2004/105346 A1 | IV YO0 O 0 O

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

—
A
ﬁggA o

¥

LWIPO>

(43) International Publication Date (10) International Publication Number

2 December 2004 (02.12.2004) PCT WO 2004/105346 A1l

(51) International Patent Classification’: HO4L 29/06, (74) Agent: TROESCH, Hans, R.; Fish & Richardson, P.C.,

GOG6F 9/46 3300 Dain Rauscher Plaza, 60 South 6th Street, Minneapo-
lis, MN 55402 (US).

(21) International Application Number:

PCT/US2004/014193 (81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(22) International Filing Date: 7 May 2004 (07.05.2004) AT, AU, AZ, BA. BB, BG, BR, BW, BY, BZ, CA, CH, CN,
25) Filing L . Bnelish CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
(25) Filing Language: nglis GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, TS, JP, KE,
. KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD

26) Publicati L . Enelish B) N 3) N)) B B)) s
(26) Publication Language nes MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
(30) Priority Data: PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
10/438,268 15 May 2003 (15.05.2003) US TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,

ZW.

(71) Applicant (for all designated States except US): SAP

AKTIENGESELLSCHAFT [DE/DE]; Neurottstrasse (84) Designated States (unless otherwise indicated, for every
16, 69190 Walldorf (DE). kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

(72) Inventors; and ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

(75) Inventors/Applicants (for US only): HILL, Michael, European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
Sean [US/US]; 197 Guerrero Street, San Francisco, CA FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
94103-1014 (US). MANN, Joerg [DE/US]; 2100 Oberlin SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Street, Palo Alto, CA 94306 (US). GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: WEB APPLICATION SERVER

Client System

Controller ~/ l—'—_

Web Application

Bystem

Is there a method in the class
corresponding to the value of the action
parameter?

Execute the method in the class
corresponding to the value of the action
parameter

After the method corresponding to the
value of the action parameter completes, is
an HTTP response cornmitted?

@ Receive the HTTF response Dispatch to a script corresponding to the

value of the action parameter

Process the markup
@ language code to Render markup [anguage cade from the
cofmmunicate with a user script and include the markup fanguage

code in an HTTP response

Send an HTTP response

(57) Abstract: A computer implemented method includes receiving a request that includes an action parameter (304) and identifying
a procedure that is associated with the value of the action parameter (314). If a procedure is identified, the identified procedure is
executed (320). If a procedure is not identified, a script associated with the value of the action parameter is dispatched (316).

WO 2004/105346 A1 II}110 0800 00000 A 00 A

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

WEB APPLICATION SERVER

TECHNICAL FIELD
This description relates to software applications that use a web communications
protocol such as Hypertext Transfer Protocol (HTTP) to enable communications across a

network.

BACKGROUND

With the advent of the Internet, the number of web applications (i.e., applications that
use HTTP or a similar network communications protocol) has grown significantly. The
development of web applications, therefore, has become increasingly important to software
companies competing in the Internet age.

Web application development using a model-view-controller paradigm typically
includes tasks performed by a user interface developer and a backend developer. The user
interface developer is the developer of the presentation or view logic. The backend developer
is the developer of the control logic which includes the code that enables the web application
to access or receive data from backend systems, process the data, and send processed data
back to the backend systems. The backend systems include computing systems that may be
queried to obtain data as necessary while executing a web application. Such data may
include, for example, login information and customer data.

Web application development may be delayed because of the coupling and
interdependence of the tasks of the user interface developer and the backend developer. For
example, a user interface developer may be forced to wait for backend integration to progress

further before being able to continue developing the user interface.

SUMMARY
In one general aspect, a computer implemented method includes receiving a request
that includes an action parameter and identifying a procedure that is associated with the value
of the action parameter. If a procedure is identified, the identified procedure is executed. If a
procedure is not identified, a script associated with the value of the action parameter is
dispatched.
Implementations may include one or more of the following features. For example, the

request may be a hypertext transfer protocol request. The procedure may be a method used in

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

an object oriented programming language or a function used in a procedural programming
language. After an identified procedure is executed, a script may be dispatched if executing
the procedure does not result in a response being committed.

Identifying a procedure that is associated with the value of the action parameter may
include searching a group of procedures in a program for a procedure that is associated with
the value of the action parameter. Searching a group of procedures may include searching a
group of procedures in a program for a procedure that has a name equal to the value of the
action parameter. Searching a group of procedures may include searching a group of
procedures in a program for a procedure that is associated with the value of the action
parameter and that includes code that implements application control logic. Searching a
group of procedures may include searching a group of procedures in a program for a
procedure that is associated with the value of the action parameter and that includes code that
enables communications with backend systems.

Searching a group of procedures may include searching a group of methods in a class
for a method that is associated with the value of the action parameter. The method may be
programmed in Java™" |

Searching a group of procedures may include searching a group of functions in a
program for a function that is associated with the value of the action parameter. The function
may be programmed in Perl.

Dispatching to a script associated with the value of the action parameter may include
dispatching to a script saved under a file name corresponding to the value of the action
parameter. Dispatching to a script may include dispatching to a script may include
dispatching to a script that is associated with the value of the action parameter and that
includes code that implements presentation logic. The presentation logic may implement a
user interface. The user interface may be a voice user interface operable to communicate
with a user of a voice communication device. The voice communication device may be a
landline phone, a wireless phone, a voice-enabled personal digital assistant, or a voice-
enabled computer.

The script that is associated with the value of the action parameter may include
markup language code. The markup language code may include hypertext markup language,
VoiceXML, SALT, or markup language used to communicate with wireless communication
devices. The markup language used to communicate with wireless communication devices

may include wireless markup language.

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

In another general aspect, a computer system includes a web application computer
configured to receive a request that includes an action parameter and cohﬁgured to identify a
procedure that is associated with the value of the action parameter. The web application
computer is further configured to execute the procedure if a procedure is identified and
dispatch to a script associated with the value of the action parameter if a procedure is not
identified.

Implementations may include one or more of the following features. For example, the
web application computer may be further configured to send a response. The web application
may be further configured to dispatch to the script after execution of the procedure if
execution of the procedure does not result in a response being committed.

The web application computer may be configured to dispatch to a script including
markup language used for communications with a wireless communication device. The
markup language may include wireless markup language code. The web application
application computer may be configured to dispatch to a script including VoiceXML or
SALT code.

The computer system may further include a gateway computer. The gateway
computer may be configured to communicate with a wireless communication device. The
gateway computer may be a wireless application protocol gateway. The gateway computer
may be a voice gateway configured to communicate with a voice communication device.

The details of one or more implementations are set forth in the accompanying
drawings and the description below. Other features will be apparent from the description and

drawings, and from the claims.

DESCRIPTION OF DRAWINGS

Fig. 1 is a block diagram of a communications system using web application routing
logic to provide a flexible platform for web applications.

Fig. 2 is a flow chart of a process for developing a web application using web
application routing logic.

Figs. 3A and 3B are a flow chart of a process for using web application routing logic
to respond to HTTP requests.

Fig. 4 is a block diagram of an implementation of the communications system of Fig.
1 that uses web application routing logic to provide a flexible platform for web-based voice

applications.

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

Fig. 5 is a block diagram of a detailed implementation of the communications system
of Fig. 4.

Figs. 6A and 6B are a flow chart of a process for using web application routing logic
to begin communications with a user of a voice communication device.

Figs. 7A and 7B are a flow chart of a process for using web application routing logic

to communicate with a user of a voice communication device.

DETAILED DESCRIPTION

Referring to Fig. 1, a communications system 100 for using web application routing
logic to provide a flexible platform for web application development includes a client system
110, anetwork 120, and a web application system 130. The client system 110 is configured
to send requests and receive responses from the web application system 130. For example,
the client system 110 may send and receive data using Hypertext Transfer Protocol (HTTP) or
another protocol that enables web communications across a network. The HTTP responses
are processed to communicate with a user of the client system 110. The client system 110
includes a device 110A capable of executing instructions under the command of a controller
110B. The device 110A may be a general purpose computer, such as a workstation or a
personal computer, a personal digital assistant (PDA), a special purpose computer, an
intelligent mobile phone, a pager, or a set top box.

The controller 110B commands and directs communications between the device 110A
of the client system 110 and the web application system 130. The controller 110B may
include one or more software or hardware applications that enable a user of the client system
110 to communicate using HTTP with the web application system 130. For example, the
controller 110B may be a browser application on a personal computer that sends HTTP
requests to the web application system 130, receives HTTP responses from the web
application system 130, and processes hypertext markup language (HTML) code in the HTTP
responses to display a web page or otherwise communicate with the user. The device 110A is
connected to the controller 110B by a wired, wireless or virtual (i.e., when the controller is
software running on the device) data pathway 110C capable of delivering data. In some
implementations, the device 110B is a web browser running on the device 110A which is a
personal computer.

In another implementation, the client system 110 is configured to communicate with a
gateway (not shown) rather than with the web application system 130. In this
implementation, the client system 110 exchanges data with the gateway which, in turn,

4

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

communicates with the web application system 130 using HTTP. For example, the client
system 110 may be a voice communication device, such as, for example, a landline phone,
that exchanges voice data with a voice gateway, or the client system 110 may be a wireless
device, such as, for example, a wireless phone, a pager or a radio transceiver, that exchanges
data with a Wireless Application Protocol (WAP) gateway.

The network 120 is configured to enable direct or indirect communications between
the client system 110 and the web application system 130. Examples of the network 120
include the Internet, Wide Area Networks (WANSs), Local Area Networks (LANS), analog or
digital wired and wireless telephone networks (e.g., Public Switched Telephone Network
(PSTN), Integrated Services Digital Network (ISDN), and Digital Subscriber Line (xDSL)),
radio, television, cable, satellite, and/or any other delivery or tunneling mechanism for
carrying data.

The web application system 130 is a computer system configured to receive requests
from the client system 110 over the network 120, process the requests in accordance with a
web application that includes web application routing logic, and send corresponding
responses to the client system 110. In an exemplary implementation, the requests and
responses are communicated using HTTP.

In another implementation, the web application system 130 receives HTTP requests
and sends HTTP responses to a gateway (not shown) that communicates with the client
system 110. In this implementation, the client system 110 does not communicate with the
web application system 130 directly using HTTP but rather communicates with the gateway
which, in turn, communicates with the web application system 130 using HTTP. The
gateway may be, for example, a voice gateway that is configured to process Voice Extensible
Markup Language (VoiceXML) or Speech Application Language Tags (SALT) and exchange
voice data with the client system 110. The gateway also may be a gateway configured to
communicate with wireless communication devices. For example, the gateway may be a
WARP gateway configured to process Wireless Markup Language (WML) and exchange data
with the client system 110 using WAP. The gateway may be local to the web application
system 130, local to the client system 110, or remote to both the web application system 130
and the client system 110 but communicatively coupled to them through network 120.

The web application includes a set of scripts and an HTTP response algorithm for
responding to HTTP requests. The scripts are written in a scripting language (e.g.,
JavaServer Pages™ (JSP), Active Server Pages™ (ASP), or PHP: Hypertext Preprocessor

(PHP)) and typically include markup language code (e.g., HTML, VoiceXML, SALT, or
5

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

WML). The HTTP response algorithm includes the web application routing logic and may be
implemented as a program written in a procedural programming language (e.g., Perl or C) or,
alternatively, may be implemented as a class written in an object-oriented programming
language (e.g., C++, Visual Basic, or Java™).

The web application may be developed using a model-view-controller paradigm. In a
model-view-controller paradigm, the functions of the program or the methods of the class
implement application control logic. The application control logic coordinates the execution
of scripts (i.e., the functions or methods may dispatch to one or more scripts during
execution), accesses or receives selected data from local or remote cofnputer systems or
storage devices, processes the data, and sends the processed data to local or remote computer
systems or storage devices. The scripts implement presentation (or view) logic. The
presentation logic provides a user interface that enables a user of the client system 110 to
interact with the web application.

The HTTP response algorithm includes web application routing logic that examines
the value of an action parameter in a received HTTP request to determine which methods or
functions and/or scripts should be executed in response to the received HTTP request. The
action parameter is an additional parameter contained in the HTTP request that identifies the
method, function, or script that should be executed by the web application routing logic.
Other parameters contained in the HTTP request include a Universal Resource Locator
(URL), a web context, and a web application name. For example, an HTTP request may be

formatted as follows: hitp://www.mysite.com/mycontext/mvapp?action=welcome. In this

example, the HTTP request includes a Universal Resource Locator corresponding to
“www.mysite.com,” a web context corresponding to “mycontext,” a web application name
corresponding to “myapp,” and an action parameter set to “welcome.”

If a method or function corresponds to the value of the action parameter, then the web
routing logic executes that method or function. If execution of that method or function does
not result in an HTTP response being committed (i.e., an HTTP response is not prepared by
the method or function for subsequent delivery to the client system 110), then the web routing
logic dispatches to a script that corresponds to the value of the action parameter upon
completion of the execution of the method or function. The application also dispatches to a
script that corresponds to the value of the action parameter if the web application routing
logic finds no method or function that corresponds to the value of the action parameter. In
one implementation, a method, function, or script corresponds to the value of the action

parameter if the value of the action parameter is a label or name used to store, invoke, or
6

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

otherwise reference the corresponding method, function, or script. For example, a method
named “authen” corresponds to an action parameter set to “authen.”

Fig. 2 shows a process 200 for using web application routing logic to facilitate web
application development by substantially decoupling the tasks of the user interface developer
from those of the backend developer. The web application development begins by creating a
set of initial scripts and creating a program or a class that contains web application routing
logic and few or none of the functions or methods necessary for interactions with backend
systems (202). The initial scripts present to the user of the client system 110 artificial or
simulated results of interactions with backend systems.

Each script is associated with a value of an action parameter (204). In one
implementation, associating a script with a value of the action parameter is accomplished by
simply saving the script under a file name. The file name of the script (excluding extension)
is the value of the action parameter that corresponds to that script (e.g., if the script is saved
as “welcome.jsp”, the value of the corresponding action parameter is “welcome.”).

In the course of application development, the user interface developer creates new
scripts (206) and associates the new scripts with values of the action parameter (208). The
user interface developer does not need to wait for the backend developer to complete the
backend integration and the corresponding control logic prior to creating scripts. After a user
interface developer creates a new script, the web application routing logic in the class or
program automatically dispatches to the script when an HTTP request including an action
parameter with a value corresponding to the new script is received from the client system
110. The web application routing logic eliminates the need to change the dispatcher or to add
additional code when adding a new script.

As the backend integration progresses, the backend developer creates new functions
or methods in the class or program (210) and enables the execution of the new functions or
methods to replace the execution of scripts by simply labeling, naming, or otherwise
associating the new methods or functions with the value of the action parameter that was
previously associated with the scripts (212). The scripts that present artificial or simulated
results of interactions with backend systems are thereby replaced by new methods or
functions developed by the backend developer that perform actual interactions with the
backend systems and that instruct the same or other scripts to present the actual results of
interactions with the backend systems to users. Typically, the initial scripts display default

values of variables until replaced by a new function or method. The new function or method

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

interacts with backend systems, assigns actual values to the variables, and dispatches to the
same initial scripts which now present the actual rather than default values to users.

For example, when developing a web-based banking application, a script may be
manually generated to present to the user an artificial bank account balance and may be
executed in response to an HTTP request from the client system 110 that includes an action
parameter set to “bankacct.” When the backend developer completes the method or function
that allows the web application system 130 to access actual bank account information from
the computer systems of the bank (i.e., backend systems), execution of the script that presents
an artificial bank account balance is replaced by execution of a method or function that
accesses and coordinates presentation of an actual bank account balance to the user. The
method or function that accesses and coordinates the presentation of an actual bank account
balance to the user is simply inserted into the web application and labeled, named, or
otherwise associated with the action parameter value “bankacct.” The web application
routing logic ensures that the method or function rather than the script executes when a
received HT TP request includes an action parameter set to “bankacct.”

In this manner, the web application routing logic enables the user interface
development (206, 208) of a web application to be substantially decoupled from the backend
development (210, 212) of a web application. The user interface developer is able to develop
the user interface of the web application relatively independently from the development of
the control logic and backend integration. The backend developer is able to complete the
control logic and backend integration and smoothly insert the corresponding functions and
methods into the program or class of the web application without significantly modifying or
disrupting the user interface developed by the user interface developer.

Figs. 3A and 3B show a process 300 for using web application routing logic to
respond to HTTP requests. For convenience, particular components described with respect to
Fig. 1 are referenced as performing the process 300. However, similar methodologies may be
applied in other implementations where different components are used to define the structure
of the system, or where the functionality is distributed differently among the components
shown by Fig. 1. Furthermore, process 300 assumes that the HTTP response algorithm of the
web application is implemented as a class rather than as a program. However, the
methodology disclosed by process 300 may be similarly applied to web applications in which
the HTTP response algorithm is implemented as a program.

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

The process 300 assumes that the class is already instantiated (i.e., loaded). In
general, instantiation of a class typically occurs prior to the web application server 130
receiving HTTP requests related to that class from the client system 110.

The client system 110 sends an HTTP request to the web application system 130
(302). The HTTP request includes a uniform resource locator (URL), a web context, a web
application name, and an action parameter. The web application system 130 receives the
HTTP request (304) and identifies a class related to the web context and the web application
specified by the HTTP request (306). In one implementation, the web application system 130
identifies a class related to the web context and the web application name by accessing a data
store containing data records storing names of classes and that may be indexed or otherwise
accessed based on web context and web application name.

The web application system 130 executes an HTTP request method in the identified
class (308). The HTTP request method is a method that is executed each time an HTTP
request that includes a web context and a web application name related to the identified class
is received from the client system 110. In this implementation, the HTTP request method
contains the web application routing logic. The web application developer typically is not
permitted to edit the contents of the HTTP request method.

The HTTP request method invokes (i.e., executes) a web application service method
(310). The web application service method, unlike the HTTP request method, is a method
that may be edited by the web application developer. The web application service method is
executed every time the HTTP request method is executed (i.e., every time an HTTP request
including a web context and a web application name related to the identified class is received
from the client system 110). In a simple example, a developer may code the web application
request method to increment a counter, and thereby keep track of the number of HTTP
requests received by the web application system 130 that include a web context and a web
application name related to the identified class.

When the web application service method finishes executing, the web application
system 130 returns to the HTTP request method and executes the web application routing
logic (312). The web application routing logic determines whether a method in the identified
class corresponds to the value of the action parameter included in the HTTP request (314). In
one implementation, a method in the identified class corresponds to the value of the action
parameter if the name of the method is the same as the value of the action parameter.

If no method in the identified class-corresponds to the value of the action parameter in

the HTTP request, the web application routing logic dispatches to a script corresponding to
9

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

the value of the action parameter (316). The web application system 130 renders markup
language code from the script and includes the markup language code in an HTTP response
(318). The HTTP response is sent to the client system 110 (324).

If a method in the identified class corresponds to the value of the action parameter in
the HTTP request, the web application routing logic executes the method that corresponds to
the value of the action parameter (320). Upon completion of the method, the web application
routing logic determines whether an HTTP response was committed by the method (322).

If an HTTP response was committed by the method, then the web application routing
logic sends the HTTP response to the client system 110 (324). If no HTTP response was
committed by the method, then the web application routing logic dispatches to a script
corresponding to the value of the action parameter (316). The web application system 130
renders markup language code from the script and includes the markup language code in an
HTTP response (318) which is then sent to the client system 110 (324).

The client system 110 receives the HTTP response (326) and processes the markup
language code to communicate with a user (328). In another implementation, a gateway,
rather than the client system 110, sends HTTP requests (302), receives HTTP responses
(326), and processes the markup language code to communicate with a user of the client
system 110 (328).

Fig. 4 shows an implementation 400 of the communications system of Fig. 1 directed
to using web application routing logic to provide a flexible platform for web-based voice
application development. The communications system 400 includes a voice communication
device 410, a network 420, a voice application system 430, and a voice gateway 440. The
voice communication device 410, the network 420, and the voice application system 430 are
described broadly above with respect to Fig. 1. In particular, the voice communication device
410, the network 420, and the voice application system 430 typically have attributes
comparable to those described with respect to the client system 110, the network 120, and the
web application system 130.

The voice communication device 410 is a device able to interface with a user to
transmit voice signals across a network such as, for example, a landline phone, a wireless
phone, a voice-enabled personal digital assistant (PDA), or a voice-enabled computer.

The network 420 may include a circuit-switched voice network, a packet-switched
data network, or any other network able to carry voice. For example, circuit-switched voice
networks may include the public switched telephone network (PSTN), and packet-switched

data networks may include networks based on Internet protocol (IP) or asynchronous transfer
10

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

mode (ATM), and may support voice using, for example, Voice-over-IP, Voice-over-ATM, or
other comparable protocols used for voice data communications.

The voice application system 430 includes a voice application server and all computer
systems that interface and provide data to the voice application server. The voice application
system 430 is configured to receive HTTP requests from the voice gateway 440, process the
HTTP requests in accordance with a web-based voice application that includes web
application routing logic, and send corresponding HTTP responses to the voice gateway 440.
The HTTP responses sent to the voice gateway 440 include voice markup language code,
such as, for example VoiceXML or SALT code, that is rendered by the voice gateway 440 to
communicate with a user of the voice communication device 410.

The voice gateway 440 is a gateway configured to receive user calls from voice
communication devices 410 via the network 420 and respond to the user calls in accordance
with the web-based voice application. Specifically, the voice gateway 440 generates HTTP
requests based on a user call, sends the HTTP requests to the voice application system 430,
receives corresponding HTTP responses from the voice application system 430, and renders
the voice markup language code in the HTTP responses to communicate with the caller.

Fig. 5 shows a communications system S00 similar to the communications system 400
but illustrating in greater detail an implementation of the voice application system 430 and
the voice gateway 440. The communications system 500 includes a voice communication
device 510, a network 520, a voice application system 530, and a voice gateway 540. The
voice communication device 510, the network 520, the voice application system 530, and the
voice gateway 540 are described broadly above with respect to Fig. 4. In particular the voice
communication device 510, the network 520, the voice application system 530, and the voice
gateway 540 typically have attributes comparable to those described with respect to the voice
communication device 410, the network 420, the voice application system 430, and the voice
gateway 440 of Fig. 4.

The voice application system 530 includes a voice application server 532 that
communicates with the voice gateway 540, a data store 534, and one or more backend
systems 536. The voice application server 532 provides the execution environment for
processing the web-based voice application. The voice application server 532 receives HTTP
requests from the voice gateway 540, processes the HI' TP requests in accordance with a web-
based voice application that includes web application routing logic, and sends corresponding

HTTP responses that include voice markup language code to the voice gateway 540. The

11

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

voice application server 532 may be local to the voice gateway 540 or may be located
anywhere across a network accessible by the voice gateway 540.

The data store 534 is a storage device that stores files necessary for execution of the
web-based voice application. Such files may include script files, prompt files, grammar files,
and text-to-speech (TTS) text files.

Script files are text files that store the scripts of the web-based voice application. A
script file includes a series of embedded tags. The tags indicate which part of the text file
defines a prompt used to “speak” to the caller and which part defines a grammar used to
“hear” and understand the spoken response of the caller. Script files also generally contain
limited logic that controls the sequence and defines rules for how to respond to conditions,
such as misunderstood speech or a lack of speech from the caller. The script files are
processed by the voice application server 532 to render voice markup language code. The
rendered voice markup language code is then sent in an HTTP response to the voice gateway
540 for further processing by an interpreter program 540b.

Prdmpt, grammar, and TTS text files are accessed by the interpreter program 540b of
the voice gateway 540 when processing the voice markup language code received in an
HTTP response from the voice application server 532. When executing a prompt instruction,
the interpreter program 540b either accesses a prompt file that contains voice data that is
directly “spoken” to the caller or, alternatively, accesses a TTS text file that is spoken to the
user via the text-to-speech engine 540d of the voice gateway 540. Audio data stored in
prompt files may be formatted in WAV or other audio data formats. When executing a
grammar instruction, the interpreter program 540b accesses grammar files that contain a
specification of the various ways in which a caller might respond to a prompt. Grammar files
may be in a custom format specific to the speech recognition engine 540e or may be written,
for example, in standard Java Grammar Specification Format (JGSF) or Speech Recognition
Grammar Specification 1.0 extensible markup language (XML) or augmented Backus-Naur
forms (ABNF).

The data store 534 may be external to or located inside the voice application server
532 or the voice gateway 540. Prompt and grammar files may be cached at the gateway 540
to decrease access time. The voice gateway 540 may also receive the prompt and grammar
files from the data store 534 or from the voice application server 532 which obtains them
from the data store 534. Alternatively, the voice gateway 540 may receive the prompt and

grammar files from a completely different web server.

12

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

The backend systems 536 include computing systems in the computing environment
of the voice application server 532 that may be queried by the application server to obtain
data as necessary while executing a voice application. Such data may include, for example,
login information and customer data. |

The voice gateway 540 includes a telephony services and signal processing
component 540a, an interpreter program 540b, an audio playback component 540c, a text-to-
speech generation component 540d, a speech recognition engine 540e, and a client services
component 540f.

Incoming calls are answered by the telephony services and signal processing
component 540a of the voice gateway 540. The voice gateway 540 is provisioned in a
manner similar to an interactive voice response (IVR) system and is usually located
“downstream” of a private branch exchange (PBX) or automatic call director (ACD). This
configuration allows callers to request transfer to a live operator if they experience problems.
The voice gateway 540 also may be located at the customer site in front of the PBX or ACD
(to save having to buy more ports on the PBX or ACD), or at the premises of a dedicated
application service provider (ASP).

The interpreter program 540b is responsible for sending HTTP requests to and
receiving HTTP responses from the voice application server 532, and processing voice
markup language code to communicate with a caller. Processing voice markup language
code to communicate with a caller includes generating outgoing speech or prompts using the
audio playback component 540c and the text-to-speech generation component 540d of the
voice gateway 540 and listening to spoken responses from the caller using the speech
recognition engine 540e. The speech recognition engine 540e is equipped with or has access
to grammars that specify the expected caller responses to a given prompt. The prompts that
are generated in response to the spoken input of the caller vary depending on the caller
response and whether or not it is consistent with a grammar. In this manner, the voice
gateway 540 is able to simulate a conversation with the caller.

In typical operation, the telephony services and signal processing component 540a of
the voice gateway 540 receives a call from a caller and obtains caller information. The client
services component 540f relates the caller information (e.g., Automatic Number
Identification (ANI) information) to a URL, a web context, and a web application name, and
sends an HTTP request including the URL, the web context, and the web application name
(and optionally an action parameter) to the voice application server 532. The voice

application server 532 receives the HTTP request, processes the HTTP request in accordance
13

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

with a web-based voice application, and sends an HTTP response that includes rendered
voice markup language code to the voice gateway 540. The voice gateway 540 parses the
received voice markup language code using the interpreter program 540b. The gateway 540
parses the voice markup language code by searching and executing voice-specific
instructions. For example, the first voice-specific instruction may be a prompt instruction.
The prompt instruction may be executed either by accessing and playing an audio file
specified by the prompt instruction or by employing the text-to-speech generation component
540d to translate and play text included in the prompt instruction.

The next voice-specific instruction in the voice markup language code may be, for
example, a grammar instruction. The interpreter program 540b of the gateway 540 processes
the grammar instruction by handing off control to the speech-recognition engine 540e which
tells the gateway 540 to pause and listen for spoken input from the caller.

Upon receiving spoken input from the caller, the speech recognition engine 540e
determines whether the spoken input is consistent with the grammar specified by the
grammar instruction. If the spoken input is consistent with the grammar, the voice markup
language code may direct the voice gateway 540 to execute a prompt instruction tailored to
the input. If the spoken input is not consistent with the grammar, the voice markup language
code may direct the voice gateway 540 to execute a different prompt instruction that informs
the caller that the system does not understand the caller.

The interpreter program 540b continues parsing and processing the voice markup
language code in this manner. When the script is completed and the necessary responses are
collected from the caller, the interpreter 540b assembles them into an HTTP request that is
sent to the voice application server 532. The voice application server 532 processes the
HTTP request and may send to the voice gateway 540 more rendered voice markup language
code in another HTTP response.

Figs. 6A and 6B show a process 600 for using web application routing logic to begin
communications with a user of a voice communication device 510 upon receiving a call from
the user. For convenience, particular components described with respect to Fig. 5 are
referenced as performing the process 600. However, similar methodologies may be applied
in other implementations where different components are used to define the structure of the
system, or where the functionality is distributed differently among the components shown by
Fig. 5. Furthermore, process 600 assumes that the HTTP response algorithm of the web-

based voice application is implemented as a class rather than as a program. However, the

14

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

methodology disclosed by process 600 may be similarly applied to web applications in which
the HTTP response algorithm is implemented as a program.

The user of the voice communication device 510 makes a call, and the call is routed to
the voice gateway 540 by a telecommunications service provider (602). The voice gateway
540 receives the call and identifies a URL , a web context, and a web application name based
on caller information (604). The caller information may include the caller telephone number
(i.e., the telephone number of the user of voice communication device 510), the number the
caller dialed (e.g., through Dialed Number Identification Service(DNIS)) and/or any
information that may be derived by acceésing data stores based on the caller telephone
number, based on other ANI data, or based on DNIS data. The URL , the web context, and
the web application name may be determined, for example, by accessing a local or remote
data store relating URLs, web contexts, and web application names to caller telephone
numbers. The voice gateway 540 sends an HTTP request that includes the URL, the web
context, the web application name, and optionally an action parameter to the voice
application server 532 (606).

The voice application server 532 receives the HTTP request (608) and identifies a
class related to the web context and the web application name in the HTTP request (610).
The voice application server 532 determines whether the class is already instantiated (612).

If the class is not yet instantiated, the voice application server 532 instantiates the
class (614). The voice application server then executes an initialization method in the class
(616). The initialization method is a method that is executed when the class is instantiated.
The initialization method typically loads resources such as logging system resources, which
may, for example, track web application log information, and configuration system resources,
which may, for example, initialize parameters and property values used in the web
application. The initialization method also may set a default initial script that is processed
under certain conditions (see operations 626-644 below) to establish an initial dialog with the
user of the voice communication device 510. In the implementation shown in Figs. 6A and
6B, the initialization method may specify the default initial script by assigning a value to a
SetnitialPage parameter. For example, the initialization method may assign the value of
“Defaultlndex” to the SetInitialPage parameter. The default initial script is then
“DefaultIndex.jsp”. The web-based voice application developer typically is not permitted to
edit the contents of the initialization method.

The initialization method also invokes a voice application initialization method (618).

The voice application initialization method, unlike the initialization method, is a method that
15

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

may be edited by the web-based voice application developer. The voice application
initialization method is executed every time the initialization method is executed (i.e., every
time the corresponding class is instantiated). The voice application initialization method may
be edited by the web-based voice application developer to load logging system resources and
configuration system resources specific to the web-based voice application. The web-based
voice application developer also may edit the voice application initialization method to
change the value of the default initial script by assigning a new value to the SetlnitialPage
parameter (e.g., the SetInitialPage parameter may be assigned the new value of

“Initial WelcomePage” which corresponds to an initial script named
“InitialWelcomePage.jsp”).

Upon completion of the voice application initialization method, the voice application
server 532 executes an HTTP request method (620). The voice application server 532 also
executes the HTTP request method if the identified class is already instantiated. As discussed
previously in reference to process 300, the HTTP request method is executed each time an
HTTP request is received. The HTTP request method invokes a voice application service
method (622). The voice application service method is similar to the web application service
method but directed to the needs and requirements of voice applications.

When the voice application service method finishes executing, the voice application
server 532 returns to the HTTP request method and executes web application routing logic
(624). The web application routing logic determines whether an action parameter was
included in the HTTP request (626). If an action parameter was included in the HTTP
request, then the process 600 proceeds to operations 720-736 shown in Figs. 7A and 7B and
discussed below (628).

If no action parameter was included in the HTTP request, then the web application
routing logic determines if there is a method called “index” in the class (630). If there is no
method called “index™ in the class, the web application routing logic dispatches to a script
corresponding to the value of the SetInitialPage parameter specified in the initialization
method or in the voice application initialization method (616 or 618 above) (632). The voice
application server 532 renders markup language code from the script and includes the markup
language code in an HTTP response (634) which is then sent to the voice gateway 540 (640).

If there is a method called “index” in the class, the web application routing logic
executes the method called “index” (636). The web application routing logic, thus, allows a
web-based voice application developer to define operations in a method called “index” that

will take place at the time a new dialog is initiated with a user of the voice communication
16

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

device 510. The web application routing logic determines whether an HTTP response was
committed by the method called “index” (638).

If an HTTP response was committed by the method called “index,” then the web
application routing logic sends the HTTP response to the voice gateway 540 (640). If no
HTTP response was committed by the method, then the web application routing logic
dispatches to a script corresponding to the value of the SetInitialPage parameter (632),
renders voice markup language from the script (634), and sends an HTTP response to the
voice gateway 540 (640).

The voice gateway 540 receives the HTTP response from the voice application server
532 (642) and processes the voice markup language code to establish a dialog with the user of
the voice communication device 510 using prompts and grammars (644). The user of the
voice communication device 510 communicates with the voice gateway by responding to the
prompts (646).

Figs. 7A and 7B show a process 700 for using web application routing logic to
communicate with a user of a voice communication device 510. For convenience, particular
components described with respect to Fig. 5 are referenced as performing the process 700.
However, similar methodologies may be applied in other implementations where different
components are used to define the structure of the system, or where the functionality is
distributed differently among the components shown by Fig. 5. Furthermore, process 700
assumes that the HT'TP response algorithm of the web-based voice application is
implemented as a class rather than as a program. However, the methodology disclosed by
process 700 may be similarly applied to web applications in which the HTTP response
algorithm is implemented as a program.

The user of the voice communication device 510 communicates with the voice
gateway 540 by responding to prompts (702). The voice gateway 540 collects user
responses, if any, in accordance with the voice markup language code that the voice gateway
540 is processing (704) and generates an HTTP request that includes a URL, a web context, a
web application name, an action parameter, and, in some implementations, additional
parameters corresponding to the responses received from the user of the voice
communication device 510 (706). The voice gateway 540 then sends the HTTP request to the
voice application server 532 (708).

For example, the voice gateway 540 may be processing voice markup language code
rendered from a script called “getUser.jsp” that requests that the user of the voice

communication device 510 submit a user identification (ID) and a user password. The user
17

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

submits the user ID (e.g., “sue”) and the user password (e.g., “123”) using the voice
communication device 510, and the voice markup language code instructs the voice gateway
540 to generate and send to the voice application server 532 the following corresponding
HTTP request:

http://www.mysite.com/mycontext/myapp?action=authen&user=sue&password=123. In this

example, the HTTP request includes a URL corresponding to “www.mysite.com,” a web
context corresponding to “mycontext”, a web application name corresponding to “myapp,” an
action parameter set to “authen”, and two additional parameters “user” and “password” set to
“sue” and “123,” respectively.

The voice application server receives the HTTP request from the voice gateway 540
(710) and identifies a class related to the web context and the web application name specified
by the HTTP request (712). In one implementation, the voice application server 532
identifies a class related to the web context and the web application name by accessing a data
store containing data records storing names of classes and that may be indexed or otherwise
accessed based on web context and web application name.

The voice application server 532 executes an HTTP request method in the identified
class (714). As discussed previously in reference to process 300, the HTTP request method is
executed each time an HTTP request is received. The HTTP request method invokes a voice
application service method (716). The voice application service method is similar to the web
application service method but directed specifically to voice.

When the voice application service method finishes executing, the voice application
server 532 returns to the HTTP request method and executes web application routing logic
(718). The HTTP request method is a method that is executed each time an HTTP request
that includes a web context and a web application name related to the identified class is
received from the client system 110. In this implementation, the HTTP request method
includes the web application routing logic. The web application developer typically is not
permitted to edit the contents of the HTTP request method.

The web application routing logic determines whether a method in the identified class
corresponds to the value of the action parameter included in the HTTP request (720). In one
implementation, a method in the identified class corresponds to the value of the action
parameter if the name of the method is the same as the value of the action parameter.

If no method in the identified class corresponds to the value of the action parameter in
the HTTP request, the web application routing logic dispatches to a script corresponding to

the value of the action parameter (722). The voice application server 532 renders markup
18

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

language code from the script and includes the markup language code in an HTTP response
(724). The HTTP response is sent to the voice géteway 540 (730).

If a method in the identified class corresponds to the value of the action parameter in
the HTTP request, the web application routing logic executes the method that corresponds to
the value of the action parameter (726). Upon completion of the method, the web application
routing logic determines whether an HTTP response was committed by the method (728).

If an HTTP response was committed by the method, then the web application routing logic
sends the HTTP response to the voice gateway 540 (730). If no HTTP response was
committed by the method, then the web application routing logic dispatches to a script
corresponding to the value of the action parameter (722). The voice application server 532
renders markup language code from the script and includes the markup language code in an
HTTP response (724) which is then sent to the voice gateway 540 (730).

The voice gateway 540 receives the HTTP response (732) and processes the voice
markup language code to continue a dialog with the user of the voice communication device
510 using prompts and grammars (734). The user of the voice communication device 510
communicates with the voice gateway 540 by responding to the prompts (736).

In one implementation of processes 600 and 700, the scripts are written using
JavaServer Pages and VoiceXML, and the HTTP response algorithm is written in J ava™ as a
class that extends a base class that, in turn, extends the javax.servlet.http. HttpServlet class.
The class includes the voice application initialization method, the voice application service
method, and methods defined by the web-based voice application developer. The base class
includes the initialization method and the HTTP request method. The initialization method is
the init method of the javax.servlet.http.HttpServlet with modifications that serve to load
resources and to set the initial default page. The HTTP request method is the service method
of the javax.servlet.http. HttpServlet with modifications that serve to implement the web
application routing logic. The class is typically coded by the web-based voice application
developer. Because the coding of the base class remains constant between web-based voice
applications (i.e., the web application routing logic remains the same regardless of the web-
based voice application in which it is used), the base class may be provided to the web-based
voice application developer by a third party.

A number of implementations have been described. Nevertheless, it will be
understood that various modifications may be made. For example, the web application

routing logic may be applied to coordinate execution of general procedures in a program and

19

WO 2004/105346 PCT/US2004/014193

is not limited to coordinating execution of just methods and functions. Accordingly, other

implementations are within the scope of the following claims.

20

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

WHAT IS CLAIMED IS:

1. A computer implemented method comprising:
receiving a request that includes an action parameter;
identifying a procedure that is associated with the value of the action
parameter;
if a procedure is identified, executing the identified procedure; and
if a procedure is not identified, dispatching to a script associated with the
value of the action parameter.

2. The method of claim 1, wherein the request is a hypertext transfer protocol
request.

3. The method of claim 1, wherein the procedure is a method used in an object
oriented programming language.

4. The method of claim 1, wherein the procedure is a function used in a
procedural programming language.

5. The method of claim 1, wherein identifying a procedure that is associated with
the value of the action parameter comprises searching a group of procedures in a program for
a procedure that is associated with the value of the action parameter.

6. The method of claim 5, wherein searching a group of procedures in a program
comprises searching a group of procedures in a program for a procedure that has a name
equal to the value of the action parameter.

7. The method of claim 5, wherein searching a group of procedures comprises
searching a group of methods in a class for a method that is associated with the value of the
action parameter.

8. The method of claim 7, wherein searching a group of procedures comprises
searching a group of methods in a class for a method that is associated with the value of the
action parameter and that is programmed in Java™.

9. The method of claim 5, wherein searching a group of procedures comprises
searching a group of functions in a program for a function that is associated with the value of
the action parameter.

10. The method of claim 9, wherein searching a group of procedures comprises
searching a group of functions in a program for a function that is associated with the value of

the action parameter and that is programmed in Perl.

21

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

11. The method of claim 1, wherein dispatching to a script associated with the
value of the action parameter comprises dispatching to a script saved under a file name
corresponding to the value of the action parameter.

12. The method of claim 1, wherein identifying a procedure comprises searching a
group of procedures in a program for a procedure that is associated with the value of the
action parameter and that includes code that implements application control logic.

13. The method of claim 1, wherein identifying a procedure comprises searching a
group of procedures in a program for a procedure that is associated with the value of the
action parameter and that includes code that enables communications with backend systems.

14. The method of claim 1, wherein dispatching to a script comprises dispatching
to a script that is associated with the value of the action parameter and that includes code that
implements presentation logic.

15. The method of claim 14, wherein the presentation logic implements a user
interface.

16. The method of claim 15, wherein the user interface is a voice user interface
operable to communicate with a user of a voice communication device.

17. The method of claim 16, wherein the voice communication device comprises a
landline phone, a wireless phone, a voice-enabled personal digital assistant, or a voice-
enabled computer.

18. The method of claim 1, wherein the script that is associated with the value of
the action parameter includes markup language code.

19. The method of claim 18, wherein the markup language code comprises
hypertext markup language.

20. The method of claim 18, wherein the markup language code comprises
VoiceXML or SALT.

21. The method of claim 18, wherein the markup language code comprises
markup language used to communicate with wireless communication devices.

22. The method of claim 21, wherein the markup language used to communicate
with wireless communication devices includes wireless markup language.

23. The method of claim 1, further comprising dispatching to the script after
executing the procedure if executing the procedure does not result in a response being

committed.

22

10

15

20

25

30

WO 2004/105346 PCT/US2004/014193

24. A computer system comprising:

a web application computer configured to:

receive a request that includes an action parameter;

identify a procedure that is associated with the value of the action
parameter;,

execute the procedure if a procedure is identified; and

dispatch to a script associated with the value of the action parameter if
a procedure is not identified.

25. The computer system of claim 24, wherein the request is a hypertext transfer
protocol request.

26. The computer system of claim 24, wherein the procedure 1s a method.

27. The computer system of claim 24, wherein the procedure is a function.

28. The computer system of claim 24, wherein the web application computer is
further configured to send a response.

29. The computer system of claim 24, further comprising a gateway computer.

30. The computer system of claim 29, wherein the gateway computer is a gateway
configured to communicate with a wireless communication device.

31. The computer system of claim 30, wherein the gateway computer is a wireless
application protocol gateway.

32. The computer system of claim 29, wherein the gateway computer is a voice
gateway configured to communicate with a voice communication device.

33. The computer system of claim 24, wherein the web application computer is
configured to dispatch to a script including markup language used for communication with a
wireless communication device.

34. The computer system of claim 33, wherein the markup language includes
wireless markup language code.

35. The computer system of claim 24, wherein the web application computer is
configured to dispatch to a script including VoiceXML or SALT code.

36. The computer system of claim 24, wherein the web application computer is
further configured to dispatch to the script after execution of the procedure if execution of the

procedure does not result in a response being committed.

23

WO 2004/105346 PCT/US2004/014193

o

[=)
o
A 2!
c
S
w
Rp=
= O
2%
< g
Ko}
2
(=]
N
~
-
.
o
9
i
(=]
e
T

_Client System

Controller

1/10

PCT/US2004/014193

WO 2004/105346

N

sjduos ayj
ypm pajernosse Ajsnoaid sejswesed
UOJJOB 8y} JO SBN|EA L)IM SpoyjatL
JO suoyouny mau ayj Buijeposse
Aq syduos ayj} jo peajsu) spoyjawl 10

)
]
1
1
i
1
I
i
!
l
i
]
“ Jajaweled uojoe ay)
I
I
[}
|
I

SUOIIoUN} MBU 8} JO UOHNOBX3 djqeu
“ Jeaday = Houny Ml 4 Rl iqeus
) .
[}
[}
]
1
]
|
§
i
1
]
}
[}
l
l
1
t
!
i
1
|
i

40 SBN{eA Yim SjduLos mau 8} 100ssy
Y

jeadey

oz A

S)diI0S mBu 3)e81D

907 1 A

SPOYISLL 1O SUOHOUNY MBU B)ERID

HxiﬁL 7

juawdojana puayoeq juswdojena(g aoeusiu| 1asn

Jojdweled uojoe ue
40 Bnjea e yym 3duos Yyoes 8)einossy

QON\‘ »

SPOLBW 10 suopouny

0u 10 ma3y pue 2160} Bupno. uoleoydde
qom Buejyoo ssejo 40 weibosd

(e pue sjduos [ejjiul JO }as e ajealI)

20

2/10

PCT/US2004/014193

WO 2004/105346

o160] Sugnol uonesljdde gam ajnosxe
pue poyjaw jsanbal d i (H 0} winjey

poueus
aoiuas uojeoydde gam aYoALy

poyjaw jsanbal 41 | H 8jnoax3

1senbal 4L 1H
uj aweu uopeoydde pue Jxajuod
auy) 0} pajeal ssep e Ayusp|

1sanbai 4| 1 H aneoay

woyshs
uopeoyiddy gam

. 4

UpaUOaeOnOneC)

Jsjaweled uogoe
ue pue ‘aweu uoyesydde
‘1X83ju09 ‘4N e Buipnjoul
jsanbai di | H ue puag

19jjonucd

walshs JusiD

oLt

3/10

PCT/US2004/014193

WO 2004/105346

gae ‘b

¥ee
A

asu0dsal 41 | H ue puss

asuodsal 4| | H ue uj opod

abenBuej dnyiew sy} apnjoul pue yduos e
ay) woy apod abenbue) dmyiew Jopusy

J9)8Wweled uoljoe ay} jo anjea
ay} oy Buipuodsanod jduss e o} yojedsiq 9ie

¢ PORILLILWIOD Bsuodsal 4 |H ue SOA

JOSN €)M S)EDIUNWILIOD _
0} opoo abenbue) @
dnsuELY BU) SS8001d

asuodsal 41 LH 8y} aA1993Y @

s} ‘'se)9)dwoo Jajawe.ed UOROE ay) JO SnjeA 228
ay} 0} Buipuodsali00 poyietu ay) Jayy ON

Jajowered

:o:ommémom:_msmﬁoumc_vcoammtou @
SSE[O 8} Ul Poylau sy} sjnoaxsg

éJordweled

toioe ayj Jo snjea ayj o} Bujpuodsaiiod e "
SSE|O 8Yf} Ul poyjew e a1ay) s| 0

wayshg
uoyesiiddy gap

. 4

—e oEl

(=
o)

.[.D:[| \\“.\ Jajjonuod

WaysAg Juelo

OLE

4/10

PCT/US2004/014193

WO 2004/105346

WB)SAS
uoneoyddy asjon

5 4

oey

d—

(0147

Aemaies) a3i0A

144

sHomsN

801AB(] UOHEOIUNLILIOD SDI0A

oLy

2=

I

5/10

PCT/US2004/014193

WO 2004/105346

80JA8(] UOIEOJUNWILIOD BOI0A

=l

o

0e

|
1
“
210lg 24018 !
ejeq ejeq i
<> T “
“
)
“
swealsAs | | swsysAg swigyshs "
puaxoeg | | puaxoeg [| puaxoeg “
v LY LY j
9eg” T e W o !
X A !
]
! b 4
! | 1095
|
! L4
! a0vS|
! > 4
21018 ejeq FEINETS ! novﬁ
uoyeolddy 99107 __ v
! 20p]
i
ve Ld [v
e | qo¥S|
]
' r 4
. A _ eovs|
]

JuBUOdLLIOD SBDIAIBS JUBYD

subus uogbooas Yosadg

uofjeisusb Yyoaads-op-ixa |

soeqhe|d ojpny

weiboud so)81disiu)

Buissaooid |eubis
pue ssoinieg Auoydsio

Aemajeg) 9010/

o»qm‘

6/10

PCT/US2004/014193

WO 2004/105346

o160} Buiynos
ajnoaxa pue poyawt jsanbai di i H 0} uwmay

poylaw ao1Aas uoiesydde ad10A a30AU|

poyiew }sanbal 41 1 H eynoexgy

(@)
(02

poyjaw uogezyeyiul uogesydde 9910A BYOAU| e

POUIBW UOKEZY|ENIL} BjNoaXT

SSe|0 ajepue)su|

ipajenuelsu) Apeayje ssepo s|

}senbal d | | H 8y} uj aweu uopesydde
PUB JX8JUOD BY) 0) pajejal SSEjD B Ajusp)

1senbai 41 | H aAigoay

lanieg
uopeoyddy
80107

|

O
o
|

zes

(1)

@9

809

v9 614

uonoe ue

J9joweled

Ajjeyondo pue sweu
uoneoydde pue ‘1xajuo “THN @

Buspnjout

}senbai 411H pues

uopeuLIoul

JIajjeD uo paseq sweu uojeoldde @

ue pue ‘jxa

jJU0D € *H(e Ajijusp|

Aemajeo) ao10p

v

ovs”

18pinoid woods|e)
Aq Aemaieb aojon @
O} pajnol (g0

20IN8(J UOHEDIUNLLIWOYD BDI0A

7/10

PCT/US2004/014193

WO 2004/105346

asuodsal 4] | H ue puag

asuodsal
d11H ue u spoo abenbue) dnylew
8210A 9y} apnjoul pue jduds sy woli
opoo abenbue) dnyiews adjoA Jopusy

Joj8weled afedenufies e jo anjea
e 0} Buipuodsaul0o 1duos e o} yojedsi(

%w:_EEoo asuodsal diiH
ue sj ‘'sa}a|duoD Poylsw Xapul, ay} Jely

X3pUl, PaJiED PoYIaLL DY) B8)NdaX]

siewwesd pue spdwoid

Buisn Jajjed ayy yym Bojelp
© ysi|qe)ss 0} apod abenbue| @ 0} Bujpuodsa:
dnyJBL 80104 Bl SS8901

asuodsal 41 | H 9y} AIe09Y @

g9 ‘Bi4

sidwosd

Aq Aemajeb a010A
Ulim 2}e0luntuLion

SSEID 3L} Ul Xapul, PS|IEO POYIOL € B1aU) S|

9€2-02/ suopesado 2 *Big 0} paaooig

¢lsanbal
diiH uijojaweled UoROE UE aI8y) S|

BETN =TS
uopeojiddy

80107

(=
o/

14

Kemajes) 2010

30IA9Q UOKEDIUNLULLOYD 8210/

8/10

PCT/US2004/014193

WO 2004/105346

)P0} Bugnol a)noexs pue
poyiaw jsenbal g 1H 0} winey

poyjew

90119S uogesljdde 9910A a)oAu|

poyiaw jsanbai 41 {4 8inoaxy

}senbag
d11H 8y} uj saweu uopeoydde pue
1X2]U09 8Y} O} paje|al SSejo e Ayjusp|

ysenbai 41 1H aneday

loniag
uojeojjddy
ADION

-~~~

v. B4

}sanbal
dllH puss

sig)eweled
jeuonippe
se }Jas synduy
a9)jeo Ajeuoydo
pue ‘18)sweled
uoloe ue
‘awey uopeoydde
"IX8Ju0d YN
Buipnjoui ysanbai
diliH ue sjessuss)

apoo abenbue|
dndjsewt adion

Y}IM SOUBpIODDR.

ui ‘Aue j1 ‘synduy
Jaled 109)|0D

Remajes) 8010A

17

0L

sydwoud
0} Bujpuodsal
Aq Aemajeb aoi0n
UHM 9)E0IUNuiwo?)

9DJAB(J UOHEIIUNLILLIOD) SDI0A

9/10

PCT/US2004/014193

WO 2004/105346

asuodsal 4] 1 H ue pusg

asuodsal d1 {H ue ul
apod abenfiue| dniew adl0A By}
apnout pue 1duDS By} WOl apod
abenbue| dnyjiew 82I0A Japudy

Jajoweled uoyoe auy JO anjea ayj
0} Bujpuodsanod 3duos e 0} yojedsia

{Ppajiwiod
asuodsal 4} | 4 ue si ‘sa39]dwiod
Jejpwesed uopoe ay) O anjeA sy}
0} Bujpuodsa.iioo poyjaul ay} Jayy

Jajaweled uoloe ay) JO anjea sy} o}
Bugpuodse100 SSEJO Ui poYsL 9jnoaxg

iA9)awered
uoijoe ayj Jo snjea ay} o} buipuodsariocd
SSEJ0 9y} Ui poyjawl e a1y} S|

0EL

(444

SBA

82L &y

SOA

<

Joaleg
uogeol|ddy
B0I0A

g2 ‘b4

stewelb pue sydwoid

Buisn saj|ed ayy yym Bojelp @ sjduwiosd
B anujuod 0} apoo abenbuey 0} Buipuodsal
dnjieuw 80(0A 9y} SS8201d Aq Aemajeb asion

YIiM 9JEDUNLILIOD

(se0)

asuodsal 41 1H 8u} aas09y @

20JA8(UCHEDIUNLILLOY) S8I0A

Aemajes) adlop

oy

10/10

INTERNATIONAL SEARCH REPORT Imterational Application No
PCT/US2004/014193

A. CLASSIFICATION QF SUBJECT MATTER

IPC 7

H04L29/06 GO6F9/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IpC 7

HO4L GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Elsctronic data base consuited during the international search (name of data base and, where practical, search lerms used)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2002/059470 Al (FERNANDES VINCENT ET 1-17,
AL) 16 May 2002 (2002-05-16) 23~-28,36
abstract
Y paragraphs ‘0001! - ‘0009!, €‘0024! - 18~22,
‘0027! 29-35
Y EP 1 261 170 A (BRITISH TELECOMM) 18-22,
27 November 2002 (2002-11-27) 29-35
abstract
paragraphs ‘0001!, ‘0004!, °0008! -
‘0010!
A US 2002/016814 Al (CONVENT BERNHARD L ET 1-36
AL) 7 February 2002 (2002-02-07)
abstract
paragraphs ‘0001! - ‘0014!, <0021! -
‘0026!
- / —_—
Further documents are listed In the continuation of box G, Patent family members are listed in annex.

° Special categories of cited documents :

*A" document defining the general state of the arf which is not
considered to be of particular relevance

T later document published after the international filing date
or priority date and not in conflict with the application but
cited {o understand the principle or theory underlying the
invention

'E* earlier document but published on or after the international *X* document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
“L* document which may throw doubts on priority cfaim(s) or involve an inventive step when the document is taken alone
which Is cited to establish the publication date of another *Y* document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the
"0 document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu—~
other means ments, such combination being obvious to a person skilled
P document published prior to the international filing date but in the art.
later than the priority date claimed *&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the intemational search report
12 August 2004 19/08/2004
Name and mailing address of the ISA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 I-;V Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016 Lopez Monclus, I.

Formn PCT/ISA/210 {second sheet) (January 2004)

page 1 of 2

INTERNATIONAL SEARCH REPORT

K. AN
International Application No

PCT/US2004/014193

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A BERNERS-LEE T ET AL: "RFC 2396: Uniform
Resource Identifiers (URI): Generic
Syntax"

IETF, August 1998 (1998-08), XP002233037
the whole document

1-36

Form PCT/ISA/210 {continuation of second shest) (January 2004}

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US2004/014193
Patent document Publication Patent family Publication
cited in search report date member(s) date

Us 2002059470 Al 16-05-2002 US 6370561 B1 09-04-2002
us 5991802 A 23-11-1999
EP 1261170 A 27-11-2002 EP 1261170 Al 27-11-2002
CA 2444816 Al 05-12-2002
EP 1389378 Al 18-02-2004
Wo 02098062 Al 05-12-2002
US 2002016814 Al 07-02-2002 AU 7574701 A 18-02-2002
Wo 0213010 A2 14-02-2002

GB 2382193 A 21-05-2003

Form PCT/ISA/210 (patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

