wo 2010/045143 A2 || 0K 0 OO R

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

oo o
1 1d Intellectual P t t Zant) i)
(19) Work ntellctual Propety Organiation /4852 | I ANUADH O OO AL D
International Bureau S,/)
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
22 April 2010 (22.04.2010) PCT WO 2010/045143 A2
(51) International Patent Classification: (US). SCHEIDEGGER, Carlos E. [BR/US]; 250 South
GO6F 11/00 (2006.01) G06Q 10/00 (2006.01) 900 East, #9A, Salt Lake City, Utah 84102 (US). KOOP,
(21) International Application Number:]S);?S alggggfs%tslfz 41118?1(1Usst)ate Street, Apartment B,
PCT/US2005/060342 ? ’
. - . (74) Agents: BELL, Callie M. et al.; Foley & Lardner LLP,
(22) International Filing Date: 12 October 2009 (12.10 2009 150 East Gilman Street Post Office Box 1497, Madison,
ctober (12.10.2009) Wisconsin 53701-1497 (US).
(25) Filing Language: Fnglish (81) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of national protection available). AE, AG, AL, AM,
. AOQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(30) Priority Data: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
61/106,036 16 October 2008 (16.10.2008) Us DZ. EC. FE. EG. ES. FL. GB. GD. GE. GH. GM. GT
(71) Applicant (for all designated States except US): THE HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
UNIVERSITY OF UTAH RESEARCH FOUNDA- KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
TION [US/US]; 615 Arapeen Drive, Suite 310, Salt Lake ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
City, Utah 84108 (US). NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, S@G, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
(72) Inventors; and TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(75) Inventors/Applicants (for US only): FREIRE, Juliana

[BR/US]; 220 Chase Street, Salt Lake City, Utah 84113
(US). SILVA, Claudio T. [BR/US]; 220 Chase Street,
Salt Lake City, Utah 84113 (US). CALLAHAN, Steven
P. [US/US]; 1330 North 200 East, Bountiful, Utah 84010

84)

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

[Continued on next page]

(54) Title: AUTOMATED DEVELOPMENT OF DATA PROCESSING RESULTS

(57) Abstract: A method of automatically
completing a worktlow is provided. An indi-

-
(=]

Input
interface 104

A

A

Communication |
interface 108

Processor 11

Output
interface 102

A

k.

presentation
application 124

i creator
application 122

Computer-
readable medium
106
I L
i Workflow 3
i Cache execution Database
;| manager 116 [X 126
! — engine 114 —=
| Y
i
I T ek bttt
; Workflow Result
i
i
i

cator of a partial workflow is received in a
computing device. The partial workflow in-
cludes a module configured to process data.
A worktlow completion is determined for
the partial workflow based on the partial
worktlow and a plurality of workflows
stored in a computer-readable medium. The
worktlow completion is configured to fur-
ther process the data. A workflow is present-
ed in a display operably coupled to the com-
puting device. The workflow includes the
determined workflow completion and the
partial workflow.

WO 2010/045143 A2 W00 0)00 U000 OO A

TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, Published:

ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

ML, MR, NE, SN, TD, TG).

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

AUTOMATED DEVELOPMENT OF DATA PROCESSING RESULTS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims priority to U.S. Provisional Patent
Application Serial No. 61/106,036, filed on October 16, 2008, and titled
‘AUTOMATED DEVELOPMENT OF DATA PROCESSING RESULTS,” the
disclosure of which is incorporated herein by reference in its entirety. This
application is related to U.S. Patent Application Serial Nos. 11/697,922, 11/697,926,
and 11/697,929 that were filed April 9, 2007,9 and which each claim the benefit of
U.S. Provisional Patent Application Serial No. 60/790,046 that was filed April 7,
20006, the disclosures of which are incorporated by reference in their entirety.

BACKGROUND

[0002] The volume of information has been growing at an exponential rate.
Since 2003, new information generated annually exceeds the amount of information
created in all previous years. Digital information now makes up more than 90% of
all information produced, vastly exceeding data generated on paper and film. One
of the greatest scientific and engineering challenges of the 21st century is to
effectively understand and leverage this growing wealth of data. Computational
processes are widely-used to analyze, understand, integrate, and transform data.
For example, to understand trends in multi-dimensional data in a data warehouse,
analysts generally go through an often time-consuming process of iteratively drilling
down and rolling up through the different axes to find interesting 'nuggets’ in the
data. Often, to mine data, several algorithms are applied and results are compared,
not only among different algorithms, but also among different configurations of a
given algorithm. To build data warehouses and data marts that integrate data from
disparate data sources within an enterprise, extraction, transformation, and loading
(ETL) workflows need to be assembled to create consistent, accurate information.
Additionally, to understand and to accurately model the behavior of environmental

components, environmental scientists often need to create complex visualization

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

dataflows to compare the visual representations of the actual behavior observed by
sensors with the behavior predicted in simulations. Further, to improve the quality
of a digital photo, a user may explore different combinations of filters. As a further
example, to plan a radiation treatment, a radiation oncologist may create a large
number of 3-dimensional (3-D) visualizations to find a visualization that clearly

shows the lesion tissue that requires treatment.

[0003] Due to their exploratory nature, these tasks involve sometime large
numbers of trial-and-error steps. In an exploratory process, users may need to
select data and specify the algorithms and visualization techniques used to process
and to analyze the data. The analysis specification is adjusted in an iterative
process as the user generates, explores, and evaluates hypotheses associated with
the information under study. To successfully analyze and validate various
hypotheses, it is necessary to pose queries, correlate disparate data, and create
insightful data products of both the simulated processes and observed phenomena.
Before users can view and analyze results, they need to assemble and execute
complex workflows (dataflows) by selecting data sets, specifying a series of
operations to be performed on the data, and creating an appropriate visual
representation. As an additional factor that contributes to the complexity of these
tasks, assembling the computational processes may require a combination of
loosely-coupled resources, including specialized libraries, grid and Web services
that may generate yet more data, adding to the overflow of information users need
to process.

[0004] Workflows are emerging as a paradigm for representing and managing
complex computations. Workflows can capture complex analysis processes at
various levels of detail and capture the provenance information necessary for
reproducibility, result publication, and result sharing among collaborators. Because
of the formalism they provide and the automation they support, workflows have the
potential to accelerate and to transform the information analysis process.
Workflows are rapidly replacing primitive shell scripts as evidenced by the release
of Automator by Apple®, Data Analysis Foundation by Microsoft®, and Scientific
Data Analysis Solution by SGI®.

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

[0005] Often, insight comes from comparing the results of multiple visualizations
created during the exploration process. For example, by applying a given
visualization process to multiple datasets generated in different simulations; by
varying the values of certain visualization parameters; or by applying different
variations of a given process (e.g., which use different visualization algorithms) to a
dataset, insight can be gained. The path from “data to insight” requires a laborious,
trial-and-error process, where users assemble, iteratively modify, and execute

complex workflows, which may include workflows and/or dataflows.

[0006] In the course of exploratory studies, users often build large collections of
workflows, which include, for example, different types of visualizations, each of
which may help in the understanding of a different aspect of the data. For example,
a user working on a new computational fluid dynamics application might need a
collection of visualizations such as 3-dimensional (3-D) isosurface plots, 2-
dimensional (2-D) plots with relevant quantitative information, and various direct
volume rendering images. Although in general, each visualization is implemented
in a separate workflow, there may be a certain amount of overlap between the
workflows. For example, each workflow may manipulate the same input dataset(s).
Furthermore, for a particular class of visualizations, the users might generate
several different versions of each individual workflow while fine tuning visualization

parameters or experimenting with different data sets.

[0007] Modifications to a workflow can be captured as the user generates,
explores, and evaluates hypotheses associated with data under study. Abstractly, a
workflow consists of modules (e.g., programs, scripts, function calls, application
programming interface (API) calls, etc.) connected in a network to define a result. A
dataflow is an exemplary workflow. The initial modules and the subsequent
modifications are captured as actions that identify, for example, a change to a
parameter value of a module in the workflow, an addition or a deletion of a module
in the workflow, an addition or a deletion of a module connection in the workflow,
addition or deletion of a constraint in the workflow, etc. These changes may be
presented in a version tree, which reflects the evolution of the evolutionary workflow

process over time.

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

SUMMARY

[0008] In an exemplary embodiment, a method of automatically completing a
workflow is provided. An indicator of a partial workflow is received in a computing
device. The partial workflow includes a module configured to process data. A
workflow completion is determined for the partial workflow based on the partial
workflow and a plurality of workflows stored in a computer-readable medium. The
workflow completion is configured to further process the data. A workflow is
presented in a display operably coupled to the computing device. The workflow
includes the determined workflow completion and the partial workflow.

[0009] In another exemplary embodiment, a system for automatically completing
a workflow is provided. The system includes, but is not limited to, a processor and
a computer-readable medium including computer-readable instructions stored
therein wherein, when executed by the processor, the computer-readable

instructions cause the device to perform the operations of the method.

[0010] In yet another exemplary embodiment, a computer-readable medium is
provided. The computer-readable medium includes computer-readable instructions
stored therein wherein, when executed by a processor, the computer-readable

instructions cause a computing device to perform the operations of the method.

[0011] Other principal features and advantages of the invention will become
apparent to those skilled in the art upon review of the following drawings, the
detailed description, and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] Exemplary embodiments of the invention will hereafter be described with
reference to the accompanying drawings, wherein like numerals denote like

elements.

[0013] Fig. 1 depicts a block diagram of a evolutionary workflow processing

system in accordance with an exemplary embodiment.

[0014] Fig. 2 depicts a user interface of a evolutionary workflow creator

application in accordance with an exemplary embodiment.
4

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

[0015] Fig. 3 depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying a version tree in accordance with an exemplary

embodiment.

[0016] Fig. 4 depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying a workflow in accordance with an exemplary

embodiment.

[0017] Fig. 5 depicts a second user interface of the evolutionary workflow creator
application of Fig. 2 displaying an input port selection window in accordance with an

exemplary embodiment.

[0018] Fig. 6 depicts a second user interface of the evolutionary workflow creator
application of Fig. 2 displaying an output port selection window in accordance with

an exemplary embodiment.

[0019] Fig. 7a depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying a first parameter exploration window in accordance

with an exemplary embodiment.

[0020] Fig. 7b depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying a second parameter exploration window indicating
selection of a first interpolation method in accordance with an exemplary

embodiment.

[0021] Fig. 7c depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying a second parameter exploration window indicating
selection of a second interpolation method in accordance with an exemplary

embodiment.

[0022] Fig. 7d depicts a first user definition window of the evolutionary workflow
creator application of Fig. 2 which allows a user to define a list of parameters in

accordance with an exemplary embodiment.

[0023] Fig. 7e depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying a second parameter exploration window indicating
selection of a third interpolation method in accordance with an exemplary

embodiment.

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

[0024] Fig. 7f depicts a second user definition window of the evolutionary
workflow creator application of Fig. 2 which allows a user to define a function for

determining values for a parameter in accordance with an exemplary embodiment.

[0025] Fig. 8 depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying a second version tree in accordance with an

exemplary embodiment.

[0026] Fig. 9 depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying a visual workflow difference window in accordance

with an exemplary embodiment.

[0027] Fig. 10 depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying a third version tree in accordance with an exemplary

embodiment.

[0028] Fig. 11 depicts a user interface of a result presentation application

showing first exemplary results in accordance with an exemplary embodiment.

[0029] Fig. 12 depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying a query result window in accordance with an

exemplary embodiment.

[0030] Fig. 13 depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying a query creation window in accordance with an

exemplary embodiment.

[0031] Fig. 14 depicts the user interface of the result presentation application
showing second exemplary results in accordance with a second exemplary

embodiment.

[0032] Fig. 15 depicts block diagrams of a plurality of workflow processing
systems.

[0033] Fig. 16 depicts a high-level overview of a synchronization process in

accordance with an exemplary embodiment.

[0034] Fig. 17 depicts a collaborative data analysis system in accordance with

an exemplary embodiment.

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

[0035] Fig. 18 depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying the query creation window including a sample query

definition in accordance with an exemplary embodiment.

[0036] Fig. 19 depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying a second query result window and displaying a

plurality of matching workflows in accordance with an exemplary embodiment.

[0037] Fig. 20 depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying a second visual workflow difference window in

accordance with an exemplary embodiment.

[0038] Fig. 21 depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying an analogy naming window in accordance with an

exemplary embodiment.

[0039] Fig. 22 depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying an analogy application window in accordance with

an exemplary embodiment.

[0040] Fig. 23 depicts result presentations between analogies in accordance

with an exemplary embodiment.

[0041] Fig. 24 depicts the user interface of the result presentation application

showing third exemplary results in accordance with a third exemplary embodiment.

[0042] Fig. 25 depicts the user interface of the result presentation application

including analogy creation controls in accordance with an exemplary embodiment.

[0043] Fig. 26 depicts the user interface of the result presentation application
showing fourth exemplary results in accordance with a fourth exemplary

embodiment.

[0044] Fig. 27 depicts a flow diagram illustrating exemplary operations
performed by a workflow creator application of the evolutionary workflow processing

of Fig. 1 in accordance with an exemplary embodiment.

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

[0045] Fig. 28 depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying a module for a second workflow in accordance with

an exemplary embodiment.

[0046] Fig. 29 depicts the user interface of the evolutionary workflow creator
application of Fig. 2 displaying a suggested completion for the second workflow of
Fig. 28 in accordance with an exemplary embodiment.

[0047] Fig. 30 depicts a notional workflow graph in accordance with an

exemplary embodiment.

[0048] Fig. 31 depicts an iterative automatic completion process of the
evolutionary workflow creator application of Fig. 2 in accordance with an exemplary

embodiment.

[0049] Fig. 32 depicts a selection methodology for an iteration of the iterative
automatic completion process of the evolutionary workflow creator application of
Fig. 2 in accordance with an exemplary embodiment.

DETAILED DESCRIPTION

[0050] With reference to Fig. 1, a block diagram of an evolutionary workflow
processing system 100 is shown in accordance with an exemplary embodiment.
The components of evolutionary workflow processing system 100 may be
implemented using one or more computing devices, which may be a computer of
any form factor such as a laptop, a desktop, a server, etc. Evolutionary workflow
processing system 100 may include an output interface 102, an input interface 104,
a computer-readable medium 106, a communication interface 108, a processor
110, and an evolutionary workflow tool 112. Different and additional components
may be incorporated into evolutionary workflow processing system 100.

[0051] Output interface 102 provides an interface for outputting information for
review by a user of evolutionary workflow processing system 100. For example,
output interface 102 may include an interface to a display, a printer, a speaker, etc.
The display may be a thin film transistor display, a light emitting diode display, a
liquid crystal display, or any of a variety of different displays known to those skilled

8

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

in the art. The printer may be any of a variety of printers as known to those skilled
in the art. The speaker may be any of a variety of speakers as known to those
skilled in the art. Evolutionary workflow processing system 100 may have one or

more output interfaces that use the same or a different interface technology.

[0052] Input interface 104 provides an interface for receiving information from
the user for entry into evolutionary workflow tool 112 as known to those skilled in
the art. Input interface 104 may use various input technologies including, but not
limited to, a keyboard, a pen and touch screen, a mouse, a track ball, a touch
screen, a keypad, one or more buttons, etc. to allow the user to enter information
into evolutionary workflow tool 112 or to make selections presented in a user
interface displayed on output interface 102 under control of evolutionary workflow
tool 112. Input interface 104 may provide both an input and an output interface.

For example, a touch screen both allows user input and presents output to the user.

[0053] Computer-readable medium 106 is an electronic holding place or storage
for information so that the information can be accessed by processor 110 as known
to those skilled in the art. Computer-readable medium 106 can include, but is not
limited to, any type of random access memory (RAM), any type of read only
memory (ROM), any type of flash memory, etc. such as magnetic storage devices
(e.g., hard disk, floppy disk, magnetic strips, ...), optical disks (e.g., compact disk
(CD), digital versatile disk (DVD), ...), smart cards, flash memory devices, etc. 3-D
mesh formation system 100 may have one or more computer-readable media that
use the same or a different memory media technology. 3-D mesh formation system
100 also may have one or more drives that support the loading of a memory media
such as a CD, a DVD, a flash memory card, etc.

[0054] Communication interface 108 provides an interface for receiving and
transmitting data between devices using various protocols, transmission
technologies, and media as known to those skilled in the art. The communication
interface may support communication using various transmission media that may
be wired or wireless. Evolutionary workflow processing system 100 may have one
or more communication interfaces that use the same or different protocols,

transmission technologies, and media.

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

[0055] Processor 110 executes instructions as known to those skilled in the art.
The instructions may be carried out by a special purpose computer, logic circuits, or
hardware circuits. Thus, processor 110 may be implemented in hardware,
firmware, software, or any combination of these methods. The term “execution” is
the process of running an application or the carrying out of the operation called for
by an instruction. The instructions may be written using one or more programming
language, scripting language, assembly language, etc. Processor 110 executes an
instruction, meaning that it performs the operations called for by that instruction.
Processor 110 operably couples with output interface 102, with input interface 104,
with computer-readable medium 106, and with communication interface 108 to
receive, to send, and to process information. Processor 110 may retrieve a set of
instructions from a permanent memory device and copy the instructions in an
executable form to a temporary memory device that is generally some form of RAM.
Evolutionary workflow processing system 100 may include a plurality of processors

that use the same or a different processing technology.

[0056] Evolutionary workflow tool 112 provides an infrastructure for
systematically capturing detailed provenance and streamlining the data exploration
process. Evolutionary workflow tool 112 uniformly captures provenance for
workflows used to create results as part of a evolutionary workflow process used to
generate a final result. A result may include a Boolean value, a visualization, a
table, a graph, a histogram, a numerical value, a string, etc. The result may be
presented pictorially, numerically, graphically, textually, as an animation, audibly,
etc. Use of evolutionary workflow tool 112 allows reproducibility of results and
simplifies data exploration by allowing users to easily navigate through the space of
workflows and parameter settings associated with a data exploration task.
Evolutionary workflow tool 112 may include a workflow execution engine 114, a
cache manager 116, a cache 118, and an evolutionary workflow interaction
application 120. One or more of the components of evolutionary workflow tool 112
may interact through communication interface 108 using a network such as a local
area network (LAN), a wide area network (WAN), a cellular network, the Internet,

etc. Thus, the components of evolutionary workflow tool 112 may be implemented

10

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

at a single computing device or a plurality of computing devices in a single location,
in a single facility, and/or may be remote from one another.

[0057] Evolutionary workflow tool 112 provides a graphical user interface for
creating, editing, executing, and querying workflows and for capturing a full
provenance of the data exploration process defined as part of an evolutionary
workflow process. As a user first creates an initial workflow and then makes
modifications to define additional workflows, a capture mechanism records the
modifications. Thus, instead of storing a set of related workflows, the operations or
changes that are applied to create a series of workflows, such as the addition of a
module, the modification of a parameter, etc. are stored. Such a representation
uses substantially less space than storing multiple versions of a workflow and
enables the construction of an intuitive interface that allows the user to understand
and to interact with the evolution of the workflow through these changes.

[0058] Workflow execution engine 114 may be invoked by a user of evolutionary
workflow interaction application 120. Workflow execution engine 114 receives a
workflow as an input from evolutionary workflow interaction application 120 and
executes the received workflow. Workflow execution engine 114 executes the
operations defined by the received workflow by invoking the appropriate functions.
The functions may be invoked from a plurality of sources, including libraries,
visualization APIs, and script APIs. In general, the workflow manipulates one or
more data files that contain the data for processing and that may be stored in a
database 126. A plurality of evolutionary workflow files may be organized in
database 126 which may include a structured query language (SQL) database. The
database may be organized into multiple databases to improve data management
and access. The multiple databases may be organized into tiers. Additionally,
database 126 may include a file system including a plurality of data files. Database
126 may further be accessed by remote users using communication interface 108.
Remote users may checkout and checkin data and/or files from database 126 as

known to those skilled in the art.

[0059] Cache manager 116 controls workflow execution keeping track of

operations that are invoked and their respective parameters. Only new

11

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

combinations of operations and parameters are requested from workflow execution
engine 114. Cache manager 116 schedules the execution of modules in a workflow
execution performed by workflow execution engine 114. Cache manager 116
determines data dependencies among the modules associated with the received
workflow and substitutes a call to access data from a results cache to a call to
access data from cache 118 based on the determined data dependencies and
identification of common intermediate results generated during execution of the
workflow. As the workflow is executed, cache manager 116 stores the results of
one or more of the modules. For example, a module name and parameter values
together with a handle to the output results may be stored. Cache manager 116
performs a cache lookup from cache 118 based on the determined data
dependencies during a workflow execution process to avoid redundant processing
of overlapping sequences in multiple workflows. Caching is specially useful while
exploring multiple results. When variations of the same workflow need to be
executed, a substantial improvement in execution time can be obtained by caching
the results of overlapping subsequences of the workflows. Cache 118 is

implemented using a type of memory.

[0060] Evolutionary workflow interaction application 120 may include a workflow
creator application 122 and a result presentation application 124. For example,
user interface windows associated with workflow creator application 122 and a
result presentation application 124 may be opened together. With reference to Fig.
2, a user interface 200 of workflow creator application 122 is shown in accordance
with an exemplary embodiment. User interface 200 includes a module selection
region 202, a workflow interaction region 204, and a menu region 206. Module
selection region 202 may include a list of modules 208 that can be used to build a
workflow and a search text box 209 that can be used to locate a specific module to
be included in a workflow. User entry of a module name in search text box 209
causes the corresponding module to be presented in the list of modules 208. The
list of modules 208 may be presented in a tree view based on a class structure
hierarchy. Workflow interaction region 204 may include a workflow area 210 and a
picture-in-picture (PIP) area 212. PIP area 212 may be removed by user selection
of a PIP button 214 which toggles the display of PIP area 212 on and off. Items

12

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

presented in workflow area 210 are controlled based on user selection of a
workflow tab 216, a version tree tab 218, a query tab 220, and a parameter
exploration tab 220. Items presented in menu region 206 are controlled based on
the item selected for display in workflow area 210. In the exemplary embodiment of
Fig. 2, user interface 200 is shown with an empty workflow interaction region 204
because no evolutionary workflow process has been opened from an existing data

file or has been created.

[0061] The stored provenance consists of one or more change actions applied to
a workflow. The provenance is represented as a rooted version tree, where each
node corresponds to a version of a workflow and where edges between nodes
correspond to the action applied to create one from the other. The version tree
reflects the process followed by the user to construct and to explore workflows as
part of the evolutionary workflow process and to concisely represent all the
workflow versions explored. With reference to Fig. 3, workflow area 210 includes a
version tree 300, and PIP area 212 includes a workflow diagram 302 based on user
selection of version tree tab 218. In the exemplary embodiment of Fig. 3, user
interface 200 is shown with a version tree in workflow interaction region 204 after
user selection of an existing node in the version tree. Version tree diagram 300
indicates a parent-child relationship between an empty workflow 303 and a first
workflow 304, a parent-child relationship between first workflow 304 and a second
workflow 306, a parent-child relationship between second workflow 306 and a third
workflow 308, and a parent-child relationship between third workflow 308 and a
fourth workflow 310. First workflow 304 is indicated as an oval which includes a
name associated with first workflow 304 and a line which connects first workflow
304 to second workflow 306. The line indicates that first workflow 304 is a parent of
second workflow 306. Similarly, second workflow 306 is indicated as an oval which
includes a name associated with second workflow 306 and a line which connects
second workflow 306 to third workflow 308. The line indicates that second workflow
306 is a parent of third workflow 308. Third workflow 308 is indicated as an oval
which includes a name associated with third workflow 308 and a line which
connects third workflow 308 to fourth workflow 310. The line indicates that third
workflow 308 is a parent of fourth workflow 310.

13

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

[0062] The user optionally may show all nodes in the version tree or may only
show nodes that have been named or tagged. A connection between named nodes
may be represented in different ways. For example, a connection may be indicated
with three perpendicular lines crossing the connection line to represent that a
plurality of actions are performed to create the child. A connection without the three
perpendicular lines may indicate that a single action is performed to create the
child.

[0063] In the exemplary embodiment of Fig. 3, fourth workflow 310 is highlighted
to indicate selection by the user. As a result, workflow diagram 302 includes a
workflow diagram of fourth workflow 310. Additionally, a provenance summary area
312 includes a workflow name textbox 314 for fourth workflow 310, an author text
field 316, a creation date text field 318, and a notes text area 320. The provenance
summary information may be captured as metadata. The user can change the
name of fourth workflow 310 by entering a new name in workflow name textbox 314
and selecting a “change” button 322. The new name is presented in the oval
associated with fourth workflow 310 and is updated in database 126 to capture the

version tree.

[0064] With reference to Fig. 4, workflow area 210 includes a first workflow
diagram 400 based on user selection of workflow tab 216. The workflow associated
with the selected oval in version tree diagram 302 is presented. In this mode,
workflow area 210 is used to create and edit workflows. A nodes-and-connections
paradigm or workflow view associated with workflow systems is used to present the
workflow to the user. First workflow diagram 400 includes a plurality of nodes 402.
Each node is associated with a module that executes a function which includes
instructions executed as part of the execution of the workflow to form a data
product. A node can be repositioned by dragging it to the desired location of
workflow area 210. When a node associated with a module is selected, the node is
highlighted and the parameters associated with the selected module are shown in
the right panel. In the exemplary embodiment of Fig. 4, a selected module 404
titled “vtkContourFilter” is selected and shown as highlighted. The parameters of
selected module 404 are shown in a parameters area 406. Parameters area 406

includes a method grid 408 and a parameter area 410. Method grid 408 includes a
14

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

list of the methods associated with selected module 404 and a signature of each
method. All of the methods that can set module parameters for selected module
404 are listed in method grid 408. A user selects a method from method grid 408.
Parameter area 410 displays a plurality of parameters 412 which can be defined by
the user using the selected method. Associated with each of the plurality of
parameters 412 is a label, which indicates the parameter input type and a text box
for editing the parameter. Initially, default values are shown in the text boxes. To
select a method, the user may drag the method to parameter area 410.
Alternatively, the user may select the method from method grid 410 which causes
the display of the parameters in parameter area 410. When a module is changed, a
new workflow with the changed parameters is added to version tree 302
automatically.

[0065] A workflow is created by dragging one or more modules from module
selection region 202 to workflow area 210. The plurality of nodes 402 are
connected with lines 414 that represent the workflow connections through the
modules. Modules can be connected or disconnected and added or deleted from a
workflow. The line connecting each of the modules starts and ends in a small box
at the top or bottom of the node representing a module. To disconnect modules,
the user selects the connection line and selects delete. To connect two modules,
the user places the cursor over a small box in the lower right corner of a first node
corresponding to an output port, clicks the mouse, and holds down the mouse
button while dragging the cursor from the first node to an input port of the second
node. A connection line appears. In the exemplary embodiment of Fig. 4, input
ports to a module are shown in the upper left corner of each node as small squares
and output ports are shown in the lower right corner of each node as small squares.
Each node may have zero, one, or more input ports and zero, one, or more output
ports depending on the functionality provided by the module. The input ports of the
module only accept connections from correct output ports. Dropping a connection
on a module causes it to snap to the most appropriate port. However, when a
module accepts multiple ports of the same type, proper connectivity is achieved by
starting the connection at the module with multiple ports of the same type and by
dragging the mouse to the appropriate endpoint. To determine the port to start at,
15

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

hovering the mouse cursor over a port causes presentation of a small note which

includes information about the port in question.

[0066] Input and/or output ports can be added to a module. With reference to
Figs. 5 and 6, a port user interface window 500 is shown in accordance with an
exemplary embodiment. A plurality of input methods 502 associated with available
input ports is shown. Pre-selected methods 504 of the plurality of input methods
502 are indicated with a pre-selected checkbox and with gray lettering. Pre-
selected methods 504 are included as available ports for the module by default.
Unavailable methods 506 of the plurality of input methods 502 are indicated with a
de-selected checkbox and with gray lettering. Unavailable methods 506 are not
available for selection for the module. Available methods 508 of the plurality of
input methods 502 are indicated with an empty checkbox and with black lettering. A
user adds an input port by selecting the appropriate method from the available
methods 508. After selection of the appropriate method, the user selects an “OK”
button 510 to add the port to the selected node or a “Cancel” button 512 to cancel
the addition of a port to the selected node.

[0067] With reference to Fig. 6, a plurality of output methods 602 associated with
available output ports is shown. A pre-selected method 604 of the plurality of
output methods 602 is indicated with a pre-selected checkbox and with gray
lettering. Pre-selected method 604 is included as an available port for the module
by default. Available output methods 606 of the plurality of output methods 602 are
indicated with an empty checkbox and with black lettering. A user adds an output

port by selecting the appropriate method from the available output methods 606.

[0068] With reference to Fig. 7a, workflow area 210 includes a parameter
exploration area 712 based on user selection of parameter exploration tab 222. An
annotated workflow is shown in a workflow area 700 similar to the workflow
presented in workflow area 210. The presented workflow is the workflow
associated with the selected oval in version tree diagram 302. The data flow shown
in workflow area 700 includes identifiers 702 which indicate modules capable of
maodification to perform parameter exploration included in the selected workflow. A

module area 704 lists the modules indicated with identifiers 702 in workflow area

16

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

700. The name 706 of each module is followed by a list of method names 708
which include parameters that can be explored. The default values of the
parameters are indicated after the respective method name. User selection of
selected method 710 is indicated by highlighting. The user may select a method by
dragging the method into parameter exploration area 712. The parameters of the
method are presented in a parameter grid 714 which includes each parameter
which can be parameterized. Associated with each parameter of parameter grid
714 is a data type text field 716, a start value text box 718, an end value text box
720, and a plurality of dimension selector buttons 722. The plurality of dimension
selector buttons 722 are included for selected method 710 because a plurality of
parameters can be used to perform the parameter exploration. In some cases, a
single parameter may be presented with a number of steps value that can be
defined by the user. In addition, general functions can be defined that produce a

set of values.

[0069] A dimension is associated with each of the plurality of dimension selector
buttons 722. Because a plurality of data products are created during execution of
the parameter exploration process, the user can select which parameterization is
presented in either a column dimension 724, a row dimension 730, a sheet
dimension 732, or a time dimension 734 within a cell of a data product spreadsheet.
For each dimension, an indicator 726 indicates the dimension graphically and a
number of steps value 728 indicates the number of steps to be taken between a
start value selected for the parameter by the user and an end value selected for the
parameter by the user in the respective start value text box 718 and end value text
box 720. The user can modify the number of steps value 728 associated with each
of the plurality of dimension selector buttons 722 to cause repetition of the
execution of the workflow for values for the parameter from the start value to the
end value in the selected number of steps. The user may optionally select an
ignore button 736 to leave the associated parameter out of the exploration.

[0070] The user may also select a method for defining each value of the
parameter as part of the parameter exploration process by selecting an interpolation
button 738 associated with each parameter of parameter grid 714. With reference

to Fig. 7b, an interpolation selection window 740 is shown in response to user
17

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

selection of interpolation button 738 associated with a first parameter 741. In the
exemplary embodiment of Fig. 7b, interpolation selection window 740 indicates
selection of a linear interpolation 742 by the user with a check mark. As a result, in
performing the parameter exploration in the dimension selected for first parameter
741, the parameter used for each parameter exploration is determined using a
linear interpolation between the start value and the end value.

[0071] With reference to Fig. 7c¢, interpolation selection window 740 is shown in
response to user selection of interpolation button 738 associated with a second
parameter 743. In the exemplary embodiment of Fig. 7c, interpolation selection
window 740 indicates selection of a list 744 by the user with a check mark. As a
result, in performing the parameter exploration in the dimension selected for second
parameter 743, the parameter used for each parameter exploration is determined
using a list provided by the user.

[0072] With reference to Fig. 7d, a list definition window 750 is shown in
accordance with an exemplary embodiment. List definition window 750 includes a
value grid 752 which includes a list of values 754. In the exemplary embodiment, of
Fig. 7c, second parameter 743 is a file so the list of values 754 are strings which
define a filename. A “browse” button 756 allows the user to browse the file system
to identify the file instead of typing the filename into the appropriate cell of value
grid 752. User selection of an add button 758 appends an empty value to the list of
values 754. User selection of a delete button 760 deletes a selected value from the
list of values 754. User selection of an “OK” button 762 saves the list of values 754
and closes list definition window 750. User selection of a cancel button 762 closes
list definition window 750 without saving the list of values 754.

[0073] With reference to Fig. 7e, interpolation selection window 740 is shown in
response to user selection of interpolation button 738 associated with a third
parameter 745. In the exemplary embodiment of Fig. 7e, interpolation selection
window 740 indicates selection of a user-defined function 746 by the user with a
check mark. As a result, in performing the parameter exploration in the dimension
selected for third parameter 745, the parameter used for each parameter

18

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

exploration is determined using user—defined function 746. User—defined function

746 may be any function such as a polynomial, a random number generator, etc.

[0074] With reference to Fig. 7f, a function definition window 770 is shown in
accordance with an exemplary embodiment. Function definition window 770
includes a text entry area 772. The user creates a function in text entry area 772.
The function is iteratively called for each step to determine a next parameter value.
User selection of an “OK” button 774 saves the function definition and closes
function definition window 770. User selection of a cancel button 776 closes
function definition window 770 without saving the function definition.

[0075] With reference to Fig. 8, workflow area 210 includes a version tree 800
which includes a fifth workflow 802 created by modifying a parameter of a module of
third workflow 308. Provenance summary area 312 includes workflow name
textbox 314 with data associated with fifth workflow 802, author text field 316
associated with fifth workflow 802, creation date text field 318 associated with fifth
workflow 802, and notes text area 320 associated with fifth workflow 802. Fifth
workflow 802 is created automatically if the user modifies an existing workflow by
changing a parameter, adding or deleting a module, changing a connectivity
between modules, etc.

[0076] With reference to Fig. 9, a workflow difference window 900 is shown in
accordance with an exemplary embodiment. Workflows can be compared, for
example, by a user selecting an oval of a workflow from version tree 300, dragging
the selected oval to a second oval of a workflow to which to compare the workflow,
and releasing the selected oval. Workflow difference window 900 shows modules
that were modified between any two workflows in version tree 300. For example,
uniqgue modules may be indicated in a first color if the module was added and in a
second color if the module was deleted. Modules having different parameter values
may be shown in a third color, shaded differently, outlined differently, with different
text coloring, etc. In the exemplary embodiment of workflow difference window 900,
a first node 902 indicates that a module titled “vtkCamera” is added to the second
workflow and a second node 904 indicates that a parameter of a module titled

19

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

“vtkSample Function” is different for the second workflow. The remaining nodes are

identical.

[0077] With reference to Fig. 10, workflow area 210 includes a version tree 1000
which includes a sixth workflow 1002 created by modifying a parameter of a module
of third workflow 308 and a seventh workflow 1004 created by modifying a
parameter of a module of fourth workflow 310. The author and usage frequency
can be indicated in version tree 1000 using a color and/or shading scheme. For
example, workflows developed by a first user may be indicated with a first color and
workflows developed by a second user may be indicated with a second color. The
saturation level of the color may indicate how recently a workflow has been created
or executed. A workflow can be executed by selecting the workflow from version

tree 1000 and selecting an execute button 1006.

[0078] With reference to Fig. 11, a result presentation window 1100 of result
presentation application 124 is shown in accordance with an exemplary
embodiment. Four dimensions of data products can be presented to the user in a
data product grid 1102 of result presentation window 1100. In a column dimension
1104, multiple data products are shown in different columns. The number of
columns defaults to three, but may be one or more. The number of columns may
be selected by the user using column selector 1110. In a row dimension 1106,
multiple data products are shown in different rows. The number of rows defaults to
two, but may be one or more. The number of rows may be selected by the user
using row selector 1112. In a sheet dimension 1108, multiple data products are
shown in different data sheets. The number of sheets defaults to one, but may be
one or more. Within each cell of data product grid 1102, a different data product
defined based on execution of a different workflow of version tree 300 is shown. In
the exemplary embodiment of Fig. 11, column 1, row 1 contains the data product
formed form execution of third workflow 308 shown with reference to Fig. 10;
column 2, row 1 contains the data product formed form execution of fourth workflow
310 shown with reference to Fig. 10; column 3, row 1 contains the data product
formed form execution of sixth workflow 1002 shown with reference to Fig. 10; and
column 1, row 2 contains the data product formed form execution of seventh

workflow 1004 shown with reference to Fig. 10.
20

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

[0079] Result presentation application 124 may use various techniques and
formats to display and represent the results of a workflow execution. For example,
a cell may display a Web page (in hypertext markup language), text, 2-dimensional
and 3-dimensional graphs, histograms, animations, numbers, etc. The result
presentation interface can be used to display the results of parameter explorations
side by side, for example, varying different parameters over different axes, or in an
animation performed by repeating a workflow over time. In addition, display cells
can share the same cache so that overlapping computations across the
corresponding workflows are shared.

[0080] With reference to Fig. 12, a query result 1200 is shown in accordance
with an exemplary embodiment in workflow area 210. The query interface of
workflow creator application 122 supports both simple, keyword-based and
selection queries such as finding a result created by a given user, as well as
complex, structure based queries such as finding results that apply simplification
before an isosurface computation for irregular grid data sets. To support simple,
keyword-based and selection queries, a query identification area 1202 includes a
query text box 1204, a “Search” button 1206, a “Refine” button 1208, and a “Reset”
button 1210. Simple keyword-based queries as well as structured queries may be
supported. A user identifies a module to be searched for in version tree 1000. The
user enter the module name in query text box 1204 and selects “Search” button
1206.

[0081] In the exemplary embodiment of Fig. 12, the module having the name
“vtkCamera” is to be located in the workflows of version tree 1000. Version tree
1000 is traversed to identify workflows which include the module based on the
module name entered. The identified workflows are presented in workflow area 210
through highlighting. For example, in the exemplary embodiment of Fig. 12, second
workflow 306, fifth workflow 802, sixth workflow 1002, and seventh workflow 1004
include the selected module. Alternatively, if after specifying a query the user
selects “Refine” button 1208, instead of highlighting the selected nodes and graying
the nodes that do not match the query, the non-matching nodes are hidden and

collapsed into crossed edges.

21

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

[0082] With reference to Fig. 13, a query can be defined in workflow area 210
based on user selection of query tab 220 to support complex, structure based
queries. Instead of searching for use of a single module in the workflows of the
version tree, the user selects query tab 220 to define a plurality of modules and
their connectivity for identification in the workflows of the version tree. The user
selects the modules from module selection region 202 and defines their connectivity
as described with reference to creation or to modification of a workflow thus

creating a workflow or sub-workflow to query.

[0083] With reference to Fig. 14, a plurality of data products are shown in result
presentation window 1100 of result presentation application 124 in accordance with
a second exemplary embodiment. Each cell can contain one or more pictorial
representation, one or more numerical representation, one or more textual
representation, one or more pictorial animation, and an audible representation.
Controls can be included within each cell to control the display, to play an animation

within the cell, etc.

[0084] Information associated with a version tree is defined based on an
extensible markup language (XML) schema in an exemplary embodiment. User
interaction with workflow creator application 122 to define workflows is captured as
a series of actions of different types. The different actions are associated with
adding modules, deleting modules, changing parameter values, adding
connections, deleting connections, changing connections, etc. An exemplary XML

schema is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:clement name="visTrail">
<xs:annotation>
<xs:documentation>Comment describing your root element</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence maxQOccurs="unbounded">
<xs:sequence maxOccurs="unbounded">
<xs:clement name="action">
<xs:complexType>
<xs:sequence>
<xs:element name
<xs:choice>
<xs:sequence maxOccurs

p— |

notes" minOccurs="0"/>

—"

unbounded">

22

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

p— |

<xs:element name="move">
<xs:complexType>
<xs:attribute name="dx" type="xs:float"/>
<xs:attribute name="dy" type="xs:float"/>
<xs:attribute name="1id" type="xs:int"/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:element name="object">
<xs:complexType>
<xs:attribute name="cache" type="xs:int"/>
<xs:attribute name="1d" type="xs:int"/>
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="x" type="xs:float"/>
<xs:attribute name="y" type="xs:float"/>
</xs:complexType>
</xs:element>
<xs:sequence maxQOccurs="unbounded">
<xs:element name="set">
<xs:complexType>
<xs:attribute name="function" type="xs:string"/>
<xs:attribute name="functionld" type="xs:int"/>
<xs:attribute name="moduleld" type="xs:int"/>
<xs:attribute name="parameter" type="xs:string"/>
<xs:attribute name="parameterld" type="xs:int"/>
<xs:attribute name="type" type="xs:string"/>
<xs:attribute name="value" type="xs:anySimpleType"/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:element name="connect">
<xs:complexType>
<xs:choice>
<xs:element name="filterInput">
<xs:complexType>

p— |

1"

—"

<xs:attribute name="destld" type="xs:int"/>
<xs:attribute name="destPort" type="xs:int"/>
<xs:attribute name="sourceld" type="xs:int"/>

—n _n

<xs:attribute name xs:int"/>
</xs:complexType>
</xs:element>
<xs:element name="objectInput">
<xs:complexType>
<xs:attribute name="destld" type="xs:int"/>
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="sourceld" type="xs:int"/>
</xs:complexType>
</xs:element>
</xs:choice>
<xs:attribute name="1d" type="xs:int"/>
</xs:complexType>
</xs:element>
<xs:sequence maxQOccurs="unbounded">
<xs:element name="connection">
<xs:complexType>
<xs:attribute name="connectionld" type="xs:int"/>
</xs:complexType>
</xs:element>

sourcePort" type

p— |

p— |

—"

23

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

</xs:sequence>
<xs:sequence maxQOccurs="unbounded">
<xs:element name="module">
<xs:complexType>

—"

<xs:attribute name="moduleld" type="xs:int"/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:element name="function">
<xs:complexType>
<xs:attribute name="functionld" type="xs:int"/>
<xs:attribute name="moduleld" type="xs:int"/>

</xs:complexType>
</xs:element>
</xs:choice>
</xs:sequence>
<xs:attribute name="parent" type="xs:int"/>
<xs:attribute name="time" type="xs:int"/>
<xs:attribute name="what" type="xs:string"/>
<xs:attribute name="date" type="xs:string" use="optional"/>
<xs:attribute name="user" type="xs:string" use="optional"/>
<xs:attribute name="notes" type="xs:string" use="optional"/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:sequence minOccurs="0" maxQOccurs="unbounded">
<xs:element name="tag">
<xs:complexType>
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="time" type="xs:int"/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:sequence minOccurs="0" maxQOccurs
<xs:element name="macro">
<xs:complexType>
<xs:sequence minOccurs="0" maxQOccurs
<xs:element name="action">
<xs:complexType>
<xs:attribute name="time" type="xs:int"/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="1d" type="xs:int"/>
<xs:attribute name="desc" type="xs:string" use="optional"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

—"

—_n —n

—"

unbounded">

—1

unbounded">

—_n —n

[0085] A portion of an exemplary XML file defined based on the XML schema is
shown below for version tree 1000. Other representations are possible. To capture

24

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

the provenance information, a “date” tag and a “user” tag are included for each
“action”. Linkage between modules is defined using the “parent” tag for each
“action”. The action is assigned an identifier based on the “time” tag for each
“action” which is the value referenced in the “parent” tag for a child action. The
action type is assigned based on the “what” tag for each “action”. Depending on the
value associated with the “what” tag, additional parameters are defined based on
the XML schema. For example, some actions include “object” parameters that may

include a “name” tag which may be the module name.

<visTrail version="0.3.1">
<action date="27 Sep 2006 12:35:44" parent="0" time="2" user="emanuele" what="addModule">

<object cache="1" id="0" name="vtkQuadric" x="-0.373626375095" y="2.38827838828" />
</action>
<action date="27 Sep 2006 12:36:09" parent="2" time="3" user="emanuele" what="moveModule">

<move dx="-7.32600751855" dy="112.087914593" id="0" />
</action>
<action date="27 Sep 2006 12:36:09" parent="3" time="4" user="emanuele" what="changeParameter">

<set alias="" function="SetCoefficients" functionld="0" moduleIld="0" parameter="<no description>" parameterld="0"
type="Float" value="0.0" />

<set alias="" function="SetCoefficients" functionld="0" moduleld="0" parameter="<no description>" parameterld="1"
type="Float" value="0.0" />

<set alias="" function="SetCoefficients" functionld="0" moduleld="0" parameter="<no description>" parameterld="2"
type="Float" value="0.0" />

<set alias="" function="SetCoefficients" functionld="0" moduleld="0" parameter="<no description>" parameterld="3"
type="Float" value="0.0" />

<set alias="" function="SetCoefficients" functionld="0" moduleld="0" parameter="<no description>" parameterld="4"
type="Float" value="0.0" />

<set alias="" function="SetCoefficients" functionld="0" moduleld="0" parameter="<no description>" parameterld="5"
type="Float" value="0.0" />

<set alias="" function="SetCoefficients" functionld="0" moduleld="0" parameter="<no description>" parameterld="6"
type="Float" value="0.0" />

<set alias="" function="SetCoefficients" functionld="0" moduleld="0" parameter="<no description>" parameterld="7"
type="Float" value="0.0" />

<set alias="" function="SetCoefficients" functionld="0" moduleld="0" parameter="<no description>" parameterld="8"
type="Float" value="0.0" />

<set alias="" function="SetCoefficients" functionld="0" moduleld="0" parameter="<no description>" parameterld="9"
type="Float" value="0.0" />
</action>

<action date="27 Sep 2006 12:40:58" parent="33" time="34" user="emanuele" what="addConnection">

<connect destinationId="2" destinationModule="vtkContourFilter"
destinationPort="SetInputConnectionO(vtkAlgorithmOutput)" id="1" sourceld="1" sourceModule="vtkSampleFunction"
sourcePort="GetOutputPortO(vtk AlgorithmOutput)" />
</action>

<action date="27 Sep 2006 12:52:43" parent="77" time="78" user="emanuele" what="addModule">
<object cache="1" id="9" name="vtkCamera" x="-384.141365773" y="-610.692477838" />

</action>

<action date="27 Sep 2006 12:52:47" parent="78" time="79" user="emanuele" what="moveModule">
<move dx="16.3608248779" dy="73.6237132673" id="9" />

</action>

<action date="27 Sep 2006 12:52:47" parent="79" time="80" user="emanuele" what="addConnection">
<connect destinationId="8" destinationModule="vtkRenderer" destinationPort="SetActiveCamera(vtkCamera)" id="11"

sourceld="9" sourceModule="vtkCamera" sourcePort="self(vtkCamera)" />

</action>

<action date="27 Sep 2006 12:53:12" parent="80" time="81" user="emanuele" what="moveModule">

25

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

<move dx="14.3157217682" dy="49.0824755115" id="9" />
</action>
<action date="27 Mar 2007 13:10:55" parent="77" time="82" user="cbell" what="changeParameter">

<set alias="" function="SetSampleDimensions" functionIld="0" moduleld="1" parameter="<no description>"
parameterId="0" type="Integer" value="40" />

<set alias="" function="SetSampleDimensions" functionIld="0" moduleld="1" parameter="<no description>"
parameterId="1" type="Integer" value="50" />

<set alias="" function="SetSampleDimensions" functionIld="0" moduleld="1" parameter="<no description>"
parameterId="2" type="Integer" value="50" />
</action>
<action date="27 Mar 2007 13:10:57" parent="82" time="83" user="cbell" what="changeParameter">

<set alias="" function="SetSampleDimensions" functionIld="0" moduleld="1" parameter="<no description>"
parameterId="0" type="Integer" value="40" />

<set alias="" function="SetSampleDimensions" functionIld="0" moduleld="1" parameter="<no description>"
parameterId="1" type="Integer" value="40" />

<set alias="" function="SetSampleDimensions" functionIld="0" moduleld="1" parameter="<no description>"
parameterId="2" type="Integer" value="50" />
</action>
<action date="27 Mar 2007 13:11:03" parent="83" time="84" user="cbell" what="changeParameter">

<set alias="" function="SetSampleDimensions" functionIld="0" moduleld="1" parameter="<no description>"
parameterId="0" type="Integer" value="40" />

<set alias="" function="SetSampleDimensions" functionIld="0" moduleld="1" parameter="<no description>"
parameterId="1" type="Integer" value="40" />

<set alias="" function="SetSampleDimensions" functionIld="0" moduleld="1" parameter="<no description>"
parameterId="2" type="Integer" value="40" />
</action>
<action date="27 Mar 2007 13:14:12" parent="77" time="85" user="cbell" what="changeParameter">

<set alias="" function="GenerateValues" functionld="0" moduleld="2" parameter="<no description>" parameterId="0"
type="Integer" value="10" />

<set alias="" function="GenerateValues" functionld="0" moduleld="2" parameter="<no description>" parameterld="1"
type="Float" value="0" />

<set alias="" function="GenerateValues" functionld="0" moduleld="2" parameter="<no description>" parameterIld="2"
type="Float" value="1.2" />
</action>
<action date="27 Mar 2007 13:15:36" parent="81" time="86" user="cbell" what="changeParameter">

<set alias="" function="GenerateValues" functionld="0" moduleld="2" parameter="<no description>" parameterId="0"
type="Integer" value="10" />

<set alias="" function="GenerateValues" functionld="0" moduleld="2" parameter="<no description>" parameterld="1"
type="Float" value="0" />

<set alias="" function="GenerateValues" functionld="0" moduleld="2" parameter="<no description>" parameterIld="2"
type="Float" value="1.2" />
</action>
<tag name="SampleFunction" time="27" />
<tag name="Change Contour" time="85" />
<tag name="Change Parameter" time="84" />
<tag name="Change Contour 2" time="86" />
<tag name="quadric" time="3" />
<tag name="Almost there" time="77" />
<tag name="final" time="81" />
<fvisTrail>

[0086] Workflows are uniquely identified by the “time” element. Optionally, a tag
field can be defined to name a particular workflow using “tag” fields as shown
above. Associated with each “tag” field is a name of the workflow, which is
presented in the oval of the version tree, and an action identifier, which identifies
the action that starts the workflow modifications to its parent. For example, as

shown above, fourth workflow 310 has the name “final” as shown in version tree

26

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

1000 with reference to Fig. 10, and starts at the action having time tag value 81 or
the action shown below:

<move dx="14.3157217682" dy="49.0824755115" id="9" />
</action>

[0087] Different storage architectures can be used for the provenance
information. They include files in a file system, native XML databases, relational

databases, etc.

[0088] The embodiments described use a tightly-coupled architecture 1500,
shown with reference to Fig. 15, where the provenance management is performed
in the same environment in which the workflows are created and change actions
are captured. Other loosely coupled embodiments are possible in which the
provenance management and capture occur in different environments. For
example, a first loosely coupled system 1502 includes a workflow system 1518, a
provenance capture module 1520, and a provenance manager 1516. Workflow
system 1518 and provenance capture module 1520 are tightly coupled in the same
environment. Change notifications may be sent to provenance manager 1516 for
example, in a client-server fashion. As another example, a second loosely coupled
system 1504 includes a graphical user interface (GUI) 1510, scripts 1512, a
provenance capture module 1514, and provenance manager 1516. User
interactions with GUI 1510 and scripts 1512 are captured and sent to provenance
capture module 1514, for example, in a client-server fashion. Provenance capture
change notifications may be sent to provenance manager 1516, for example, in a

client-server fashion.

[0089] With reference to Fig. 16, a high-level overview of a synchronization
process 1600 is provided in accordance with an exemplary embodiment. A first
user creates an evolutionary workflow process, which includes timestamps 1-4. A
second user checks out the evolutionary workflow process and develops a first
evolutionary workflow process 1602, which adds timestamps 5 and 6. Timestamps
5 and 6 are associated with modifications to the evolutionary workflow process
performed by the second user. A third user checks out the evolutionary workflow
process and develops a second evolutionary workflow process 1604, which adds

27

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

timestamps 5 and 6. Timestamps 5 and 6 are associated with modifications to the
evolutionary workflow process performed by the second user. As a result, when the
first user and/or the second user check in their evolutionary workflow processes to
the evolutionary workflow process acting as a parent repository, some timestamps
are changed as shown with reference to third evolutionary workflow process 1606,
which is saved as the evolutionary workflow process and which includes

modifications performed by the first user and the second user.

[0090] To perform synchronization, synchronization points are identified. The
synchronization points are the overlapping nodes and edges in the two version
trees being compared. When an evolutionary workflow process is 'checked-out', the
system keeps track of the largest timestamp at checkout, i.e., "4" as in the example
above. When an updated evolutionary workflow process is “checked-in”, because
the evolutionary workflow process is monotonic (nothing is deleted),
synchronization is applied only to the nodes with a timestamp > 4. For clarity, an
evolutionary workflow process is captured and presented as a version tree. To
merge two evolutionary workflow processes, it is sufficient to add all workflow nodes
created in the independent versions of the evolutionary workflow processes while
maintaining a locally unique set of timestamps for each action associated with the
added workflow nodes. As shown with reference to third evolutionary workflow
process 1606, the timestamps 5 and 6 of the first user are re-labeled as 7 and 8.

[0091] To perform synchronization in a P2P environment, the process is more
complex to ensure that the re-numberings are performed correctly. Because
timestamps only need to be unique and persistent locally, a re-labeling map is
created and maintained for each synchronization server from which a user in the
P2P network executes a check-out/check-in process and is associated with the
local evolutionary workflow process. Thus, re-labeling maps may be used when
there are multiple synchronization servers. At each check-out, information about
the original synchronization server is kept. An evolutionary workflow process
checked-out from a first server S4 can only be checked back into S4. If the
evolutionary workflow process is saved to a server Sy, so that it can be exported to

other users, a re-labeling map should be created in S».

28

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

[0092] The information about the original synchronization server as well as the
re-labeling map is associated with the evolutionary workflow process. The re-
labeling map can be saved together with the evolutionary workflow process (e.g.,
XML specification in a database, XML specification in a separate file, tables in a
relational database, etc.) as long as the association is maintained. The re-labeling
map is associated with a synchronization server that exports a given evolutionary
workflow process. A synchronization server can serve (receive and export)

changes performed by multiple users.

[0093] In an exemplary embodiment, a set of bijective functions f; : N—N is used
to form the re-labeling map. The function f; maps timestamps in the original
evolutionary workflow process that is checked-out to new timestamps in the
modified evolutionary workflow process. The re-labeling map includes a set of
external labels associated with a set of local labels. The set of external labels for a
child are the timestamps assigned by a parent evolutionary workflow process i
when the child evolutionary workflow process is checked in to the parent
evolutionary workflow process i in order to maintain a unique set of timestamps in
the parent evolutionary workflow process i. The set of external labels for a child are
the timestamps assigned by the child evolutionary workflow process as the user
interacts with their evolutionary workflow tool 112. The set of local labels are the
timestamps assigned during local execution of the evolutionary workflow process or

check-in of a child evolutionary workflow process.

[0094] The set of internal labels are exposed when an evolutionary workflow
process is used as a repository because the internal labels are consistent with the
evolutionary workflow process. When the user stores a set of actions, the parent
evolutionary workflow process provides a new set of timestamps by creating new
entries in the parent’s evolutionary workflow process and updating the re-labeling
map to indicate a mapping between the set of external labels and the set of local
labels. The re-labeling map of the child evolutionary workflow process modifies the
set of external labels based on the new set of timestamps assigned by and received
from the parent. As a result, the second user’s re-labeling map set of external
labels is changed from {5,6} to {7,8}, though the set of local labels remains {5,6}. If

fg is denoted as the old re-labeling map, and f's is denoted as the new re-labeling
29

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

map, 8(5) = f's(7), f5(6) = f'5(8), and so on. Thus, even though a user’s local
timestamps may change when stored to the parent evolutionary workflow process,
each evolutionary workflow process exposes locally consistent, unchanging
timestamps to other users, ensuring correct distributed behavior.

[0095] With reference to Fig. 17, a collaborative workflow evolution system 1700
is shown in accordance with an exemplary embodiment. Collaborative workflow
evolution system 1700 includes a first device 100a, a second device 100b, a third
device 100c, and a fourth device 100d. First device 100a, second device 100D,
third device 100c, and fourth device 100d may each be instances of evolutionary
workflow processing system 100 described with reference to Fig. 1. A first user
executes a first evolutionary workflow tool 112a at first device 100a. A second user
executes a second evolutionary workflow tool 112b at second device 100b. A third
user executes a third evolutionary workflow tool 112c¢ at third device 100c. A fourth
user executes a fourth evolutionary workflow tool 112d at fourth device 100d. First
evolutionary workflow tool 112a, second evolutionary workflow tool 112b, third
evolutionary workflow tool 112¢, and fourth evolutionary workflow tool 112d may
each be instances of evolutionary workflow tool 112 described with reference to
Fig. 1.

[0096] First device 100a communicates with second device 100b through a first
network 1701. First device 100a communicates with third device 100c through a
second network 1702. Third device 100c communicates with fourth device 100d
through a third network 1704. First network 1701, second network 1702, and/or
third network 1704 may be any type of network such as a local area network (LAN),
a wide area network (WAN), a cellular network, the Internet, etc. Additionally, first
network 1701, second network 1702, and/or third network 1704 may include a peer-
to-peer network (P2P) and/or a client-server network. In a client-server network, a
single centralized synchronization server may be used with all modifications sent to
and retrieved from the centralized synchronization server. In a P2P, multiple
servers may be allowed to receive and to export data associated with evolutionary
workflow processes. First device 100a, second device 100Db, third device 100c, and

fourth device 100d communicate using communication interface 108 implemented

30

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

at each device and discussed with reference to Fig. 1. Collaborative workflow
evolution system 1700 may include additional or fewer networks.

[0097] First device 100a includes a first workflow evolution description 1706 and
a first re-labeling map 1708. In an exemplary embodiment, first workflow evolution
description 1706 is an evolutionary workflow process repository for a first
evolutionary workflow process stored, for example, using the action based XML
schema described previously. First re-labeling map 1708 includes a first set of
external labels associated with a first set of local labels.

[0098] Second device 100b includes a second workflow evolution description
1710 and a second re-labeling map 1712. In an exemplary embodiment, second
workflow evolution description 1710 is an evolutionary workflow process repository
for a second evolutionary workflow process stored using the action based XML
schema described previously. Second re-labeling map 1708 includes a second set
of external labels associated with a second set of local labels. In the exemplary
embodiment of Fig. 17, second workflow evolution description 1710 is created by
checking out first workflow evolution description 1706. After check-out, second
workflow evolution description 1710 may be modified. First workflow evolution
description 1706 may also be modified independently.

[0099] Third device 100c includes a third workflow evolution description 1714
and a third re-labeling map 1716. In an exemplary embodiment, third workflow
evolution description 1714 is an evolutionary workflow process repository for a third
evolutionary workflow process stored using the action based XML schema
described previously. Third re-labeling map 1716 includes a third set of external
labels associated with a third set of local labels. In the exemplary embodiment of
Fig. 17, third workflow evolution description 1710 is created by checking out and
modifying first workflow evolution description 1706.

[00100] Fourth device 100d includes a fourth workflow evolution description 1718
and a fourth re-labeling map 1720. In an exemplary embodiment, fourth workflow
evolution description 1718 is an evolutionary workflow process repository for a
fourth evolutionary workflow process stored using the action based XML schema

described previously. Fourth re-labeling map 1720 includes a fourth set of external

31

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

labels associated with a fourth set of local labels. In the exemplary embodiment of
Fig. 17, fourth workflow evolution description 1714 is created by checking out and
modifying third workflow evolution description 1714. The workflow evolution
descriptions 1706, 1710, 1714, 1718 and the re-labeling maps 1708, 1712, 1716,
1720 may be stored in database 126 implemented at each device 100a, 100D,
100c, 100d and discussed with reference to Fig. 1.

[00101] The second user checks out first workflow evolution description 1706,
which includes local labels (timestamps) 1-4 and external labels 10-40 and
develops second workflow evolution description 1710. The third user checks out
first workflow evolution description 1706 and develops third workflow evolution
description 1714. The fourth user checks out third workflow evolution description
1714 and develops fourth workflow evolution description 1718. Assume first re-
labeling map 1708 contains the following mapping:

local

1

2

3

4

external

10

20

30

40

Assume second re-labeling map 1712 contains the following mapping:

local

10

20

30

40

external

100

200

300

400

Assume third re-labeling map 1716 contains the following mapping:

local

10

20

30

40

external

100

200

300

400

Assume fourth re-labeli

ng map 1720 contains the following mapping:

local

100

200

300

400

external

1000

2000

3000

4000

The second user performs two actions after checking out first workflow evolution
description 1706. The actions associated with timestamps 50 and 60 are added to
second workflow evolution description 1710 as the second user interacts with
second evolutionary workflow tool 112b. Second re-labeling map 1712 is modified
to include the following mapping:

32

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

local 10 20 30 40 50 60
external 100 200 300 400 500 600

The third user performs two actions after checking out first workflow evolution
description 1706. The actions associated with timestamps 50 and 60 are added to
third workflow evolution description 1714 as the third user interacts with third
evolutionary workflow tool 112c. Third re-labeling map 1716 is modified to include

the following mapping:

local 10 20 30 40 50 60
external 100 200 300 400 500 600

The second user checks-in first workflow evolution description 1706. External
labels 500 and 600 and are determined to be unique to the first evolutionary
workflow process at check-in. As a result, the actions associated with timestamps
500 and 600 are added to first workflow evolution description 1706. First re-labeling
map 1708 is modified to include the following mapping and second re-labeling map

1712 is unchanged:

local 1 2 3 4 5 6
external 10 20 30 40 50 60

After the second user checks-in first workflow evolution description 1706, the third
user checks-in first workflow evolution description 1706. The external labels 500
and 600 are determined not to be unique to the first evolutionary workflow process.
As a result, the actions associated with external labels 500 and 600 are added to
first workflow evolution description 1706 with updated timestamps. Second re-
labeling map 1708 is modified to include the following mapping which renumbers
external labels 50 and 60 of third re-labeling map 1716 to external labels 70 and 80,

respectively:
local 1 2 3 4 5 6 7 8
external 10 20 30 40 50 60 70 80

Thus, the modifications made by the third user are renumbered as 70 and 80. The
changes to first re-labeling map 1708 are applied to third re-labeling map 1716 to

include the following mapping where external labels 500 and 600 correspond to the
33

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

modifications performed by the second user and external labels 700 and 800
correspond to the modifications performed by the third user:

local 10 20 30 40 50 60 70 80
external 100 200 300 400 500 600 700 [800

The fourth user performs two actions after checking out third workflow evolution
description 1714. Fourth re-labeling map 1720 is modified to include the following

mapping:

local 100 200 300 400 500 600 700 [800
external 1000 (2000 [3000 KOO0 |[5000 [6000 (7000 (8000

The fourth user checks-in third workflow evolution description 1714. Third re-
labeling map 1716 is modified to include the following mapping which renumbers
external labels 7000 and 8000 of fourth re-labeling map 1720 to external labels 900

and 100, respectively:

local 10 20 30 40 50 60 70 80 90 |100
external [100 200 300 400 |[500 600 700 800 900 [1000

The changes to third re-labeling map 1716 are applied to fourth re-labeling map
1720 to include the following mapping where local labels 900 and 1000 correspond
to the modifications performed by the fourth user:

local 100 200 [300 H4OO0 |500 OO 700 |[800 900 |[1000
external [1000 |2000 [3000 KOO0 |[5000 [6O00 [7000 (8000 [9000 |10000

[00102] With reference to Fig. 18, a query sub-workflow 1800 is defined in
workflow area 210b of query tab 220. In an exemplary embodiment, a user selects
a portion of an initial workflow 1802 defined in workflow area 210a of workflow tab
216, copies the selected portion to a memory such as a clipboard, selects query tab
220, and pastes the copied portion to workflow area 210b of query tab 220. For
example, the user may select query sub-workflow 1800 by dragging a mouse over a
portion of initial workflow 1802 as known to those skilled in the art. The user may

select and define additional query criteria using a property query area 1804.
34

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

[00103] Property query area 1804 may include a search method text box 1806, a
method tree 1808, a property list 1810, a property criteria text box 1812, and a
comparator type selector 1814 (shown exploded for legibility). The user may enter
a portion of a method name in search method text box 1806 to locate the method in
method tree 1808. Method tree 1808 includes a tree of methods associated with a
selected workflow 1816, titled “vtkStructuredPointsReader”, of query sub-workflow
1800. The user selects a method presented in method tree 1808. Properties of the
selected method are presented in property list 1810. The user selects a property
presented in property list 1810 and one or more text boxes associated with the
selected property are presented in property area 1818. The user enters an
appropriate value in property criteria text box 1812 and selects a comparison type
using comparator type selector 1814. Exemplary comparison types include
“contain”, “does not contain”, <, >, 2, <, =, #, etc. Property area 1818 may include a
plurality of properties in property list 1810. Additionally, property area 1818 may
include a plurality of property criteria text boxes each associated with a comparator

type selector 1814.

[00104] With reference to Fig. 19, a first query result 1900 is shown in workflow
area 210 of version tree tab 218 in accordance with an exemplary embodiment.
The workflows which satisfy the complex query are presented in workflow area 210
through highlighting. To further illustrate, a first workflow 1902 exploded to show
the matching sub-workflow 1904 and the matching property value 1906 is shown.
Additionally, a second workflow 1908 exploded to show the matching sub-workflow

1910 and the matching property value 1912 is shown.

[00105] The same interface used to build a workflow is used to query a version
tree which includes a plurality of workflows. The current version tree is searched for
all workflows that match that query. The matching to identify workflows that contain
the query sub-workflow may be determined on a per workflow basis. Specifically,
for each workflow, the vertices of the graph induced by the workflow may be
topologically sorted. The vertices of the query graph are tested for a match. An
exact match may be required or some level of inexactness may be allowed
depending on user preference. While each element of the query sub-workflow

(modules, connections, parameters, etc.) is included in the match, a candidate
35

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

workflow that contains more elements than those in the query sub-workflow still
satisfies the query. If all vertices match, the candidate workflow is returned as a
match. All matches are selected and highlighted in the version tree so that users
can quickly see query results. Selecting a workflow from the highlighted version
tree displays the workflow with the portion of the workflow that matches the query
highlighted as shown with reference matching sub-workflow 1904 and matching
sub-workflow 1910.

[00106] Differences can assist in optimizing the matching process. For example,
given a query workflow pq and two candidate workflows p, and py. If p, satisfies the

query, and the difference ¢, is known, the domain context of J,, can be checked to

determine if it contains any elements that match pq. If not, py, also satisfies the

query. Similarly, if p, does not match pq and R(J,,) does not contain the necessary

elements for matching pq, pp does not satisfy the query. Thus, all workflows that
satisfy the query can be determined by iteratively matching and updating the
matches based on differences. Every operation performed on a workflow (adding
and deleting modules, adding, deleting, and modifying connections, and/or
modifying parameters) can be expressed as a (potentially partial) function

f:v—ov. 0:v—v is defined as a function on the space of workflows, and
A:vxv — ¢ as a function that takes two workflows p, and p, and produces another

function that transforms p, to py. For brevity, 5, = A(pa, pp). Formally, the domain

context of o, A(J), is the set of all workflow primitives required to exist for ¢ to be
applicable. These contexts may be represented as sets of identifiers. For example,
if o is a function that changes the filename parameter of a module with id 32, A(¢J)
is the set containing the module with id 32. Similarly, the range context of 6, R(J),
is the set of all workflow primitives added or modified by 6. Note that A(5-1) =

R('), which provides an easy way to compute range contexts.

[00107] As discussed with reference to Figs. 2-10, as a user develops an
evolutionary workflow, the entire manipulation sequence is transparently stored in
the version tree. Each action fthat modifies the workflow (e.g. adding or deleting a
module, connecting modules, or changing a parameter) is represented explicitly as

a function f:v — v, where V is the space of all possible workflows. A workflow is
36

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

the composition of these functions, and is materialized by applying the resulting
function to an empty workflow. The action-based formalism associated with
capturing the version tree supports the straightforward computation of simple
differences. When pa < po, A(Pa, Po) iS the sequence of actions to take pa to py
which can be read directly from the workflow evolution description. In addition, the
inverse operation of ffor each type of operation is implemented (i.e., add module

versus delete module) so that &,, is also easily constructed. However, if p, not< py

and py, Not< p,, there exists some p (possibly the empty workflow, though, in
general, pc is the least common ancestor of both ps and py) such that pe < pa and pc

<pp. Then, §,=46,6.,=05.5., so A(pi, p;) can be found for any two workflows,

ac~ch ca ~ch

even if they are not directly related.

[00108] The result of workflow matching can either be a binary decision (whether
or not the workflows match) or a mapping between the two workflows. The binary
decision can be obtained by thresholding the total score of the mapping. If D
represents the set of all domain contexts, to identify the best mapping between two
workflows, define map : v xv — (D — D) as a function which takes two workflows, pa

and pp as an input and produces a (partial) map from the domain context of p, to
the domain context of p.. The map may be partial in cases where elements of p, do
not have a match in py, or vice versa. If pa < py, map(pa, Ps) = Mapap is the identity
on all elements that were not added or deleted in the process of deriving pp. To
construct such a mapping, the problem may be formulated as a weighted graph
matching problem. Let G, = (V,, E;) be the graph corresponding to the workflow pa.
V, represents the modules in p, and E, represents the connections in p,. However,
other definitions such as the dual of this representation may be used. For V,, a
scoring function s:V, xV, —[0.0,1.0] defines the compatibility between vertices. For
example, the score of two modules that are exactly the same might be 1.0 and the

score of two modules that differ except that one is a subclass of the other might be
0.6. A matching between G, and G, may be defined as a set of pairs of vertices

M ={(v,,v,)} where v_ eV and v, €V,. A matching is good when Zs(va,vb) is

(Vasvp)eM

maximized. A good matching on workflows corresponds to a good matching of their

37

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

representative graphs. Given a good matching M, a mapping from ps to py is

defined as v, »v, forall (v,,v,)eM .

[00109] In an exemplary matching algorithm, the standard graph representation is
used where vertices correspond to modules and edges to connections. In addition,
even though discrimination between input and output ports can be included,
directionality is not enforced on the edges so that similarity can be diffused along
them. In workflow matching, a mapping from the context of one workflow to another
is determined. To do so, the workflows are converted to labeled graphs and a
scoring function is defined for nodes based on their labels. With a graph for each
workflow, the mapping by pairing nodes that score well is computed and
connectivity constraints are enforced between the pairs.

[00110] Let G, and Gy be the graphs corresponding to pa and pp. A connection
between two vertices a and b can be denoted as a ~ b and the scoring function that
measures the similarity of vertices can be defined by

| ports(v,) ports(v,)|

s(v,,v,)= where ports(v) denotes the ports of the module

| ports(v,) | +| ports(v,)|

corresponding to vertex v. This scoring function emphasizes port matching to give
modules that can be substituted for each other a high score. Such a substitution
depends solely on the compatibility of the input and output ports and not on a
module name or functionality. This scoring function is defined only for nodes, and
therefore does not help in comparing the topologies of the workflows. While a
simple maximum bipartite matching between nodes may succeed in finding a map
between nodes, the connectivity constraints of the graphs should be enforced.
Intuitively, the similarity between vertices as a weighted average between how
compatible the modules are and how similar their neighborhoods are is desired. In
an exemplary embodiment, the similarity score strikes a balance between the
locality of pairwise compatibility and the overall similarity of the neighborhood. A
graph G = G, * Gp that combines both G, and Gy is created in which a vertex v, is

defined for each pair of vertices v, eV, and v, €V, . Similarly, an edge v;; ~ v,

exists when v; ~ vk in Gaand v; ~ v;in Gp. G is the graph categorical product of G,

38

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

and G,. The connectivity of G encodes the pairwise neighborhoods of the vertices
in Gz and Gp.

[00111] To translate the algorithm into an iterative algorithm, z,(G) is the

measure of pairwise similarity after k steps; A(G) is the adjacency matrix of G
normalized so that the sum of each row is one where a row with sum zero is
modified to be uniformly distributed; ¢(G) is the normalized vector whose elements
are the scores for the paired vertices in G; and a is a user-defined parameter that
determines the tradeoff between pairwise scoring and connectivity. To iteratively
refine the estimate, the neighborhood similarity is diffused according to

T, =0A(G)r, +(1—a)e(G)=M .z, (1). The final pairwise similarity between
modules is given by 7z, =lim, , z,. In general, ¢(G) provides a good measure of

similarity so that A(G) may be used to break ties between multiple alternatives.
Thus, a small weight a, such as « =0.15, is chosen for the neighborhood. Mg in
Equation 1 is a linear operator; therefore, if p converges, it does so to an
eigenvector. Based on the theory of Markov chains, the special structure of Mg has
a spectrum ((L,a,a’,...) so that the iteration is exactly the power method for
eigenvalue calculation. Therefore, the iteration converges to a single dominant
eigenvector, and each iteration improves the estimate linearly by 1-« . Because a
small « is used, a rapid convergence is achieved. From the iteration, =, is
obtained, which contains the relative probabilities of v, € G, and v, € G, matching
for each possible pair. For each vertex in v,, the vertex in v, whose pair has the
maximum value in 7, is considered the match. Thus, the most likely pairing is
determined based on the similarity measure. For example, even where data types

may not match exactly, the most likely match is determined from among the
possible modules.

[00112] Whereas the query interface allows users to identify workflows (and sub-
workflows) that are relevant for a particular task, a result determination by analogy
mechanism provides for the reuse of the identified workflows in constructing new
results in a semi-automated manner and without requiring users to directly

manipulate or edit the workflow specifications. For example, a user may wish to

39

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

improve a given result by modifying parameters in a similar fashion to a previously
determined result. Alternatively, the user may want to modify an existing workflow
to use a new technique that generates higher quality visualizations. The difference
between a pair of workflows is determined, and the difference is applied to a third
workflow to define a fourth workflow. The user need not have a priori knowledge of
the exact details of the three workflows to perform the operation. To apply an
analogy to a workflow, the user defines an analogy template by selecting two
workflows whose difference is to be applied to a third workflow selected by the user.
The analogy is applied to the third workflow to create a new fourth workflow. In an
exemplary embodiment, the user can cause execution of these operations using

either workflow creator application 122 or result presentation application 124.

[00113] Using workflow creator application 122, an analogy may be defined by
dragging a first workflow representing an initial workflow to a second workflow
representing the desired result. As discussed previously with reference to Fig. 9,
this operation displays the difference between the selected workflows. As shown
with reference to Fig. 20, a workflow difference 2000 indicates module
additions/deletions, connection additions/deletions/modifications, and parameter
modifications. To create an analogy based on the difference between the
workflows, the user may select a create analogy button 2002. With reference to
Fig. 21, an analogy naming window 2100 is presented to the user. Analogy naming
window 2100 includes an analogy name text box 2102. The user defines a name
for the analogy using analogy name text box 2102. The user selects an “OK” button
2104 to create the analogy with the defined name or a “Cancel” button 2106 to
cancel the analogy creation.

[00114] With reference to Fig. 22, the user applies an analogy by selecting a third
workflow 2202 presented in a version tree 2200 of workflow area 210 of version tree
tab 218 and selecting the analogy for application to the third workflow 2202. For
example, the user may right-click after selection of third workflow 2202, causing
presentation of a process selection window 2204. Process selection window 2204
may include a “Perform analogy...” item 2206. Scrolling down to “Perform
analogy...” item 2206 causes presentation of an analogy list 2208 from which the

user may select. For example, with reference to Fig. 22, analogy list 2208 includes
40

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

a single created analogy named “sphere to silicium”. A fourth workflow is created in
version tree 220 which may be executed and a result presented in a cell of result

presentation application 124 as discussed previously relative to Fig. 10 and 11.

[00115] Using result presentation application 124, an analogy may be defined and
applied without interacting with the version tree of workflow creator application 122.
Result presentation application 124 supports an interaction mode and an edit mode.
In the edit mode, a user can create an analogy by dragging one cell into another
cell thereby creating an analogy based on a comparison between the workflows
used to create the results presented in the respective cells. To apply the analogy,
the user drags the workflow to be modified to a new cell, the analogy is applied, and
the result of the new workflow is presented to the user in the cell to which the
workflow to be modified is dragged. For example, with reference to Fig. 24, a
plurality of data products are shown in result presentation window 1100 of result
presentation application 124 in accordance with a third exemplary embodiment.
Result presentation window 1100 of Fig. 24 includes a first cell 2402, which
includes a first result 2403, a second cell 2404, which includes a second result
2405, a third cell 2406, which includes a third result 2407, and a fourth cell 2408
which is empty. Thus, three workflows have been executed to generate results

presented in three cells of result presentation application 124.

[00116] The user switches from an interaction mode of result presentation
application 124 to an edit mode of result presentation application 124, for example,
using a menu item selector or a button. The edit mode allows, among other things,
the creation and execution of one or more analogy. With reference to Fig. 25, a first
control set 2500 is presented in first cell 2402, a second control set 2502 is
presented in second cell 2404, and a third control set 2504 is presented in third cell
2406 in response to switching to the edit mode. First control set 2500 may include
a copy control 2506, a move control 2508, a “create analogy” control 2510, and an
“apply analogy” control 2512. Second control set 2502 may include a copy control
2514, a move control 2516, a “create analogy” control 2518, and an “apply analogy”
control 2520. Third control set 2504 may include a copy control 2522, a move
control 2524, a “create analogy” control 2526, and an “apply analogy” control 2528.

To create an analogy, the user drags one of the "create analogy" controls 2510,
41

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

2518, 2526 from the cell corresponding to the source to the cell corresponding to
the target. For example, to create an analogy between first cell 2402 and second
cell 2404, the user drags “create analogy” control 2510 from first control set 2500 to
second cell 2404 and releases “create analogy” control 2510. The workflow
associated with creation of first result 2403 is the first workflow, and the workflow
associated with creation of second result 2405 is the second workflow, and an
analogy is defined based on a difference between the first workflow and the second

workflow.

[00117] To apply the defined analogy, the user drags an "apply analogy" control
2512, 2520, 2528 from the cell that corresponds to the result on which the analogy
is applied, and drops it into an empty cell which is used to display the results of the
analogy. For example, to apply the analogy created between the first workflow and
the second workflow, the user drags “apply analogy” control 2528 from third control
set 2504 to fourth cell 2408, and releases “apply analogy” control 2528. The result
of the analogy is automatically inserted in the version tree, as discussed with
reference to Fig. 22. With reference to Fig. 26, fourth cell 2408 includes a fourth
result 2600 determined based on application of the created analogy to third result
2407.

[00118] Two ordered pairs are analogous if the relationship between the first pair
mirrors the relationship between the second pair. Therefore, if the relationship
between a first workflow p, and a second workflow py, is known and a third workflow
pc is identified, a fourth workflow py pair can be determined. To implement such an
operation automatically, a workflow difference is determined between pa,, ppr and
applied to p.. However, updating p. with an arbitrary 6 may fail if p. does not
contain the domain context of 6. As a result, the difference is mapped so that it

can be applied to pc. Thus, in a first operation the difference 6,, = A(pa, Po) IS

determined. In a second operation, matching is performed between G, and G, to

obtain the map mapa. = map(ps, pc)- In a third operation the mapped difference
5., = mapac(Pa, Pv) is determined. In a fourth operation, pq is determined as
5. (p.). The fourth workflow pq can be executed to present a result in a cell of

result presentation application 124.
42

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

[00119] For example, to update inputs in multiple workflows, a user may perform
a query to identify matching workflows. A desired update to a matching workflow
can be performed and an analogy created between the desired update p, and the
matching workflow pa. The analogy can be applied to all of the identified matching
workflows creating child workflows for each of the identified matching workflows
based on the created analogy. The child workflows can be executed and the
corresponding results presented in cells of result presentation application 124

automatically.

[00120] As another example, analogies can be used to quickly combine three
different techniques to transform a simple workflow into a visualization that is more
complicated and more useful. In many areas, the amount of data and the need for
interaction between users across the world has led to the creation of online
databases that store much of the domain information required. Analogies can be
used to modify a simple workflow that visualizes protein data stored in a local file to
obtain data from an online database, to create an enhanced visualization for that
protein, and to publish the results as an HTML report. A version tree that includes
workflows that accomplish each of the individual goals is opened in workflow
creator application 122. A first workflow pg reads a file with protein data and

generates a first result of that data. The difference between a second workflow p4
and a third workflow p, is that p; reads a local file and p, reads data from an online
database. The difference between a fourth workflow p, and a fifth workflow p, is
that p2 uses a simple line-based rendering 2300 and p, improves the rendering to
use a ball-and-stick model 2302 as shown with reference to Fig. 23. The difference
between a sixth workflow ps and a seventh workflow p; is that p; displays a
visualization 2304 while p, generates an HTML report 2306 that contains a
visualized image 2308 and a protein summary 2310. To create a new workflow
using all three differences, a first analogy between ps and p, is determined and

applied to po to create a first new workflow. A second analogy between p; and p,
is determined and applied to the first new workflow to create a second new

workflow. A third analogy between ps and p, is determined and applied to the

43

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

second new workflow to create a third new workflow p,. Third new workflow p,

prompts the user for a protein name, uses that information to download data for that
protein, creates a ball-and-stick visualization of the data, and embeds that image in
an HTML report. A new result is determined quickly and with a reduced
understanding of the steps required to form the new result.

[00121] During workflow creation, an analogy template may not be available for
the data exploration that is desired by the user. With reference to Fig. 27,
exemplary operations associated with workflow creator application 122 are
described which support the process of creating data products including
visualizations by using a database of previously created workflows. Additional,
fewer, or different operations may be performed, depending on the embodiment.
The order of presentation of the operations of Fig. 27 is not intended to be limiting.
Workflow creator application 122 learns common paths used in existing workflows
and can predict a set of likely module sequences that can be presented to the user
as suggestions during the design/data exploration process in a manner similar to a
Web browser suggesting uniform resource locators. Workflow creator application
122 may suggest partial completions (i.e., a set of structural changes) for workflows
as they are being created by a user. The suggestions may be derived using

structural information obtained from a collection ¥ of already-completed workflows.

[00122] Using workflow creator application 122, workflows may be specified as
graphs, where nodes represent modules (or processes) and edges determine how
data flows through the modules. More formally, a workflow specification is a
directed acyclic graph G(M,C), where M consists of a set of modules and C is a set
of connections between modules in M. A module is a complex object which
contains a set of input and output ports through which data flows in and out of the
module. A connection between two modules m, and m, connects an output port of

myto an input port of my.

[00123] In an operation 2700, a collection of workflows Z’is pre-processed from

workflows stored for example in database 126. In an operation 2702, a compact

representation of &, €., is created that summarizes the relationships between

common structures (i.e., sequences of modules) in the collection and may be stored
44

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

in database 126 or cache 118. In an operation 2704, a partial graph G is received.
In an operation 2706, a partial workflow p is received for example based on a user
selection 2800 from the list of modules 208 shown with reference to Fig. 28. User
selection 2800 causes creation of a first module 2802 in workflow area 210 that
corresponds to user selection 2800. First module 2802 may comprise a partial
workflow. In an operation 2708, completions for first module 2802 are generated by
querying %t to identify modules and connections that have been used in
conjunction with first module 2802, the partial workflow p, in the collection of
workflows €. In an operation 2710, workflows including first module 2802, the
partial workflow p, and the generated workflow completions is output using output
interface 102. For example, with reference to Fig. 29, a completion 2900 that may
include one or more upstream modules 2902 and/or one or more downstream

modules 2904 is generated and presented to the user in workflow area 210.

[00124] A set of completions C(G) that reflect the structures that exist in a
collection of completed graphs is derived. A completion of G, G°, is a supergraph of
G. To derive completions, graph fragments are identified that co-occur in the
collection of workflows ¢, Intuitively, if a certain fragment generally appears
connected to a second fragment in the collection of workflows ¢, one of the

fragments should be predicted when the other fragment is selected.

[00125] Because directed acyclic graphs are used, potential completions for a
vertex v in a workflow can be identified by associating sub-graphs downstream from
v with those that are upstream. A sub-graph S is downstream (upstream) of a
vertex v if for every v’ e S, there exists a path from v to v’(v’to v). In many cases,
either the downstream or upstream structure is known and completion in the
opposite direction is desired. Thus, the problem is symmetric such that one
problem can be changed to the other by simply reversing the direction of the edges.
However, due to the potentially very large number of possible sub-graphs in
generating predictions based on sub-graphs can be prohibitively expensive. Thus,
instead of sub-graphs, paths, i.e., a linear sequence of connected modules, may be

used instead. Specifically, the frequencies for each path in € are computed.

45

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

Completions are determined by determining which path extensions are likely given
the existing paths.

[00126] To efficiently derive completions from a collection of workflows &, a
summary of all paths contained in the workflows is generated. Because
completions are derived for a specific vertex v in a partial workflow (this vertex is
denoted the completion anchor), all possible paths that end or begin with v are
extracted and the vertices that are directly connected downstream or upstream of v
are associated with them leading to fewer entries than the alternative of extracting
all possible sub-graph pairs. More concretely, all possible paths of length N are
extracted, and split into a path of length N—7 and a single vertex in both forward and
reverse directions with respect to the directed edges in order to offer completions
for workflow pieces when they are built top-down and bottom-up. The path
summary %, is stored as a set of (path, vertex) pairs sorted by the number of
occurrences in the database and indexed by the last vertex of the path (the anchor).
Since predictions begin at the anchor vertex, indexing the path summary by this
vertex leads to faster access to the predictions.

[00127] With reference to Fig. 30, a graph 3000 of a plurality of connected
vertices is shown as an example of the path summary generation. The following
upstream paths are identified which end with D: A—->C—D, B—»>C—D, C—D, and D
and the following downstream vertices: E and F are identified. The set of
correlations between the upstream paths and downstream vertices is shown in the

following table:

Path Vertex
A—>C—>D | E
A—>C—>D | F
B>C—H>D|E
B>C—>D|F
C—>D E
C—>D F
D E
D F

[00128] As the correlations are calculated for all starting vertices over all graphs,

some paths have higher frequencies than others. The frequency (or support) for
46

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

the paths is used for ranking purposes such that predictions derived from paths with
higher frequency are ranked higher.

[00129] Besides paths, additional information can be extracted that assists in the
construction of completions. For example, statistics for the in- and out-degrees of
each vertex type are calculated. The statistics may be used in determining where
to extend a completion at each iteration. For example, with reference to Fig. 31, a
first iteration 3100 is refined to a second iteration 3102 and to a third iteration 3104.
At each step, a prediction can be extended upstream and downstream. In third
iteration 3104, a downstream module addition 3106 is suggested. Predictions in
either direction may include branches in the workflow, as shown in second iteration
3102 with the addition of a first module 3108 and a second module 3110. As
another example, the frequency of connection types for each pair of modules can
be calculated. Since two modules can be connected through different pairs of
ports, this information supports the prediction of the most frequent connection type.

[00130] To predict a completion given the path summary and an anchor module v
given the set of paths associated with v, the vertices that are most likely to follow
these paths are identified. As shown in the following algorithm, a list of predictions
is iteratively developed by adding new vertices using this criteria.

GENERATE-PREDICTIONS(P)

predictions <— FIRST-PREDICTION(P)

result < []

while |predictions| > 0

do prediction REMOVE-FIRST (predictions)
new-predictions <— REFINE (prediction)
if [new-predictions| =0
then result < result+ prediction

else predictions < predictions + new-predictions

[00131] At each step, existing predictions are refined by generating new
predictions that add a new vertex based on the path summary information.
47

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

Because there can be more than one possible new vertex, more than one new
prediction for each existing prediction may be added. To initialize the list of
predictions, specified anchor modules, provided as input, may be used. At this
point, each prediction is simply a base prediction that describes the anchor modules
and possibly how they connect to the workflow. After initialization, the list of
predictions is iteratively refined by adding to each suggestion. Because there may
be a large number of predictions, a criteria to order the predictions may be used so
that users can easily locate useful results. As such, a confidence value which
measures the goodness of the predictions is defined.

[00132] Given the set of upstream (or downstream depending on which direction
is currently being predicted) paths, the confidence of a single vertex c(v) is the
measure of how likely that vertex is given the upstream paths. To calculate the
confidence of a single vertex, the information given by all upstream paths is
considered. For this reason, the values in ., may not be normalized and the
exact counts may be used. With reference to Fig. 32, the counts from a first path
3200 and a second path 3202 are combined for a third sub-path 3204. At each
iteration, upstream paths are examined to suggest a new downstream vertex. The
vertex that has the largest frequency given all upstream paths is selected. In the
example of Fig. 32, a first module 3206 denoted “vtkDataSetMapper” is the selected
addition because it has the larger frequency of 234 as compared to 179 for a
second module 3208 denoted “vtkPolyDataMapper.”

[00133] No weighting based on the frequency of paths is needed because the
following formula takes this into account automatically:

ZPEupstream(v\G) COU”t(V | P)
s
ZPeupstregm(v‘G) COMI’ZZ’(P)

which defines confidence of a new vertex v when attached to a graph G. The

c(v|G) =

confidence of a graph G is the product of the confidences of each of its vertices:

c(G) = Hc(v).

veG
[00134] While each vertex confidence is not entirely independent, this measure

gives a reasonable approximation for the total confidence of the graph. Because

48

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

the predictions are performed iteratively, the confidence of the new prediction pj.7 is
calculated as the product of the confidence of the old prediction p; and the

confidence of the new vertex v:

c(pivi) = c(py) -c(v)
[00135] For computational stability, log-confidences may be used so that the

products are sums.

[00136] Because predictions are derived that are not just paths, the vertex in the
current prediction from which the prediction is extended is identified. For each
vertex, the difference between the average degree for its type and its current
degree for the current prediction direction is calculated. Completions may be
extended at vertices where the current degree is much smaller than the average
degree. This measure can be incorporated into a vertex confidence so that
predictions that contain vertices with too many edges are ranked lower:

c4(v) = c(v)+degree-difference(v)
[00137] The iterative refinement of the predictions may be stopped after a given
number of steps or when no new predictions are generated. At this point, the
suggestions can be sorted by confidence and returned for output using interface
102. The number of suggestions can be reduced by eliminating those which fall
below a certain threshold.

[00138] The prediction mechanism relies primarily on the frequency of paths to
rank the predictions. There are, however, other factors that can be used to
influence the ranking. For example, if a user has been working on volume
rendering workflows, completions that emphasize modules related to that technique
could be ranked higher than those dealing with other techniques. In addition, some
users may prefer certain completions over others because they more closely mirror
their own work or their own workflow structures. Thus, completions can be biased
toward user preferences by incorporating a weighting factor in the confidence
computation. Specifically, counts can be adjusted by weighting the contribution of
each path according to a workflow importance factor determined by a user’s
preferences.

49

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

[00139] Workflow creator application 122 further may determine when a
completion should be invoked, compute a set of possible completions, and present
the suggestions to the user for review. The interface, in particular, may play a
significant role in allowing users to make use of suggestions while also being able
to quickly dismiss them when they are not desired. Thus, in an exemplary
embodiment, suggestions are offered automatically, but do not interfere with a
user’s normal work patterns. For example, two circumstances in workflow creation
where it makes sense to automatically trigger a completion are when a user adds a
new module and when a user adds a new connection. In each of these cases, we
are given new information about the workflow structure that can be used to narrow
down possible completions. Because users may also wish to invoke completion
without modifying the workflow, an explicit command to start the completion process
may also be provided.

[00140] In each of the triggering situations, the suggestion process is initiated by
identifying the modules that serve as anchors for the completions. For new
connections, both of the newly connected modules are used. For a user-requested
completion, the selected module(s) are used. However, when a user adds a new
module, it is not connected to the rest of the existing workflow. Thus, it can be
difficult to offer meaningful suggestions since there is no surrounding structure to
leverage. This issue can be addressed by finding the most probable connection to
the existing workflow and continuing with the completion process.

[00141] Finding the initial connection for an added module may be difficult when
there are multiple modules in the existing workflow that can be connected to the
new module. However, because visual programming interfaces allow users to drag
and place new modules in the workflow, the initial position of the module can be
used to help infer a likely connection. To accomplish this, the user’s layout direction
is determined based on the existing workflow, and the module that is nearest to the
new module and can be connected to it is located.

[00142] The possible completions that emanate from a set of anchor modules is
determined in the existing workflow using path summaries derived from a database

of workflows, and the possible completions are ranked by their confidence values.

50

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

Depending on the anchor modules, a very large set of completions can be derived
and a user is unlikely to examine a long list of suggestions. Therefore, the possible
completions can be pruned to avoid rare cases to speed up the computations and
to reduce the likelihood that meaningless suggestions are provided to the user.
Specifically, because the predictions are refined iteratively, a prediction may be
pruned if its confidence is significantly lower than its parent’s confidence. In an
exemplary embodiment, this may be implemented as a constant threshold, but
knowledge of the current distribution or iteration can be used to improve the pruning

process.

[00143] Workflow creator application 122 provides the user with suggestions that
assist in the creation of the workflow structure. Parameters are also components in
visualizations, but because the choice of parameters is frequently data-dependent,
parameter selection may not be integrated into the process. The user can explore
the parameter space though it may be beneficial to extend workflow creator
application 122 to identify commonly used parameters that a user might consider
exploring.

[00144] In an exemplary embodiment, workflow creator application 122 provides
an intuitive and efficient interface that is two-dimensional: the first dimension is a list
of maximal completions and the second dimension provides the ability to increase
or decrease the extent of the completion. A completion is automatically presented
along with a simple navigation panel when a completion is triggered. The user can
choose to interact with the completion interface or disregard it completely by
continuing to work, which may cause the completion interface to automatically
disappear. The navigation interface may include a set of arrows 2906 (shown with
reference to Fig. 29) for selecting different completions (left and right) and depths of
the current completion (up and down). In addition, a rank 2908 of the current
completion may be displayed to assist in the navigation and an accept button 2910
and a cancel button 2912 may be provided. The completion actions, along with the
ability to start a new completion with a selected module, also may be available in a
menu and as shortcut keys.

51

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

[00145] As shown with reference to Fig. 29, completion 2900 appears in workflow
area 210 as semitransparent modules and connections, so that they are easy to
distinguish from the existing workflow components such as first module 2802. The
suggested modules also may be arranged in an intuitive way using a set of simple
heuristics that respect the layout of the current workflow. The first new suggested
module may be placed near the anchor module. The offset of the new module from
the anchor module is determined by averaging the direction and distance of each
module in the existing workflow. The offset for each additional suggested module is
calculated by applying this same rule to the module it is appended to. Branches in
the suggested completion are simply offset by a constant factor. These heuristics
keep the spacing uniform and can handle upstream or downstream completions

whether workflows are built top-down or left-right.

[00146] In comparison to the analogy mechanism, instead of predicting a new set
of actions, the completion process predicts new structure regardless of the ordering
of the additions. Thus, the completion process only adds to the structure while the
analogy mechanism may delete from the structure as well. There may be situations
where data about the types of completions that should occur are not available.
Also, some suggestions might not correspond to the user’s desires. If there are no
completions, workflow creator application 122 may not derive any suggestions. If
there are completions that do not help, the user can dismiss them by either
continuing their normal work or by explicitly canceling completion. The completions
may be determined in an offline step by pre-computing the path summary. The
path summary can be updated as new workflows are added to database 126
incorporating new workflows as they are created. In addition, workflow creator
application 122 can learn from user feedback by, for example, allowing users to
remove suggestions that they do not want to see again. The completions could be
further refined to give higher weights to completions that more closely mirror the
current user’s actions, even if they are not the most likely in the database.

[00147] The word "exemplary" is used herein to mean serving as an example,
instance, or illustration. Any aspect or design described herein as "exemplary" is
not necessarily to be construed as preferred or advantageous over other aspects or

designs. Further, for the purposes of this disclosure and unless otherwise
52

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

specified, "a" or "an" means "one or more”. The exemplary embodiments may be
implemented as a method, apparatus, or article of manufacture using standard
programming and/or engineering techniques to produce software, firmware,
hardware, or any combination thereof to control a computer to implement the

disclosed embodiments.

[00148] The foregoing description of exemplary embodiments of the invention
have been presented for purposes of illustration and of description. It is not
intended to be exhaustive or to limit the invention to the precise form disclosed, and
modifications and variations are possible in light of the above teachings or may be
acquired from practice of the invention. The functionality described may be
implemented in a single executable or application or may be distributed among
modules that differ in number and distribution of functionality from those described
herein. Additionally, the order of execution of the functions may be changed
depending on the embodiment. The embodiments were chosen and described in
order to explain the principles of the invention and as practical applications of the
invention to enable one skilled in the art to utilize the invention in various
embodiments and with various modifications as suited to the particular use
contemplated. It is intended that the scope of the invention be defined by the

claims appended hereto and their equivalents.

53

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

WHAT IS CLAIMED IS:

1. A system comprising:
a processor; and
a computer-readable medium operably coupled to the processor and
including computer-readable instructions stored therein, wherein, when executed by
the processor, the computer-readable instructions cause the system to
determine a workflow completion based on a partial workflow and a
plurality of workflows stored in the computer-readable medium, wherein the
partial workflow comprises a module configured to process data, and further
wherein the workflow completion is configured to further process the data;
and
present a workflow in a display operably coupled to the computing
device, the workflow including the determined workflow completion and the
partial workflow.

2. The system of claim 1, wherein the partial workflow includes a plurality
of modules configured to process the data.

3. The system of claim 1, wherein determining the workflow completion
comprises:

(@) determining an anchor module of the partial workflow and a path for
the partial workflow; and

(b) identifying a matching workflow of the plurality of workflows based on
the determined anchor module and the determined path; wherein the identified
matching workflow includes an additional module relative to the partial workflow,
and further wherein the workflow completion includes the additional module.

4. The system of claim 3, wherein determining the workflow completion
further comprises repeating (a)-(b) replacing the partial workflow with the identified

matching workflow for each repetition.

5. The system of claim 4, wherein repeating (a)-(b) is performed for a

number of iteration steps.

54

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

6. The system of claim 4, wherein repeating (a)-(b) is performed until a
matching workflow is not identified.

7. The system of claim 4, wherein determining the workflow completion
further comprises calculating a confidence value for each identified matching

workflow.

8. The system of claim 7, wherein the confidence value is calculated
based on a number of occurrences of the matching workflow in the plurality of

workflows.

9. The system of claim 3, wherein determining the workflow completion
further comprises repeating (b) to determine a plurality of workflow completions.

10. The system of claim 9, wherein determining the workflow completion
further comprises calculating a confidence value for each identified matching

workflow.

11. The system of claim 10, wherein the confidence value is calculated
based on a number of occurrences of the matching workflow in the plurality of

workflows.

12. The system of claim 9, wherein repeating (b) is performed for a

number of iteration steps.

13. The system of claim 9, wherein repeating (b) is performed until a
matching workflow is not identified.

14. The system of claim 1, wherein the plurality of workflows are stored as
acyclic graphs.

15. The system of claim 1, wherein the workflow completion configured to
further process the data, pre-processes the data before input to the partial

workflow.

95

WO 2010/045143 PCT/US2009/060342

Atty Dkt. No.: 083404-0207

16. The system of claim 1, wherein the workflow completion configured to
further process the data, post-processes the data after output from the partial

workflow.

17. The system of claim 1, wherein the workflow completion configured to
further process the data, processes the data in parallel with the partial workflow.

18. The system of claim 1, wherein the computer-readable instructions
further cause the system to execute the workflow to form a result after receiving an
indicator of acceptance of the workflow; and to present the result in the display.

19. A method of automatically completing a workflow, the method
comprising:

receiving, in a computing device, an indicator of a partial workflow, wherein
the partial workflow comprises a module configured to process data;

determining, by the computing device, a workflow completion based on the
partial workflow and a plurality of workflows stored in a computer-readable medium,
wherein the workflow completion is configured to further process the data; and

controlling presentation of a workflow in a display operably coupled to the
computing device, the workflow including the determined workflow completion and
the partial workflow.

20. A computer-readable medium including computer-readable
instructions stored therein, wherein, when executed by a processor, the computer-
readable instructions cause a computing device to:

determine a workflow completion based on a partial workflow and a plurality
of workflows stored in the computer-readable medium, wherein the partial workflow
comprises a module configured to process data, and further wherein the workflow
completion is configured to further process the data; and

present a workflow in a display operably coupled to the computing device,

the workflow including the determined workflow completion and the partial workflow.

56

PCT/US2009/060342

WO 2010/045143

1/36

m 2| uoneoldde ZC | uoneondde _ 3T
“ uonejuasaid Jojealud “ ayoen
' 0Z1 1nNsay MOJNIOMA “ P
QL | vcror_ M“_%Acoo | 977 JebeuEW
asegeleq [h o ayoe)
7T MOJNIOAA
201
wnipaw a|gepea.
-JoIndwon
A
\ 4
¢0l soepslul | o OLT 10SS890)d e 801 sdeuaul

indino

A4

01 9oepajul
indu

UOoIBIIUNWIWOYD

o
o
—

PCT/US2009/060342

WO 2010/045143

2/36

ARUER POy

1EEPIARIE AL
1EBpIHIEGARIRA -
1eBpIAUondE g -
2bpunEIaIE YA -
0P IBpIOERA

JREpIAUOO)EEHA -

u_mm_u_}__,_uum.._u_mn_do._

12bpuns20ed 262U

ORISR -
fUE DDA -
IR AR JEEEIT A - :

120pIAaE

JRbpI A R IA
12bpimaBura
PBOPHAULTRA -

0PI EdS A -
JeEpIaELdSA -
130pIIUIOdA
1EBPEITAIA

1AHEINOSEIRJAO SN =
1=bplnxogns

1861 EILESITA -
JaBpIAANOILOT3A -
a0 PR OGS BT -

b=l e T = e T =TT T e

44 |

et

FENC=E g N Tan =N =N) Ty |

AE0dWT TlHAHIA Ry

ABodWIS s T
JE=RTLalallT) N

PalgoHIA i

asegipalgomin <

|

Bdd1H -
dlH

SNPOWSSEE{IA -

0c¢ g7

90¢ ¢cce

1424 00¢

80¢

¢0¢

60¢

PCT/US2009/060342

WO 2010/045143

reisar

90¢

e

- o

e

90¢€

(XA

,...:, \\ﬁ._i,
\\ o

00¢

9l¢

1474

40

4/36

S

PCT/US2009/060342

WO 2010/045143

5/36

A%

G ‘b1

009

0LS

909

806G

¥0G

c0g

PCT/US2009/060342

WO 2010/045143

6/36

9 "6i4

0

0

G

¢09

¥09

909

PCT/US2009/060342

WO 2010/045143

7/36

e/ b

¢c0.

00

L

(D5 ‘DS ‘DS)suosuALIgR|duESIEs -

U0 IuUNJAduuesyya

T

v

0

2'1

T

0

] A
OjoD3Es

Ajiadoadyia

O1isan|esaedauan -

FI4AN0IUDTAIA

¢l

PCT/US2009/060342

WO 2010/045143

8/36

q. "bi-

00

14

0

L

L

|32 [EM3414 B 390435000 0F tad)|

ajqe pdnyjoo1yia
2t JaenEIdyes

@ 13PRaIYIASEIEdY]A
(3n g0 /eiepisaduexa) Jauen@idyas -

@ ._u_...mu.n_u_ummumﬁu_“_._...
90 ‘mEnEsyEs -

o
—
N

._0v.
— V.
8¢L

FERTRTL R O

A
mE[=i=]

¢l

L.

viL

PCT/US2009/060342

WO 2010/045143

9/36

00

L

0/ b4

[[93 (B4 B J3N43S1000 05 fofEg |

_—ovL

1424

€v.

(17 21 Yq e eiepisaduexa) awepaidias 1

@ Japeaylaseieqyis
(4 dugpib/eiep sajdwexa; Jauena|ies -

@ JIPEIYIFSEIETHIA

8¢.

i

PCT/US2009/060342

WO 2010/045143

10/36

p, 614

96/

092 8G.

1224 9.

A

14y BB EIEpysadwExa) T

snioyfelepfsaduexafe 7 2
B2)

Gl

062

PCT/US2009/060342

WO 2010/045143

11/36

9/ b1

oL

sa|duiexa awepEIdyes -

@, JapeEayIZseIedyla
_v:}..a_u_r_n_ﬁ_m____mum_u___mm_.n_mem___..U_m_Em.zm___u:m_m -

@ Japeayiaseledyia
(90 ‘ojenjenEs -

12]1I4AN0JU0 1A

ov.

1417

8¢L

LL

PCT/US2009/060342

WO 2010/045143

12/36

911 V..

Bro+ 201 1 wmnaes

ITRTRT]

0.1

} B4

PCT/US2009/060342

WO 2010/045143

13/36

g "bi-

¢08

T—oie

——g0¢

~ { oupenb

Jayawedey sbusys

90¢€

)

008

0ce 8le 912 1z

14/36

PCT/US2009/060342

WO 2010/045143

15/36

‘
i
SUAN

ey

o O

o Qt__ﬁw.&.ﬁr

-

7001

001

—¢08

0le

80¢

—90¢

WO 2010/045143 PCT/US2009/060342

16/36

PCT/US2009/060342

WO 2010/045143

17/36

W__. ...,. . M;. . . .a._“xwwmmmxwmmmww _

¢ce

7
0cc

8Le

aLe vle

PCT/US2009/060342

WO 2010/045143

19/36

0oLl

PCT/US2009/060342

WO 2010/045143

20/36

Gl b1
Juswabeue

90UBUBAOIH

ainyde)
92UBUBAOIY

wa)sAg
MO|JIOAA

01G| Jobeuey
9JUBUBAOI

71G1 ainded

90UBUBAOIH

21 Gl syduos

LGL INDO

0251 ainde)d
90uUeUBAOI

31G1 walshg

MOLJYIOM
AN

0061

, $0G |

c0G1

PCT/US2009/060342

WO 2010/045143

21/36

9l 614

PCT/US2009/060342

WO 2010/045143

22/36

/1 B4

|\\\|/

0cLl
dew bBuipgejey

I\.\l/

g1 /1 uondiossp
UOIIN|OAS MO[NIONA

pZl 1 |00}
MO[J)JOM

Ateuonnjons

/

POOlL
gLl
dew Buijageld
AP azl) 100
MO|)JoMm
Aeuonnjong
01,1 uonduossp
UOIIN|OAS MO|JMJOAA
qool

70.1
YJOMISN

o
o
~
-

||\.\|/

alLLL
dew Buijageloy

l\.\l/

121 uonduossp
UOIIN|OAS MO[PIOAA

3Z11 |00}
MO[J>|IoM

Ateuonnjons

2001
80/1
dew Buijpgeld
llege|sy = 001
MO|JoMm

90/1 uondiiossp
UOIIN|OAS MO[NIONA

AJeuonnjong

={0[0)8

(87 A Uleluo -

-

PCT/US2009/060342
24/36

WO 2010/045143

Ayabun” 2 o uouefsap T isay)

.

\
.

-

.

”J u.._._w. U =}’ _U..... wN_h... ...!... m W sl ..._mm. _.mwu_.m" mu___..mh P m ﬁ: 1._ \ ‘_”\..m i .

N\

9061

61 b4

,,,,,,,,,,,,,,,,,,, 006
061

PCT/US2009/060342

WO 2010/045143

25/36

WO 2010/045143 PCT/US2009/060342

26/36

2208

220

Fig. 22

ESSNARRRAANG

PCT/US2009/060342

WO 2010/045143

27/36

B %

unday 95

80¢€¢

~g0ez

c0€e

v0€C

00¢¢

WO 2010/045143 PCT/US2009/060342

28/36

WO 2010/045143 PCT/US2009/060342

29/36

A 1 B
Nistrail ‘homaicschaidwistrailstrunkissamplesianzloge.oml Vigtrail HorrietaschiaidNistrails:t R 2okl
Index (Fipaline: 34, Modylar 1) Index (Pipsling: a9, Madulzi 13
Created by Pipaling Eracution Created by Pipeling Execution

Shia i Gy Ly 30wl

tRipdling: 324, Madher 3

Created by Figgllina Exseation

Fig. 25

WO 2010/045143 PCT/US2009/060342

30/36

1100

Fig. 26

PCT/US2009/060342

WO 2010/045143

31/36

0LL¢e
suona|dwos mojpiom Indino

80/¢ suonsid

W02 MO[J)JOM

a1elauab 0] uonejusasaldal Alenp

4

A

90.¢ MO[Iom

|einued aA1909y

¥0.C MO|I3Jom
10 ydeub o1pAoe |eiued anleooy

¢0.¢ smojpfiom
1O uoljeluasaldal 10edwod a1eal)

4

A

0072 SmopjJom ssao0ud-aud

/¢ b4

32/36

80¢

ooN

33/36

WO 2010/045143 PCT/US2009/060342

34/36

Fig. 30

o
o
(=]
(op]

PCT/US2009/060342

1€ "B14

35/36

0L€ 901

X

Foa
3
R
Sont
RS

- % \
\m W\\\\\\\\\\\\\\\\\\\\M\V\\\\M\\\M\V\M\\M\M\W\\\&\%m\
Z ; - 7 7

; T+1 UCIIRIFR] 7 1 UOIIRIDY i
“ e

7z : ety
% S %
e
S %

7

crriersriiierrile

3
%
PR il

5 %

LRI

2

O _\ _\m SR R SR e 94
7455 5% YrIasy

& A

SOOI

S};\\\\\N

\N\“\w £ A A A A A L A e b
S e Sy I S)
S s s L S S SSSASSLEA
o e e s s %
B A 7
7 Pt tdp ¥4 %
; LI % 5 Z
7 A i1ty 7 R 7
O beryy,] 3003 Z
v, 7
ok % it
7] %
L7
7 %
2%

SR
NNRNENS

X

R]

s

N

N

v0L€

T

R

SSURREEE
o
o
~
(o)

SEENRRIE:

N

SUNNRNNNN

3

N

WO 2010/045143

z¢ b4

PCT/US2009/060342

36/36

7
7
o

R

AR
Py

80¢¢€

v0c€

5
%
%
%
%
%
%
%
%
5
%

3R 181 00 8 28 0 0 o

3 5
el

s

p yrsees,

i Z %
7 7
7 Z Z
% 3 Z
% 3 Z
% 3 Z
% 3 Z
% 3 7z
7 Z g
% “ 55]
[G ZZ 7

223
22
-

S S e e
Grnrr AR AR

23
3
7

WO 2010/045143

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings

