEEDDEEEEIEVRSRDISREEWKGSETY。在一个实施方案中,用于检测 Ciz1 自身抗体的多肽或肽包含氨基酸序列 DEEEEEEDEEEDDEEEIEVRSRDISREEWKGSETY。在一个实施方案中,用于检测 Ciz1 自身抗体的多肽或肽包含氨基酸序列 DEEEEEEDEEEDDEEEIEVRSRDISREEWKGSETY。
SRDISREEWKGSET。在另一个实施方案中，多肽或肽阻断剂包含氨基酸序列 EGDEEEEDEDDEEEIEVEEELCKQVRSRDISREEWKGSET。在另一个实施方案中，多肽或肽阻断剂包含氨基酸序列 DEEEEDEDDEEEIEVEEELCKQVRSRDISREEWKGSE。在另一个实施方案中，多肽或肽阻断剂包含氨基酸序列 EEEEDDEEEDEIEVEEELCKQVRSRDISREEWKGSE。在另一个实施方案中，多肽或肽阻断剂包含氨基酸序列 EDIEEEEDEEEIEVEEELCKQVRSRDISREEWKGSE。在另一个实施方案中，多肽或肽阻断剂包含氨基酸序列 DDEEEEDEEEIEVEEELCKQVRSRDISREEWKGSE。在另一个实施方案中，多肽或肽阻断剂包含氨基酸序列 DDEEEEDIIEVEEELCKQVRSRDISREEWKGSE。在另一个实施方案中，多肽或肽阻断剂包含氨基酸序列 EDIEEEIEEEVEEELCKQVRSRDISREEWKGSE。在另一个实施方案中，多肽或肽阻断剂包含氨基酸序列 EDEEEEIEEEVEEELCKQVRSRDISREEWKGSE。在另一个实施方案中，多肽或肽阻断剂包含氨基酸序列 DEEEEIEEEVEEELCKQVRSRDISREEWKGSE。在另一个实施方案中，多肽或肽阻断剂包含氨基酸序列 VEEELCKQV。在另一个实施方案中，多肽或肽阻断剂包含氨基酸序列 EEEELCKQ。

[0487] 本说明书的整个描述部分和权利要求书中，除非上下文另有要求，否则不带具体数量的指称涵盖其复数形式。具体来说，当没有具体数量指称时，说明书应该被理解为考虑到了复数和单数，除非上下文另有要求。

[0488] 与本发明的特定方面、实施方案或实例如结合描述的特点、整数、特征、化合物、化学部分或基团应该被理解为适用于本文中描述的任何其他方面、实施方案或实例，除非与之不相容。

附图说明

[0489] 图1示出了Ciz1基因的示意图，其中显示了外显子结构。编码参与DNA复制3和与核基质的连接1的功能性结构域的区域由上方的黑线标出。虚线表示对结构域的边界不确定，间隙表示从其外具有完全活性的变体剪接的序列。示出了PCR引物和探针相对于已知功能性结构域的位置。粉色条：外显子5中的探针T5，绿色条：外显子6与7之间的接合处的探针T7，黄色条：外显子14中的探针T4，蓝色条：外显子16中的探针T3。B）使用A）中示出的探针在源自于肺腺和正常的相邻组织的46种cDNA之间（Origene cDNA阵列HLRT504）进行的Ciz1表达的定量（用肌动蛋白归一化后的dCT值）。扩增Ciz1复制结构域（RD）内的序列的两组试剂在列示之间产生相似分布图。相反，扩增核基质绑定结构域（AD）中的序列的试剂组产生彼此非常相似的分布图。但是它与RD明显不同。C）在来自于患有IA、IB、IIA、IIB、IIIA或IIB期肿瘤的23位患者的相邻对照组织中和D）肿瘤本身中，Ciz1表达的定量（用肌动蛋白归一化后的dCT值）。图包括了线性回归趋势线。E）为了开发与匹配的对照相比较对肿瘤中复制和绑定结构域表达之间的平衡被改变的程度的单一数值指标，将两个复制结构域探针或两个绑定结构域探针的RQ（在样品组1/2中用对照组织进行校准）进行平均。用肿瘤样品的平均RQ除以其匹配对照的平均RQ，给出每个结构域相对于周围组织的变化的各个测度值。通过把复制结构域的变化除以绑定结构域的变化来将所述值合并，以便例如被绑定结构域增加的表达平衡后的复制结构域增加的表达会产生接近于1的值。相反，被绑定结构域降低的表达增加后的复制结构域增加的表达会产生显著大于1的值。结果被表示在对数比例尺上。小于2倍的变化（用灰色区域标出）被认为是显著的。该分析没有揭示出Ciz1的平衡后的低表达或过表达，而是仅仅揭示出相对于周围组织的表达变化。RD和AD不平衡的程度随着肿瘤期增加而增加；

[0490] 图2：在标出的一系列实体肿瘤内DNA复制和核基质绑定结构域的解偶联的表达。
外显子 16（AD，黑色条）的相对定量（RQ）。对于每种组织类型来说，显示了疾病期增加（从左至右）的 9 个独立肿瘤以及源自于癌症患者的明显正常的组织的 3 个不匹配的对照样品（被标为对照）的分析。对于 RD 来说，将两种探针的结果用以灰色阴影表示的对照（C）的平均值进行归一化，使得 RQ=2^{Ct 外显子 16/Ct 外显子 7 平均值}。I 期至 III 期肿瘤的结果与图 1 中分析的样品组相当，并以灰色阴影表示。对于所有肿瘤类型来说，还包括了 IV 期肿瘤的实例。对于它们中的大多数来说，RD 的表达等于或超过 RD（用 * 标出）。

对于图 4 A) Ciz1 复制结构域(黑线)和核基质锚定结构域(黄色圆圈)的解偶联表达可以影响 Ciz1 的固定及其 DNA 复制活性的亚核定位的方式。灰色柱体表示在复制起点处组装的 DNA 复制蛋白，灰色椭圆形表示 Ciz1 的结合核基质的停泊位点。该模型假设结合核基质的停泊位点是有限的。右图显示了组装成核基质的能力受损的 Ciz1 变体。B) 在人类肿瘤中观察到的两类 Ciz1 错误表达的描述，i) 在大多数常见实体肿瘤中观察到的并不描述在图 1-3 中的解偶联表达，ii) 在高比例的小细胞肺癌、甲状腺癌和淋巴瘤中观察到的 b- 变体。

图 5: Ciz1 复制结构域（RD）和锚定结构域（AD）抗体的产生和验证，以及 RD 和 AD 蛋白表达的分析。A) Ciz1 外显子的示意图（加阴影的矩形），示出了用作克隆抗体（上图）和单克隆抗体（下图）的免疫原的区域。B) 在所指示的正常胎儿海马区（CH38）和两种代表性肿瘤细胞系中，在固定之前未处理（“未提取”）和 0.1% Triton X100 存在下提取可溶性蛋白后（“去溶剂抗性”）与 DNAse I 温育后（“Dnase 抗性”），使用 Ciz1-RD 抗体（红色）检测到的内源性 Ciz1 的代表性免疫荧光图像。使用标准化曝光时间在一致的条件下收集图像，以便在细胞系内和之间，Ciz1 和 DNA 的强度反映出不同条件下细胞内 Ciz1 和残留 DNA 的水平。用 Hoechst33342（蓝色）对总 DNA 进行染色。比例尺为 10 微米。对于不同来源的四种其他癌细胞系，获得了相似的结果。C) 除了使用 Ciz1-AD 抗体（绿色）进行检测之外，其余与 B 中相同。结果表明 i) 在蛋白质水平上，Ciz1-RD 和 Ciz1-AD 的表达解偶联且不平衡，ii) 在癌细胞中，未固定的 Ciz1-RD 蛋白增加，iii) 固定了大部分的 Ciz1-AD 蛋白；D) 重组 AD 蛋白对内源性 Ciz1 的固定的影响。在没有（左图）或具有（右图）重组 GFP-C275 的绿色表达的 NIH3T3 细胞中，内源性 Ciz1-RD（红色）的 DNAse 抗性级分的高倍放大图像，所述 GFP-C275 编码鼠类 AD 蛋白。用 Hoechst33342（蓝色）对总 DNA 进行染色。注意，在用 GFP-C275 转染的细胞中，焦点染色较少。E) 图像显示了在用去溶剂提取后，具有 GFP-Ciz1 的焦点图案。GFP-C275 的非焦点图案的 NIH3T3 核以及用两种载体共转染后的细胞。绿色是 GFP，蓝色表示用 Hoechst33342 染色的核。GFP-C275 干扰 GFP-Ciz1 亚核焦点的形成。
越接合处的 taqman 探针（红线）的位置的示意图。B）在来自于 SCLC 细胞系的具有 b- 变体外显子的克隆产物和来自于正常细胞系的全长产物中观察到的迁移性差异。C）使用表达正常转录本（克隆 19）或 b- 型转录本（克隆 20）的报告质粒验证跨越接合处的引物。凝胶显示了来自于选择性引物对 P3/4 或非选择性 Ciz1 引物对 P1/2 的质粒来源的 PCR 产物。D）使用引物组 P11/P12（肌动蛋白，下图），引物组 P11/P2（Ciz1，上图）或跨越 b- 型转录本接合处的引物组 P4/P3（中图），从制备自 2 个神经内分泌癌细胞系（L95、SBC5）和一个正常胎儿肺细胞系（HEF1）的 cDNA 产生的 PCR 产物。对产物的序列进行验证，not1 是无模板对照的泳道。E）将来自于可变区任一侧的引物（P1/P2 或 P6/P7）与跨越 b- 型转录本中间突变接合处的 taqman 探针（T2）或识别该被不被可选剪接的区域的 taqman 探针（T4 和 T3）相结合。应用含有 100、75、50、25 或 0% 克隆 20 的质粒克隆 19 和 20 的混合物，证实了 b- 型转录本的选择性检测。图显示了对于非选择性检测工具来说，达到阈值所需的循环数是恒定的，但是对于变体选择性工具来说，达到阈值所需的循环数受质粒混合物组分的影响；

[0495] 图 7 A）使用来自于 3 个“正常”胚胎肺细胞系和 3 个神经内分泌肺肿瘤细胞系加上 1 个神经内分泌类癌的模板，对 b- 变体的 RD（左图）或 AD（中图）进行如图 1-3 中相同的 QPCR。将结果用肌动蛋白进行归一化并用 IMR90RD 进行校准。D）人类肺瘤组织。将同样的检测工具应用到来自于 3 个 SCLC 患者和来自于相同个体的 3 个正常相邻组织的 cDNA。在这些神经内分泌肿瘤中，b- 型转录本的表达大幅升高；

[0496] 图 8 A）在来自于 23 位从 I 级至 III 级不等的肺瘤患者（与图 1 相同的组）的匹配的样品组中，b- 型转录本（黑色条）的表达（Origene cDNA 阵列 HLRT504）。将表达用肌动蛋白进行归一化，并相对于每一对被给予 1 的任意值的“正常”样品（白色条）进行表示。B）来自上述指示的期的非小细胞肺肿瘤和不匹配的对照的独立组的类似分析（Origene 阵列 CSRT303）。直方图显示了用肌动蛋白归一化后的 b- 变体 Rq。也源自于 CSRT303 的 C）肝肿瘤和 D）肾肿瘤的相当的结果。将结果用由灰色块表示的对照组织样品的平均值进行校准。对于图 8 中示出的所有样品组来说，在少量随机病例中 b- 变体升高；

[0497] 图 9 显示了与图 8 中相同的对淋巴瘤、甲状腺癌、膀胱癌、肝癌和肾癌的分析。

[0498] 图 10 A）外显子 14b- 变体蛋白检测工具的产生和验证。A）用于在 16 个氨基酸的肽中产生独特的 EEIEYRSP 接合处的缺少间体序列（灰色）的免疫原性肽（下方的线），以及用于移除与接合处侧翼序列反应的抗体物质的全长肽（上方的线）。将多克隆的血清和杂交瘤针对固定的全长肽进行筛选，并使用含有 14b 合接处的肽进行正选择或负筛选，以产生亲和纯化的多克隆抗体（抗体 2B）。B）使用表达 GFP-hCiz1 或 GFP-hCiz1b- 变体的 NIH3T3 细胞，用抗 b- 变体抗体进行的免疫荧光（绿色）。重组 14b 蛋白被检测为红色，DNA 被染色成蓝色。C）蛋白质印迹，其显示出过表达的带有 14b 外显子接合处的 GFP-Ciz1 蛋白的选择性检测。示出了使用抗 b- 变体血清，免疫前血清和抗 Ciz 多克隆抗体得到的结果。D）使用亲和纯化的抗 b- 变体多克隆抗体在所标示的 SCLC 细胞和代表性正常细胞中免疫检测内生性 14b 蛋白。SCLC 细胞与抗 b- 变体血清反应，但是正常细胞不与其反应。E）示出了相同细胞中 Ciz1 的检测以供比较。F）与 D 中相同的 SCLC 细胞的高放大倍（600x）图像，揭示出核中与 DNA 复制焦点相比尺寸相似但数量较少的离散的焦点。

[0499] 图 11 b- 型转录本选择性 RNA 干扰工具的开发。A）顶部图示意性地显示了一组跨越独特外显子接合处的 siRNA 序列。下部图显示了在瞬时转染到 SCLC 细胞中之后 24 小
它们对Ciz1AD转录本水平和b型转录本水平的影响。结果用肌动蛋白进行归一化，并用来自于转染有对照siRNA的细胞的样品(Dcon)进行校准。B) 结果被表示成AD与b- 型转录本的比率，其中对照siRNA的比率1。有效性和选择性最高的siRNA序列被选择用于进一步实验(用星号表示)。C)对重组Ciz1蛋白的表达的变体选择性影响。按照指示，将克隆19和20与b- 型转录本选择性siRNA或对照siRNA共转染到小鼠3T3细胞中。b- 型转录本siRNA抑制来自于表达克隆20的蛋白表达，但是不抑制来自于表达克隆19的内源性小鼠Ciz1或人类Ciz1的表达。

[0500] 图12: b- 变体选择性shRNA的可诱导表达对培养的SCLC细胞的增殖的影响。A)从dox调控的shRNA载体(Clontech)稳定表达所选择的b- 型选择性序列和对照序列(针对萤光素酶)的结果显示出4天内细胞数量的增加。在第0和3天(灰色箭头)向试验样品添加dox。对照细胞(表达萤光素酶shRNA的SCLC)未受到诱导的极大影响，而试验细胞(表达b- 型选择性序列的SCLC)被抑制而不能以正常的速率增殖。B) 其中在第0天时添加强力霉素并在第4天时在三份平行样中对细胞数量进行定量的独立实验。误差条显示SEM。C) 凝胶图像显示了RT-PCR产物和所选则的序列对b- 型转录本的选择性随总Ciz1表达的变化。到诱导后24小时，b- 型转录本水平已经恢复，而在分离样品前1小时的第二个剂量揭示出b- 型转录本的选择性抑制。D) 在无诱导的低tet血清中培养1个月后，携带可诱导b- 变体shRNA载体的SBC5细胞。慢性渗湿表达对细胞具有可见的且渐进性的影响。

[0501] 图13: 体内研究(南方研究所(Southern Research Institute), USA)。A) 在第0天，用1.5x10⁶个带有dox调控的b- 型变体选择性shRNA载体的细胞注射两个15只NOD/SCID小鼠的组群。在21天时，将肿瘤小于100mg的小鼠排除，产生具有相等的平均肿瘤重量和低固定变差的组。在21天时，将Dox在饮用水中施用于第2组(黑色圆圈)，此后每周两次测量肿瘤尺寸。图中显示了平均肿瘤重量和SEM。B) 将另外10只小鼠从注射SCLC细胞之前3天起维持施用Dox。结果显示了它们的平均肿瘤重量和SEM，并与未接受dox的15只小鼠的平均肿瘤重量进行比较。C) 定量RT-PCR，其显示了在来自于第1组的2 只具有肿瘤的小鼠(图14A中的空心圆圈)和来自于第3组的2 只没有肿瘤的小鼠(图14B中的实心正方形)的全血来源的cDNA中，b- 型转录本的绝对水平。直方图显示了在用鼠类肌动蛋白归一化并用样品SRI-3-8进行校准后的双份分析(每个分析是三份平行样的平均值)。还显示了4 只小鼠携带的皮下肿瘤的估计尺寸。

[0502] 图17: A) Ciz1基因的示意图，其示出了外显子(编号)和siRNA的位置(灰色三角形)。B) 在用Dharmacon smart pool的抗人类Ciz1siRNA单独地(A,B,C,D)或作为混合物以及用Dharmacon smart pool的对照siRNA瞬时转染人类SCLC细胞系SBC5后，人类Ciz1转录本的抑制。直方图显示了在指定时间时用引物P1/P2和探针T4检测到的Ciz1稳定结构域转录本的相对定量(RQ)。将结果用肌动蛋白进行归一化，并用转染有对照siRNA的细胞的结果进行校准，所述转染有对照siRNA的细胞的结果被给予1的任意值。C) 在来自于转染后24小时收获的SBC5细胞的溶于去污剂的上清液(SN)和去污剂抗性沉淀(P)蛋白质级分的蛋白质印迹中，siRNA B和对照siRNA对Ciz1蛋白的影响。用抗小鼠Ciz1IRD多克隆抗体1793检测Ciz1蛋白。检测了以前针对NIH3T3细胞和U2OS细胞所报道的多个
Ciz1 同种型进行检测。D) 在单次瞬时转染后 5 天内，抗人类 Ciz1siRNA B (灰色正方形) 和 Ciz1siRNA1 (灰色圆圈)、Ciz1siRNA3 (灰色三角形) 和对照 siRNA (空心圆圈) 对 SBC5 细胞的增殖的影响。结果被表示成与第 1 天相比细胞数量的增加倍数，其中 SD 源自于三个独立的群体。

[0503] 本申请人发现，除了实体肿瘤样品之外，还可以在癌症患者血浆中检测到 Ciz1b 变体多肽。这一发现是不同寻常和出人意料的，因为 Ciz1 是一种核蛋白并且不知道该蛋白是可分泌的。此外，在血液中存在降解许多蛋白质的蛋白酶。甚至更出人意料的是，本申请人已在肿瘤负荷低的早期癌症患者 (I 期 NSCLC 和局限期 SCLC) 的血浆中发现了 Ciz1b 变体多肽。Ciz1b 变体生物标志物物以高度的灵敏性和特异性检测癌症。

[0504] 图 18 : 肺癌患者血浆中的 B 变体 Ciz1 蛋白。A) 示出了外显子 (编号)、DNA 复制结构域和核基质锚定结构域的 Ciz1 基因，以及其正下方缺少一部分外显子 14 的 Ciz1b 变体的图示。B) 蛋白质印迹图，其示出了在来自于患有 SCLC 和 NSCLC 的患者的 1 μ 1 血浆以及来自于没有被诊断的疾病的个别的 5 个样品中，用抗体 2B (被描述在补充图 10 中) 检测到的 b- 变体蛋白。使用内源性免疫球蛋白作为对照(对照)。C) 通过蛋白质印迹的密度测定法测定的 b- 变体蛋白平均水平 (和 SEM)，其示出了来自于患有标示的疾病类型和疾病期的肺癌患者的总共 119 份治疗前样品以及来自于没有疾病的个别或患有慢性阻塞性肺病 (COPD)、哮喘或贫血的患者的 51 份样品的结果。使用设定在非癌症样品的平均值 (+1SD) 处的阈值，该试验将 93% 的局限期 SCLC 和 I 期 NSCLC 患者正确分类。D) 用于连续分布数据的 ROC 分析的基于网络的计算器，为全部 170 份样品产生的具有 95% 置信区间的受试者工作特性曲线 (AUC 为 0.958)。使用可以在 http://www.jroefit.org 获得的基于网络的计算器 (用于连续分布数据的格式 5) 进行该计算。

[0505] 表 1，寡核苷酸引物和探针的概述

[0506]

[0507]
<table>
<thead>
<tr>
<th>名称</th>
<th>序列</th>
<th>外显子</th>
</tr>
</thead>
<tbody>
<tr>
<td>引物</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>CAGGGGCATAAGGACAAAG</td>
<td>13F</td>
</tr>
<tr>
<td>P2</td>
<td>TCCGAGCCCTTCACTCTCTCTGG</td>
<td>15R</td>
</tr>
<tr>
<td>P3</td>
<td>TCAGGTTGGAGCGGGTTGAG</td>
<td>17R</td>
</tr>
<tr>
<td>P3'</td>
<td>GGTCTTGAGCGGGTTGAG</td>
<td>17R</td>
</tr>
<tr>
<td>P4</td>
<td>GAAGAGCTTCAGTGAGGGTC</td>
<td>14bF</td>
</tr>
<tr>
<td>6</td>
<td>CGAGGCTTGATGAGAAGAGGA</td>
<td>14F</td>
</tr>
<tr>
<td>7</td>
<td>CCCCTGAGTTGCTGTGATA</td>
<td>16R</td>
</tr>
<tr>
<td>9</td>
<td>CACAAGTGCACCTCAATA</td>
<td>5F</td>
</tr>
<tr>
<td>10</td>
<td>CCTCTACCCACCCCCAATCG</td>
<td>5R</td>
</tr>
<tr>
<td>P11</td>
<td>CAACCGCGAGAAGATGACC</td>
<td>肌动蛋白F</td>
</tr>
<tr>
<td>P12</td>
<td>TCCAGGGCGACGTAGACA</td>
<td>肌动蛋白R</td>
</tr>
<tr>
<td>13</td>
<td>ACACACCAGAAGACAAAGATTACC</td>
<td>6/7 接合处</td>
</tr>
<tr>
<td>14</td>
<td>TGCTGGAGTGCCTTTTTCCT</td>
<td>7</td>
</tr>
<tr>
<td>P3b</td>
<td>GAA TCT CCA GGG CAC CAA C</td>
<td>3F</td>
</tr>
<tr>
<td>P5</td>
<td>CGA TTG GGG GTG GTA GAG G</td>
<td>5R</td>
</tr>
<tr>
<td>P24</td>
<td>TGTTGCATGAGAAACGCCA</td>
<td>肌动蛋白F</td>
</tr>
<tr>
<td>P25</td>
<td>GTCGCCGTTCCACACAAGGAT</td>
<td>肌动蛋白F</td>
</tr>
</tbody>
</table>

探针

<table>
<thead>
<tr>
<th>序列</th>
<th>位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>CACTGCAAGTCCCTTGGGCCA</td>
</tr>
<tr>
<td>T2</td>
<td>TGGACCTCACCTCGATCTCTCTTCA</td>
</tr>
<tr>
<td>T3</td>
<td>CACGGGCACCAGGAAGTCCA</td>
</tr>
<tr>
<td>T4</td>
<td>TGGTCCTCATCTTGGCCAGCA</td>
</tr>
<tr>
<td>T5</td>
<td>CGCCAGTCC17GCTGGGACC</td>
</tr>
<tr>
<td>T6</td>
<td>CCCTGTACGCGCTCTGGCCGT</td>
</tr>
<tr>
<td>T7</td>
<td>eee tge cca gag gae ate gee</td>
</tr>
</tbody>
</table>
实施例
[0508] cDNA阵列TissueScan qPCR阵列来自OriGene Technologies, Inc. (Rockville, MD), 其含有来自于48份不同的肺样品的2-3ng cDNA (HLRT101), 以及来自于同一患者的24份匹配的成对的肺和相邻组织 (HLRT504), 或来自于不同癌症的10组组织样品 (CSRT504)。肺 / 正常匹配成对的组织的阵列的肿瘤分类和简要病理学报告被提供在http://www.ori gene.com/geneexpression/disease-panels/products/HLRT504.aspx。 每个孔中的cDNA水平由供应商根据**b-肌动蛋白的表达进行标准化，并且在用于获得图3B中的数据的多重反应以及用于所有其他阵列的单反应中，根据**b-肌动蛋白的扩增对Cizl表达的结果进行归一化。设定阈值并使用ABI7000软件执行所有分析。

[0509] 人类组织来源的RNA。来自于根据18O批准的流程收集的组织的三对肺肿瘤 / 正常RNA从CytoMyx (http://www.cytoMyx.com/cytoMyx_biorepository.asp) 获得。在供体知情同意下收集的其他人类肺组织样品从ILSbio(http://www.ilsbio.com/) 获得。使用TRizol, 按照制造商的说明书从组织分离RNA; 使用无RNase的1.5mL Pellet Pestle (Anachem)进行组织匀浆。如下所述，使用随机引物或oligo dT与随机引物的混合物对RNA样品进行反转录。将约1.6μg RNA与1μL10mM dNTP, 0.5μL0.5μg μL随机引物 (Promega) 和 0.5μL0.5μg μL oligo dT12-18 引物 (Invitrogen) 在 DEPC 水中温育, 总体积为12μL。 可选地, 将约 1μL500μg/mL随机引物, 1μL10mM dNTP 在 DEPC 水中温育, 总体积为 13μL。将样品在 PTC-200Peltier 热循环仪(MJ Research)中在65℃下温育10分钟, 然后在冰上温育5分钟。向随机引起的反应加入下列试剂至总体积为20μL: 1x第一链缓冲液, 5mM DTT, 200USuperScript III 和 40U RNaseOUT (都来自于Invitrogen)。 将反应在46℃温育3小时, 然后在70℃温育15分钟。向随机引物/oligo dT反应加入下列试剂至总体积为20μL: 1x M-MLV反应缓冲液, 10mM DTT, 200U M-MLV反转录酶(都来自于Promega)和40U RNaseOUT (Invitrogen)。将反应在42℃温育52分钟, 然后在70℃温育15分钟。

[0510] PCR和qPCR用于片段扩增的引物对组合包括 p8/p2, 其使用Taq 聚合酶 (NEB, Herts, UK), 94℃/5分钟, 然后进行94℃/15秒, 55℃/30秒和68℃1分钟的33个循环, 最后一个步骤是在68℃下7分钟; p1/p2, 其使用phusion聚合酶(Finnzymes, Espoo, Finland), 98℃/30秒, 然后进行98℃/10秒, 62℃/30秒和72℃40秒的33个循环, 和在72℃下7分钟; 以及 p4/p3, 其使用 Taq 聚合酶 (NEB, Herts, UK), 94℃/5分钟, 然后进行94℃/30秒, 62℃/30秒和72℃/40秒的33个循环, 随后最终步骤是在72℃下7分钟。PCR反应在MJ热循环仪PTC-200上运行。在具有光学粘合膜(optical adhesive film)的MicroAmp光学96孔反应板(Applied Biosystems)中在25μL总体积中执行定量PCR反应。对于每个反应来说, 将cDNA与1x TaqMan® PCR混合物(Applied Biosystems), 0.4μM正向引物、0.4μM反向引物和0.4μM探针温育。将样品在ABI Prism7000或7300序列检测系统上使用相对定量测定法和下面的程序运行: 50℃[2分钟], 95℃[10分钟], 然后40个循环的95℃变性[15秒], 60℃退火和延伸[1分钟]。达到阈值水平时样品经过的循环数是Ct
值。选择一个样品作为“校准”样品，所有其他表达值被表示为相对于它的值（RQ）。除非另有指明，否则引物来自于 SigmaAldrich，探针来自于 MWG，并且克隆和 PCR 产物的序列验证由 MWG 执行。

【0511】细胞培养和传染细胞系从欧洲细胞培养物保藏中心（European cell culture collection）（http://www.ecacc.org.uk/）或日本的生物保藏中心（Japanese Collection of Research Bioresource）（http://cellbank.nibio.go.jp/）获得，或者是来自于 J. Southgate 的善意馈赠。所有细胞系按照推荐方案进行培养。NIH3T3 细胞如以前所述进行生长，并使用 Mirus3T3，用 GFP-C1z1 或 GFP-C275 进行转染。

【0512】核分级基本上按照所描述的进行核分级。典型情况下，将盖玻片上的细胞用冷 PBS 漂洗，然后按照指示用含有或不含去污剂（0.1%TX100）的冷 CSK 缓冲液（10mM Pipes/KOH Ph6.8, 100mM NaCl, 1mM EGTA, 300mM 葡萄糖）加 1mM DTT 和蛋白酶抑制剂混合物（Roche）进行漂洗。对于 DNase 处理来说，将细胞进一步在 CSK（按照指示含有 0.1% BSA）中漂洗，然后用 PBS 漂洗，随后根据推荐方案（Roche），用含 Dnase1 的消化缓冲液（10mM Tris[pH7.6], 2.5mM MgCl2, 0.5mM CaCl2）在 25°C 下温育 20 分钟。在盖玻片，在固定前将 DNAse 处理的细胞用 0.5% NaCl 漂洗 1 分钟。用新鲜的 4% 聚甲醛将所有制备物在室温下固定 20 分钟。

【0513】免疫荧光将盖玻片上的固定细胞用 PBS 漂洗，然后用抗体缓冲液（含 10% 无蛋白酶的 BSA, 0.02%SDS, 0.1% Triton X-100 的 PBS）封闭。用抗 Ciz1 多克隆抗体 1793 检测 Ciz1-RD，用使用 Ciz1 锚定结构域肽 DEDEEEIEVVEELCKQVRSDISR 亲和纯化的多克隆抗体 2C 检测 Ciz1-AD。Roche 激活性标记的 Ciz1 来源为 300ms，对 GFP 来源为 400ms，对 Hoescht 来源为 15ms，使用 Zeiss Axiovert200M 和 Openlab 图像获取软件来收集图像。当使用 Adobe photoshop 对图像进行数字增强以移除背景荧光或增加亮度时，对一个实验内的图像应用一致的操作。因此，提取之前和之后 Ciz1 染色的强度反映出处理的影响。使用 Openlab“Profile”工具，对来自于一致的成像参数下获取的原始图像的荧光强度进行定量。

【0514】实施例

【0515】DNA 复制和锚定结构域的解偶联表达 Ciz1 的两种明确表征的功能（周期蛋白依赖性刺激 DNA 复制，以及与核基质的结合）由分开的蛋白结构域编码。它们被称为 RD（复制结构域）和 AD（锚定结构域）。在体外，为了促进 DNA 复制，Ciz1 不需要其核基质锚定。事实上，缺少 AD 的 Ciz1 片段似乎比连接于核基质的 Ciz1 更有活性 3，这暗示了固定是限制性特点而不是功能所固有的特点。在这里，提供了在在多数癌细胞中 RD 与 AD 的表达不一致即“解偶联表达”的证据。在大多数肺癌以及许多其他常见实体肿瘤中，一个或另一个结构域的表达被改变并且不平衡。

【0516】使用检测 RD 或 AD 表达的定量 PCR 试剂（图 1a）来探查含有 46 种肺来源的 cDNA 的 cDNA 阵列（图 1b）。在所述阵列上，两种 RD 探针揭示出一致的表达模式。类似地，两种 AD 探针也揭示出一致的表达模式。然而，RD 和 AD 的表达彼此之间远远称不上一致。这证实了所述两个结构域并不总是表达一致，并且它们可能不总是同时存在于 Ciz1 蛋白中。

【0517】肺肿瘤中的解偶联表达与相邻的对照样品相反，肿瘤本身表现出远非令人信服的趋势。尽管 Ciz1 表达是明显解偶联并且不平衡的，但对于某些患者来说它表现为 RD 降低，
并且对于其他患者来说表现为 Rl 增加（相对于 IA 期样品），这产生了拟合不良的几乎水平的趋势线。

[0518] 还揭示了一个结构域的表达增加与另一个结构域的表达降低的组合效应。当将 Rl 和 AD 表达的组合结果表示为相对于每个单个相邻对照的值时（图 1E），数据显示出它们的平衡比率的破坏与肿瘤阶段相关。对于来自于患有 I 期疾病的患者的肿瘤来说，与周围组织相比，12.5%（8 个中的 1 个）的肿瘤的 AD 和 Rl 之间的变化超过 2 倍，而相对于 II 期肿瘤来说，该比率 90% （9/10），并且对于 III 期肿瘤来说，该比率 60% （3/5）。这个趋势支持了在肿瘤发生期间 Ciz1 表达是解偶联不平衡的这一结论。

[0519] 其他肿瘤类型中的解偶联表达为了产生 Ciz1 转录本表达的概况，在大量常见的实体肿瘤中对 RD 和 AD 进行取样（图 2）。对于大多数肿瘤类型来说，RS 模型对对照样品，几乎在所有 I、II 和 III 期肿瘤中 AD 比例过高。这一点对于乳腺癌、肺癌和甲状腺癌来说最为明显（由图 2B 中示出的比率曲线中的下倾所证实）。

[0520] IV 期疾病中的解偶联表达值得注意的是，在来自于所有组织类型的超过一半的 IV 期肿瘤中，发生了相反情况（在图 2A 中用星号表示）。在这些样品中，Rl 转录本比例过高，表明在已经经历或已经历转移的肿瘤子类中，表达的破坏有利于 Rl。

[0521] 将类似的分析应用于 40 份恶性黑色素瘤样品，包括来自于患有 IV 期疾病的患者的 19 份样品（图 2B）。在大部分所有等级的肿瘤中，AD 表达超过 RD，而对于所有三个对照样品来说情况不是如此。因此，恶性黑色素瘤不遵从上述趋势，表示对于这种类型的肿瘤来说，转变成 Rl 表达占优势并不伴有转移能力。

[0522] 考虑到蛋白质水平并鉴于关于 Ciz1 功能的已知信息，过量 Rl 或过量 AD 对细胞 DNA 复制的影响可能是非常相似的，并可能在严重性方面有差异。具体来说，本申请人已知 Ciz1 的复制结构域在不存在其核基质锚定的情况下能够起到刺激 DNA 复制起始的作用 3，但是在 NIH3T3 细胞 I 和本申请人试验的大多数其他已建立的非肿瘤来源的细胞系（未示出）中，核基质连接对于大多数 Ciz1 来说是常态。本申请人提出，复制结构域在不存在其核基质锚定的情况下表达将产生未锚定的活性，并且这将对 DNA 复制的时空组织具有影响。类似地，在不具有催化功能的蛋白质的情况下 Cz 端固定结构域的表达，可以通过与全长蛋白竞争核基质上的固定位点而具有占优势的负效应（图 4A）。

[0523] 实施例 2

[0524] 蛋白质检测工具本申请人开发了一组针对 RD 和 AD 的单克隆和多克隆抗体（图 5A），所述抗体被用于在蛋白质水平上检测 Ciz1 表达。它们具有作为分子诊断工具的潜力，并且目前正用于解答关于 Ciz1 蛋白在癌细胞系中的功能和行为的问题。到目前为止，本申请人证实，Ciz1RD 和 AD 两者在蛋白质水平上独立存在（图 5B，C），在某些癌细胞中 AD 连接于核基质而 RD 不连接（图 5C），并且 AD 的过表达破坏内源性 RD 的正常亚细胞定位和固定（图 5D，E）。所有这些观察结果都与 Ciz1RD 和 AD 之间比率的破坏改变核的体系结构这一想法相一致。

[0525] 实施例 3

Ciz1（产生b-型转录本）的频率远高于非癌组织（在图4B中示出）。在10种癌和13种非癌的总共23个不同文库中检测到跨越b-型转录本中的可选剪接区的Ciz1转录本。对于癌来源的转录本来说，40%为b-型转录本，相比之下，来自于非癌文库的仅有3%。

【0527】选择性检测工具本发明人开发了检测b-型转录本的分子工具。它们是位于外显子接合处任一侧的引物，跨越外显子接合处并且只给出来自于b-型转录本的产物的引物，以及也跨越外显子接合处并且仅识别b-型转录本的Q-PCR探针。一开始，将它们应用于一组肺癌细胞系，以a)验证所述工具，以及b)产生关于b-型转录本表达的证实的数据。

【0528】SCLC中的表达选择性转录本检测工具的应用显示，源自于SCLC患者的细胞系与对照细胞系相比更频繁地表达b-型变体（图6、7A）。将该检测工具应用于来自神经内分泌肺癌患者的肿瘤的少量取样以及来自同一患者的正常相邻肺组织的RNA样品，证实了在所有3位SCLC患者中优先表达b-型转录本（图7B）。

【0529】b-变体在非小细胞肺癌中的表达将对b-型转录本具有选择性的qPCR试剂应用于图1中所使用的匹配的肺肿瘤/正常组织cDNA阵列。样品组中的6个在肿瘤中表达比正常相邻对照组织高2倍以上的b-型转录本（图8A）。这包括阵列上的单个神经内分泌肿瘤（组9/10）。类似地，在独立的NSCLC样品组中，在少量病例组中b-变体与不匹配的对照相比升高（图8B）。因此，b-型转录本的表达尽管在神经内分泌肿瘤中普遍，但不限于这种类型的肺癌。

【0530】b-变体在其他癌症类型中的表达本申请人使用类似的cDNA阵列（Origene）调查了其他多种癌症疾病，包括不同等级的肿瘤以及一组来自于显正常组织的不匹配样品。当与对照相比时，非肝肿瘤（图8C）和肾肿瘤（图8D）的亚组，检测到b-变体升高。相反，甲状腺肿瘤和淋巴瘤两者的高比例的病例中表达高水平的b-变体（图9）。因此，这两种肿瘤类型是应用Ciz1b-变体选择性诊断和治疗工具的非常适合的可选适应症。

【0531】Ciz1变体蛋白已产生了高亲和性变体特异性多克隆抗体，并使用重组蛋白（图10A,10B和10C）和SCLC细胞系中的内源性b-变体蛋白（图10D）进行了验证。这显示，在肺癌细胞中变体转录本确被翻译成变体蛋白，并且我们的工具能够在细胞背景下有效并选择性检测。Ciz1b也在从事同样具有高度特异性的单克隆抗体的生产和验证。

【0532】实施例4

【0533】使用RNA干扰从培养的小鼠细胞中敲除Ciz1，这抑制了细胞周期进展并抑制细胞增殖。因此，抑制Ciz1的药剂有潜力作为抑制癌细胞增殖的治疗性分子。本申请人已经产生并测试了通过总体靶向Ciz1或通过选择性靶向肺癌相关的b-型转录本的Ciz1b- expression RNA干扰分子。两者都抑制神经内分泌肺癌细胞的增殖。

【0534】b-型转录本抑制我们的主要策略是以选择性方式抑制b-型转录本，目的是选择性抑制表达它的肺癌细胞的生长。对候选的b-型转录本特异性RNA干扰分子抑制b-型转录本表达并同时留下其他形式的Ciz1不受影响的能力进行了比较。进一步测试了有效性和选择性最高的siRNA序列对Ciz1蛋白的选择性抑制（图11）。在转移至可诱导shRNA载体后，记录到了对表达内源性b-型转录本的SCLC细胞的增殖的显著影响（图12A），以及b-变体转录本（图12B）和蛋白（图12C）的选择性抑制。在4天的时间期后，生长被抑制到类似处理的对照细胞的约35%（图12D）。在具有b-变体抑制的延长培养期间，观察到细胞形态的显著变化（图12E）。
体内靶抑制使用带有可诱导 shRNA 递送载体的相同 SCLC 细胞，通过皮下注射在小鼠中产生肿瘤。无论是从细胞注射之日起激活还是在肿瘤形成后开启，b- 型转录本选择性 RNAi 在体内有效地抑制肿瘤生长（图 13A、B）。这些数据表明，靶向 SCLC 相关的 Ciz1 剪接变体（b- 型转录本），是在表达它的肿瘤类型中选择性抑制细胞增殖的潜在可行的策略。进一步的验证被计划用于涵盖基于淋巴瘤模型和稳定化的 siRNA 的全身递送。

循环的肿瘤细胞的检测使用从带有皮下肿瘤的小鼠亚组的全外周血分离的 RNA 来测试 b- 型转录本检测工具的灵敏度（图 13C）。在具有肿瘤的两只小鼠中容易地检测到 b- 变体，但是在来自于对照组的两只小鼠中没有检测到，这提高了 b- 变体能够形成 SCLC 血液测试的基础的可能性。
图1
图 2
恶性黑色素瘤
图 5
图6
图 9
图 10
图17
图 18