Title: NOVEL PURINYLIPYRIDYLAMINO-2,4-DIFLUOROPHENYL SULFONAMIDE DERIVATIVE, PHARMACEUTICALLY ACCEPTABLE SALT THEREOF, PREPARATION METHOD THEREOF, AND PHARMACEUTICAL COMPOSITION WITH INHIBITORY ACTIVITY AGAINST RAFA KINASE, CONTAINING SAME AS ACTIVE INGREDIENT

Abstract: The present invention relates to a novel purinylpyridylaminoo-2,4-difluorophenyl sulfonamide derivative, a pharmaceutically acceptable salt thereof, a preparation method thereof, and a pharmaceutical composition with an inhibitory activity against Raf kinase, containing the same as an active ingredient. The purinylpyridylaminoo-2,4-difluorophenyl sulfonamide derivative of the present invention effectively regulates the activity of B-raf kinase, and thus may be useful for preventing or treating cancer induced by the over-activation of Raf kinase, especially various melanoma, colorectal cancer, prostate cancer, thyroid cancer, ovarian cancer and the like.

Abstract: The present invention relates to a novel purinylpyridylaminoo-2,4-difluorophenyl sulfonamide derivative, a pharmaceutically acceptable salt thereof, a preparation method thereof, and a pharmaceutical composition with an inhibitory activity against Raf kinase, containing the same as an active ingredient. The purinylpyridylaminoo-2,4-difluorophenyl sulfonamide derivative of the present invention effectively regulates the activity of B-raf kinase, and thus may be useful for preventing or treating cancer induced by the over-activation of Raf kinase, especially various melanoma, colorectal cancer, prostate cancer, thyroid cancer, ovarian cancer and the like.

Abstract: The present invention relates to a novel purinylpyridylaminoo-2,4-difluorophenyl sulfonamide derivative, a pharmaceutically acceptable salt thereof, a preparation method thereof, and a pharmaceutical composition with an inhibitory activity against Raf kinase, containing the same as an active ingredient. The purinylpyridylaminoo-2,4-difluorophenyl sulfonamide derivative of the present invention effectively regulates the activity of B-raf kinase, and thus may be useful for preventing or treating cancer induced by the over-activation of Raf kinase, especially various melanoma, colorectal cancer, prostate cancer, thyroid cancer, ovarian cancer and the like.

Abstract: The present invention relates to a novel purinylpyridylaminoo-2,4-difluorophenyl sulfonamide derivative, a pharmaceutically acceptable salt thereof, a preparation method thereof, and a pharmaceutical composition with an inhibitory activity against Raf kinase, containing the same as an active ingredient. The purinylpyridylaminoo-2,4-difluorophenyl sulfonamide derivative of the present invention effectively regulates the activity of B-raf kinase, and thus may be useful for preventing or treating cancer induced by the over-activation of Raf kinase, especially various melanoma, colorectal cancer, prostate cancer, thyroid cancer, ovarian cancer and the like.
명세서
발명의 명칭: 신판한 폐리널피리디닐미노-2,4-디플루오로페닐
설론아미드 유도체, 이의 약화적으로 허용가능한 염, 이의
제조방법 및 이를 유효성분으로 함유하는 Raf 키나제의
저해활성을 가지는 약학적 조성물

기술분야
[1] 본 발명은 신판한 폐리널피리디닐미노-2,4-디플루오로페닐
설론아미드 유도체, 이의 약화적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로
함유하는 Raf 키나제의 저해활성을 가지는 약학적 조성물에 관한 것이다.

배경기술
[2] 전 세계적으로, 암은 사람에게 있어서 가장 흔한 질환의 하나로 사망의 주된
원인이 되고 있다. 최근 수십 년 동안 많은 수많은 연구자들이 암의 연구의 수준을
두차하여 암과 관련된 효과적인 치료제를 개발하고자 노력하고 있 다. 하지만
오늘날 효과적인 항암치료 요법은 극히 일부의 경우에만 효과적이며 대부분 암의
경우에는 치료제가 거의 없는 실정이다.

[3] 지금까지, 항암 화학요법에 사용되는 통상의 화합물 대부분은 환자에게 부작용
및 내성과 관련하여 상당한 문제를 포함하고 있다. 이러한 부작용은 현재
사용하고 있는 항암 요법들은 전반한 세포를 제외하고 암 세포에 선택적으로
작용하는 것이 아니라 정상세포에도 독성을 나타내므로, 항암화학요법제로서
바람직하지 않은 결과를 나타낸다. 부작용이 적으면서 치료효과가 우수한
항암제를 개발하기 위한 대안으로 대사 경로 또는 이들 경로를 구성하는 요소에
작용하는, 즉 암 세포에서 발현되고 전개한 세포에서도 거의 또는 전혀 발현되지
않는 표적이 대해서 항암 요법제를 개발하는 것이 바람직하다. 단백질 키나제는
특정 단백질 전기, 예를 들어 티로신, 세린 또는 트레오닌 전기의 하이드록실
그룹의 포스포릴화를 촉매작용하는 효소군이다. 이러한 포스포릴화는 단백질의
작용을 활성화 시킬 수 있고, 따라서 단백질 키나제는 특별한 대사, 세포 증식,
세포 분화, 세포 이동 또는 세포 생존을 포함하는 다수의 세포 공정을 조절하는
대 중요한 역할을 한다. 단백질 키나제 활성이 관련되는 각종 세포 작용 중에서,
특정 경로는 암 관련 질병 및 기타 질병을 치료하기 위한 좋은 표적으로
인식하고 있다. 따라서, 본 발명의 목적 중의 하나는 항암 활성을 갖는, 특히
키나제에 관련하여 작용하는 조성물을 제공하는 것이다.

[4] Ras/Raf/MEK/ERK 단백질 키나제 신호전달 경로는 세포 기능의 조절에 매우
중요한 역할을 하며, 구체적으로 세포의 증식, 분화, 생존 및 혈관신생에

[5]
있어서, Ras 단백질에 구아노신 3인산(GTP)이 결합되며, 원형질막에 있는 Raf 단백질의 인산화 및 활성화가 진행된다. 이어서 활성화된 Raf 단백질은 MEK 단백질을 인산화 및 활성화시키고, 상기 MEK 단백질은 ERK 단백질을 인산화 및 활성화시킨다. 활성화된 ERK의 세포질에서 혈액으로의 전좌(translocation)는 Elk-1과 Myc와 같은 전사 인자의 활성을 조절하고 인산화시키는 결과가 가져온다.

이에, 본 발명자들은 B-raf 키나제의 활성을 조절할 수 있는 저해제 개발을 하고자 오랜 기간 연구를 수행한 결과, 화학식 1의 신규 퓨리닐피리디닐아미노-2,4-디플루로로페닐 설론아미드 유도체를 합성하고, 이들 유도체가 Raf 키나제에 대하여 우수한 활성을 나타냄으로써, Raf 키나제 과활성에 의해 유발되는 질환에 우수한 효과가 있음을 발견하여 본 발명을 완성하였다.

발명의 상세한 설명

기술적 과제

본 발명의 목적은 퓨리닐피리디닐아미노-2,4-디플루로로페닐 설론아미드 유도체 또는 이의 약학적으로 허용가능한 염을 제공하는 데 있다.

본 발명의 다른 목적은 상기 퓨리닐피리디닐아미노-2,4-디플루로로페닐 설론아미드 유도체 또는 이의 약학적으로 허용가능한 염의 제조방법을 제공하는 데 있다.

본 발명의 또 다른 목적은 퓨리닐피리디닐아미노-2,4-디플루로로페닐 설론아미드 유도체 또는 이의 약학적으로 허용가능한 염을 유 효성의 높은 유효성분으로 함유하는 Raf 키나제 과활성에 의해 유발되는 질환의 예방 또는 치료용 약학적 조성물 제공하는 데 있다.

과정 해결 수단

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 퓨리닐피리디닐아미노-2,4-디플루로로페닐 설론아미드 유도체 또는 이의 약학적으로 허용가능한 염을 제공한다.

[화학식 1]

 yanı, 본 발명은 상기 퓨리닐피리디닐아미노-2,4-디플루로로페닐 설론아미드
유도체 또는 이의 약학적으로 허용가능한 염의 제조방법을 제공한다.

나아가, 본 발명은 상기 퓨리닐피리디닐아미노-2,4-디플루오로페닐
설폰아미드 유도체 또는 이의 약학적으로 허용가능한 염을 유 효성분으로
함유하는 Raf 기나체의 활성을 억제하여, Raf 기나체의 활성을 억제하여
의해 유발되는 질환의 예방 또는 치료의 약학적
조성물에 제공한다.

발명의 효과

본 발명에 의한 퓨리닐피리디닐아미노-2,4-디플루오로페닐 설폰아미드
유도체는 B-raf 기나체의 활성을 효과적으로 억제하며, Raf 기나체의 활성을 억제하여
의해 유발되는 질환(암, 뇌졸중, 대장암, 전립선암, 감상선암, 난소암,
등의 예방 또는 치료에 유용하게 사용될 수 있다.

발명의 실시를 위한 최선의 형태

이하, 본 발명을 상세히 설명한다.

본 발명은 하기 화학식 1로 표시되는 신규한
퓨리닐피리디닐아미노-2,4-디플루오로페닐 설폰아미드 유도체 또는 이의
약학적으로 허용가능한 염을 제공한다.

화학식 1

\[
\begin{align*}
\text{NH}_3 & \quad \text{N} \\
\text{N} & \quad \text{N} \\
\text{H} & \quad \text{F} \\
\text{F} & \quad \text{N}\text{SO}_3\text{R} \\
\text{O} & \quad \text{O}
\end{align*}
\]

상기 화학식 1에서,

\(R \)은 \(C_1-C_6 \)의 직쇄 또는 측쇄 알킬; 비치환되거나 할로겐 및 \(C_1-C_6 \)의 직쇄 또는 측쇄 알킬로 이루어지는 곡으로부터 선택되는 1종 이상으로 치환된 \(C_1-C_6 \)
시클로알킬; 할로겐, \(C_1-C_6 \)의 직쇄 또는 측쇄 알킬, \(C_1-C_6 \)의 직쇄 또는 측쇄 알킬시 및 할로겐으로 치환된 \(C_1-C_6 \)의 직쇄 또는 측쇄 알킬시로 이루어지는
곡으로부터 선택되는 1종 이상으로 치환된 \(C_1-C_6 \) 아릴; 비치환되거나
할로겐으로 치환된 \(C_1-C_6 \)의 직쇄 또는 측쇄 알킬, \(C_1-C_6 \)의 직쇄 또는 측쇄 알킬, \(C_1-C_6 \)의 직쇄 또는 측쇄 알킬로 이루어지는 곡으로부터 선택되는 1종 이상으로 치환된
\(C_5-C_{12} \) 단일 또는 이중고리의 헤테로아릴; 비치환되거나 할로겐 및 \(C_1-C_6 \)의 직쇄 또는 측쇄 알킬로 이루어지는 곡으로부터 선택되는 1종 이상으로 치환된 \(C_5-C_6
\)
\(\text{NH} \)\(\text{SO}_3 \)\(\text{R} \) 또는 비치환되거나 할로겐, 니트로 및 \(C_1-C_6 \)의 직쇄 또는
측쇄 알킬로 치환된 C₅-C₆ 아릴 C₁-C₆의 잡색 또는 측쇄 알킬이고, 여기서, 상기 헤테로아릴 및 헤테로시클로알킬은 고리 내 N, O 및 S로 이루어지는 군으로부터 선택되는 1종 이상의 헤테로 원자를 포함한다.

바람직하게는,

상기 R은 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, 시클로프로필, 시클로부틸, 시클로페닐, 시클로헥실, 비치환되거나 클로로, 플루오로, 브로모, 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, 메톡시, 에톡시, 프로폭시, 부톡시, 트리플루오로메톡시, 플루오로메톡시, 디플루오로메톡시 및 트리플루오로메톡시로 이루어지는 군으로부터 선택되는 1종 이상으로 치환된 C₅-C₆ 아릴, 비치환되거나 클로로, 플루오로, 브로모, 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, 메틸옥시카보닐, 에틸옥시카보닐, 프로필옥시카보닐, 부틸옥시카보닐, t-부틸옥시카보닐 및 다이옥사라닐로 이루어지는 군으로부터 선택되는 1종 이상으로 치환된 C₅-C₁₂ 단일 또는 이중고리의 헤테로아릴; 비치환되거나 클로로, 플루오로, 브로모, 메틸, 에틸, 프로필, 이소프로필, 부틸 및 이소부틸로 이루어지는 군으로부터 선택되는 1종 이상으로 치환된 C₅-C₆ 헤테로시클로알킬 또는 비치환되거나 클로로, 플루오로, 브로모, 니트로, 메틸, 에틸, 프로필, 이소프로필, 부틸 및 이소부틸로 이루어지는 군으로부터 선택되는 1종 이상으로 치환된 C₅-C₆ 아릴 C₁-C₆의 잡색 또는 측쇄 알킬이고, 여기서, 상기 헤테로아릴 및 헤테로시클로알킬은 고리 내 N, O 및 S로 이루어지는 군으로부터 선택되는 1종 이상의 헤테로 원자를 포함한다.

다음 바람직하게는,

상기 R은 메틸, 에틸, 프로필, 이소프로필, 시클로프로필, 시클로헥실, 비치환되거나 클로로, 플루오로, 메틸, 메톡시 및 트리플루오로메톡시로 이루어지는 군으로부터 선택되는 1종 이상으로 치환된 페닐; 비치환되거나 메틸, 메틸옥시카보닐(메릴에스테르) 및 다이옥사라닐로 이루어지는 군으로부터 선택되는 1종 이상으로 치환된 테오펜, 테아졸, 퓌란, 아미드질, 피티던, 디아이드로벤조피류린, 벤조피류린, 크로만, 벤조티아졸, 인돌 또는 피라졸; 물질; 또는 니트로로 치환된 페닐메틸이다.

또한, 상기 화학식 1로 표시되는 신규한 포탈라지는 유도체를 보다 구체적으로 예시하면 다음과 같다.

(1) N-(2,4-디플로로-3-(3-9-(테트라하이드로-2H-피라린-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)프로판-2- су폰아미드;

(2) N-(3-(3-9H-푸린-6-일)피리딘-2-일 아미노)-2,4-디플로로페닐)-3-(트리플로로메
(3)
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디클로로페닐)-4-(트리플로로페닐)벤젠 су론아미드;

(4)
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디클로로페닐)싸이오플-2- су론아미드;

(5)
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디클로로페닐)프로판-1- су론아미드;

(6)
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디클로로페닐)-3,4-디클로로 벤젠수론아미드;

(7)
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디클로로페닐)벤조푸란-2-수론아미드;

(8)
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디클로로페닐)-4-클로로-2-플로로 벤젠수론아미드;

(9)
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디클로로페닐)-1-(2-니트로페닐) 메탄수론아미드;

(10)
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디클로로페닐)-3,4-디메톡시벤젠 수론아미드;

(11)
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디클로로페닐)시클로헥산수론아미드;

(12)
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디클로로페닐)-4-(트리플로로메톡시)벤젠수론아미드;

(13)
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디클로로페닐)-4-플로로-2-(트리 플로로메칠)벤젠수론아미드;

(14)
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디클로로페닐)-3-플로로-2-메틸벤젠수론아미드;

(15)
N-(3-(3-(9H-فاقن-6-일) 있어서 2-일아미노)-2,4-디플로레핀) 푸란-2-솔폰아미드;

(16)
메틸 전 (N-(3-(9H-فاقن-6-일) 있어서 2-일아미노)-2,4-디플로레핀) 슬로포이드
식 오렌 2-카프복설에이트;

(17)
N-(3-(3-(9H-فاقن-6-일) 있어서 2-일아미노)-2,4-디플로레핀) 씨 오렌 3-솔폰아미드;

(18)
N-(3-(3-(9H-فاقن-6-일) 있어서 2-일아미노)-2,4-디플로레핀) 푸란 3-솔폰아미드;

(19)
N-(3-(3-(9H-فاقن-6-일) 있어서 2-일아미노)-2,4-디플로레핀) 시클로프로판솔폰아미드;

(20)
N-(3-(3-(9H-فاقن-6-일) 있어서 2-일아미노)-2,4-디플로레핀)-2,4-디메틸써아졸-5-솔폰아미드;

(21)
N-(3-(3-(9H-فاقن-6-일) 있어서 2-일아미노)-2,4-디플로레핀) 모로포린 4-솔폰아미드;

(22)
N-(3-(3-(9H-فاقن-6-일) 있어서 2-일아미노)-2,4-디플로레핀)-1-메틸 1H-이미디졸-4-솔폰아미드;

(23)
N-(3-(3-(9H-فاقن-6-일) 있어서 2-일아미노)-2,4-디플로레핀)-5-메틸퓨란 2-솔폰아미드;

(24)
N-(3-(3-(9H-فاقن-6-일) 있어서 2-일아미노)-2,4-디플로레핀)-5-(1,3-다이옥솔란-2-일)퓨란 2-솔폰아미드;

(25)
N-(3-(3-(9H-فاقن-6-일) 있어서 2-일아미노)-2,4-디플로레핀)-2,5-다이메틸퓨란 3-솔폰아미드;

(26)
N-(3-(3-(9H-فاقن-6-일) 있어서 2-일아미노)-2,4-디플로레핀)-5-메틸 2-(트리플루오로메틸)퓨란 3-솔폰아미드;

(27)
N-(3-(3-(9H-فاقن-6-일) 있어서 2-일아미노)-2,4-디플로레핀)-2-클로로 6-메틸벤젠솔폰아미드;

(28)
N-(3-(3-(9H-فاقن-6-일)어서 2-일아미노)-2,4-디플로레핀)-3-클로로 4-플로로
벤젠 су플론아미드;

(29) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-3-클로로-2-폭로
벤젠 су플론아미드;

(30) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)피리딘-3- су플론아미드;

(31) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-2-메틸벤젠 су플론아미드;

(32) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-2-클로로벤젠 су플론아미드;

(33) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-3-클로로벤젠 су플론아미드;

(34) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-2,3-클로로벤젠 су플론아미드;

(35) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)벤젠 су플론아미드;

(36) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-2,3-디하이드로벤조푸란-7- су플론아미드;

(37) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)벤조푸란-7- су플론아미드;

(38) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)크로만-8- су플론아미드;

(39) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-2-메틸벤조[ד]싸이 아зол-6- су플론아미드;

(40) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-1-메틸-1H-인돌-5- су플론아미드;

(41) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-1-메틸-1H-인돌-4-
(42) N-((3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-1-메틸-1H-인돌-7- су론아미드);

(43) N-((3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-1-메틸-1H-피라졸-4- су론아미드; 및

(44) N-((3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-5-클로로싸이오펜-4- су론아미드.

표 1
[Table 1]

<table>
<thead>
<tr>
<th>화학식</th>
<th>구조</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
본 발명의 상기 화학식 1로 표시되는
퓨리닐피리디닐아미노-2,4-디플루오로페닐 설포이미드 유도체는 약학적으로
허용 가능한 약의 형태로 사용할 수 있으며, 염으로는 약학적으로 허용가능한
유리산(free acid)에 의해 형성된 산부가염이 유용하다. 약학적으로 허용가능한
염기의 환자에게 비교적 비독성이고 무해한 유효작용을 갖는 농도로서
이 염에 가인한 부작용이 화학식 1의 염기 화합물의 이로운 효능을 훼손되지
않는 화학식 1의 염기 화합물의 어떠한 유기 또는 무기 부가염을 의미한다. 이들
염은 유리산으로는 무기산과 유기산을 사용할 수 있으며, 무기산으로는 염산,
브롬산, 질산, 황산, 과염소산, 인산 등을 사용할 수 있고, 유기산으로는 구연산,
조산, 척산, 말레산, 주마린산, 글루콘산, 메탄설산, 글리코산, 숙신산,
타타르산, 갈록토론산, 염분산, 글루탐산, 아스파르트산, 옥살산,(D) 또는(L)
말산, 말레산, 바렌설산, 아테인설산, 4-트플루로פל산, 살리실산,
시트론산, 벤조산 또는 아민산 등을 사용할 수 있다. 또한, 이들 염은 알칼리
금속염(나트륨염, 칼륨염 등) 및 알칼리 토금속염(칼슘염, 마그네슘 등) 등을
포함한다. 예를 들면, 산부가염으로는 아세테이트, 아스파르트, 벤즈엔산, 베타레이트, 바이카보네이트/커보네이트, 바이설레이트/설레이트, 보레이트,
감실레이트, 시트레이트, 에디실레이트, 에실레이트, 포메이트, 퓨마레이트,
글루코네이트, 글루코스페이트, 글루로네이트, 핵사플루로포스페이트,
하이벤레이트, 하이드로클로라이드/클로라이드,
하이드로브로마이드/브로마이드, 하이드로요오디드/요오디드, 이세티오이테이트, 락테이트, 알레이트, 랜테이트, 알로네이트, 메틸레이트, 메틸설레이트,
나프탈레이트, 2-나프설레이트, 니코티네이트, 나이트레이트, 오로테이트,
옥살레이트, 폼미테이트, 파모에이트, 포스페이트/수소 포스페이트/수소 포스페이트, 사카레이트, 스테아레이트, 석시네이트, 타르테이트, 토실레이트,
또한, 본 발명의 상기 화학식 1로 표시되는
퓨리닐피리디닐아미노-2,4-디플루로포겔 질폰아미드 유도체는 약학적으로
허용되는 염뿐만 아니라, 통상의 방법에 의해 제조될 수 있는 모든 염, 이성질체,
수화물 및 용매화물을 모두 포함한다.

본 발명에 따른 부가염은 통상의 방법으로 제조할 수 있으며, 예를 들면 화학식
1의 화합물을 수온화성 유기용매, 예를 들면 아세톤, 메탄올, 에탄올, 또는
아세토니트릴 등에 녹이고 과량의 유기산을 가하거나 무기산의 산 수용액의
가한 후 첨전시키거나 결정화시켜서 제조할 수 있다. 이어서 이 혼합물에서
유매나 과량의 산을 증발시킨 후 건조시켜서 부가염을 얻거나 또는 석출된 염을
흡인하여서 제조할 수 있다.

또한, 본 발명은 하기 반응식 1에 나타난 바와 같이,
화학식 2의 화합물을 염기 및 용매 하에서 화학식 3의 화합물과 반응시켜
화학식 1의 화합물을 얻는 단계를 포함하는 제 1항의
퓨리닐피리디닐아미노-2,4-디플루로포겔 질폰아미드 유도체의 제조방법을
제공한다.

(상기 반응식 1에서, R은 상기 화학식 1에서 정의한 바와 같다.)

본 발명의 제조방법에 있어서, 상기 염기는
리튬(비스트리에틸실릴)아미드이고 상기 용매는 테트라하이드로포름을 사용할
수 있다.

구체적으로, 상기 화학식 2의 화합물과 화학식 3의 화합물을 용매인
테트라하이드로포름에 넣고 녹인 후, 0℃에서 염기인
리튬(비스트리에틸실릴)아미드를 천천히 가하고 설온에서 1시간 동안 교반하여
화학식 1의 런릴피리디닐아미노-2,4-디플루로포겔 질폰아미드 유도체를
제조할 수 있다.
나아가, 본 발명은 하기 반응식 2에 나타난 바와 같이,
화학식 4의 화합물을 염기 및 용매 하에서 화학식 5의 살포닐 화합물과 반응시켜 화학식 1의 화합물을 얻는 단계를 포함하는 제 1항의。
퓨리닐피리디닐아미노-2,4-디플루오로페닐 살포닐아미드 유도체의 제조방법을 제공한다.

[반응식 2]

(상기 반응식 1에서,
R은 상기 화학식 1에서 정의한 바와 같다.)

본 발명의 제조방법에 있어서, 상기 염기는 피리딘이고 상기 용매는
디플루로메탄을 사용할 수 있다.

구체적으로, 용매인 디플루로메탄에 상기 화학식 4의 화합물과 상기 화학식
5의 살포닐 화합물 및 염기인 피리딘을 넣고 50 ℃에서 2시간 동안 교반하여 상기
화학식 1의 화합물을 제조할 수 있다.

또한, 본 발명은 상기 화학식 1로 표시되는
퓨리닐피리디닐아미노-2,4-디플루오로페닐 살포닐아미드 유도체 또는 이와
의약적으로 허용가능한 염을 유호성분으로 함유하는 Raf 카나세체 분산성에
의해 유발되는 질환의 예방 또는 치료용 약학적 조성을 제공한다.

상기 Raf 카나세체 분산성에 의해 유발되는 질환으로는 질환은 암 특히, 호흡기,
대장암, 전립선암, 감상선암 및 난소암 등을 포함할 수 있다.

Raf 단백질에는 A-raf, B-Raf, C-Raf의 세 가지 기능을 하는
이성질형태(isoform)가 있는데(Biochim. Biophys. Acta., 2003, 1653, 25~40), 그
중에서 B-Raf가 Ras에서 MEK 신호전달을 연결하는데 중요한 역할을 한다.
지금까지 연구 결과에 의하면 B-raf는 세포증식에 관련된 중요한 이성형(isoform)
단백질로 종양 발생성 Ras의 중요한 표적으로써, 체내 비정상적인 돌연변이인
B-raf의 경우에도 확인되어 왔고, 악성 피부 흡생증에서 30~60%의 반도로
발생하고(Nature, 2002, 417, 949~954), 감상선암에서 30~50%, 대장암 5~20%, 및
난소암에서 30% 이상의 반도로 발생하고 있는 것으로 알려져 있으며(Nature
Rev. Mol. Cell Biology, 2004, 5, 875~885), 돌연변이화 된 B-raf 단백질은 NIH3T3

[111] 이에, 이에, 본 발명에 따른 상기 화학적 1로 표시되는 푸리닐피리디닐아미노-2,4-디플루오로페닐 설존아미드 유도체의 B-raf 키나제 활성, B-raf 세포활성을 측정한 결과, B-raf 키나제에 대해 우수한 저해활성을 나타내었다(실험 1 참조). 또한, 생체외(in vitro) 실험에서 B-raf 세포활성에 대해 우수한 저해활성을 나타내었다(실험 2 참조).

[112] 따라서, 본 발명에 따른 푸리닐피리디닐아미노-2,4-디플루오로페닐 설존아미드 유도체는 Raf 키나제 과활성을 유발시키는 B-raf 키나제 및 B-raf 세포활성을 측정하여 우수한 저해활성을 나타내므로 Raf 키나제 과활성에 의해 유발되는 질환의 예방 또는 치료에 유용하게 사용될 수 있다.

[113] 본 발명의 조성물을 의약품으로 사용하는 경우, 상기 화학적 1로 표시되는 푸리닐피리디닐아미노-2,4-디플루오로페닐 설존아미드 유도체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 약학적 조성물은 임상투여 시에 다양한 하기의 경구 또는 비경구 투여 형태로 제제화되어 투여될 수 있으나, 이에 한정되는 것은 아니다.

[115] 경구 투여용 제형으로는 애를 들면 경제, 환제, 경/연질 갑실제, 약제, 현탁제, 유화제, 시립제, 과립제, 엘리식르제 등이 있는데, 이들 제형은 유효성분 이외에 회석제(예: 맥토즈, 메스토로즈, 수크로스, 만나톨, 승미료, 설탕로즈 및/또는 글리산), 환탁제(예: 설리카, 탈코, 스테아르산 및 그의 마그네슘 또는 칼슘염 및/또는 플루에틸렌 글리콜)를 함유하고 있다. 경제 또는 마그네슘 알루미늄 심리케이트, 전분 페이스트, 페라린, 베타글로로스, 나트륨 카복시메틸セル룰로스 및/또는 플루리닐피리디릴산과 같은 결합체를 함유할 수 있으며, 경주에 따라 전분, 한천, 알간산 또는 그의 나트륨 염과 같은 봉합제 또는 비등 혼합물 및/또는 혼수체, 착색제, 항미제 및 감미제를 함유할 수 있다.

[116] 상기 화학적 1로 표시되는 유도체를 유효성분으로 하는 약학 조성물은 비경구 투여할 수 있으며, 비경구 투여는 피하주사, 정맥주사, 근육 내 주사 또는 흉부 내 주사를 주입하는 방법에 의한다.

[117] 이에, 비경구 투여용 제형으로 제제화하기 위하여 상기 화학적 1의 푸리닐피리디닐아미노-2,4-디플루오로페닐 설존아미드 유도체 또는 이의 약학적으로 허용되는 염을 안정제 또는 완충제와 함께 물에 혼합하여 용액 또는 혈타액으로 제조하고, 이를 앰플 또는 바이알 단위 투여형으로 제조할 수 있다. 상기 조성물은 면역되고/되거나 방부제, 안정화제, 수화제 또는 유효 촉진제,
삼투암 조질을 위한 열 및/또는 완충제 등의 보조제, 및 기타 치료적으로 유용한 물질을 함유할 수 있으며, 통상적인 방법인 혼합, 과립화 또는 코팅 방법에 따라 제제화할 수 있다.

또한, 본 발명의 화합물의 인체에 대한 투여량은 환자의 나이, 몸무게, 성별, 투여형태, 진강상태 및 질환 정도에 따라 달라질 수 있으며, 몸무게가 70 kg인 성인 환자를 기준으로 할 때, 일반적으로 0.1 - 1,000 mg/일이며, 바람직하게는 1 ~ 500 mg/일이며, 의사 또는 약사의 판단에 따라 일정시간 간격으로 1일 1회 내지 수회로 분할 투여할 수도 있다.

나아가, 상기 화학식 1로 표시되는 퓌리닐피리디닐아미노-2,4-디플루오로페닐
설론아미드 유도체 및 이의 약학적으로 허용가능한 염을 유효성분으로
함유하는 Raf 키나제 가역성에 의해 유발되는 질환의 예방 또는 개선용 건강식품
조성물에 제공한다.

상기 Raf 키나제 가역성에 의해 유발되는 질환으로는 질환은 암 특허, 흡색증, 대장암, 전립선암, 감상선암 및 납소암 등을 포함할 수 있다.

본 발명에 따른 조성물은 Raf 키나제 가역성 역제제로 작용하므로써 Raf
키나제 가역성으로 유발되는 질환의 예방 또는 개선을 목적으로 상기
퓨리닐피리디닐아미노-2,4-디플루오로페닐 설론아미드 유도체를 식품, 음료
등의 건강보조 식품에 참가할 수 있다.

상기 식품의 종류에는 특별한 제한은 없다. 상기 물질을 참가할 수 있는 식품의
예로는 드링크크례, 육류, 소시지, 빵, 비스킷, 떡, 쇼콜릿, 캔디류, 스펙류, 과자류,
파자, 라면, 기타 면류, 콜로, 아이스크림류를 포함한 낙농제품, 각종 스프,
음료수, 알코올 음료 및 비타민 복합제, 유제품 및 유가공 제품 등이 있으며,
통상적인 의미에서의 건강기능식품을 모두 포함한다.

본 발명의 프로래지는 유도체는 식품에 그대로 참가하거나 다른 식품 또는
식품 성분과 함께 사용될 수 있고, 통상적인 방법에 따라 적절하게 사용될 수
있다. 유효 성분의 혼합량은 그의 사용 목적(예방 또는 개선용)에 따라 적절하게
결정될 수 있다. 일반적으로, 건강식품 중의 상기 화합물의 양은 전체 식품
중량의 0.1 내지 90 중량부로 가할 수 있다. 그러나 건강 및 위생을 목적으로
하거나 또는 건강 조절을 목적으로 하는 장기간의 섭취의 경우에는 상기 양은
상기 범위 이하일 수 있으며, 안전성 면에서 아무런 문제가 없기 때문에
유효성분은 상기 범위 이상의 양으로도 사용될 수 있다.

본 발명의 건강 기능성 음료 조성물은 지시된 비율로 필수 성분으로 상기
화합물을 함유하는 외에는 다른 성분에는 특별한 제한이 없으며 통상의 음료와
같이 여러 가지 맛과제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수
있다. 상술한 천연 탄수화물의 예는 모노사카라이드, 에를 들어, 포도당, 과당
등; 디사카라이드, 에를 들어 밀토스, 슈크로스 등; 및 플리사카라이드, 에를 들어
막스트린, 시클로맥스트린 등과 같은 동상적인 당, 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜들이다. 상술한 것 이외의 항미제로서 천연 항미제(타우미린, 스테비아 추출물(에를 들어 레바우디오시드 A, 글리시르히정 등) 및 합성 항미제(사카린, 아스파르탑 등)를 유리하게 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 발명의 조성물 100 당 일반적으로 약 1 내지 20 g, 바람직하게는 약 5 내지 12 g이다.

[127] 상기 외에 본 발명의 프탈라지는 유도체는 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 색제 및 빛제(치즈, 초코릿 등), 백트산 및 그의 염, 알킨산 및 그의 염, 유기산, 보호성 콜로이드
중질제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 그 밖에 본 발명의 프탈라지는 유도체는 천연 과일 주스 및 과일 주스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다.

[128] 이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이러한 첨가제의 비율은 그렇게 중요하지 않지만 본 발명의 프탈라지는 유도체를 100 중량부 당 0.1 내지 약 20 중량부의 범위에서 선택되는 것이 일반적이다.

[129]

또한, 본 발명은 상기 화학식 1로 표시되는 퓨리닐페리디닐아미노-2,4-디폴루로페닐 살론아미드 유도체 또는 이의 약화적으로 허용 가능한 염을 이를 필요하는 환자에게 투여하는 단계를 포함하는 Raf 키나제의 과활성에 의해 유발되는 질환의 예방 또는 치료방법을 제공한다.

[130] 나아가, 본 발명은 Raf 키나제의 과활성에 의해 유발되는 질환의 예방 또는 치료에 사용되는 상기 화학식 1로 표시되는 퓨리닐페리디닐아미노-2,4-디폴루로페닐 살론아미드 유도체 또는 이의 약화적으로 허용 가능한 염을 제공한다.

[131]

발명의 실시를 위한 형태

[132] 이하, 본 발명은 제조에, 실시에 및 실행에에 의하여 상세히 설명한다.

[133] 단, 하기 실시에는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시에에 한정되는 것은 아니다.

[134]

[135] <실시예 1>

N-(2,4-디폴루로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-퓨린-6-일)페리딘-2-일 아미노)페닐)프로판-2-솔론아미드의 제조

[136]

[137]
단계 1: 2,6-디플로로-3-니트로 벤조산의 제조

2,6-디플로로 벤조산(1.4 g, 9 mmol)에 진한 황산(5 mL)을 넣고 0℃에서 포타슘나이트레이트(1 g, 9.9 mmol)를 조금씩 첨가하였다. 반응물의 온도를 실온으로 올린 후 24시간 교반하였다. 반응 용액에 얼음을 두운 후 에틸아세테이트로 추출하고 무수 황산 마그네슘으로 건조 후 감압 농축하고 잔액물을 갑여과하여 얻은 고체를 디에틸에테르로 씻어주고 건조하여 목적 화합물인 2,6-디플로로-3-니트로 벤조산을 1.3 g(수율: 71 %) 얻었다.

\[^1H \text{NMR}(400\text{MHz, DMSO-}d_6) : \delta \text{ 8.37 (td, } J = 9.2, 5.6 \text{ Hz, 1H), 7.46 (t, } J = 9.2 \text{ Hz, 1H).} \]

단계 2: 터서리-부틸-2,6-디플로로-3-니트로페닐카바메이트의 제조

디클로로 메탄과 N,N-디 메틸 폴아미드 혼합 용액에 상기 단계 1에서 제조한 2,6-디플로로-3-니트로 벤조산(16 g, 79 mmol)을 넣고 옥살릴 콜로라아이드(14 mL, 158 mmol)를 천천히 가하였다. 반응물을 실온에서 18시간 교반하고 용액을 농축 후 잔액물을 디클로로 메탄과 N,N-디 메틸 폴아미드로 묻히고 0℃로 온도를 낮췄다. 소듐아사이드(5.6 g, 87 mmol)를 조금씩 천천히 넣어주었다. 실온에서 30 분 교반 후 터서리 부틸올(40 mL)을 가하였다. 반응물을 3시간 환류 교반하여 주고 반응 종료 후 용액을 감압 농축하였다. 농축 후 잔액물을 탄산수소 나트륨 수용액과 소금물로 씻어주고 에틸 아세테이트로 추출하여 유기물을 농축하고 무수 황산 마그네슘으로 건조 후 컬럼 크로마토그래피로 정제하여 목적물인 터서리-부틸-2,6-디플로로-3-니트로페닐카바메이트를 20 g(수율: 93 %) 얻었다.

\[^1H \text{NMR}(400\text{MHz, CDCl}_3) : \delta \text{ 8.00 (m, 1H), 7.08 (m, 1H), 6.46 (bs, 1H), 1.51 (s, 9H).} \]

단계 3: 터서리-부틸-3-아미노-2,6-디플로로페닐카바메이트의 제조

메탄올 용액에 상기 단계 2에서 제조한 터서리-부틸-2,6-디플로로-3-니트로페닐카바메이트(1 g, 3.6 mmol)를 녹인 후 핀자루 카본(100 mg)을 넣고 수소 압력 하에서 15시간 교반한다. 반응 완료 후 셜라이트 여과 후 감압 농축하고 컬럼 크로마토그래피로 정제하여 목적물인 터서리-부틸-3-아미노-2,6-디플로로페닐카바메이트를 0.76 g(수율: 86 %) 얻었다.

\[^1H \text{NMR}(400\text{MHz, CDCl}_3) : \delta \text{ 6.74 (m, 1H), 6.59 (m, 1H), 5.95 (bs, 1H), 3.62 (bs, 2H), 1.51 (s, 9H).} \]
단계 4: 터서리-부틸-2.6-디플로로-3-(1-메틸에틸 solicitud)페닐카바메이트의 제조

디클로로벤젠 용매에 상기 단계 3에서 제조한 터서리-부틸-3-아미노-2.6-디플로로페닐카바메이트(100 mg, 0.41 mmol)을 넣고 녹였다. 반응 용액에 2-프로판솔포닐 클로라이드(50 μL, 0.45 mmol)와 페리렐(36 μL, 0.045 mmol)을 넣고 50℃에서 2시간 동안 교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 셔어주고 디클로로벤턴으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 클럽크로마토그래피로 정제하여 목적물인 터서리-부틸-2.6-디플로로-3-(1-메틸에틸 solicitud)페닐카바메이트를 94 mg(수율: 65%) 얻었다.

1H NMR(400MHz, CDCl3): δ 7.43(td, J = 8.8, 5.6 Hz, 1H), 6.97(bs, 1H), 6.90(td, J = 8.8, 1.6 Hz, 1H) 6.33(bs, 1H), 3.25(m, 1H), 1.49(s, 9H), 1.39(d, J = 6.8 Hz, 6H).

단계 5: N-(3-아미노-2.4-디플로로페닐)프로판-2-솔폰아미드의 제조

에틸아세테이트 용매에 상기 단계 4에서 제조한 터서리-부틸-2.6-디플로로-3-(1-메틸에틸 solicitud)페닐카바메이트(100 mg, 0.3 mmol)를 넣고 하이드로겐클로라이드(4M solution in 1,4-dioxane)를 가하여 실온에서 5시간 동안 교반하였다. 반응 종료 후 용액을 농축하여 감압 복수 후 남은 고체를 디에틸 에테르와 핵산으로 셔어주고 건조하여 목적물인 N-(3-아미노-2.4-디플로로페닐)프로판-2-솔폰아미드를 65 mg(수율: 91%) 얻었다.

1H NMR(400MHz, CDCl3): δ 6.93(m, 1H), 6.81(m, 1H), 6.25(bs, 1H), 3.83(bs, 2H), 3.28(m, 1H), 1.42(d, J = 6.8 Hz, 6H).

단계 6: 6-클로로-9-(테트라히드로-2H-피란-2-일)-9H-푸란의 제조

에틸아세테이트 용매에 6-클로로-9H-푸란(500 mg, 3.2 mmol), 4-메틸벤젠솔포닐산(12 mg, 0.07 mmol)과 3.4-디히드로-2H-피란(0.9 mL, 9.7 mmol)을 넣고 교반하였다. 반응물을 90℃에서 고체가 다 녹을 때까지 약 1시간 가량 교반하였다. 용액을 농축 후 잔여물을 클럽크로마토그래피로 정제하여 목적물인 6-클로로-9-(테트라히드로-2H-피란-2-일)-9H-푸란을 749 mg(수율: 97%) 얻었다.

1H NMR(400MHz, CDCl3): δ 8.77(s, 1H), 8.36(s,1H), 5.80(dd, J = 10.4, 2.8 Hz, 1H), 4.21(m, 1H), 3.80(m, 1H), 2.21-1.67(m, 6H).

단계 7: 6-(2-플로로피리딘-3-일)-9-(테트라히드로-2H-피란-2-일)-9H-푸란의 제조

에탄올과 물(5/1)의 혼합용매에 상기 단계 6에서 제조한
6-클로로-9-(테트라히드로-2H-피란-2-일)-9H-푸린(239 mg, 1 mmol),
2-포모피리딘-3-일 보존산(189 mg, 1.3 mmol), 포타슘 아세테이트(216 mg, 2.2 mmol)와 비스(디-티서리-튜블-4-디메틸아미노페닐)포스핀디모로필라듐(14 mg, 0.02 mmol)을 넣고 반응물을 철소 압력 하에서 80 ℃에서 2시간 동안 환류
교반하였다. 반응 종료 후 용액을 농축하고 물과 소금물을 섞어 주고
에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조 후 감압
농축 후 잔여물을 케릴 크로마토그래피로 정제하여 목적물인
6-(2-포모피리딘-3-일)-9-(테트라히드로-2H-피란-2-일)-9H-푸린을 279 mg(수율: 93 %) 얻었다.

\[164\]
1H NMR(400MHz, CDCl$_3$): δ 9.09(s, 1H), 8.91(s, 1H), 8.56(m, 1H), 8.47(m, 1H),
7.62(m, 1H), 5.84(dd, J = 10.8, 2.0 Hz, 1H), 4.04(m, 1H), 3.76(m, 1H), 2.38(m, 1H),
2.03(dd, J = 12.8, 2.6 Hz, 2H), 1.79-1.60(m, 3H).

\[165\]

단계 8:
N-(2,4-디클로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일
아미노)페닐)프로판-2-글루아미드의 제조

\[167\]
상기 단계 5에서 제조한
N-(3-아미노-2,4-디클로로페닐)프로판-2-글루아미드(20 mg, 0.07 mmol)와 상기
단계 7에서 제조한
6-(2-포모피리딘-3-일)-9-(테트라히드로-2H-피란-2-일)-9H-푸린(19 mg, 0.063 mmol)을 넣고 녹인 후 0 ℃에서 리튬(비스트리메틸실릴)아미드(1.0 M solution in
THF)로 친화적이 가하였다. 반응물을 실온에서 1시간 교반하고 반응 완료 후 물을
넣고 에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조
하고 감압 농축한 후 컬럼크로마토그래피로 정제하여 목적물인
N-(2,4-디클로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일
아미노)페닐)프로판-2-글루아미드을 25 mg(수율: 75 %) 얻었다.

\[168\]
1H NMR(400MHz, CDCl$_3$): δ 11.63(bs, 1H), 9.67(dd, J = 8.0, 2.0 Hz, 1H), 9.03(s,
1H), 8.38(s, 1H), 8.26(dd, J = 4.8, 2.0 Hz, 1H), 7.46(m, 1H), 7.01(m, 2H), 6.41(bs, 1H),
5.91(dd, J = 10.8, 2.4 Hz, 1H), 4.24(m, 1H), 3.85(m, 1H), 3.32(m, 1H), 2.24-1.71(m,
6H), 1.44(d, J = 6.8 Hz, 6H).

\[169\]

단계 9:
N-(2,4-디클로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일
아미노)페닐)프로판-2-글루아미드의 제조

\[170\]
상기 단계 8에서 제조한
N-(2,4-디클로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일
아미노)페닐)프로판-2-글루아미드(20 mg, 0.038 mmol)에 1M 염산 수용액을 넣고
2시간 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로
셋어주고 아닐아세테이트로 추출하였다. 유기층을 무수 환산 마그네슘이로
건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인
N-(2,4-디플로로-3-(3-(9H-퓨란-6-일)피리딘-2-일 아미노)페닐)프로판-2- су름돈아미드를 15 mg(수용: 92 %) 얻었다.

1H NMR(400MHz, DMSO-d6): δ 11.54(bs, 1H), 9.03(s, 1H), 8.55(s, 1H), 8.16(dd, J = 4.8, 1.6 Hz, 1H), 7.45(td, J = 8.8, 5.6 Hz, 1H), 7.05(m, 2H), 3.31(m, 1H), 1.44(d, J = 6.8 Hz, 6H).

<실시예 2>
N-(3-(3-(9H-퓨란-6-일)피리딘-2-일 아미노)-2,4-디플로로페닐)-3-(트리플로로페닐)벤젠 су름돈아미드의 제조

단계 1 내지 단계 3: 터서리-부틸-3-아미노-2,6-디플로로페닐카바메이트의 제조
상기 실시예 1의 단계 1 내지 단계 3과 동일한 방법으로 수행하여 목적
화합물인 터서리-부틸-3-아미노-2,6-디플로로페닐카바메이트를 얻었다.

단계 4: 벤질 터서리부틸(2,4-디플로로-1,3-페닐렌)디카바메이트의 제조
디클로로메탄 용매에 상기 단계 3에서 제조한
t터서리-부틸-2,6-디플로로-3-니트로페닐카바메이트(305 mg, 1.25 mmol),
디아소프로필에틸아민(371 mL, 2.13 mmol)과 벤질 클로로포미트(194 mL, 1.38
mmol)을 넣고 실온에서 5시간 동안 교반 시켰다. 반응 종료 후 물과 소금물로
셋어주고 에틸아세테이트로 추출하였다. 유기층을 무수 환산 마그네슘으로 건조
후 감압 여과하여 농축하였다. 잔여물을 컬럼 크로마토그래피로 정제하여
목적물인 벤질 터서리부틸(2,4-디플로로-1,3-페닐렌)디카바메이트를 402
mg(수용: 85 %) 얻었다.

1H NMR(400MHz, CDCl3): δ 7.94(bs, 1H), 7.39(m, 5H), 6.93(td, J = 9.2, 1.6 Hz,
1H), 6.82(bs, 1H), 5.98(bs, 1H), 5.23(s, 2H), 1.52(s, 9H).

단계 5: 벤질 3-아미노-2,4-디플로로페닐카바메이트의 제조
에틸아세테이트 용매에 상기 단계 4에서 제조한 벤질
터서리부틸(2,4-디플로로-1,3-페닐렌)디카바메이트(400 mg, 1.06 mmol)를 넣고 4
M 하이드로겐 클로로라이드 용액(1.3 mL, 4M in 1,4-다이옥산)을 가하고 실온에서
5시간 동안 교반하였다. 반응 종료 후 용매를 농축하여 감압 여과 한 고체를
디에틸 에테르로 셋어주어 목적물인 벤질
3-아미노-2,4-디플로로페닐카바메이트를 276 mg(수율: 94%) 얻었다.

\[^1H \text{NMR (400MHz, CDCl}_3\): 5 7.40(m, 6H), 6.80(dd, J = 9.6, 2.0 Hz, 1H), 6.74(bs, 1H), 5.23(s, 2H), 3.76(bs, 2H). \]

단계 6 및 단계 7:
6-(2-플로로페닐-3-일)-9-(테트라히드로-2H-피란-2-일)-9H-푸린의 제조

상기 실시예 1의 단계 6 및 단계 7과 동일한 방법으로 수행하여 목적물인
6-(2-플로로페닐-3-일)-9-(테트라히드로-2H-피란-2-일)-9H-푸린을 얻었다.

단계 8:
벤질-2,4-디플로로-3-(3-9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-
일아미노)페닐 카바메이트의 제조

무수 테트라히드로푸란에 상기 단계 5에서 제조한 벤질
3-아미노-2,4-디플로로페닐카바메이트(100 mg, 0.32 mmol)와 상기 단계 7에서
제조한 6-(2-플로로페닐-3-일)-9-(테트라히드로-2H-피란-2-일)-9H-푸린(86 mg,
0.29 mmol)을 녹고 녹인 후 0℃에서 리튬(비스트리레צל살)아미드(1.0 M
solution in THF, 1.45 mL)를 천천히 가하였다. 반응물을 1시간 동안 교반하고
반응 용액 후 물을 넣고 에틸아세테이트로 추출하였다. 유기층을 무수
황산마그네슘으로 건조하고 감압 농축한 후 컬럼크로마토그래피로 정제하여
목적물인
벤질-2,4-디플로로-3-(3-9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-
일아미노)페닐 카바메이트를 128 mg(수율: 80%) 얻었다.

\[^1H \text{NMR (400MHz, CDCl}_3\): 5 11.57(s, 1H), 9.66(dd, J = 8.0, 2.0 Hz, 1H), 9.02(s,
1H), 8.39(s, 1H), 8.28(dd, J = 4.4, 1.6 Hz, 1H), 7.92(bs, 1H), 7.40(m, 5H), 6.98(m,
3H), 5.89(dd, J = 10.4, 2.4 Hz, 1H), 5.24(s, 2H), 4.22(m, 1H), 3.84(m, 1H),
2.23-1.68(m, 6H). \]

단계 9:
2,6-디플로로-N-1-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)
벤젠-1,3-디아민의 제조

메탄올 용매에 상기 단계 8에서 제조한
벤질-2,4-디플로로-3-(3-9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-
일아미노)페닐 카바메이트(100 mg, 0.18 mmol)를 녹인 후 팔라듐/카본(50 mg)
을 넣고 수소 압력 하에서 1시간 동안 교반하였다. 반응 종료 후 셀라이트 여과 후
감압 농축하고 컬럼 크로마토그래피로 정제하여 목적물인
2,6-디플로로-N-1-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)
벤젠-1,3-디아민을 51 mg(수율: 67%) 얻었다.
[196] 1H NMR (400MHz, CDCl$_3$): δ 11.49 (s, 1H), 9.63 (dd, J = 7.6, 1.6 Hz, 1H), 9.01 (s, 1H), 8.37 (s, 1H), 8.30 (dd, J = 4.8, 1.6 Hz, 1H), 6.92 (m, 1H), 6.82 (td, J = 9.2, 2.0 Hz, 1H), 6.60 (td, J = 9.2, 5.2 Hz, 1H), 5.88 (dd, J = 10.4, 2.4 Hz, 1H), 4.23 (m, 1H), 3.83 (m, 1H), 3.49 (bs, 2H), 2.22-1.69 (m, 6H).

[197] 단계 10:
N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)벤젠)-3-(トリフルロ로메틸)벤젠솔폰아미드의 제조

[198] 디클로로메탄 용매에 상기 단계 9에서 제조한 2,6-디플로로-N-1-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일) 벤젠-1,3-디아민(20 mg, 0.047 mmol), 3-(トリフル로로메틸)벤젠솔폰닐클로로라이드(8 μL, 0.052 mmol)와 피리딘(8 μL, 0.094 mmol)을 넣고 50 °C에서 2시간 동안 교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 씻어주고 디클로로메탄 으로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적으로만 N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)벤젠)-3-(トリフル로로메틸)벤젠솔폰아미드를 16 mg(수율: 54%) 얻었다.

[199] 1H NMR (400MHz, CDCl$_3$): δ 11.53 (s, 1H), 9.63 (d, J = 7.6 Hz, 1H), 8.98 (s, 1H), 8.39 (s, 1H), 8.16 (d, J = 4.8 Hz, 1H), 8.04 (s, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.37 (m, 1H), 7.10 (bs, 1H), 7.01 (t, J = 9.2 Hz, 1H), 7.95 (dd, J = 6.8, 4.8 Hz, 1H), 5.89 (d, J = 10.4 Hz, 1H), 4.24 (d, J = 10.4 Hz, 1H), 3.85 (m, 1H), 2.23-1.71 (m, 6H).

[200] 단계 11:
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-3-(トリフル로로메틸)벤젠솔폰아미드의 제조

[201] 상기 단계 10에서 제조한 N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)벤젠)-3-(トリフル로로메틸)벤젠솔폰아미드(26 mg, 0.040 mmol)에 1M 염산 수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 씻어주고 에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정체하여 목적으로만 N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-3-(トリフル로로메틸)벤젠솔폰아미드를 21 mg(수율: 95%) 얻었다.

[202] 1H NMR (400MHz, DMSO-d$_6$): δ 11.49 (s, 1H), 9.60 (bs, 1H), 8.50 (s, 1H), 8.06 (dd, J = 4.8, 1.6 Hz, 1H), 7.97 (m, 4H), 7.21 (t, J = 8.0 Hz, 1H), 7.32 (m, 1H), 7.10-7.00 (m, 2H).
[205] 〈실시예 3〉

N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-4-(트리플로로메틸)벤젠수폰아미드의 제조

[207]

[208] 단계 1 내지 단계 9:
2,6-디플로로-N-1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민의 제조

[210] 단계 10:

N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)-벤젠)-4-(트리플로로메틸)벤젠수폰아미드의 제조

[212] 다클로로메탄 용매에 상기 단계 9에서 제조한 2,6-디플로로-N-1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민(20 mg, 0.047 mmol), 4-(트리플로로메틸)벤젠수폰닐 클로라이드(13 mg, 0.052 mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50 ℃에서 2시간 동안 교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 씻어주고 다클로로메탄으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 압축 농축 후 긴밀크로마토그래피로 정제하여 목적물인 N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)-벤젠)-4-(트리플로로메틸)벤젠수폰아미드를 29 mg(수율: 97%) 얻었다.

[213] 1H NMR(400MHz, CDCl3): δ 11.50(s, 1H), 8.97(s, 1H), 8.39(s, 1H), 8.15(dd, J = 4.8, 2.0 Hz, 1H), 7.93(d, J = 8.4 Hz, 2H), 7.75(d, J = 8.4 Hz, 2H), 7.43(m, 1H), 7.02(m, 1H), 6.95(dd, J = 8.0, 4.8 Hz, 1H), 6.80(s, 1H), 5.89(dd, J = 10.8, 2.4 Hz, 1H), 4.24(m, 1H), 3.85(m, 1H), 2.23-1.71(m, 6H).

[214] 단계 11:

N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-4-(트리플로로메틸)벤젠수폰아미드의 제조
[216] 상기 단계 10에서 제조한
N-(2,4-디플로로-3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)-4-(트리플로로메틸)벤젠 су포닐아미드(26 mg, 0.040 mmol)에 1M 염산 수용액을 넣고 2시간 동안 관류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 씻어주고 에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 결럼크로마토그래프로 정제하여 목적물인
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-4-(트리플로로메틸)벤젠 су포닐아미드를 19 mg(수율: 88%) 얻었다.

[217] ¹H NMR(400MHz, DMSO-d₆): δ 11.92(bs, 1H), 11.03(s, 1H), 9.76(d, J = 8.0 Hz, 1H), 9.26(bs, 1H), 9.11(s, 1H), 8.36(s, 1H), 8.28(dd, J = 4.8, 2.0 Hz, 1H), 7.99(d, J = 8.4 Hz, 2H), 7.73(d, J = 8.4 Hz, 2H), 7.50(m, 1H), 7.02(m, 2H).

[218]

[219] <실시예 4>

N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)싸이오펜-2-솔론아미드의 제조

[220]

[221] 단계 1: 내지 단계 9:

2,6-디플로로-N-1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민의 제조

[222] 상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인

2,6-디플로로-N-1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민을 제조하였다.

[223]

[224] 단계 10:

N-(2,4-디플로로-3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)싸이오펜-2-솔론아미드의 제조

[225] 디 플로로메탄 용매에 상기 단계 9에서 제조한

2,6-디플로로-N-1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민(20 mg, 0.047 mmol), 3-싸이오펜솔포닐 클로라이드(13 mg, 0.052 mmol)와 합리딘(8 µL, 0.094 mmol)을 넣고 50 ℃에서 2시간 동안 교반하였다.
반응 완료 후 반응물을 1N 염산 수용액과 소금물로 씻어주고 디플로로메탄으로
추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후
컬럼크로마토그래피로 정제하여 목적물인
N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-퓨린-6-일)피리딘-2-일
아미노)페닐)사이아오펜-2-솔폰아미드를 25 mg(수율: 92 %) 얻었다.

[226] 1H NMR(400MHz, CDCl3): δ 11.53(s, 1H), 9.63(dd, J = 8.0, 1.6 Hz, 1H), 9.00(s,
1H), 8.39(s, 1H), 8.22(dd, J = 4.8, 2.0 Hz, 1H), 7.59(dd, J = 4.8, 2.0 Hz, 1H), 7.55(dd,
J = 3.6, 1.2 Hz, 1H), 7.46(m, 1H), 7.00(m, 3H), 6.77(s, 1H), 5.90(dd, J = 10.8, 2.4 Hz,
1H), 4.25(m, 1H), 3.85(m, 1H), 2.23-1.71(m, 6H).

[227]

단계 11:
N-(3-(3-(9H-퓨린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)사이아오펜-2-솔폰아
미드의 제조

[229] 상기 단계 10에서 제조한
N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-퓨린-6-일)피리딘-2-일
아미노)페닐)-4-(트리플로로페닐)벤젠솔폰아미드(20 mg, 0.035 mmol)에 1M 염산
수용액을 넣고 2시간 동안 환료 교반하였다. 반응 완료 후 탄산수소나트륨
수용액과 소금물로 씻어주고 에틸아세테이트로 추출하였다. 유기층을 무수
화산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여
목적물인
N-(3-(3-(9H-퓨린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)사이아오펜-2-솔폰아
미드를 14 mg(수율: 81 %) 얻었다.

[230] 1H NMR(400MHz, DMSO-d6): δ 11.68(bs, 1H), 9.62(bs, 1H), 8.99(s, 1H), 8.53(s,
1H), 8.14(m, 1H), 7.77(dd, J = 5.2, 1.2 Hz, 1H), 7.53(dd, J = 3.6, 1.2 Hz, 1H), 7.36(m,
1H), 7.08(m, 3H).

[231]

[232] <실시예 5>
N-(3-(3-(9H-퓨린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)프로판-1-솔폰아미
드의 제조

[233]

단계 1 내지 단계 9:
2,6-디플로로-N1-(3-(9-(테트라히드로-2H-피란-2-일)-9H-퓨린-6-일)피리딘-2-일)
벤젠-1,3-디아민의 제조
상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인 2,6-디필로로-N1-(3-(9-(테트라하이드로-2H-피란-2-일)9H-푸린-6-일)피리دين-2-일)벤젠-1,3-디아민을 제조하였다.

단계 10:
N-(2,4-디필로로-3-(9-(테트라하이드로-2H-피란-2-일)9H-푸린-6-일)피리دين-2-일 아미노)페닐)프로판-1-술폰아미드의 제조

d필로로메탄 용매에 상기 단계 9에서 제조한 2,6-디필로로-N-1-(3-(9-(테트라하이드로-2H-피란-2-일)9H-푸린-6-일)피리دين-2-일)벤젠-1,3-디아민(20 mg, 0.047 mmol)을 넣고 녹였다. 반응 용액에 1-프로판술폴닐 클로라이드(6 uL, 0.052 mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50 ℃에서 2시간 동안 교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 셋어주고 다필로로메탄으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 갑염 농축 후 질립크로마토그래프로 정제하여 목적물인 N-(2,4-디필로로-3-(9-(테트라하이드로-2H-피란-2-일)9H-푸린-6-일)피리دين-2-일 아미노)페닐)프로판-1-술폰아미드를 23 mg(수율: 94 %) 얻었다.

1H NMR(400MHz, CDCl₃): δ 11.65(s, 1H), 9.67(dd, J = 8.0, 1.6 Hz, 1H), 9.04(s, 1H), 8.41(s, 1H), 8.27(dd, J = 4.8, 1.6 Hz, 1H), 7.43(m, 1H), 7.01(m, 2H), 6.46(s, 1H), 5.91(dd, J = 10.8, 2.0 Hz, 1H), 4.24(m, 1H), 3.85(m, 1H), 3.11(m, 2H), 2.41-1.71(m, 8H), 1.07(t, J = 7.2 Hz, 3H).

단계 11:
N-(3-(3-(9H-푸린-6-일)피리دين-2-일아미노)-2,4-디필로로페닐)프로판-1-술폰아미드의 제조

상기 단계 10에서 제조한 N-(2,4-디필로로-3-(9-(테트라하이드로-2H-피란-2-일)9H-푸린-6-일)피리딘-2-일 아미노)페닐)프로판-1-술폰아미드(20 mg, 0.038 mmol)에 1M 염산 수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 셋어주고 에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 갑염 농축 후 질립크로마토그래프로 정제하여 목적물인 N-(3-(3-(9H-푸린-6-일)피리دين-2-일아미노)-2,4-디필로로페닐)프로판-1-술폰아미드를 15 mg(수율: 88 %) 얻었다.

1H NMR(400MHz, DMSO-d₆): δ 11.48(bs, 1H), 9.67(bs, 1H), 9.03(s, 1H), 8.55(s, 1H), 8.17(dd, J = 4.8, 1.6 Hz, 1H), 7.42(td, J = 8.8, 5.6 Hz, 1H), 7.07(m, 2H), 3.12(m, 2H), 1.89(m, 2H), 1.07(t, J = 7.2 Hz, 3H).

<실시예 6>
N-(3-(3-(9H-푸린-6-일)피리دين-2-일아미노)-2,4-디필로로페닐)-3,4-디클로로벤젠
산중작용하에서 단계 1의 단계 9에서 제조된
2,6-디플로로-N-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민을 사용하여 제조하였다.

단계 10:
3,4-디클로로-N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)페닐)벤젠 су플로아미드를 사용하여 제조한다.

단계 11:
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-3,4-디클로로벤젠су플로아미드의 제조

상기 단계 10에서 제조한
3,4-디클로로-N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)페닐)벤젠 су플로아미드(20 mg, 0.032 mmol)에 1M 염산
수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 씻어주고 에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-3,4-디클로로벤젠 슬폰아미드를 14 mg(수율: 81 %) 얻었다.

[256] 1H NMR (400MHz, DMSO-d6): δ 11.97 (bs, 1H), 11.14 (bs, 1H), 9.78 (d, J = 7.6 Hz, 1H), 9.47 (s, 1H), 9.14 (s, 1H), 8.37 (s, 1H), 8.31 (m, 1H), 7.97 (s, 1H), 7.67 (dd, J = 8.4, 2.0 Hz, 1H), 7.48 (m, 2H), 7.05 (m, 2H).

[257] <실시예 7>
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)벤조푸란-2-슬폰아미드의 제조

[259]

[260] 단계 1 내지 단계 9:
2,6-디플로로-N1-(3-((테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민의 제조

[261] 상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인 2,6-디플로로-N1-(3-(3-(9H-푸린-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민을 제조하였다.

[262]
[263] 단계 10:
N-(2,4-디플로로-3-(3-(9H-푸린-6-일)피리딘-2-일 아미노)페닐)벤조푸란-2-슬폰아미드의 제조

[264] 다클로로메탄 용매에 상기 단계 9에서 제조한 2,6-디플로로-N1-(3-(9H-푸린-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민(20 mg, 0.047 mmol), 2-벤조푸란슬폰닐 클로라이드(15 mg, 0.052 mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50 °C에서 2시간 동안 교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 씻어주고 다클로로메탄으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인
N-(2,4-디플로로-3-(3-(9H-푸린-2-일)-9H-푸린-6-일)피리딘-2-일
아민(페닐)벤조판란-2- су폰아미드를 26 mg(수용: 90%) 얻었다.

[265] ¹H NMR(400MHz, CDCl₃): δ 11.51(bs, 1H), 9.61(dd, J = 7.6, 2.0 Hz, 1H), 8.91(s, 1H), 8.39(s, 1H), 8.03(dd, J = 4.8, 2.0 Hz, 1H), 7.68-7.33(m, 7H), 6.94(m, 2H), 5.88(dd, J = 10.8, 2.4 Hz, 1H), 4.25(m, 1H), 3.84(m, 1H), 2.23-1.61(m, 6H).

[266] 단계 11:
N-(3-(3-(9H-푸란-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)벤조판란-2-술폰아미드의 제조

[268] 상기 단계 10에서 제조한
N-(2,4-디플로로-3-(3-(9-(데트라히드로-2H-피란-2-일)-9H-푸란-6-일)피리딘-2-일 아민)페닐)벤조판란-2-술폰아미드(20 mg, 0.033 mmol)에 1M 염산 수용액을 담고
2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로
셋여주고 에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로
건조하고 간압 농축 후 컬럼크로마토그래피로 정제하여 목적물인
N-(3-(3-(9H-푸란-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)벤조판란-2-술폰아미드를 14 mg(수용: 81%) 얻었다.

[269] ¹H NMR(400MHz, DMSO-d₆): δ 11.45(bs, 1H), 9.55(s, 1H), 8.87(s, 1H), 8.50(s, 1H), 7.89(dd, J = 5.2, 2.0 Hz, 1H), 7.74(d, J = 8.4 Hz, 1H), 7.58(d, J = 8.4 Hz, 1H), 7.51-7.31(m, 4H), 7.05(td, J = 9.2, 2.0 Hz, 1H), 6.93(dd, J = 7.6, 4.8 Hz, 1H).

[270] <실시예 8>
N-(3-(3-(9H-푸란-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-4-클로로-2-플로로
벤젠술폰아미드의 제조

[272]

[273] 단계 1 내지 단계 9:
2,6-디플로로-N-1-(3-(9-(데트라히드로-2H-피란-2-일)-9H-푸란-6-일)피리딘-2-일)
벤젠-1,3-디아민의 제조

[274] 상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인
2,6-디플로로-N-1-(3-(9-(데트라히드로-2H-피란-2-일)-9H-푸란-6-일)피리딘-2-일)
벤젠-1,3-디아민을 제조하였다.

[275] 단계 10:
4-클로로-N-(2,4-디플로로-3-(3-9(데트라히드로-2H-피란-2-일)-9H-푸틴-6-일)피리딘-2-일아미노)페닐)-2-플로로벤젠솔폰아미드의 제조

[277] 디플로로벤알 용매에 상기 단계 9에서 제조한 2,6-디플로로-N1-(3-(9(데트라히드로-2H-피란-2-일)-9H-푸틴-6-일)피리딘-2-일)벤젠-1,3-디아민(20 mg, 0.047 mmol), 4-클로로-2-플로로벤젠솔포닐 클로라이드(16 mg, 0.052 mmol)과 피리딘(8 uL, 0.094 mmol)을 넣고 50 ℃에서 2시간 동안 교반하였다. 반응 완료 후 분열플을 1N 염산 수용액과 소금물로 씻어주고 디플로로벤알로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인 4-클로로-N-(2,4-디플로로-3-(3-9(데트라히드로-2H-피란-2-일)-9H-푸틴-6-일)피리딘-2-일아미노)페닐)-2-플로로벤젠솔폰아미드를 26 mg(수율: 91 %) 얻었다.

[278] 'H NMR(400MHz, CDCl3): δ 11.52(bs, 1H), 9.62(dd, J = 8.0, 1.6 Hz, 1H), 8.99(s, 1H), 8.40(s, 1H), 8.17(dd, J = 4.8, 1.6 Hz, 1H), 7.74(m, 1H), 7.34(m, 1H), 7.22(m, 3H), 6.95(m, 2H), 5.90(dd, J = 10.4, 2.0 Hz, 1H), 4.23(m, 1H), 3.85(m, 1H), 2.23-1.67(m, 6H).

[279]

[280] 단계 11:
N-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-4-클로로-2-플로로
벤젠솔폰아미드의 제조

[281] 상기 단계 10에서 제조한 4-클로로-N-(2,4-디플로로-3-(3-9(데트라히드로-2H-피란-2-일)-9H-푸틴-6-일)피리딘-2-일아미노)페닐)-2-플로로벤젠솔폰아미드(20 mg, 0.032 mmol)에 1M 염산 수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물을 씻어주고 에틸아세테이트로 추출하였다. 유기층은 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인 N-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-4-클로로-2-플로로
벤젠솔폰아미드를 15 mg(수율: 88 %) 얻었다.

[282] 'H NMR(400MHz, DMSO-d6): δ 11.49(bs, 1H), 9.65(s, 1H), 8.99(s, 1H), 8.68(s, 1H), 8.10(d, J = 4.0 Hz, 1H), 7.71(t, J = 8.0 Hz, 1H), 7.44(d, J = 8.8 Hz, 1H), 7.13(m, 2H), 7.01(m, 1H).

[283]

[284] <실시예 9>
N-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-1-(2-니트로페닐)
메탄솔폰아미드의 제조

[285]
[286] 단계 1 내지 단계 9:
2,6-디플로로-3-(3-(9-자레트라히드로-2H-피란-2-일)-9H-루린-6-일)피리딘-2-일
벤젠-1,3-디아민의 제조

[287] 상기 실험에 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인
2,6-디플로로-3-(3-(9-자레트라히드로-2H-피란-2-일)-9H-루린-6-일)피리딘-2-일
벤젠-1,3-디아민을 제조하였다.

[288]

[289] 단계 10:
N-(2,4-디플로로-3-(3-(9-자레트라히드로-2H-피란-2-일)-9H-루린-6-일)피리딘-2-일
아미노)메탄올-1-(2-니트로페닐)메탄슬폰아미드의 제조

[290] 디클로로메탄 용매에 상기 단계 9에서 제조한
2,6-디플로로-3-(3-(9-자레트라히드로-2H-피란-2-일)-9H-루린-6-일)피리딘-2-일
벤젠-1,3-디아민(20 mg, 0.047 mmol), (2-니트로페닐)메탄슬폰 클로라이다(12
mg, 0.052 mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50 ºC에서 2시간 동안
교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 씻어주고
디클로로메탄으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고
감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인
N-(2,4-디플로로-3-(3-(9-자레트라히드로-2H-피란-2-일)-9H-루린-6-일)
아미노)메탄올-1-(2-니트로페닐)메탄슬폰아미드를 25 mg(수율: 87 %) 얻었다.

[291] 1H NMR (400MHz, CDCl3); δ 11.64 (bs, 1H), 9.65 (dd, J = 7.6, 1.6 Hz, 1H), 9.03 (s,
1H), 8.39 (s, 1H), 8.24 (m, 1H), 8.05 (m, 1H), 7.54 (m, 3H), 7.48 (m, 1H), 6.95 (m, 2H),
6.86 (s, 1H), 5.89 (dd, J = 10.4, 2.0 Hz, 1H), 4.99 (s, 2H), 4.22 (d, J = 10.4 Hz, 1H),
3.84 (m, 1H), 2.22-1.66 (m, 6H).

[292]

[293] 단계 11:
N-(3-(3-(9H-루린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-1-(2-니트로페닐)
메탄슬폰아미드의 제조

[294] 상기 단계 10에서 제조한
N-(2,4-디플로로-3-(3-(9-자레트라히드로-2H-피란-2-일)-9H-루린-6-일)피리딘-2-일
아미노)페닐-1-(2-니트로페닐)메탄슬폰아미드(20 mg, 0.032 mmol)에 1M 염산
수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨
수용액과 소금물로 셜어주고 에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인
N-(3-(3-(9H-프린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-1-(2-니트로페닐) 메탄 су론 아미드를 17 mg(수율: 87 %) 얻었다.

<실험 10>
N-(3-(3-(9H-프린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-3,4-디메톡시벤젠су론아미드의 제조

![그림]

 단계 1 내지 단계 9:
2,6-디플로로-N1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-프린-6-일)피리딘-2-일) 벤젠-1,3-디아민의 제조

단계 10:
N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-프린-6-일)피리딘-2-일 아미노)페닐)-3,4-디메톡시벤젠су론아미드의 제조

단계 10:
N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-프린-6-일)피리딘-2-일 아미노)페닐)-3,4-디메톡시벤젠су론아미드의 제조

디클로로벤젠 용매에 상기 단계 9에서 제조한
2,6-디플로로-N1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-프린-6-일)피리딘-2-일) 벤젠-1,3-디아민(20 mg, 0.047 mmol), 3,4-디메톡시벤젠су론포닐 클로라이드(12 mg, 0.052 mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50 ℃에서 2시간 동안
교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 셜어주고
디클로로벤젠으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조 하고
감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인
N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-프린-6-일)피리딘-2-일 아미노)페닐)-3,4-디메톡시벤젠су론아미드를 28 mg(수율: 96 %) 얻었다.
단계 11:

N-(3-(3-(9H-吖인-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-3,4-디메톡시벤젠
슬폰아미드의 제조

상기 단계 10에서 제조한
N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-吖란-2-일)-9H-吖인-6-일)피리딘-2-일
아미노)吖인)-3,4-디메톡시ベンゼンスルホニウム(20 mg, 0.032 mmol)에 1M 염산
수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨
수용액과 소금물로 씻어주고 에틸아세테이트로 추출하였다. 유기층을 무수
화산 마그네슘으로 건조하고 감압 농축 후 결림크로마토그래피로 정제하여
목적물인
N-(3-(3-(9H-吖인-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-3,4-디메톡시ベンゼン
슬폰아미드를 16 mg(수율: 16 mg) 얻었다.

<실험 11>

N-(3-(3-(9H-吖인-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)시클로헥산슬폰아
미드의 제조

단계 1 내지 단계 9:

2,6-디플로로-N1-(3-(9-(테트라하이드로-2H-吖란-2-일)-9H-吖인-6-일)피리딘-2-일)benhzen-1,3-디아민의 제조

상기 실험 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인
2,6-디플로로-N1-(3-(9-(테트라하이드로-2H-吖란-2-일)-9H-吖인-6-일)피리딘-2-일)benhzen-1,3-디아민을 얻었다.
단계 10:
N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)9H-푸린-6-일)피리딘-2-일 아미노)벤젠)-시클로헥산숨폰아미드의 제조

단계 9에서 제조한
2,6-디플로로-N1-(3-(9-(테트라히드로-2H-피란-2-일)9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민(20 mg, 0.047 mmol), 시클로헥산숨포닐 클로라이드(10 mg, 0.052 mmol)와 피리دين(8 uL, 0.094 mmol)을 넣고 50℃에서 2시간 동안 교반하였다.
반응 완료 후 반응물을 1N 염산 수용액과 소금물로 셋어주고 디플로로벤젠으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 꺼음 농축 후
킬럼크로마토그래피로 정제하여 목적물인
N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)9H-푸린-6-일)피리딘-2-일 아미노)벤젠)-시클로헥산숨폰아미드를 24 mg(수율: 91 %) 얻었다.

1H NMR(400MHz, CDCl3): δ 11.63(s, 1H), 9.67(dd, J = 8.0, 2.0 Hz, 1H), 9.04(s, 1H), 8.40(s, 1H), 8.26(dd, J = 4.8, 2.0 Hz, 1H), 7.45(m, 1H), 6.99(m, 2H), 6.46(s, 1H), 5.90(dd, J = 10.4, 2.4 Hz, 1H), 4.24(m, 1H), 3.85(m, 1H), 3.02(m, 1H), 2.23-1.23(m, 1H).

단계 11:
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로벤젠)-시클로헥산숨폰아미드의 제조

N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)9H-푸린-6-일)피리딘-2-일 아미노)벤젠)-시클로헥산숨폰아미드(20 mg, 0.035 mmol)에 1M 염산 수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 셋어주고 에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 꺼음 농축 후
킬럼크로마토그래피로 정제하여 목적물인
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로벤젠)-시클로헥산숨폰아미드를 15 mg(수율: 90 %) 얻었다.

1H NMR(400MHz, MeOD): δ 11.50(bs, 1H), 9.60(s, 1H), 9.03(s, 1H), 8.55(s, 1H), 8.18(dd, J = 4.8, 2.0 Hz, 1H), 7.43(m, 1H), 7.05(m, 2H), 3.05(m, 1H), 2.23(m, 2H), 1.89(m, 2H), 1.77-1.18(m, 6H).

<실시예 12>
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로벤젠)-4-(트리플로로메톡시)벤젠숨폰아미드의 제조

[321]
단계 1 내지 단계 9:
2,6-디플로로-N1-(3-(9-(데트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)
벤젠-1,3-디아민의 제조

상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인
2,6-디플로로-N1-(3-(9-(데트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)
벤젠-1,3-디아민을 얻었다.

단계 10:
N-(2,4-디플로로-3-(3-(9-(데트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)-4-(트리플로로메톡시)벤젠 су론아미드의 제조

디플로로메탄 용매에 상기 단계 9에서 제조한
2,6-디플로로-N1-(3-(9-(데트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)
벤젠-1,3-디아민(20 mg, 0.047 mmol), 4-(트리플로로메톡시)벤젠 су론 포닐
클로라이드(18 mg, 0.07 mmol)와 피리딘(8 mL, 0.094 mmol)을 넣고 50 ℃에서
2시간 동안 교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로
씻어주고 디플로로메탄으로 추출하였다. 유기층을 무수 황산 마그네슘으로
건조하고 감압 농축 후 클럼크로마토그래피로 정제하여 목적물인
N-(2,4-디플로로-3-(3-(9-(데트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일
아미노)페닐)-4-(트리플로로메톡시)벤젠 су론아미드를 26 mg(수율: 87 %)
얻었다.

1H NMR(400MHz, CDCl3): δ 11.51(s, 1H), 9.62(dd, J = 8.0, 1.6 Hz, 1H), 8.98(s,
1H), 8.39(s, 1H), 8.17(dd, J = 4.8, 2.0 Hz, 1H), 7.84(m, 2H), 7.40(m, 1H), 7.29(m,
2H), 6.97(m, 3H), 5.89(dd, J = 10.4, 2.0 Hz, 1H), 4.23(m, 1H), 3.85(m, 1H),
2.23-1.71(m, 6H).

단계 11:
N-(3-(3-(9H-푸린-6-일)피리딘-2-일 아미노)-2,4-디플로로페닐)-4-(트리플로로메
톡시)벤젠 су론아미드의 제조

상기 단계 10에서 제조한
N-(2,4-디플로로-3-(3-(9-(데트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일
아미노)페닐)-4-(트리플로로메톡시)벤젠 су론아미드(20 mg, 0.031 mmol)에 1M
염산 수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 씻어주고 에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인 N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-4-(트리플로로메틸)벤젠 су플론아미드를 16 mg(수용: 89 %) 얻었다.

\[\text{H NMR (400 MHz, DMSO-}d_6\text{):} \delta 11.43(\text{bs, 1H}), 9.63(\text{m, 1H}), 8.98(\text{s, 1H}), 8.71(\text{s, 1H}), 8.13(\text{dd, J = 4.8, 2.0 Hz, 1H}), 7.85(\text{d, J = 8.4 Hz, 2H}), 7.57(\text{d, J = 8.4 Hz, 2H}), 7.13(\text{m, 2H}), 7.02(\text{m, 1H}). \]

<실시 예 13>
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-4-플로로-2-(트리플로로메틸)벤젠 су플론아미드의 제조

\[
\begin{align*}
\text{단계 1 내지 단계 9:} \\
\text{2,6-디플로로-N1-(3-(9-(트레트라히드로-2H-피린-2-일)-9H-푸린-6-일)피리딘-2-일)ベンゼン-1,3-디아미드의 제조} \\
\text{단계 10:} \\
\text{N-(2,4-디플로로-3-(3-(9-(트레트라히드로-2H-피린-2-일)-9H-푸린-6-일)피리딘-2-일아미노)벤젠)-4-플로로-2-(트리플로로메틸)벤젠 су플론아미드의 제조}
\end{align*}
\]

디플로로메탄 용매에 상기 단계 9에서 제조한 2,6-디플로로-N1-(3-(9-(트레트라히드로-2H-피린-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민(20 mg, 0.047 mmol), 4-플로로-2-(트리痹로로메틸)벤젠 су플론필 클로라이드(18 mg, 0.07 mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50 ℃에서 2시간 동안 교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 씻어주고 디플로로메탄으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인 N-(2,4-디플로로-3-(3-(9-(트레트라히드로-2H-피린-2-일)-9H-푸린-6-일)피리딘-2-일
아미노)페닐)-4-플로로-2-(트리플로로메틸)벤젠솔폰아미드를 27 mg(수율: 89 %) 얻었다.

\[\text{1H NMR (400MHz, CDCl\textsubscript{3}); } \delta 11.45(s, 1H), 9.59(dd, J = 7.6, 1.6 Hz, 1H), 8.96(s, 1H), 8.37(s, 1H), 8.12(dd, J = 4.8, 1.6 Hz, 1H), 8.00(dd, J = 9.2, 5.6 Hz, 1H), 7.56(dd, J = 9.2, 2.8 Hz, 1H), 7.39(m, 1H), 7.40(m, 1H), 7.26(m, 2H), 6.87(s, 1H), 5.87(dd, J = 10.4, 2.0 Hz, 1H), 4.20(m, 1H), 3.82(m, 1H), 2.21-1.62(m, 6H). \]

단계 11:
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-4-플로로-2-(트리플로로메틸)벤젠솔폰아미드의 제조

\[\text{상기 단계 10에서 제조한 } \]
N-(2,4-디플로로-3-(3-(9H-푸린-2H-하이드로-2H-피린-2-일)-9H-푸린-6-일)피리딘-2-일아미노)페닐)-4-플로로-2-(트리플로로메틸)벤젠솔폰아미드(20 mg, 0.031 mmol)에 1M 염산 수용액을 넣고 2시간 동안 완전 혼합하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 씻어주고 에틸아세테이트로 추출하였다. 유효물을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-4-플로로-2-(트리플로로메틸)벤젠솔폰아미드를 16 mg(수율: 90 %) 얻었다.

\[\text{1H NMR (400MHz, DMSO-d\textsubscript{6}); } \delta 11.45(bs, 1H), 9.64(s, 1H), 8.99(s, 1H), 8.71(s, 1H), 8.14(m, 1H), 8.06(m, 1H), 7.89(m, 1H), 7.71(m, 1H), 7.02(m, 3H). \]

<실시예 14>
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-3-클로로-2-메틸벤젠솔폰아미드의 제조

단계 1 내지 단계 9:
2,6-디플로로-N1-(3-(9H-푸린-2H-하이드로-2H-피린-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민의 제조

상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인
단계 10:
3-클로로-N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)-페닐)-2-메틸벤젠 су폰아미드의 제조

디클로로메탄 용매에 상기 단계 9에서 제조한 2,6-디플로로-N1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민(20 mg, 0.047 mmol), 3-클로로-2-메틸벤젠-1-술폴닐 클로라이드(16 mg, 0.07 mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50℃에서 2시간 동안 교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 셋어주고 디클로로메탄으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인 3-클로로-N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)-페닐)-2-메틸벤젠 су폰아미드를 26 mg(수율: 90 %) 얻었다.

1H NMR(400MHz, CDCl3): δ 11.53(s, 1H), 9.61(dd, J = 7.6, 1.6 Hz, 1H), 8.98(s, 1H), 8.37(s, 1H), 8.20(dd, J = 4.8, 2.0 Hz, 1H), 7.88(d, J = 8.0 Hz, 1H), 7.56(d, J = 8.0 Hz, 1H), 7.21(m, 2H), 7.04(s, 1H), 6.90(m, 2H), 5.88(dd, J = 10.4, 2.4 Hz, 1H), 4.20(m, 1H), 3.83(m, 1H), 2.73(s, 3H), 2.21-1.66(m, 6H).

단계 11:
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-3-클로로-2-메틸벤젠 су폰아미드의 제조

상기 단계 10에서 제조한 3-클로로-N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)-페닐)-2-메틸벤젠 су폰아미드(20 mg, 0.033 mmol)에 1M 염산 수용액을 넣고 2시간 동안 친류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 셋어주고 에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인 N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-3-클로로-2-메틸벤젠 су폰아미드를 15 mg(수율: 86 %) 얻었다.

1H NMR(400MHz, DMSO-d6): δ 11.44(bs, 1H), 9.63(s, 1H), 8.99(s, 1H), 8.71(s, 1H), 8.13(dd, J = 4.4, 1.6 Hz, 1H), 7.76(d, J = 8.0 Hz, 1H), 7.72(d, J = 8.0 Hz, 1H), 7.37(t, J = 8.0 Hz, 1H), 7.10(m, 2H), 7.01(m, 1H), 2.65(s, 3H).

<실시예 15>
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)푸란-2-수폰아미드의 제조
[364] 단계 1 내지 단계 9: 2,6-디플로로-N1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민의 제조

[366]

[368] 디클로로메탄 용매에 상기 단계 10에서 제조한 2,6-디플로로-N1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민(20 mg, 0.047 mmol), 푸란-2-솔폰.nil 클로로이드(12 mg, 0.07 mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50 ℃에서 2시간 동안 교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 쌓여주고 디클로로메탄으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 건조 청축 후 컬럼크로마토그래피로 정제하여 목적물인 N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)푸란-2-솔폰아미드를 24 mg(수율: 94 %) 얻었다.

[369] 1H NMR(400MHz, CDCl3): δ 11.54(s, 1H), 9.63(dd, J = 7.6, 1.6 Hz, 1H), 8.98(s, 1H), 8.38(s, 1H), 8.23(dd, J = 4.8, 2.0 Hz, 1H), 7.54(m, 1H), 7.34(m, 1H), 7.17(s, 1H), 6.96(m, 3H), 6.45(dd, J = 3.6, 2.0 Hz, 1H), 5.88(dd, J = 10.4, 2.0 Hz, 1H), 4.21(m, 1H), 3.83(m, 1H), 2.21-1.71(m, 6H).

[370]

[371] 단계 11: N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)푸란-2-솔폰아미드의 제조

[372] 상기 단계 10에서 제조한 N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)푸란-2-솔폰아미드(20 mg, 0.036 mmol)에 1M 염산 수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로
세트어서고 아밀아세테이트로 추출하였다. 유기층을 수수 황산 마그네슘으로 건조하고 강압 농축 후 컬럼크로마토그래피로 정제하여 목적물인 N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)푸린-2-술폴아미드를 15 mg(수율: 88 %) 얻었다.

[373] 1H NMR (400MHz, DMSO-d6); δ 11.51(bs, 1H), 10.55(s, 1H), 9.67(s, 1H), 9.05(s, 1H), 8.72(s, 1H), 8.19(dd, J = 4.8, 1.6 Hz, 1H), 7.07(m, 4H), 6.65(s, 1H).

[374] <실시예 16>
메틸-3-(N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐) 숏프모일) 씨오펜-2-카르복실레이트의 제조

[376]

[377] 단계 1 내지 단계 9;
2,6-디플로로-N1-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민의 제조

[379] 단계 10:
메틸-3-(N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)페닐) 숏프모일) 씨오펜-2-카르복실레이트의 제조

[381] 디클로로매탄 용매에 상기 단계 9에서 제조한 2,6-디플로로-N1-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리دين-2-일)벤젠-1,3-디아민(20 mg, 0.047 mmol), 메틸-3-(클로로술폴난) 씨오펜-2-카르복실레이트(17 mg, 0.07 mmol)와 피리딘(8 μL, 0.094 mmol)을 넣고 50 ºC에서 2시간 동안 교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 씻어주고 디클로로매탄으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 강압 농축 후 컬럼크로마토그래피로 정제하여 목적물인 메틸-3-(N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)페닐) 숏프모일) 씨오펜-2-카르복실레이트를 25 mg(수율: 86 %) 얻었다.
[382] 1H NMR (400MHz, CDCl3): δ 11.47 (s, 1H), 9.61 (dd, J = 7.6, 1.6 Hz, 1H), 8.99 (s, 1H), 8.57 (s, 1H), 8.38 (s, 1H), 8.19 (dd, J = 4.8, 2.0 Hz, 1H), 7.46 (m, 3H), 6.97 (m, 2H), 5.89 (dd, J = 10.4, 2.4 Hz, 1H), 4.23 (m, 1H), 3.93 (s, 3H), 3.85 (m, 1H), 2.23-1.61 (m, 6H).

[383]

[384] 단계 11:
메틸-3-(N-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)슬파모일)씨오펜-2-카르복실에이트의 제조

[385] 상기 단계 10에서 제조한
메틸-3-(N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)페닐)슬파모일)씨오펜-2-카르복실에이트 (20 mg, 0.032 mmol)에 1M 염산 수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후
탄산수소나트륨 수용액과 소금물로 셋어주고 에틸아세테이트로 추출하였다.
유기층을 무수 황산 마그네슘으로 건조하고 강압 농축 후
클럼크로마토그래피로 정제하여 목적물인
메틸-3-(N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)슬파모일)씨오펜-2-카르복실에이트를 15 mg (수율: 87%) 얻었다.

[386] 1H NMR (400MHz, DMSO-d6): δ 11.47 (bs, 1H), 9.64 (s, 1H), 9.00 (s, 1H), 8.71 (s, 1H), 8.15 (dd, J = 4.8, 1.6 Hz, 1H), 7.96 (d, J = 5.2 Hz, 1H), 7.39 (d, J = 5.2 Hz, 1H), 7.15 (m, 2H), 7.02 (m, 1H), 3.84 (s, 3H).

[387]

[388] <실시예 17>
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)씨오펜-3-슬폰아미드의 제조

[389]

[390] 단계 1 내지 단계 9:
2,6-디플로로-N1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민의 제조

[391] 상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인
2,6-디플로로-N1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민을 얻었다.

[392]
단계 10:
N-(2,4-디플로로-3-(3-(9H-테트라하이드로-2H-피란-2-읷)-9H-푸린-6-읷)피리딘-2-읷 아미노)페닐)-3- су폴아미드의 제조

단계 9에서 제조한 2,6-디플로로-N1-(3-(9H-테트라하이드로-2H-피란-2-읷)-9H-푸린-6-.EventQueue)벤젠-1,3-디아민(20 mg, 0.047 mmol), 세오푼-3-스플론 클로라이드(13 mg, 0.07 mmol)와 페릴린(8 uL, 0.094 mmol)을 넣고 50 ℃에서 2시간 동안 교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 셋어주고 다이클로메탄으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적이인 N-(2,4-디플로로-3-(3-(9H-테트라하이드로-2H-피란-2-읷)-9H-푸린-6-.EventQueue)피리딘-2-읷 아미노)페닐)-3- су폴아미드를 25 mg(수율: 94 %) 얻었다.

1H NMR(400MHz, CDCl3): δ 11.51(s, 1H), 9.61(dd, J = 8.0, 2.0 Hz, 1H), 8.98(s, 1H), 8.37(s, 1H), 8.21(dd, J = 4.8, 2.0 Hz, 1H), 7.90(dd, J = 3.2, 1.2 Hz, 1H), 7.38(m, 2H), 7.26(m, 2H), 6.95(m, 2H), 6.75(s, 1H), 5.88(dd, J = 10.4, 2.4 Hz, 1H), 4.22(m, 1H), 3.83(m, 1H), 2.21-1.71(m, 6H).

단계 11:
N-(3-(3-(9H-푸린-6-Hashtable) 피리딘-2-Hashtable 아미노)-2,4-디플로로페닐)-3-스플론 아미드의 제조

단계 10에서 제조한 N-(2,4-디플로로-3-(3-(9H-테트라하이드로-2H-피란-2-Hashtable)-9H-푸린-6-Hashtable)피리딘-2-Hashtable 아미노)페닐)-3-스플론 아미드(20 mg, 0.035 mmol)에 1M 염산 수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 셋어주고 에틸아세테일트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적이인 N-(3-(3-(9H-푸린-6-Hashtable)피리딘-2-Hashtable 아미노)-2,4-디플로로페닐)-3-스플론 아미드를 14 mg(수율: 85 %) 얻었다.

1H NMR(400MHz, DMSO-d6): δ 11.45(bs, 1H), 9.61(bs, 1H), 9.00(s, 1H), 8.70(s, 1H), 8.17(d, J = 4.4 Hz, 1H), 8.09(m, 1H), 7.74(m, 1H), 7.29(d, J = 5.2 Hz, 1H), 7.14(m, 2H), 7.03(m, 1H).

<실시 예 18>
N-(3-(3-(9H-푸린-6-Hashtable) 피리딘-2-Hashtable 아미노)-2,4-디플로로페닐)푸린-3-스플론 아미드의 제조
[403] 단계 1 내지 단계 9:
2,6-디플로로-N1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민의 제조

[404] 상기 실험에 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인
2,6-디플로로-N1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민을 얻었다.

[405]

[406] 단계 10:
N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)푸란-3-슬폰아미드의 제조

[407] 디클로로벤젠 용매에 상기 단계 10에서 제조한
2,6-디플로로-N1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민(20 mg, 0.047 mmol), 푸란-3-슬폰닐 클로라이드(12 mg, 0.07 mmol)와 피리딘(8 µL, 0.094 mmol)을 넣고 50 ºC에서 2시간 동안 교반하였다. 반응 완료 후 반응물을 IN 염산 수용액과 소금물로 씻어주고 디클로로벤젠으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 갈압 농축 후 컬럼크로마토그래피로 정제하여 목적물인
N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)푸란-3-슬폰아미드를 23 mg(수율: 89 %) 얻었다.

[408] ¹H NMR(400MHz, CDCl₃); δ 11.53(s, 1H), 9.62(dd, J = 8.0, 1.6 Hz, 1H), 8.99(s, 1H), 8.38(s, 1H), 8.22(dd, J = 4.8, 2.0 Hz, 1H), 7.86(s, 1H), 7.40(m, 2H), 6.97(m, 2H), 6.77(s, 1H), 6.57(s, 1H), 5.88(dd, J = 10.4, 2.4 Hz, 1H), 4.21(m, 1H), 3.83(m, 1H), 2.21-1.66(m, 6H).

[409]

[410] 단계 11:
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)푸란-3-슬폰아미드
의 제조

[411] 상기 단계 10에서 제조한
N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)푸란-3-슬폰아미드(20 mg, 0.036 mmol)에 1M 염산 수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로
셋어주고 에틸아세테이트로 추출하였다. 유키충을 무수 황산 마그네슘으로
건조하고 강압 농축 후 컬럼크로마토그래피로 정제하여 목표물인
N-(3-(3-(9H-푸란-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)푸란-3- су론아미드
를 16 mg(수율: 92%) 얻었다.

[412] ¹H NMR (400 MHz, DMSO-d₆): δ 11.49 (bs, 1H), 9.61 (m, 1H), 8.98 (s, 1H), 8.66 (s, 1H), 8.17 (m, 2H), 7.79 (m, 1H), 7.08 (s, 4H), 6.64 (s, 1H).

[413] <실시예 19>
N-(3-(3-(9H-푸란-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)시클로프로판 су론
아미드의 제조

[415]

[416] 단계 1 내지 단계 9:
2,6-디플로로-N1-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸란-6-일)피리딘-2-일)
벤젠-1,3-디아민의 제조

[417] 상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목표물인
2,6-디플로로-N1-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸란-6-일)피리딘-2-일)
벤젠-1,3-디아민을 얻었다.

[418] 단계 10:
N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸란-6-일)피리딘-2-일
아미노)페닐)시클로프로판 су론아미드의 제조

[420] 디클로로메탄 용매에 상기 단계 9에서 제조한
2,6-디플로로-N1-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸란-6-일)피리딘-2-일)
벤젠-1,3-디아민 (20 mg, 0.047 mmol), 시클로프로판 су론필 클로라이드 (10 mg, 0.052 mmol)와 피리딘 (8 μL, 0.094 mmol)을 넣고 50 ℃에서 2시간 동안
교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 씻어주고
디클로로메탄으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고
강압 농축 후 컬럼크로마토그래피로 정제하여 목표물인
N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸란-6-일)피리딘-2-일
아미노)페닐)시클로프로판 су론아미드를 24 mg(수율: 96%) 얻었다.

[421] ¹H NMR (400 MHz, CDCl₃): δ 11.63 (bs, 1H), 9.67 (dd, J = 7.6, 1.6 Hz, 1H), 9.04 (s, 1H), 8.41 (s, 1H), 8.25 (dd, J = 4.8, 1.6 Hz, 1H), 7.43 (m, 1H), 7.02 (m, 2H), 6.47 (s, 1H),
5.91(dd, J = 10.4, 2.0 Hz, 1H), 4.23(m, 1H), 3.85(m, 1H), 2.53(m, 1H) 2.24-1.71(m, 6H), 1.20(m, 2H), 1.17(m, 2H).

단계 11:
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)시클로프로판슐론 아미드의 제조

상기 단계 10에서 제조한 N-(2,4-디플로로-3-(3-((9-(테트라하이드로-2H-피란-2-일))9H-푸린-6-일)피리딘-2-일 아미노)페닐)시클로프로판슐론 아미드(20 mg, 0.038 mmol)에 1M 염산 수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 씻어주고 에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 캡슐 농축 후 컬럼크로마토그래피로 정제하여 목표물인 N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)시클로프로판슐론 아미드를 13 mg(수율: 79 %) 얻었다.

^1H NMR(400MHz, DMSO-d_6): δ 11.7(bs, 1H), 9.66(m, 1H), 9.03(s, 1H), 8.71(s, 1H), 8.20(m, 1H), 7.30(m, 1H), 7.03(dd, J = 8.0, 4.8 Hz, 1H), 2.64(m, 1H), 0.90(m, 1H).

<설시례 20>
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-2,4-디메틸싸아졸-5- су플론아미드의 제조

단계 1 내지 단계 9:
2,6-디플로로-N1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일) 벤젠-1,3-디아민의 제조

상기 설시례 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목표물인 2,6-디플로로-N1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일) 벤젠-1,3-디아민을 얻었다.

단계 10:
N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)-2,4-디메틸싸아졸-5-су플론아미드의 제조
디클로로메탄 용매에 상기 단계 9에서 제조한 2,6-디클로로-N-1-(3-9-(테트라하드로-2H-피라린-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠, 1,3-디아민(20 mg, 0.047 mmol), 2,4-디메틸씨아이졸-5-소폰닐 클로라이드(12 mg, 0.07 mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50 ℃에서 1시간 동안 교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 씻어주고 디클로로메탄으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 잔 액 후 컬럼크로마토그래피로 정제하여 목적물인 N-(2,4-디클로로-3-(3-9-(테트라하드로-2H-피라린-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)폐닐)-2,4-디메틸씨아이зол-5-소폰닐아미드를 25 mg(수율: 87%) 얻었다.

1H NMR(400MHz, CDCl3); δ 11.53(s, 1H), 9.63(dd, J = 8.0, 1.6 Hz, 1H), 9.02(s, 1H), 8.39(s, 1H), 8.25(dd, J = 4.4, 1.6 Hz, 1H), 7.43(m, 1H), 7.00(m, 3H), 5.90(dd, J = 10.4, 2.4 Hz, 1H), 4.24(m, 1H), 3.85(m, 1H), 2.64(s, 3H), 2.49(s, 3H), 2.24-1.73(m, 6H).

단계 11:
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디클로로페닐)-2,4-디메틸씨아이솔-5-소폰닐아미드의 제조

상기 단계 10에서 제조한 N-(2,4-디클로로-3-(3-9-(테트라하드로-2H-피라린-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)폐닐)-2,4-디메틸씨아이зол-5-소폰닐아미드(20 mg, 0.033 mmol)에 1M 염산 수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 씻어주고 에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 잔 액 후 컬럼크로마토그래피로 정제하여 목적물인 N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디클로로페닐)-2,4-디메틸씨아이зол-5-소폰닐아미드를 15 mg(수율: 91%) 얻었다.

1H NMR(400MHz, DMSO-d6); δ 13.86(s, 1H), 11.49(s, 1H), 10.50(s, 1H), 9.66(d, J = 6.4 Hz, 1H), 9.02(s, 1H), 8.72(s, 1H), 8.19(dd, J = 4.8, 2.0 Hz, 1H), 7.19(m, 2H), 7.04(dd, J = 8.0, 4.8 Hz, 1H), 2.60(s, 3H), 2.34(s, 3H).

<설시예 21>
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디클로로페닐)모르포린-4-소폰닐아미드의 제조

[441]
단계 1 내지 단계 9:
2,6-디플로로-N1-(3-(9-(테트라하드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민의 제조

상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인
2,6-디플로로-N1-(3-(9-(테트라하드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민을 얻었다.

단계 10:
N-(2,4-디플로로-3-(3-(9-(테트라하드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)모르포린-4- су름아미드의 제조

디클로로메탄 용매에 상기 단계 9에서 제조한
2,6-디플로로-N1-(3-(9-(테트라하드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민(50 mg, 0.120 mmol), 모르포린-4-су름 네일 블로라이드(24 mg, 0.130 mmol)와 피리딘(11 uL, 0.130 mmol)을 넣고 50 ℃에서 1시간 동안 교반하였다.
반응 완료 후 반응물을 1N 염산 수용액과 소금물로 씻어주고 디클로로메탄으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인
N-(2,4-디플로로-3-(3-(9-(테트라하드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)모르포린-4-су름아미드를 59 mg(수율: 86 %) 얻었다.

1H NMR(400MHz, CDCl3): δ 11.62(s, 1H), 9.66(dd, J = 8.0, 1.6 Hz, 1H), 9.05(s, 1H), 8.40(s, 1H), 8.30(dd, J = 4.4, 1.6 Hz, 1H), 7.43(m, 1H), 7.02(m, 2H), 6.58(bs, 1H), 5.91(dd, J = 10.4, 2.4 Hz, 1H), 4.24(m, 1H), 3.85(m, 1H), 3.71(m, 2H), 3.28(m, 2H), 2.23-1.73(m, 6H).

단계 11:
N-(3-(3-(9H-푸린-6-일)피리딘-2-일 아미노)-2,4-디플로로페닐)모르포린-4- су름아미드의 제조

상기 단계 10에서 제조한
N-(2,4-디플로로-3-(3-(9-(테트라하드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)모르포린-4-су름아미드(12 mg, 0.020 mmol)에 1M 염산 수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과
소금물로 씻어주고 에틸아세테이트로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인 N-(3-(3-(9H-프린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-로포린-4-솔폰아미드를 9 mg(수율: 94 %) 얻었다.

\[451\] \(^1\text{H NMR}(400\text{MHz}, \text{DMSO-d}_6): \delta 13.86(\text{s}, 1\text{H}), 11.55(\text{s}, 1\text{H}), 9.65(\text{s}, 1\text{H}), 9.02(\text{s}, 1\text{H}), 8.71(\text{s}, 1\text{H}), 8.20(\text{dd}, J = 4.8, 2.0 \text{Hz}, 1\text{H}), 7.33(\text{m}, 1\text{H}), 7.18(\text{m}, 1\text{H}), 7.04(\text{m}, 1\text{H}), 3.65(\text{m}, 2\text{H}), 3.12(\text{m}, 2\text{H}).

\[453\] <실시예 22>
N-(3-(3-(9H-프린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-1-메틸-1H-이미다졸-4-솔폰아미드의 제조

\[454\]

\[455\] 단계 1 내지 단계 3: 터서리-부틸-3-아미노-2,6-디플로로페닐카바미드의 제조
\[456\] 상기 실시예 1의 단계 1 내지 단계 3과 동일한 방법으로 수행하여 목적물인 터서리-부틸-3-아미노-2,6-디플로로페닐카바미드를 제조하였다.

\[457\]

\[458\] 단계 4:
터서리-부틸-2,6-디플로로-3-(1-메틸-1H-이미다졸-4-솔폰아미도)페닐카바미드의 제조

\[459\] 디플로로페닐 용매에 상기 단계 3에서 제조한 터서리-부틸-3-아미노-2,6-디플로로페닐카바미드(50 mg, 0.20 mmol)을 넣고 농축하였다. 반응 용액에 1-메틸-1H-이미다졸-4-솔폰릴 클로라이드(44 \text{uL}, 0.25 mmol)와 피리딘(50 \text{uL}, 0.61 mmol)을 넣고 50℃에서 2시간 동안 교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 씻어주고 디클로로메탄으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인 터서리-부틸-2,6-디플로로-3-(1-메틸-1H-이미다졸-4-솔폰아미도)페닐카바미드를 74 mg(수율: 95 %) 얻었다.

\[460\] \(^1\text{H NMR}(400\text{MHz}, \text{DMSO-d}_6): \delta 9.96(\text{bs}, 1\text{H}), 8.82(\text{s}, 1\text{H}), 7.78(\text{s}, 1\text{H}), 7.68(\text{s}, 1\text{H}), 7.17(\text{m}, 1\text{H}), 7.03(\text{m}, 1\text{H}), 3.25(\text{s}, 3\text{H}), 1.40(\text{s}, 9\text{H}).

\[462\] 단계 5: N-(3-아미노-2,4-디플로로페닐)-1-메틸-1H-이미다졸-4-솔폰아미드의
제조

[463] 에틸아세테이트 용매에 상기 단계 4에서 제조한
티서리-부틸-2,6-디플로로-3-(1-메틸-1H-이미다졸-4-슬폰아미드)페닐카바메이트
(67 mg, 0.17 mmol)를 넣고 하이드로겐 클로라이드(4M solution in 1,4-dioxane)를
가하여 심은에서 5시간 동안 교반하였다. 반응 종료 후 용매를 농축하여 감압
여과 후 남은 고체를 디에틸 에테르와 핵산으로 씻어주고 건조하여 목적물인
N-(3-아미노-2,4-디플로로페닐)-1-메틸-1H-이미다졸-4-슬폰아미드를 55
mg(수율: 99 %) 얻었다.

[464] ¹H NMR(400MHz, CDCl₃): δ 7.49(s, 1H), 7.40(s, 1H), 6.96(bs, 1H), 6.90(m, 1H),
6.74(m, 1H), 3.72(s, 3H).

[465] 단계 6 및 단계 7:
6-(2-플로로피리딘-3-일)-9-(테트라하드로-2H-피란-2-일)-9H-푸린의 제조

[467] 상기 실험에 1의 단계 6 및 단계 7과 동일한 방법으로 수행하여 목적물인

[468] 단계 8:
N-(2,4-디플로로-3-(9-(테트라하드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일
아미노)페닐)-1-메틸-1H-이미다졸-4-슬폰아미드의 제조

[470] 상기 단계 5에서 제조한
N-(3-아미노-2,4-디플로로페닐)-1-메틸-1H-이미다졸-4-슬폰아미드(45 mg, 0.16
mmol)와 상기 단계 7에서 제조한
6-(2-플로로피리딘-3-일)-9-(테트라하드로-2H-피란-2-일)-9H-푸린(43 mg, 0.14
mmol)를 넣고 농축 후 0 ℃에서 레드(비스트리메틸실릴)아미드(1.0 M solution in
THF)를 천천히 가하였다. 반응물을 심은에서 1시간 동안 교반하고 반응 완료 후
물을 넣고 에틸아세테이트로 추출하였다. 유기층을 무수 황산마그네슘으로
건조하고 감압 농축한 후 글립크로마토그래피로 정제하여 목적물인
N-(2,4-디플로로-3-(9-(테트라하드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일
아미노)페닐)-1-메틸-1H-이미다졸-4-슬폰아미드를 65 mg(수율: 82 %) 얻었다.

[471] ¹H NMR(400MHz, DMSO-d₆): δ 11.37(d, J = 7.6 Hz, 1H), 9.97(s, 1H), 9.60(s, 1H),
9.09(d, J = 7.2 Hz, 1H), 8.97(d, J = 7.6 Hz, 1H), 8.20(s, 1H), 7.77(dd, J = 21.2, 6.4 Hz,
2H), 7.21(m, 1H), 7.06(m, 2H), 5.88(m, 1H), 4.15(m, 1H), 3.91(m, 1H), 3.67(s, 1H),
2.35-1.12(m, 6H).

[472] 단계 9:
N-(3-(9-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-1-메틸-1H-이미다
졸-4-슬폰아미드의 제조

[474] 상기 단계 8에서 제조한
N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)-1-메틸-1H-이미다졸-4-솔폰아미드(15 mg, 0.026 mmol)에 1M 염산 수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 씻어주고 에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 강압 농축 후 칼럼크로마토그래프로 정제하여 목적으로 N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-1-메틸-1H-이미다졸-4-솔폰아미드를 11 mg(수용: 88 %) 얻었다.

$$^1H\text{NMR}(400\text{MHz, DMSO-d}_6): \delta 11.52(\text{bs, 1H}), 9.71(\text{bs, 1H}), 9.03(\text{s, 1H}), 8.72(\text{s, 1H}), 8.18(d, J = 4.0 \text{ Hz, 1H}), 7.80(\text{s, 1H}), 7.66(\text{s, 1H}), 7.22(\text{m, 1H}), 7.10(\text{m, 1H}), 7.03(\text{m, 1H}), 3.68(\text{s, 3H}).$$

<실험 23>

N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-5-메틸퓨라-2-솔폰 아미드의 제조

단계 1 내지 단계 9:

2,6-디플로로-N-1-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일) 벤젠-1,3-디아민의 제조

상기 실험의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 2,6-디플로로-N-1-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일) 벤젠-1,3-디아민을 제조하였다.

단계 10:

N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)-5-메틸퓨라-2-솔폰아미드의 제조

디클로로메탄 용매에 상기 단계 9에서 제조한 2,6-디플로로-N-1-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일) 벤젠-1,3-디아민(50 mg, 0.120 mmol), 5-메틸퓨라-2-솔포닐 클로라이드(24 mg, 0.130 mmol)와 피리딘(11 uL, 0.130 mmol)을 넣고 50 ℃에서 1시간 동안 교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 씻어주고 디클로로메탄으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고
감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인 N-(2,4-디플로로-3-(3-(9-(테트라하민도)-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)-5-메틸퓨란-2-술론아미드를 58 mg(수율: 85%) 얻었다.

'H NMR(400MHz, CDCl3): δ 11.56(s, 1H), 9.65(dd, J = 7.6, 1.6 Hz, 1H), 9.01(s, 1H), 8.39(s, 1H), 8.25(dd, J = 4.8, 2.0 Hz, 1H), 7.38(m, 1H), 7.13(s, 1H), 7.00(m, 3H), 6.47(dd, J = 3.6, 2.0 Hz, 1H), 5.90(dd, J = 10.4, 2.0 Hz, 1H), 4.23(m, 1H), 3.85(m, 1H), 2.41(s, 3H), 2.24-1.84(m, 6H).

단계 11:
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-5-메틸퓨란-2-술론아미드의 제조

상기 단계 10에서 제조한 N-(2,4-디플로로-3-(3-(9-(테트라하민도)-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)-5-메틸퓨란-2-술론아미드(12 mg, 0.020 mmol)에 1M 염산 수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 씻어주고 에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물인 N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-5-메틸퓨란-2-술론아미드를 8 mg(수율: 81%) 얻었다.

'H NMR(400MHz, DMSO-d6): δ 13.88(bs, 1H), 11.53(bs, 1H), 10.52(s, 1H), 9.68(d, J = 7.2 Hz, 1H), 9.03(s, 1H), 8.73(s, 1H), 8.01(s, 1H), 7.07(m, 4H), 6.67(m, 1H), 2.63(s, 3H).

<실시예 24>
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-5-(1,3-다이옥실판
-2-일)퓨란-2-술론아미드의 제조

단계 1 내지 단계 9:
2,6-디플로로-N-1-(3-(9-(테트라하민도)-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민의 제조

상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 2,6-디플로로-N-1-(3-(9-(테트라하민도)-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)
벤젠-1,3-디아민을 제조하였다.

[494]

단계 10:
N-(2,4-디플로로-3-(3-(9-(테트라하드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)-5-(1,3-다이옥솔란-2-일)퓨란-2- су플로아미드의 제조

[496]

디플로로메탄 용매에 상기 단계 9에서 제조한 2.6-디플로로-N(3-(9-(테트라하드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민(50 mg, 0.120 mmol), 5-(1,3-다이옥솔란-2-일)퓨란-2- 슬포닐 클로라이드(24 mg, 0.130 mmol)와 피리딘(11 uL, 0.130 mmol)을 넣고 50 ℃에서 1시간 동안 교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 씻어주고 디플로로메탄으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 커티크로마토그래프리로 정제하여 목적물인 N-(2,4-디플로로-3-(3-(9-(테트라하드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)-5-(1,3-다이옥솔란-2-일)퓨란-2- су플로아미드를 71 mg(수율: 94 %) 얻었다.

[497] 1H NMR(400MHz, CDCl3): δ 11.54(s, 1H), 9.64(dd, J = 7.6, 1.6 Hz, 1H), 9.02(s, 1H), 8.40(s, 1H), 8.24(dd, J = 4.8, 2.0 Hz, 1H), 7.56(m, 1H), 7.42(m, 1H), 7.15(s, 1H), 6.98(m, 3H), 5.86(dd, J = 10.4, 2.0 Hz, 1H), 4.25(m, 1H), 4.05(m, 4H), 3.84(m, 1H), 2.21-1.71(m, 6H).

[498]

단계 11:
N-(3-(3-(9H-푸린-6-일)피리딘-2-일 아미노)-2,4-디플로로페닐)-5-(1,3-다이옥솔란- 2-일)퓨란-2- су플로아미드의 제조

[500]

상기 단계 10에서 제조한 N-(2,4-디플로로-3-(3-(9-(테트라하드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)-5-(1,3-다이옥솔란-2-일)퓨란-2- су플로아미드(12 mg, 0.020 mmol)에 1M 염산 수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물을 씻어주고 에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 커티크로마토그래프리로 정제하여 목적물인 N-(3-(3-(9H-푸린-6-일)피리딘-2-일 아미노)-2,4-디플로로페닐)-5-(1,3-다이옥솔란- 2-일)퓨란-2- су플로아미드를 9 mg(수율: 81 %) 얻었다.

[501] 1H NMR(400MHz, DMSO-d6): δ 11.51(bs, 1H), 10.54(s, 1H), 9.68(s, 1H), 9.07(s, 1H), 8.76(s, 1H), 8.19(dd, J = 4.8, 1.6 Hz, 1H), 8.03(s, 1H), 7.09(m, 4H), 4.12(m, 4H).

[502]

<실시예 25>
N-(3-(3-(9H-푸린-6-일)피리딘-2-일 아미노)-2,4-디플로로페닐)-2,5-다이메틸퓨란- 3- су플로아미드의 제조
단계 1 내지 단계 9:
2,6-디플로로-N-1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-다이아민의 제조

단계 10:
N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노페닐)-2,5-다이메틸퓨란-3-솔폰아미드의 제조

디클로로매탄 용매에 상기 단계 9에서 제조한 2,6-디플로로-N1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-다이아민(50 mg, 0.120 mmol), 2,5-다이메틸퓨란-3-솔폰이클로아이드(24 mg, 0.130 mmol)와 피리딘(11 uL, 0.130 mmol)을 넣고 50 ℃에서 1시간 동안 교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 수소물로 섞어주고 디클로로매탄으로 추출하였다. 유기물은 무수 황산 마그네슘으로 건조하고 갯압 농축 후 펄립코로마토그래피로 정제하여 목적물인 N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노페닐)-2,5-다이메틸퓨란-3-솔폰아미드를 64 mg(수율: 91%) 얻었다.

1H NMR(400MHz, CDCl3): δ 11.57(s, 1H), 9.65(dd, J = 8.0, 1.6 Hz, 1H), 9.02(s, 1H), 8.40(s, 1H), 8.25(dd, J = 4.4, 1.6 Hz, 1H), 7.42(s, 1H), 7.04(m, 2H), 6.69(s, 1H), 5.90(dd, J = 10.4, 2.4 Hz, 1H), 4.23(m, 1H), 3.85(m, 1H), 3.02(s, 3H), 2.73(s, 3H), 2.26-1.71(m, 6H).

단계 11:
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-2,5-다이메틸퓨란-3-솔폰아미드의 제조

단계 10에서 제조한 N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노페닐)-2,5-다이메틸퓨란-3-솔폰아미드(12 mg, 0.020 mmol)에 1M 염산 수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨
수용액과 소금물로 셋여주고 에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 갈매 농축 후 컬럼크로마토그래피로 정제하여 목적물인
N-(3-(9H-푸란-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-5-메틸-2-(트리플루오로메틸)퓨란-3-솔폰아미드를 9 mg(수율: 89 %) 얻었다.

[514] 1H NMR(400MHz, DMSO-d₆): δ 11.50(bs, 1H), 9.64(m, 1H), 9.02(s, 1H), 8.73(s, 1H), 8.18(m, 1H), 7.87(s, 1H), 7.15(m, 3H), 7.03(m, 1H), 3.11(s, 3H), 2.84(s, 3H).

[515]

<실시예 26>
N-(3-(9H-푸란-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-5-메틸-2-(트리플루오로메틸)퓨란-3-솔폰아미드의 제조

[518] 단계 1 내지 단계 9:
2,6-디플로로-N-1-(3-(9-(트리라히드로-2H-피란-2-일)-9H-푸란-6-일)피리딘-2-일)벤젠-1,3-디아민의 제조

[519] 상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여
2,6-디플로로-N-1-(3-(9-(트리라히드로-2H-피란-2-일)-9H-푸란-6-일)피리딘-2-일)벤젠-1,3-디아민을 제조하였다.

[520]

단계 10:
N-(2,4-디플로로-3-(9-(트리라히드로-2H-피란-2-일)-9H-푸란-6-일)피리딘-2-일 아미노)페닐)-5-메틸-2-(트리플루오로메틸)퓨란-3-솔폰아미드의 제조

[522] 디클로로메탄 용매에 상기 단계 9에서 제조한
2,6-디클로로-N1-(3-(9-(트리라히드로-2H-피란-2-일)-9H-푸란-6-일)피리딘-2-일)벤젠-1,3-디아민(50 mg, 0.120 mmol), 5-메틸-2-(트리플루오로메틸)퓨란-3-솔폰닐 클로라이드(24 mg, 0.130 mmol)와 피리딘(11 uL, 0.130 mmol)을 넣고 50 °C에서 1시간 동안 교반하였다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 셋여주고 디클로로메탄으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 갈매 농축 후 컬럼크로마토그래피로 정제하여 목적물인
N-(2,4-디플로로-3-(9-(트리라히드로-2H-피란-2-일)-9H-푸란-6-일)피리딘-2-일 아미노)페닐)-5-메틸-2-(트리플루오로메틸)퓨란-3-솔폰아미드를 72 mg(수율: 94 %) 얻었다.
[523] 1H NMR (400MHz, CDCl$_3$): δ 11.59(s, 1H), 9.66(dd, J = 8.0, 1.6 Hz, 1H), 9.10(s, 1H), 8.41(s, 1H), 8.31(dd, J = 4.4, 1.6 Hz, 1H), 7.56(s, 1H), 6.96(m, 2H), 6.78(s, 1H), 5.98(dd, J = 10.4, 2.4 Hz, 1H), 4.30(m, 1H), 3.91(m, 1H), 3.15(s, 3H), 2.26-1.71(m, 6H).

[524] 단계 11:
N-(3-(3-(9H-퓨린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-5-메틸-2-(트리플루오로메틸)퓨란-3-슬폰아미드의 제조

[525] 상기 단계 10에서 제조한
N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-퓨린-6-일)피리딘-2-일아미노)페닐)-5-메틸-2-(트리플루오로메틸)퓨란-3-슬폰아미드(12 mg, 0.020 mmol)에 1M 염산 수용액을 넣고 2시간 동안 환류 교반하였다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 셀어서 주고 에틸아세테이트로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로모그래피로 정제하여 목적물인
N-(3-(3-(9H-퓨린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-5-메틸-2-(트리플루오로메틸)퓨란-3-슬폰아미드를 9 mg(수율: 85%) 얻었다.

[526] 1H NMR (400MHz, DMSO-d$_6$): δ 11.66(bs, 1H), 9.61(m, 1H), 8.99(s, 1H), 8.71(s, 1H), 8.21(m, 1H), 7.76(s, 1H), 7.12(m, 3H), 6.87(m, 1H), 3.21(s, 3H).

[527] <실시예 27> N-(3-(3-(9H-퓨린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-2-클로로-6-메틸벤젠슬폰아미드의 제조

[530] 단계 1 내지 단계 9: 2,6-디플로로-N1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-퓨린-6-일)피리딘-2-일)벤젠-1,3-디아민의 제조

[531] 상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인
2,6-디플로로-N1-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-퓨린-6-일)피리딘-2-일)벤젠-1,3-디아민을 얻었다.

[532] 단계 10:
2-클로로-N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-퓨린-6-일)피
린-2-일아미노)페닐)-6-메틸벤젠黜폰아미드의 제조

[535] 디클로로메탄 용매에 상기 단계 9에서 제조한 2,6-디플로로-N
-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아미드(20 mg, 0.047 mmol), 2-클로로-6-메틸벤젠-1-솔포닐 클로라이드(16 mg, 0.07 mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50 ℃에서 2시간 교반한다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 쪼개어주고 디클로로메탄으로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 잎갑 농축 후 컬럼크로마토그래피로 정제하여 목적물을 얻었다.

[536] 'H NMR(400MHz, CDCl₃): δ 11.51(s, 1H), 9.62(dd, J = 7.6, 1.6 Hz, 1H), 8.98(s, 1H), 8.38(s, 1H), 8.18(dd, J = 4.8, 2.0 Hz, 1H), 7.58(s, 1H), 7.38(m, 3H), 7.17(d, J = 7.2 Hz, 1H), 6.93(m, 2H), 5.89(dd, J = 8, 2.4 Hz, 1H), 4.22(m, 1H), 3.84(m, 1H), 2.63(s, 3H), 2.21-1.70(m, 6H).

[537]

단계 11:
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-2-클로로-6-메틸벤젠黜폰아미드의 제조

[539] 상기 단계 10에서 제조한 2-클로로-N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)페닐)-6-메틸벤젠黜폰아미드(20 mg, 0.033 mmol)에 1M 염산 수용액을 넣고 2시간 환류 교반한다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 쪼개어주고 에틸아세테이트로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 잎갑 농축 후 컬럼크로마토그래피로 정제하여 목적물을 얻었다.

[540] 'H NMR(400MHz, DMSO-d₆): δ 12.17(bs, 1H), 11.53(s, 1H), 10.74(s, 1H), 9.78(d, J = 7.6 Hz, 1H), 9.21(s, 1H), 8.35(s, 1H), 8.32(d, J = 2.8 Hz, 1H), 8.10(d, J = 8.0 Hz, 1H), 7.71(d, J = 8.0 Hz, 1H), 7.50(m, 1H), 7.38(t, J = 8.0 Hz, 1H), 7.01(m, 2H), 2.64(s, 3H).

[541]

[542] <실시예 28> N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-
디플로로페닐)-3-클로로-4-플로로벤젠黜폰아미드의 제조

[543]

단계 1 내지 단계 9: 2,6-디플로로-N₁
(3-9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민의 제조

상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적이인 2,6-디플로로-N-(3-9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)벤젠-1,3-디아민을 얻었다.

단계 10:
3-클로로-N-(2,4-디플로로-3-3-9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)벤젠-4-플로로벤젠솜폰아미드의 제조

디클로로벤젠 용매에 상기 단계 9에서 제조한 2,6-디플로로-N1-(3-9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)벤젠-1,3-디아민(20 mg, 0.047 mmol), 3-클로로-4-플로로벤젠-1-솔포닐 클로라이드(16 mg, 0.07 mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50 ℃에서 2시간 교반한다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 셋여주고 디클로로벤젠으로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물을 얻었다.

1H NMR(400MHz, CDCl3): δ 11.55(s, 1H), 9.62(dd, J = 6.0, 1.6 Hz, 1H), 8.99(s, 1H), 8.39(s, 1H), 8.18(dd, J = 2.8, 2.0 Hz, 1H), 7.88(dd, J = 4.8, 2.0 Hz, 1H), 7.66(m, 1H), 7.38(m, 1H), 7.24(m, 1H), 7.02(m, 2H), 5.91(d, J = 2.0 Hz, 1H), 4.24(m, 1H), 3.86(m, 1H), 2.20-1.65(m, 6H).

단계 11:
N-(3-(3-9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-3-클로로-4-플로로벤젠솜폰아미드의 제조

상기 단계 10에서 제조한 3-클로로-N-(2,4-디플로로-3-3-9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)벤젠-4-플로로벤젠솜폰아미드(20 mg, 0.032 mmol)에 1M 염산 수용액을 넣고 2시간 환류 교반한다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 셋여주고 에틸아세테이트로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물을 얻었다.

1H NMR(400MHz, DMSO-d6): δ 12.15(bs, 1H), 11.42(s, 1H), 10.28(s, 1H), 9.77(dd, J = 6.4, 1.6 Hz, 1H), 9.19(s, 1H), 8.35(s, 1H), 8.30(dd, J = 2.8, 1.6 Hz, 1H), 8.16(dd, J = 6.4, 1.6 Hz, 1H), 7.50(m, 3H), 7.01(m, 2H).

<실시예 29> N-(3-(3-9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-3-클로로-2-플로로벤젠솜폰아미드의 제조
단계 9: 2,6-디플로로-N\(^1\)-\(\text{3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일}\)벤젠-1,3-디아민의 제조

상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인 2,6-디플로로-N\(^1\)-\(\text{3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일}\)벤젠-1,3-디아민을 얻었다.

단계 10:
3-클로로-N\(^1\)-\(\text{2,4-디플로로-3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일}\)알아미노)페닐-2-플로로벤젠 су프론아미드의 제조

디클로로메탄 용매에 상기 단계 9에서 제조한 2,6-디플로로-N\(^1\)-\(\text{3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일}\)벤젠-1,3-디아민(20 mg, 0.047 mmol), 3-클로로-2-플로로벤젠-1- су포닐 클로라이드(16 mg, 0.07 mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50 ℃에서 2시간 교반한다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 씻어주고 디클로로메탄으로 추출한다. 유키층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼 크로마토그래피로 정제하여 목적물을 얻었다.

\(^1\)H NMR(400MHz, CDCl\(_3\)): \(\delta\) 11.55(s, 1H), 9.63(m, 1H), 8.99(d, \(J = 6.0\) Hz, 1H), 8.39(d, \(J = 6.0\) Hz, 1H), 8.20(s, 1H), 7.72(m, 1H), 7.61(m, 1H), 7.30(m, 1H), 7.18(m, 1H), 6.94(m, 2H), 5.91(m, 1H), 4.23(d, \(J = 11.2\) Hz, 1H), 3.85(m, 1H), 2.19-1.72(m, 6H).

단계 11:
N\(^1\)-\(\text{3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐}\)-3-클로로-4-플로로벤젠 су프론아미드의 제조

상기 단계 10에서 제조한 3-클로로-N\(^1\)-\(\text{2,4-디플로로-3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)페닐}\)-2-플로로벤젠 су프론아미드(20 mg, 0.032 mmol)에 1M 염산 수용액을 넣고 2시간 환류 교반한다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 씻어주고 에틸아세테이트로 추출한다. 유키층을 무수 황산
마그네슘으로 건조하고 감압 농축 후 킬럼크로마토그래피로 정제하여 목적물을 얻었다.

\[1H NMR(400MHz, DMSO-d_6): \delta 11.47(brs, 1H), 9.63(brs, 1H), 9.00(s, 1H), 8.73(s, 1H), 8.15(m, 1H), 7.72(m, 1H), 7.65(m, 1H), 7.35(m, 1H), 7.08(m, 1H), 6.92(m, 2H). \]

<실시예 30> N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디포로로페닐)피리딘-3- суль폰아미드의 제조

단계 1 내지 단계 9: 2,6-디포로로-N¹-(3-(9H-테트라하드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 벤젠-1,3-다이아민의 제조

상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인 2,6-디포로로-N¹-(3-(9H-테트라하드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 벤젠-1,3-디아민을 얻었다.

단계 10:
N-(2,4-디포로로-3-(3-(9H-테트라하드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)피리딘-3-сульфон아미드의 제조

디클로로매탄 용매에 상기 단계 9에서 제조한 2,6-디포로로-N¹-(3-(9H-테트라하드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 벤젠-1,3-다이아민(20 mg, 0.047 mmol), 피리딘-3-сульфон 클로라이드(12 mg, 0.07 mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50 °C에서 2시간 교반한다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 씻어주고 디클로로매탄으로 추출한다. 유기층을 무수 황산 마그네슘으로 전조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물을 얻었다.

\[1H NMR(400MHz, CDCl_3): \delta 9.43(s, 1H), 8.89(m, 2H), 8.63(s, 1H), 8.34(m, 1H), 8.04(s, 2H), 7.36(m, 1H), 6.91(m, 2H), 5.79(m, 1H), 4.13(m, 1H), 3.50(m, 1H), 2.10-1.54(m, 6H). \]

단계 11:
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디포로로페닐)피리딘-3-сульфон아미드의 제조
상기 단계 10에서 제조한 N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)피리딘-3- су폰아미드(19 mg, 0.033 mmol)에 1M 염산 수용액을 넣고 2시간 환류 교반한다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 셋여주고 에틸아세테이트로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목록물을 얻었다.

1H NMR(400MHz, DMSO-d6): δ 11.41(s, 1H), 9.44(s, 1H), 9.09(s, 1H), 8.91(s, 1H), 8.57(s, 1H), 8.42(m, 2H), 8.03(m, 1H), 7.65(m, 2H), 7.36(m, 2H), 6.91(m, 1H).

<설시예 31> N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-2-메틸벤젠술폴아미드의 제조

단계 1 내지 단계 9; 2,6-디플로로-N1-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민의 제조

상기 설시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목록물을 2,6-디플로로-N1-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민을 얻었다.

단계 10:
N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)-2-메틸벤젠술폴아미드의 제조

디클로로메탄 용매에 상기 단계 9에서 제조한 2,6-디플로로-N1-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민(20 mg, 0.047 mmol), 2-메틸벤젠-1-슬포닐 클로라이드(13 mg, 0.07 mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50 ℃에서 2시간 교반한다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 셋여주고 디클로로메탄으로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목록물을 얻었다.

1H NMR(400MHz, CDCl3): δ 11.51(s, 1H), 9.63(dd, J = 6.0, 2.0 Hz, 1H), 8.99(s, 1H), 8.39(s, 1H), 8.21(dd, J = 3.2, 1.6 Hz, 1H), 7.94(d, J = 8.0 Hz, 1H), 7.46(m, 1H), 7.31(m, 4H), 7.03(s, 1H), 6.95(m, 3H), 5.89(dd, J = 8.4, 2.0 Hz, 1H), 4.22(m, 1H).
3.85(m, 1H), 2.69(s, 3H), 2.19-1.70(m, 6H).

[589] 단계 11:
N-(3-(3-(9H-프린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-2-메틸벤젠솔폰아미드의 제조

[591] 상기 단계 10에서 제조한
N-(2,4-디플로로-3-(3-(9H-프린-6-일)피리딘-2-일아미노)페닐)-2-메틸벤젠솔폰아미드(19 mg, 0.033 mmol)에 1M 염산 수용액을 넣고 2시간 환류 교반한다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 셋어주고 에틸아세테이트로 추출한다. 유기중을 무수 황산 마그네슘으로 건조하고 양액 농축 후 클림크로마토그래피로 정제하여 목적물을 얻었다.

[592] 1H NMR(400MHz, DMSO-d6); δ 11.42(s, 1H), 10.31(s, 1H), 9.75(m, 1H), 8.97(s, 1H), 8.59(s, 1H), 8.17(m, 1H), 7.75(m, 2H), 7.43(m, 3H), 7.03(m, 1H), 6.91(m, 1H), 5.91(m, 1H), 2.65(s, 3H).

[593] <실시예 32>
N-(3-(3-(9H-프린-6-일)피리딘-2-일아미노)-2,4-
디플로로페닐)-2-클로로벤젠솔폰아미드의 제조

[596] 단계 1 내지 단계 9; 2,6-디플로로-N1
-(3-(9H-프린-6-일)피리딘-2-일)-9H-프린-6-일)페닐벤젠-1,3-디아민
의 제조

[597] 상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인
2,6-디플로로-N1-(3-(9H-프린-6-일)페닐벤젠-1,3-디아민을 얻었다.

[598] 단계 10:
2-클로로-N-(2,4-디플로로-3-(3-(9H-프린-6-일)피리딘-2-일아미노)페닐)벤젠솔폰아미드의 제조

[600] 디클로로벤젠 용액에 상기 단계 9에서 제조한 2,6-디플로로-N1
-(3-(9H-프린-6-일)피리딘-2-일)-9H-프린-6-일)페닐벤젠-1,3-디아민(
20 mg, 0.047 mmol), 2-클로로벤젠-1- су포닐 클로라이드(15 mg, 0.07 mmol)와
피리딘(8 uL, 0.094 mmol)을 넣고 50 ℃에서 2시간 교반한다. 반응 완료 후
반응물을 1N 염산 수용액과 소금물로 셔어주고 디클로로메탄으로 추출한다.
유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후
킬럼크로마토그래피로 정제하여 목적물을 얻었다.

[601] 1H NMR (400MHz, CDCl3): δ 11.51 (s, 1H), 9.62 (dd, J = 6.4, 1.6 Hz, 1H), 8.98 (s, 1H), 8.39 (s, 1H), 8.19 (dd, J = 3.2, 1.6 Hz, 1H), 8.04 (m, 1H), 7.52 (m, 2H), 7.38 (m, 3H), 6.94 (m, 2H), 5.89 (dd, J = 8.0, 2.4 Hz, 1H), 4.23 (m, 1H), 3.85 (m, 1H), 2.19-1.70 (m, 6H).

[602] 단계 11:
N-(3-((3H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-2-클로로벤젠질론 아미드의 제조

[604] 상기 단계 10에서 제조한
2-클로로-N-(2,4-디플로로-3-(3-(9-(데트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)페닐)벤젠질론아미드(20 mg, 0.033 mmol)에 1M 염산 수용액을
넣고 2시간 환류 교반한다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로
채어주고 에틸아세테이트로 추출한다. 유기층을 무수 황산 마그네슘으로
건조하고 감압 농축 후 킬럼크로마토그래피로 정제하여 목적물을 얻었다.

[605] 1H NMR (400MHz, CDCl3): δ 12.10 (s, 1H), 11.42 (s, 1H), 10.28 (s, 1H), 9.77 (dd, J = 6.4, 2.0 Hz, 1H), 9.19 (s, 1H), 8.35 (s, 1H), 8.30 (dd, J = 2.8, 1.6 Hz, 1H), 8.16 (dd, J = 6.4, 1.6 Hz, 1H), 7.54 (m, 3H), 7.42 (m, 1H), 7.01 (m, 1H), 6.94 (m, 1H).

[606] <실험 33> N-(3-((3H-푸린-6-일)피리딘-2-일아미노)-2,4-
디플로로페닐)-3-클로로벤젠질론아미드의 제조

[608]

[609] 단계 1 내지 단계 9; 2,6-디플로로-N^1
-(3-(9-(데트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민
의 제조

[610] 상기 실험 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인
2,6-디플로로-N^1-(3-(9-(데트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)
벤젠-1,3-디아민을 얻었다.

[611] 단계 10:

[612]
3-클로로-N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)페닐)벤젠 су폰아미드의 제조

[613]
디클로로벤젠 용매에 상기 단계 9에서 제조한 2,6-디플로로-N\(^{1}\)-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)페닐)벤젠 су폰아미드(20 mg, 0.047 mmol), 3-클로로벤젠-1-술포닐 클로라이드(15 mg, 0.07 mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50 ℃에서 2시간 교반한다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 셀어서 주로 디클로로벤젠으로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼 크로마토그래피로 정제하여 목적물을 얻었다.

[614]
\(^1\)H NMR(400MHz, CDCl\(_3\)): δ 11.54(s, 1H), 9.64(dd, J = 6.0, 2.0 Hz, 1H), 8.99(s, 1H), 8.39(s, 1H), 8.20(dd, J = 3.2, 1.6 Hz, 1H), 7.80(t, J = 2.0 Hz, 1H), 7.65(m, 1H), 7.55(m, 1H), 7.53(m, 3H), 7.40(m, 2H), 7.01(m, 3H), 5.90(dd, J = 8.4, 2.0 Hz, 1H), 4.23(m, 1H), 3.85(m, 1H), 2.23-1.77(m, 6H).

[615]

단계 11:

N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-3-클로로벤젠 су폰 아미드의 제조

[616]
상기 단계 10에서 제조한 3-클로로-N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일아미노)페닐)벤젠 су폰아미드(20 mg, 0.033 mmol)에 1M 염산 수용액을 넣고 2시간 환류 교반한다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 셀어서 주로 에틸아세테이트로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼 크로마토그래피로 정제하여 목적물을 얻었다.

[617]
\(^1\)H NMR(400MHz, CDCl\(_3\)): δ 12.04(s, 1H), 9.78(dd, J = 6.0, 1.6 Hz, 1H), 9.16(s, 1H), 8.37(s, 1H), 8.33(dd, J = 2.8, 2.0 Hz, 1H), 7.89(t, J = 2.0 Hz, 1H), 7.76(m, 1H), 7.52(m, 2H), 7.40(t, J = 8.0 Hz, 1H), 7.04(m, 2H).

[618]

<설시예 34> N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-2,3- 클로로벤젠 су폰아미드의 제조

[619]

단계 1 내장 단계 9: 2,6-디플로로-N\(^{1}\)-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민
의 제조

[624]

단계 10:

2,3-클로로-N-(2,4-디플로로-3-(3-(9H-테트라히드로-2H-피란-2-일)-9H-퓨린-6-일)페리딘-2-일아미노)페닐)벤젠슐폼아미드의 제조

[626] 다이로로벤젠 용매에 상기 단계 9에서 제조한 2,6-디플로로-N\(^4\)-(3-(9H-테트라히드로-2H-피란-2-일)-9H-퓨린-6-일)페리딘-1,3-디아민 (20 mg, 0.047 mmol), 2,3-클로로벤젠-1-술폴닐 클로라이드 (17 mg, 0.07 mmol)와 페리딘 (8 uL, 0.094 mmol)을 넣고 50 \(^\circ\)C에서 2시간 교반한다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 셋어주고 다이로로벤젠으로 추출한다. 유효층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물을 얻었다.

[627] \(^1\)H NMR (400MHz, CDCl\(_3\)): \(\delta\) 11.55(s, 1H), 9.63(t, \(J = 6.0\) Hz, 1H), 8.99(d, \(J = 6.0\) Hz, 1H), 8.20(s, 1H), 7.97(t, \(J = 5.6\) Hz, 1H), 7.68(t, \(J = 6.0\) Hz, 1H), 7.48(m, 1H), 7.30(m, 2H), 6.93(m, 2H), 5.89(m, 1H), 4.22(m, 1H), 3.84(m, 1H), 2.19-1.72(m, 6H).

[628]

단계 11:

N-(3-(3-(9H-푸린-6-일)페리딘-2-일아미노)-2,4-디플로로벤젠)-2,3-클로로벤젠슐폼아미드의 제조

[630] 상기 단계 10에서 제조한 2,3-클로로-N-(2,4-디플로로-3-(3-(9H-테트라히드로-2H-피란-2-일)-9H-퓨린-6-일)페리딘-2-일아미노)페닐)벤젠슐폼아미드 (21 mg, 0.033 mmol)에 1M 염산 수용액을 넣고 2시간 환류 교반한다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 셋어주고 에틸아세테이트로 추출한다. 유효층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물을 얻었다.

[631] \(^1\)H NMR (400MHz, CDCl\(_3\)): \(\delta\) 12.17(s, 1H), 11.53(s, 1H), 10.74(s, 1H), 9.76(d, \(J = 7.6\) Hz, 1H), 9.21(s, 1H), 8.35(s, 1H), 8.32(d, \(J = 2.8\) Hz, 1H), 8.10(d, \(J = 8.0\) Hz, 1H), 7.71(d, \(J = 8.0\) Hz, 1H), 7.51(d, \(J = 4.8\) Hz, 1H), 7.37(t, \(J = 8.0\) Hz, 1H), 7.00(m, 2H).

[632]

[633] <설시예 35> N-(3-(3-(9H-푸린-6-일)페리딘-2-일아미노)-2,4-디플로로벤젠)벤젠슐폼아미드의 제조

[634]
단계 9: 2,6-디플로로-\(N^1\rbracket\)
\(-\left(3-\left(9-\text{(테트라하드로-2H-피란-2-일)-9H-푸린-6-일}\rbracket\text{피리딘-2-일}\right)\text{벤젠-1,3-다이아민}\rbracket\text{의 제조}\rbracket\)

상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인 2,6-디플로로-\(N^1\rbracket\left(3-\left(9-\text{(테트라하드로-2H-피란-2-일)-9H-푸린-6-일}\rbracket\text{피리دين-2-일}\right)\text{벤젠-1,3-다이아민}\rbracket\text{을 얻었다.}\rbracket\)

단계 10:
\(\text{N-(2,4-디플로로-3-\left(9-\text{(테트라하드로-2H-피란-2-일)-9H-푸린-6-일}\rbracket\text{피리딘-2-일 야미노)페닐}\right)\text{벤젠슬폰아미드의 제조}\rbracket\)

디클로로메탄 용매에 상기 단계 9에서 제조한 2,6-디플로로-\(N^1\rbracket\left(3-\left(9-\text{(테트라하드로-2H-피란-2-일)-9H-푸린-6-일}\rbracket\text{피리딘-2-일}\right)\text{벤젠-1,3-다이아민}\rbracket\left(20 \, \text{mg,} \, 0.047 \, \text{mmol}\right), \text{벤젠슬폰닐 클로라이드}\left(12 \, \text{mg,} \, 0.07 \, \text{mmol}\right)\text{와 피리딘}\left(8 \, \text{uL,} \, 0.094 \, \text{mmol}\right)\text{을 넣고 50 \, ^\circ\text{C}에서 2시간 교반한다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 셋여주고 디클로로메탄으로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 갯압 농축 후 \text{킬럼크로마토그래피로 정제하여 목적물을 얻었다.}\rbracket\)

\(\text{1H NMR (400MHz,} \, \text{CDCl}_3): \delta 11.49(s, \, 1H), \, 9.62(d, \, J = 7.6 \, \text{Hz,} \, 1H), \, 8.98(s, \, 1H), \, 8.39(s, \, 1H), \, 8.19(m, \, 1H), \, 7.80(d, \, J = 7.6 \, \text{Hz,} \, 1H), \, 7.58(m, \, 1H), \, 7.48(m, \, 2H), \, 7.37(m, \, 1H), \, 7.28(m, \, 1H), \, 6.97(m, \, 2H), \, 6.87(s, \, 1H), \, 5.89(d, \, J = 10.4 \, \text{Hz,} \, 1H), \, 4.23(m, \, 1H), \, 3.85(m, \, 1H), \, 2.23-1.73(m, \, 6H).\rbracket\)

단계 11:
\(\text{N-(3-\left(9H-\text{푸린-6-일}\rbracket\text{피리딘-2-일야미노)\text{-2,4-디플로로페닐}\right)\text{벤젠슬폰아미드의 제조}\rbracket\)

상기 단계 10에서 제조한 \(\text{N-(2,4-디플로로-3-\left(9-\text{(테트라하드로-2H-피란-2-일)-9H-푸린-6-일}\rbracket\text{피리딘-2-일 야미노)페닐}\right)\text{벤젠슬폰아미드}\rbracket(19 \, \text{mg,} \, 0.033 \, \text{mmol})\text{에 1M 염산 수용액을 넣고 2시간 환류 교반한다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 셋여주고 에틸아세테이트로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 갯압 농축 후 \text{킬럼크로마토그래피로 정제하여 목적물을 얻었다.}\rbracket\)
단계 1 내 지 단계 9: 2,6-디플로로-N^1-(3-9-(데트라히드로-2H-피린-2-일)-9H-푸린-6-일)피리딘-2-일벤젠-1,3-디아민의 제조

단계 2의 단계 1 내 지 단계 9와 동일한 방법으로 수행하여 목록물인 2,6-디플로로-N^1-(3-9-(데트라히드로-2H-피린-2-일)-9H-푸린-6-일)피리딘-2-일벤젠-1,3-디아민을 얻었다.

단계 10:
N-(2,4-디플로로-3-(3-9-(데트라히드로-2H-피린-2-일)-9H-푸린-6-일)피리딘-2-일아미노)벤젠-2,3-디하이드로벤조룹힌-7-올폰아미드의 제조

단계 9에서 제조한 2,6-디플로로-N^1-(3-9-(데트라히드로-2H-피린-2-일)-9H-푸린-6-일)피리딘-2-일벤젠-1,3-디아민(20 mg, 0.047 mmol), 2,3-디하이드로벤조룹힌-7-올폰 콜로이드(15 mg, 0.07 mmol)와 피리딘(8 μL, 0.094 mmol)을 넣고 50 ℃에서 2시간 교반한다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 셋어주고 디클로로메탄으로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 갈압 농축 후 컬럼크로마토그래피로 정제하여 목록물을 얻었다.

1H NMR(400 MHz, CDCl3): δ 11.31(s, 1H), 11.29(s, 1H), 8.99(s, 1H), 8.39(s, 1H), 7.18(dd, J = 2.8, 1.6 Hz, 1H), 7.55(dd, J = 7.2, 0.8 Hz, 1H), 7.41(m, 2H), 7.15(d, J = 2.4 Hz, 1H), 6.39(m, 2H), 5.99(dd, J = 8.0, 2.4 Hz, 1H), 4.76(t, J = 8.8 Hz, 2H), 4.23(m, 1H), 3.85(m, 1H), 3.24(t, J = 8.8 Hz, 2H), 2.23-1.71(m, 6H).
조플란-7-술폴아미드의 제조

상기 단계 10에서 제조한 N-(2,4-디플로로-3-(3-(9-(트레트라히드로-2H-피란-2-일)-9H-푸란-6-일)페리딘-2-일 아미노)페닐)-2,3-디하이드로벤조조플란-7-술폴아미드(20 mg, 0.033 mmol)에 1M 염산 수용액을 넣고 2시간 환류 고가한다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 씻어주고 에틸아세테이트로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 강압 농축 후 캐리크로마토그래피로 정제하여 목적물을 얻었다.

\[^1H \text{NMR (400MHz, DMSO-\text{d}_6): } \delta \text{ 11.47 (brs, 1H), 9.63 (brs, 1H), 9.00 (s, 1H), 8.73 (s, 1H), 8.15 (dd, } J = 2.8, 2.0 \text{ Hz, 1H), 7.48 (dd, } J = 6.0, 1.2 \text{ Hz, 1H), 7.37 (d, } J = 6.8 \text{ Hz, 1H), 7.08 (m, 2H), 7.02 (m, 1H), 6.91 (t, } J = 7.6 \text{ Hz, 1H), 4.63 (t, } J = 8.8 \text{ Hz, 2H), 3.22 (t, } J = 8.8 \text{ Hz, 2H).} \]

실험 예 37> N-(3-(3-(9H-푸란-6-일)페리딘-2-일아미노)-2,4-디플로로페닐)벤조조플란-7-술폴아미드의 제조

단계 1 내지 단계 9: 2,6-디플로로-N\(^1\)

-(3-(9-(트레트라히드로-2H-피란-2-일)-9H-푸란-6-일)페리딘-2-일)벤젠-1,3-디아민의 제조

상기 실험 예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인 2,6-디플로로-N\(^1\)-(3-(9-(트레트라히드로-2H-피란-2-일)-9H-푸란-6-일)페리딘-2-일)벤젠-1,3-디아민을 얻었다.

단계 10:

N-(2,4-디플로로-3-(3-(9-(트레트라히드로-2H-피란-2-일)-9H-푸란-6-일)페리딘-2-일 아미노)페닐)벤조조플란-7-술폴아미드의 제조

디클로로메탄 용매에 상기 단계 9에서 제조한 2,6-디플로로-N\(^1\)

-(3-(9-(트레트라히드로-2H-피란-2-일)-9H-푸란-6-일)페리딘-2-일)벤젠-1,3-디아민(20 mg, 0.047 mmol), 벤조조플란-7-술폴필 클로로아이드(15 mg, 0.07 mmol)와

페리딘(8 uL, 0.094 mmol)을 넣고 50 \(^\circ\)C에서 2시간 교반한다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 씻어주고 디클로로메탄으로 추출한다.
유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후
킬럼크로마토그래피로 정제하여 목적물은 얻었다.

1H NMR(400MHz, CDCl3): δ 11.41(s, 1H), 9.59(dd, J = 6.0, 2.0 Hz, 1H), 8.94(s, 1H), 8.37(s, 1H), 8.14(dd, J = 2.8, 2.0 Hz, 1H), 7.83(dd, J = 6.8, 1.2 Hz, 1H), 7.78(m, 2H), 7.37(m, 1H), 7.31(m, 2H), 5.88(dd, J = 8.0, 2.4 Hz, 1H), 4.23(m, 1H), 3.84(m, 1H), 2.19-1.72(m, 6H).

단계 11:
N-(3-(3-(2H-푸란-6-밀)페리딘-2-일아미노)-2,4-디폴로페닐)벤조푸란-7- су폰아미드의 제조

상기 단계 10에서 제조한
N-(2,4-디폴로-3-(3-(9-(테트라하드로-2H-피란-2-밀)-9H-푸란-6-밀)페리딘-2-밀
아미노)페닐)벤조푸란-7-수폰아미드(20 mg, 0.033 mmol)에 1M 염산 수용액을
넣고 2시간 환료 후 교반한다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로
酢여주고 에틸아세테이트로 추출한다. 유기층을 무수 황산 마그네슘으로
건조하고 감압 농축 후 킬럼크로마토그래피로 정제하여 목적물은 얻었다.

1H NMR(400MHz, DMSO-d6): δ 13.87(s, 1H), 11.55(s, 1H), 10.51(s, 1H), 9.74(d, J = 14.8 Hz, 1H), 9.02(s, 1H), 8.71(s, 1H), 8.20(d, J = 2.8 Hz, 1H), 7.98(d, J = 6.8 Hz, 1H), 7.63(d, J = 7.6 Hz, 1H), 7.13(m, 1H), 7.01(m, 1H).

<실시예 38> N-(3-(3-(9H-푸란-6-밀)페리딘-2-밀아미노)-2,4-
디폴로페닐)크로마-8-수폰아미드의 제조

단계 1 내지 단계 9: 2,6-디폴로로-N1-
(3-(9-(테트라하드로-2H-피란-2-밀)-9H-푸란-6-밀)페리딘-2-밀)벤젠-1,3-디아민
의 제조

상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인
2,6-디폴로로-N1-(3-(9-(테트라하드로-2H-피란-2-밀)-9H-푸란-6-밀)페리딘-2-밀)
벤젠-1,3-디아민을 얻었다.
단계 10:
N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리دين-2-일 아미노)-페닐)크로마-8-솔폰아미드의 제조

단계 9에서 제조한 2,6-디플로로-N\(^1\)
-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리دين-2-일)벤젠-1,3-디아민(20 mg, 0.047 mmol), 크로마-8-솔폰질로라이드(16 mg, 0.07 mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50 °C에서 2시간 교반한다. 반응 완료 후 반응물을 1N 염산 수용액과 소금물로 씻어주고 디클로로페닐로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 길럼크로마토그래피로 정제하여 목적물을 얻었다.

\(^1\)H NMR(400MHz, CDCl\(_3\)): \(\delta\) 11.47(s, 1H), 9.62(dd, J = 6.0, 1.6 Hz, 1H), 8.99(s, 1H), 8.39(s, 1H), 8.16(dd, J = 2.8, 1.6 Hz, 1H), 7.67(m, 1H), 7.46(m, 1H), 7.33(d, J = 2.8 Hz, 1H), 7.24(dd, J = 6.0, 1.6 Hz, 1H), 6.90(m, 1H), 5.89(m, 1H), 4.37(t, J = 5.2 Hz, 2H), 4.24(m, 1H), 3.85(m, 1H), 2.80(t, J = 6.4 Hz, 2H), 2.23-1.73(m, 6H).

단계 11:
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)크로마-8-솔폰아미드의 제조

상기 단계 10에서 제조한
N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)-페닐)크로마-8-솔폰아미드(20 mg, 0.033 mmol)에 1M 염산 수용액을 넣고 2시간 환류 교반한다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 씻어주고 에틸아세테이트로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 길럼크로마토그래피로 정제하여 목적물을 얻었다.

\(^1\)H NMR(400MHz, DMSO-d\(_6\)): \(\delta\) 12.08(s, 1H), 9.91(brs, 1H), 9.78(dd, J = 6.4, 1.6 Hz, 1H), 9.18(s, 1H), 8.34(s, 1H), 8.30(dd, J = 2.8, 2.0 Hz, 1H), 7.74(dd, J = 6.4, 1.6 Hz, 1H), 7.51(m, 1H), 7.23(d, J = 2.8 Hz, 1H), 7.00(m, 1H), 6.96(m, 2H), 3.97(t, J = 4.8 Hz, 2H), 2.75(t, J = 6.4 Hz, 2H), 1.09(m, 2H).

<실시예 39> N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-
디플로로페닐)-2-메틸벤조[d]싸이아졸-6-솔폰아미드의 제조

![Chemical Structure]
단계 1 내지 단계 9; 2,6-디플로로-N\(^1\)
-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민
의 제조

상기 실험에 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인
2,6-디플로로-N\(^1\)-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)
벤젠-1,3-디아민을 얻었다.

단계 10;
N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일
아미노)페닐)-2-메틸벤조[d]싸이아졸-6- су폰아미드의 제조

디클로로매탄 용매에 상기 단계 9에서 제조한 2,6-디플로로-N\(^1\)
-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민
(20 mg, 0.047 mmol), 2-메틸벤조[d]싸이아졸-6- су폰콜로라이드(17 mg, 0.07
mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50 °C에서 2시간 교반한다. 반응 완료
후 반응물을 1N 염산 수용액과 소금물로 셋어주고 디클로로매탄으로 추출한다.
유기층을 무수 황산 마그네슘으로 건조하고 갈압 농축 후
킬럼크로모타그래피로 정제하여 목적물을 얻었다.

\(^1\)H NMR(400MHz, CDCl\(_3\)): \(\delta\) 11.46(s, 1H), 9.59(dd, \(J = 6.0, 1.6\) Hz, 1H), 8.59(s,
1H), 8.37(s, 1H), 8.33(d, \(J = 1.6\) Hz, 1H), 8.10(dd, \(J = 3.2, 1.6\) Hz, 1H), 8.00(d, \(J = 8.4\)
Hz, 1H), 7.83(dd, \(J = 6.8, 2.0\) Hz, 1H), 7.43(m, 1H), 7.00(m, 1H), 6.92(m, 1H), 6.74(d,
\(J = 1.6\) Hz, 1H), 5.89(dd, \(J = 8.0, 2.4\) Hz, 1H), 4.24(m, 1H), 3.84(m, 1H), 2.88(s, 3H),
2.22-1.80(m, 6H).

단계 11;
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-2-메틸벤조[d]싸이아졸-6- су폰아미드의 제조

상기 단계 10에서 제조한
N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일
아미노)페닐)-2-메틸벤조[d]싸이아졸-6- су폰아미드(21 mg, 0.033 mmol)에 1M
염산 수용액을 넣고 2시간 환류 교반한다. 반응 완료 후 탄산수소나트륨
수용액과 소금물로 셋어주고 에틸아세테이트로 추출한다. 유기층을 무수 황산
마그네슘으로 건조하고 갈압 농축 후 킬럼크로모타그래피로 정제하여 목적물을
얻었다.

\(^1\)H NMR(400MHz, DMSO-d\(_6\)): \(\delta\) 11.42(brs, 1H), 9.62(brs, 1H), 8.95(s, 1H), 8.71(s,
1H), 8.50(d, \(J = 1.6\) Hz, 1H), 8.05(m, 2H), 7.81(dd, \(J = 6.8, 1.6\) Hz, 1H), 7.10(m, 2H),
6.99(m, 1H), 2.84(s, 3H).

<실시예 40> N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-
디플로로페닐-1-메틸-1H-인돌-5- су폰아미드의 제조

[699]

[700] 단계 1 내지 단계 9: 2,6-디플로로-N°
-(3-((9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤제-1,3-디아민의 제조

[701] 상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적이인
2,6-디플로로-N°-(3-((9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤제-1,3-디아민을 얻었다.

[702]

[703] 단계 10:
N-(2,4-디플로로-3-((9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일
아미노)페닐)-1-메틸-1H-인돌-5-수폰아미드의 제조

[704] 디플로로페닐 용매에 상기 단계 9에서 제조한 2,6-디플로로-N°
-(3-((9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤제-1,3-디아민(20 mg, 0.047 mmol), 1-메틸-1H-인돌-5-수폰일 클로라이드(16 mg, 0.07 mmol)와
피리딘(8 uL, 0.094 mmol)을 넣고 50 ℃에서 2시간 교반한다. 반응 완료 후
반응물을 1N 염산 수용액과 소금물로 씻어주고 디플로로페닐으로 추출한다. 유효성을 위해 흰색 마그네슘으로 건조하고 잔여 농축 후
킬럼크로마토그래피로 정제하여 목적이률을 얻었다.

[705] 1H NMR(400MHz, CDCl3): δ 11.29(s, 1H), 9.99(s, 1H), 9.57(dd, J = 6.0, 1.6 Hz, 1H), 9.02(s, 1H), 8.96(s, 1H), 8.07(dd, J = 2.8, 2.0 Hz, 1H), 8.00(d, J = 1.6 Hz, 1H), 7.61(d, J = 8.8 Hz, 1H), 7.55(dd, J = 6.8, 1.6 Hz, 1H), 7.51(d, J = 3.2 Hz, 1H), 7.08(m, 2H), 6.99(m, 1H), 6.62(d, J = 2.4 Hz, 1H), 5.86(dd, J = 8.8, 2.0 Hz, 1H), 4.05(m, 1H), 3.83(s, 3H), 3.75(m, 1H), 2.41-1.65(m, 6H).

[706]

[707] 단계 11:
N-(3-((3-((9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-1-메틸-1H-인돌-5-
수폰아미드의 제조

[708] 상기 단계 10에서 제조한
N-(2,4-디플로로-3-((9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리دين-2-일
아미노)페닐)-1-메틸-1H-인돌-5-수폰아미드(20 mg, 0.033 mmol)에 1M 염산
수용액을 넣고 2시간 환류 교반한다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 씻어주고 에틸아세테이트로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 컬럼크로마토그래피로 정제하여 목적물을 얻었다.

[709]

^H NMR(400MHz, CDCl3): δ 12.04(s, 1H), 11.59(brs, 1H), 9.86(s, 1H), 9.76(dd, J = 6.0, 2.0 Hz, 1H), 9.16(s, 1H), 8.35(s, 1H), 8.26(m, 2H), 7.72(m, 1H), 7.53(m, 1H), 7.33(m, 1H), 7.14(d, J = 3.2 Hz, 1H), 6.97(m, 2H), 6.57(dd, J = 2.4, 0.8 Hz, 1H), 3.77(s, 3H).

[710]

<설시예 41> N-(3-(3-9H-푸린-6-일)피리딘-2-일아미노)-2,4-
디플로로메칠-1H-인돌-4-술폴아미드의 제조

[712]

[713] 단계 1 내지 단계 9: 2,6-디플로로-N^1-
-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아미닌
의 제조

[714] 상기 설시에 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인
2,6-디플로로-N^1-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)
벤젠-1,3-디아미닌을 얻었다.

[715] 단계 10:

N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일
아미노)벤젠)-1-메틸-1H-인돌-4-술폴아미드의 제조

[717] 디플로로메탄 용매에 상기 단계 9에서 제조한 2,6-디플로로-N^1-
-(3-(9-(테트라히드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아미닌(20 mg, 0.047 mmol), 1-메틸-1H-인돌-5-술폴리아미드(16 mg, 0.07 mmol)와
피리딘(8 ul, 0.094 mmol)을 넣고 50 °C에서 2시간 교반한다. 반응 완료 후
반응물을 1N 염산 수용액과 소금물로 씻어주고 디플로로메탄으로 추출한다.
유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후
컬럼크로마토그래피로 정제하여 목적물을 얻었다.

[718] ^H NMR(400MHz, CDCl3): δ 11.27(s, 1H), 10.18(s, 1H), 9.57(dd, J = 5.6, 2.0 Hz, 1H), 9.05(s, 1H), 8.96(s, 1H), 8.15(dd, J = 2.8, 2.0 Hz, 1H), 7.76(d, J = 7.2 Hz, 1H), 7.51(m, 1H), 7.25(m, 1H), 7.01(m, 3H), 6.82(d, J = 2.8 Hz, 1H), 5.87(dd, J = 8.8, 2.0
Hz, 1H), 4.08(m, 1H), 3.83(s, 3H), 3.76(m, 1H), 2.35-1.63(m, 6H).

[720] 단계 1H:
N-(3-(3-(9H-투린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-1-메틸-1H-인돌-4-
슘폰아미드의 제조

[721] 상기 단계 10에서 제조한
N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-투린-6-일)피리딘-2-일
아미노)페닐)-1-메틸-1H-인돌-4-슘폰아미드(20 mg, 0.033 mmol)에 1M 염산
수용액을 넣고 2시간 환료 교반한다. 반응 완료 후 탄산수소나트륨 수용액과
소금물로 싹어주고 에틸아세테이트로 추출한다. 유기층을 무수 황산
마그네슘으로 간조하고 건압 농축 후 컬럼크로마토그래피로 정제하여 목적물을
얻었다.

[722] ^H NMR(400MHz, CDCl3): δ 12.12(s, 1H), 11.89(brs, 1H), 10.50(s, 1H), 9.77(d, J =
6.8 Hz, 1H), 9.22(s, 1H), 8.33(s, 1H), 8.28(dd, J = 2.8, 2.0 Hz, 1H), 7.80(dd, J = 6.8,
0.8 Hz, 1H), 7.53(m, 1H), 7.25(m, 1H), 7.11(d, J = 3.2 Hz, 1H), 6.97(m, 2H), 6.88(m,
1H), 3.73(s, 3H).

[724] <실험 예 42> N-(3-(9H-투린-6-일)피리딘-2-일아미노)-2,4-
디플로로페닐-
-1-메틸-1H-인돌-7-슘폰아미드의 제조

[726] 단계 1 내지 단계 9; 2,6-디플로로-N^1
-(3-(9-(테트라히드로-2H-피란-2-일)-9H-투린-6-일)피리딘-2-일)벤젠-1,3-디아민
의 제조

[727] 상기 실험 예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인
2,6-디플로로-N^1-(3-(9-(테트라히드로-2H-피란-2-일)-9H-투린-6-일)피리딘-2-일)
벤젠-1,3-디아민을 얻었다.

[728] 단계 10;
N-(2,4-디플로로-3-(3-(9-(테트라히드로-2H-피란-2-일)-9H-투린-6-일)피리딘-2-일
아미노)페닐)-1-메틸-1H-인돌-7-슘폰아미드의 제조

[730] 디플로로메탄 용매에 상기 단계 9에서 제조한 2,6-디플로로-N^1
-(3-(9-(테트라히드로-2H-피란-2-일)-9H-투린-6-일)피리딘-2-일)벤젠-1,3-디아민(
20 mg, 0.047 mmol), 1-메틸-1H-인돌-7-술폴닐 클로라이드(16 mg, 0.07 mmol)와 페리딘(8 uL, 0.094 mmol)을 넣고 50 ℃에서 2시간 교반한다. 반응 완료 후 반응물을 1N 액산 수용액과 소금질로 씻어주고 디클로로메탄으로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 킬립크로모타크래프로 정제하여 목적물을 얻었다.

[731] 'H NMR (400MHz, CDCl₃): δ 11.59 (s, 1H), 9.65 (dd, J = 6.0, 2.0 Hz, 1H), 9.01 (s, 1H), 8.39 (s, 1H), 8.26 (dd, J = 2.8, 2.0 Hz, 1H), 7.84 (m, 2H), 7.16 (m, 3H), 7.06 (brs, 1H), 6.97 (m, 1H), 6.87 (m, 1H), 6.63 (d, J = 3.2 Hz, 1H), 5.90 (dd, J = 8.0, 2.4 Hz, 1H), 4.29 (s, 3H), 4.25 (m, 1H), 3.85 (m, 1H), 2.23-1.70 (m, 6H).

[732]

[733] 단계 11: N-(3-(3-(9H-푸린-6-일)페리딘-2-일아미노)-2,4-디클로로페닐)-1-메틸-1H-인돌-7-술폴닐 아미드의 제조

[734] 상기 단계 10에서 제조한 N-(2,4-디클로로-3-(3-(9-(테트라하드로-2H-피란-2-일)-9H-푸린-6-일)페리딘-2-일 아미노)페닐)-1-메틸-1H-인돌-7-술폴닐 아미드(20 mg, 0.033 mmol)에 1M 액산 수용액을 넣고 2시간 환류 교반한다. 반응 완료 후 탄산수소나트륨 수용액과 소금질로 씻어주고 에틸아세테이트로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 농축 후 킬립크로모타크래프로 정제하여 목적물을 얻었다.

[735] 'H NMR (400MHz, CDCl₃): δ 12.13 (s, 1H), 11.64 (brs, 1H), 10.34 (brs, 1H), 9.77 (dd, J = 6.4, 1.2 Hz, 1H), 9.25 (s, 1H), 8.32 (s, 1H), 7.92 (dd, J = 7.2, 0.8 Hz, 1H), 7.85 (dd, J = 7.2, 0.8 Hz, 1H), 7.39 (m, 1H), 7.12 (m, 2H), 7.00 (m, 1H), 6.93 (m, 1H), 6.62 (d, J = 3.2 Hz, 1H), 4.35 (s, 3H).

[736]

[737] <실시예 43> N-(3-(3-(9H-푸린-6-일)페리딘-2-일아미노)-2,4-디클로로페닐)-1-메틸-1H-피라졸-4-술폴닐 아미드의 제조

[738]

[739] 단계 1 내지 단계 9: 2,6-디클로로-Ν¹-(3-(9-(테트라하드로-2H-피란-2-일)-9H-푸린-6-일)페리딘-2-일)벤젠-1,3-디아민의 제조

[740] 상기 실시예 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인
2,6-디플로로-N¹-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민을 얻었다.

[741]

단계 10:
N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)-1-메틸-1H-피라졸-4-솔폰아미드의 제조

[743]

디클로로매탄 용매에 상기 단계 9에서 제조한 2,6-디플로로-N¹-
-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일)벤젠-1,3-디아민(20 mg, 0.047 mmol), 1-메틸-1H-피라졸-4-솔폰 클로라이드(13 mg, 0.07 mmol)와 피리딘(8 uL, 0.094 mmol)을 넣고 50 ℃에서 2시간 교반한다. 반응 완료 후 반응물 1N 염산 수용액과 소금물로 씻어주고 디클로로매탄으로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 갈aret 농축 후 컬럼크로마토그래피로 정제하여 목적물을 얻었다.

[744] ¹H NMR(400MHz, CDCl₃): δ 11.54(s, 1H), 9.63(dd, J = 6.0, 2.0 Hz, 1H), 9.00(s, 1H), 8.63(m, 1H), 8.39(s, 1H), 8.24(dd, J = 2.8, 2.0 Hz, 1H), 7.69(m, 2H), 7.40(m, 1H), 7.30(m, 1H), 7.20(brs, 1H), 6.98(m, 2H), 5.89(dd, J = 8.0, 2.4 Hz, 1H), 4.22(m, 1H), 3.87(s, 3H), 3.83(m, 1H), 2.22-1.72(m, 6H).

[745]

단계 11:
N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-1-메틸-1H-피라졸-
4-솔폰아미드의 제조

[747]

상기 단계 10에서 제조한
N-(2,4-디플로로-3-(3-(9-(테트라하이드로-2H-피란-2-일)-9H-푸린-6-일)피리딘-2-일 아미노)페닐)-1-메틸-1H-피라졸-4-솔폰아미드(19 mg, 0.033 mmol)에 1M 염산 수용액을 넣고 2시간 환류 교반한다. 반응 완료 후 탄산수소나트륨 수용액과 소금물로 씻어주고 에틸아세테이트로 추출한다. 유기층을 무수 황산 마그네슘으로 건조하고 갈aret 농축 후 컬럼크로마토그래피로 정제하여 목적물을 얻었다.

[748] ¹H NMR(400MHz, CDCl₃): δ 9.60(s, 1H), 8.97(s, 1H), 8.28(s, 1H), 8.20(dd, J = 3.2, 1.6 Hz, 1H), 7.71(d, J = 10.4 Hz, 2H), 7.41(m, 1H), 6.98(m, 2H), 3.86(s, 3H).

[749]

<실험 예 44> N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-
디플로로페닐)-5-클로로싸이오펜-4-솔폰아미드의 제조

[750]

[751]
[752] 단계 1 내지 단계 9: 2,6-디플로로-N¹
-(3-(9-(데트라히드로-2H-피란-2-일)-9H-퓨린-6-일)피리딘-2-일)벤젠-1,3-디아민
의 제조

[753] 상기 실험에 2의 단계 1 내지 단계 9와 동일한 방법으로 수행하여 목적물인
2,6-디플로로-N¹-(3-(9-(데트라히드로-2H-피란-2-일)-9H-퓨린-6-일)피리딘-2-일)
벤젠-1,3-디아민을 얻었다.

[754] 단계 10:
5-클로로-N-(2,4-디플로로-3-(9-(데트라히드로-2H-피란-2-일)-9H-퓨린-6-일)피리딘-2-일아미노)-페닐)
싸이오펜-2-솔폰아미드의 제조

[756] 다이아로메타 경제한 촉매에 상기 단계 9에서 제조한 2,6-디플로로-N¹
-(3-(9-(데트라히드로-2H-피란-2-일)-9H-퓨린-6-일)피리딘-2-일)벤젠-1,3-디아민(20 mg, 0.047 mmol),
5-클로로싸이오펜-2-솔포닐 클로라이드(15 mg, 0.07 mmol)와
피리딘(8 uL, 0.094 mmol)을 넣고 50 °C에서 2시간 교반한다. 반응 완료 후
반응물을 1N 염산 수용액과 소금물로 씻어주고 다이아로메타 경제한으로 추출한다.
유기중을 무수 황산 마그네슘으로 건조하고 갈압 농축 후
킬럼크로마토그래피로 정제하여 목적물을 얻었다.

[757] ¹H NMR(400MHz, CDCl₃): δ 11.58(s, 1H), 9.64(dd, J = 6.0, 2.0 Hz, 1H), 8.99(s, 1H), 8.39(m, 1H),
8.25(dd, J = 2.8, 2.0 Hz, 1H), 7.70(s, 1H), 7.36(m, 1H), 7.27(d, J =
4.0 Hz, 1H), 6.99(m, 2H), 6.86(d, J = 4.4 Hz, 1H), 5.89(dd, J = 8.4, 2.4 Hz, 1H), 4.24(m, 1H), 3.84(s, 1H), 2.22-1.72(m, 6H).

[758] 단계 11:
N-(3-(9H-퓨린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-5-클로로싸이오펜-
2-솔폰아미드의 제조

[760] 상기 단계 10에서 제조한
5-클로로-N-(2,4-디플로로-3-(9-(데트라히드로-2H-피란-2-일)-9H-퓨린-6-일)피리딘-2-일아미노)-페닐)
싸이오펜-2-솔폰아미드(20 mg, 0.033 mmol)에 1M 염산
수용액을 넣고 2시간 환류 교반한다. 반응 완료 후 탄산수소나트륨 수용액과
소금물로 씻어주고 에틸아세테이트로 추출한다. 유기중을 무수 황산
마그네슘으로 건조하고 갈압 농축 후 킬럼크로마토그래피로 정제하여 목적물을
연어.

[761] 1H NMR(400MHz, CDCl3): δ 13.88(s, 1H), 11.52(s, 1H), 10.56(s, 1H), 9.68(d, J = 7.8 Hz, 1H), 9.02(s, 1H), 8.73(s, 1H), 8.19(dd, J = 2.8, 1.6 Hz, 1H), 7.37(d, J = 3.6 Hz, 1H), 7.24(d, J = 3.6 Hz, 1H), 7.16(d, J = 6.0 Hz, 1H), 7.03(m, 1H).

[762] <실험> 1) B-raf 키나제 활성을 시험

[763] 본 실험의 화합물들에 대한 B-raf 키나제 저해 활성을 알아보기 위하여 하기와 같은 실험을 실시하였다.

[765] (1) 연쇄 신호전달 반응

[766] 원심분리투브에 화합용매(20 mM MOPS, pH 7.2, 25 mM β-글리세로포스페이트, 5 mM EGTA, 1 mM 나트륨 오르토바나드산염(sodium orthovanadate), 1 mM 디티오트레일(dithiothreitol) 20 μl과 Mg/ATP 혼합용액(500 μM ATP, 75 mM 염화마그네슘) 10 μl을 넣고, 화합식 1의 유도체 화합물을 넣거나 대조군으로는 냉기 실시에의 화합물을 넣지 않고, 형성화된 B-raf 1 ng, 비활성화된 MEK1 0.4 ng, 비활성화된 MAPK2 1 μg를 참가하였다. 원심분리를 통해 투브 안의 용액들을 바닥으로 모이게 한 다음, 30 ℃에서 30분간 반응시키고, 이 혼합용액 4 μl를 취하여 다음 단계시험을 진행하였다.

[768] (2) MAPK2에 의한 기질 단백질 MBP의 인산화 반응

[769] 생기 (1)에서 취한 4 μl의 혼합용액에 화합용매 10 μl와 기질로 쓰이는 MBP 20 μg, 화학된 [γ-32P]ATP(1 μCi/μL) 10 μl를 참가하였다. 원심분리를 통해 투브 안의 용액들을 바닥으로 모이게 한 다음, 30 ℃에서 10분간 반응시켰다. 이 반응액 25 μl를 조심스레 2 cm x 2 cm P81 액체중량에 30초간 용리놓았다. 이 후, 상기 액체중량 0.75% 인산용액(phosphoric acid)으로 10분 단위로 3회, 아세톤(acetone)으로 5분간 1회 세척하였다. 다음으로 신틸레이션 바이알(scintillation vial)에 상기 액체중량을 옮겨 놓고 5 ml의 신틸레이션 칵데일(scintillation cocktail)을 넣었다. 대조군과 비교하며 신틸레이션 카운터(scintillation counter)로 방사능을 읽음으로써 B-raf 활성 억제율(ICC50)을 측정하였다. 그 결과를 하기 표 2에 나타내었다.

[771] 표 2
<table>
<thead>
<tr>
<th>시시에 화합물</th>
<th>B-raf 효소활성; IC<sub>50</sub>(μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>실험 1</td>
<td>0.017</td>
</tr>
<tr>
<td>실험 2</td>
<td>0.0088</td>
</tr>
<tr>
<td>실험 3</td>
<td>0.030</td>
</tr>
<tr>
<td>실험 4</td>
<td>0.012</td>
</tr>
<tr>
<td>실험 5</td>
<td>0.023</td>
</tr>
<tr>
<td>실험 6</td>
<td>0.72</td>
</tr>
<tr>
<td>실험 7</td>
<td>0.832</td>
</tr>
<tr>
<td>실험 8</td>
<td>0.0337</td>
</tr>
<tr>
<td>실험 9</td>
<td>1.5</td>
</tr>
<tr>
<td>실험 10</td>
<td>1.2</td>
</tr>
<tr>
<td>실험 11</td>
<td>0.206</td>
</tr>
<tr>
<td>실험 12</td>
<td>0.610</td>
</tr>
<tr>
<td>실험 13</td>
<td>0.42</td>
</tr>
<tr>
<td>실험 14</td>
<td>0.002</td>
</tr>
<tr>
<td>실험 15</td>
<td>0.001</td>
</tr>
<tr>
<td>실험 16</td>
<td>1.5</td>
</tr>
<tr>
<td>실험 17</td>
<td>0.007</td>
</tr>
<tr>
<td>실험 18</td>
<td>0.001</td>
</tr>
<tr>
<td>실험 19</td>
<td>0.05</td>
</tr>
<tr>
<td>실험 20</td>
<td>0.16</td>
</tr>
<tr>
<td>실험 21</td>
<td>1.3</td>
</tr>
<tr>
<td>실험 22</td>
<td>1.8</td>
</tr>
<tr>
<td>실험 23</td>
<td>0.015</td>
</tr>
<tr>
<td>실험 24</td>
<td>0.22</td>
</tr>
<tr>
<td>실험 25</td>
<td>0.015</td>
</tr>
<tr>
<td>실험 26</td>
<td>0.03</td>
</tr>
<tr>
<td>실험 27</td>
<td>0.08</td>
</tr>
<tr>
<td>실험 28</td>
<td>0.3</td>
</tr>
<tr>
<td>실험 29</td>
<td>0.08</td>
</tr>
<tr>
<td>실험체</td>
<td>실정값</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>실험체 30</td>
<td>0.004</td>
</tr>
<tr>
<td>실험체 31</td>
<td>0.05</td>
</tr>
<tr>
<td>실험체 32</td>
<td>0.03</td>
</tr>
<tr>
<td>실험체 33</td>
<td>0.08</td>
</tr>
<tr>
<td>실험체 34</td>
<td>0.04</td>
</tr>
<tr>
<td>실험체 35</td>
<td>0.02</td>
</tr>
<tr>
<td>실험체 36</td>
<td>1.02</td>
</tr>
<tr>
<td>실험체 37</td>
<td>0.09</td>
</tr>
<tr>
<td>실험체 38</td>
<td>0.9</td>
</tr>
<tr>
<td>실험체 39</td>
<td>0.4</td>
</tr>
<tr>
<td>실험체 40</td>
<td>>10</td>
</tr>
<tr>
<td>실험체 41</td>
<td>0.55</td>
</tr>
<tr>
<td>실험체 42</td>
<td>0.8</td>
</tr>
<tr>
<td>실험체 43</td>
<td>0.12</td>
</tr>
<tr>
<td>실험체 44</td>
<td>0.02</td>
</tr>
</tbody>
</table>

상기 표 2에 나타낸 바와 같이, 본 발명에 따른 화합물은 B-raf 활성 억제율이 0.001~1.8 μM의 우수한 B-raf 활성 억제 효과를 나타내었고, 대부분의 화합물의 활성 억제율이 1 μM 미만으로서 우수한 B-raf 저해 활성을 보이는 것을 확인할 수 있다.

<실험체 2> B-raf 세포활성 저해 시험

본 발명의 화합물의 B-raf 세포활성 저해능력을 알아보기 위하여 A375 세포주(ATCC)에서 다음과 같은 시험을 수행하였다. A375 세포주(ATCC)는 인간 흉세종 화자로부터 유래한 것으로, B-Raf 유전자의 V600E 돌연변이를 가지고 있다. A375 세포는 10% 태아 소 혈청, 글루타민 (2 mM), 케니실린 (100 U/mL) 및 스트레포마이신 (100 μg/mL)이 보충된 DMEM 중에서 유지시켰다. 상기 세포를 37 ℃, 5% CO2 및 100% 습도에서 유지시켰다. 성장 억제 실험을 위해서, 세포를 백색 384원 마이크로플레이트에 원 1개 당 1000개 세포/20 μl로 풀레이팅하였다. 24시간 후, 5x약물 원액 용액 5 μl를 첨가하였다. 모든 약물은 처음에는 DMSO 중의 200x원액으로 제조되어 최종 DMSO 농도는 0.5%였다.

세포를 72시간 동안 37 ℃에서 인큐베이션하고, MTT assay는 Promega사의 ‘CellTiter 96(R) Non-Radioactive Cell Proliferation Assay (G4100)’ 키트를 이용하였다. Promega kit의 dye solution 15 μl씩을 각 well에 넣은 후, 4시간 동안 incubator에서 배양하고 키트의 Solubilization/Stop Solution 물질을 100 μl씩
추가하고 다시 24시간 인큐베이터에 정치 후에 570 nm 흡광도의 96-원 플레이트 리더기 이용하여 흡광도를 측정하였다. 측정한 흡광도를 negative control을 기준으로 하여 상대적인 세포 독성을 농도 별로 변환하여 EC₅₀(half maximal effective concentration)을 계산하여 그 결과를 하기 표 3에 나타내었다.
[Table 3]

B-raf 세포정체 활성

<table>
<thead>
<tr>
<th>실험체 화합물</th>
<th>세포활성 (A375P), IC50 (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>실험체 1</td>
<td>0.12</td>
</tr>
<tr>
<td>실험체 2</td>
<td>0.23</td>
</tr>
<tr>
<td>실험체 3</td>
<td>5.2</td>
</tr>
<tr>
<td>실험체 4</td>
<td>0.03</td>
</tr>
<tr>
<td>실험체 5</td>
<td>0.31</td>
</tr>
<tr>
<td>실험체 6</td>
<td>2.8</td>
</tr>
<tr>
<td>실험체 7</td>
<td>4.3</td>
</tr>
<tr>
<td>실험체 8</td>
<td>0.7</td>
</tr>
<tr>
<td>실험체 9</td>
<td>11.2</td>
</tr>
<tr>
<td>실험체 10</td>
<td>10.2</td>
</tr>
<tr>
<td>실험체 11</td>
<td>0.34</td>
</tr>
<tr>
<td>실험체 12</td>
<td>0.6</td>
</tr>
<tr>
<td>실험체 13</td>
<td>0.15</td>
</tr>
<tr>
<td>실험체 14</td>
<td>0.006</td>
</tr>
<tr>
<td>실험체 15</td>
<td>11.0</td>
</tr>
<tr>
<td>실험체 16</td>
<td>9.6</td>
</tr>
<tr>
<td>실험체 17</td>
<td>0.04</td>
</tr>
<tr>
<td>실험체 18</td>
<td>0.002</td>
</tr>
<tr>
<td>실험체 19</td>
<td>0.25</td>
</tr>
<tr>
<td>실험체 20</td>
<td>0.7</td>
</tr>
<tr>
<td>실험체 21</td>
<td>0.36</td>
</tr>
<tr>
<td>실험체 22</td>
<td>1.0</td>
</tr>
<tr>
<td>실험체 23</td>
<td>0.06</td>
</tr>
<tr>
<td>실험체 24</td>
<td>0.8</td>
</tr>
<tr>
<td>실험체 25</td>
<td>0.1</td>
</tr>
<tr>
<td>실험체 26</td>
<td>0.33</td>
</tr>
<tr>
<td>실험체 27</td>
<td>0.76</td>
</tr>
<tr>
<td>실험체 28</td>
<td>1.93</td>
</tr>
<tr>
<td>실험</td>
<td>0.72</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>실험</td>
<td>0.07</td>
</tr>
<tr>
<td>실험</td>
<td>0.67</td>
</tr>
<tr>
<td>실험</td>
<td>0.44</td>
</tr>
<tr>
<td>실험</td>
<td>0.77</td>
</tr>
<tr>
<td>실험</td>
<td>0.5</td>
</tr>
<tr>
<td>실험</td>
<td>0.16</td>
</tr>
<tr>
<td>실험</td>
<td>8.37</td>
</tr>
<tr>
<td>실험</td>
<td>0.81</td>
</tr>
<tr>
<td>실험</td>
<td>7.19</td>
</tr>
<tr>
<td>실험</td>
<td>2.93</td>
</tr>
<tr>
<td>실험</td>
<td>>15</td>
</tr>
<tr>
<td>실험</td>
<td>4.20</td>
</tr>
<tr>
<td>실험</td>
<td>5.87</td>
</tr>
<tr>
<td>실험</td>
<td>1.37</td>
</tr>
<tr>
<td>실험</td>
<td>0.2</td>
</tr>
</tbody>
</table>

상기 표 3에 나타낸 바와 같이, 본 발명에 따른 화합물은 A375P세포의 활성 억제율이 0.006 ~ 11.2 µM의 우수한 활성을 나타내고 있고, 대부분의 화합물이 활성 억제율이 1 µM 미만으로서 우수한 항암저해 활성을 보이는 것을 확인할 수 있다.

따라서 본 발명의 실험에 나타낸 화합물들은 비정상적으로 B-raf 활성이 나타나는 관련 질환, 예를 들면 암 특허, 혹성종, 대장암, 신장암, 전립선암, 간성선암 및 난소암 등의 치료제로 유용하게 사용될 수 있다.

한편, 본 발명에 따른 상기 화학식 1로 표시되는
퓨리닐피리디닐미노-2,4-디플루오로페닐 설폰아미드 유도체는 목적에 따라 여러 형태로 제제화가 가능하다. 하기로 본 발명에 따른 상기 화학식 1로 표시되는 화합물을 활성성분으로 함유시킨 몇몇 제제화 방법을 예시한 것으로 본 발명이 이에 한정되는 것은 아니다.

<제제예 1> 산제의 제조
화학식 1의 화합물 2 g
유당 1 g
상기의 성분을 혼합하고 기밀포에 충전하여 캡슐을 제조하였다.

제제에 2 경제의 제조
화학식 1의 화합물 100 mg
유수수질분 100 mg
유당 100 mg
스테아린산 마그네슘 2 mg
상기의 성분을 혼합한 후, 통상의 경제의 제조방법에 따라서 타장하여 경제를 제조하였다.

제제에 3 캡슐제의 제조
화학식 1의 화합물 100 mg
유수수질분 100 mg
유당 100 mg
스테아린산 마그네슘 2 mg
상기의 성분을 혼합한 후, 통상의 캡슐제의 제조방법에 따라서 젤라틴 캡슐에 충전하여 캡슐제를 제조하였다.

제제에 4 주사제의 제조
화학식 1의 화합물 100 mg
만니톨 180 mg
Na₂HPO₄·2H₂O 26 mg
유당수 2974 mg
통상적인 주사제의 제조방법에 따라, 상기 성분들을 제시된 함량으로 함유시켜 주사제를 제조하였다.

제제에 5 건강식품의 제조
화학식 1의 화합물 1000 mg
비타민 혼합물 적량
비타민 A 아세테이트 70 μg
비타민 E 1.0 mg
비타민 0.13 mg
비타민 B2 0.15 mg
비타민 B6 0.5 mg
비타민 B12 0.2 μg
비타민 C 10 mg
비오틴 10 μg
니코틴산아미드 1.7 mg
[821] 임산 50 mg
[822] 판토엔산 칼슘 0.5 mg
[823] 무기질 혼합물 적량
[824] 황산제1철 1.75 mg
[825] 산화아연 0.82 mg
[826] 탄산마그네슘 25.3 mg
[827] 제1신산칼륨 15 mg
[828] 제2신산칼슘 55 mg
[829] 구연산칼륨 90 mg
[830] 탄산칼슘 100 mg
[831] 염화마그네슘 24.8 mg
[832]
[833] 상기의 비타민 및 미네랄 혼합물의 조성비는 비교적 건강식품에 적합한 성분을 바람직한 실시로 혼합 조성하였지만, 그 배합비율을 임의로 변형 실시하여도 무방하며, 통상의 건강식품 제조방법과 있다 상기의 성분을 혼합한 다음, 과립을 제조하고, 통상의 방법에 따라 건강식품 조성물 제조에 사용할 수 있다.
[834]
[835] <제제에 6> 건강 음료의 제조
[836] 화학식 1의 화합물 1000 mg
[837] 구연산 1000 mg
[838] 올리고당 100 g
[839] 메실농축액 2 g
[840] 타우린 1 g
[841] 정제수를 가하여 전체 900 ml
[842]
[843] 통상의 건강 음료 제조방법에 따라 상기의 성분을 혼합한 다음, 약 1시간 동안 85도에서 교반 가열한 후, 만들어진 음액을 여과하여 분리된 21 용기에 취득하여 밀봉 밀폐한 뒤 냉장 보관한 다음 건강 음료 조성물 제조에 사용하였다.
[844] 상기 조성비는 비교적 기호 음료에 적합한 성분을 바람직한 실시로 혼합 조성하였지만 수요계층이나, 수요국가, 사용용도 등 지역적, 민족적 기호 도에 따라서 그 배합비율을 임의로 변형 실시하여도 무방하다.
[845]
[846] <제제에 7> 기타 건강식품의 제조
[847] 7-1. 음료의 제조
[848] 골 522 mg
[849] 치 우리의 아미드 5 mg
[850] 니코틴산아미드 10 mg
[851] 염산리보플라빈나트륨 3 mg
[852] 염산피리독신 2 mg
[853] 이노시톨 30 mg
[854] 오르토산 50 mg
[855] 화학식 1의 화합물 0.48~1.28 mg
[856] 물 200 ml

상기 조성 및 함량으로 하여 통상적인 방법을 사용하여 음료를 제조하였다.

[860] 7-2. 층양즙의 제조
[861] 컴베이스 20 %
[862] 설탕 76.36~76.76 %
[863] 화학식 1의 화합물 0.24~0.64 %
[864] 후르﴿Cancellation
[865] 물 2 %

상기 조성 및 함량으로 하여 통상적인 방법을 사용하여 층양즙을 제조하였다.

[869] 7-3. 케니지의 제조
[870] 설탕 50~60 %
[871] 물엿 39.26~49.66 %
[872] 화학식 1의 화합물 0.24~0.64 %
[873] 오렌지향 0.1 %

상기 조성 및 함량으로 하여 통상적인 방법을 사용하여 케니지를 제조하였다.

[877] 7-4. 밀가루 식품의 제조
[878] 화학식 1의 퓌리닐피리디닐아미노-2,4-디플루로페닐 섬포니미드 유도체를 0.5 내지 5 중량부를 밀가루 100 중량부에 첨가하고, 이 혼합물을 이용하여 빵, 케이크, 쿠키, 크래커 및 면류를 제조하여 건강 증진용 식품을 제조하였다.

[880] 7-5. 유제품(dairy products)의 제조
[881] 画화식 1의 퓌리닐피리디닐아미노-2,4-디플루로페닐 섬포니미드 유도체를 5 내지 10 중량부를 우유 100 중량부에 첨가하고, 상기 우유를 이용하여 버터 및 아이스크림과 같은 다양한 유제품을 제조하였다.

[883] 7-6. 선식의 제조
[884] 현미, 보리, 찹쌀, 옥수수 공지의 방법으로 알파화 시켜서 건조한 것을 배전한 후 분쇄기로 임도 60 메시의 분말로 제조하였다. 김은콩, 김정깨, 들깨도 공지의
방법으로 절서 건조한 것을 배진한 후 분쇄기로 입도 60 메시의 분말로 재조하였다. 상기에서 제조한 곡물류 및 종실류와 본 발명의 화학식 1의
프리닐피리디닐아미노-2,4-다이클로오로필질 설판아미드 유도체를 다음과 같은 비율로 배합하여 재조하였다.

[886] 현미 30 %
[887] 옥수 15 %
[888] 보리 20 %
[889] 들깨 7 %
[890] 검정콩 7 %
[891] 검은깨 7 %
[892] 화학식 1의 화합물 3 %
[893] 영지 0.5 %
[894] 지황 0.5 %
[청구항 1]

주거 화학상 1로 표시되는 신규한
퓨리닐피리디닐아미노-2,4-디포로로메칠 설폰아미드 유도체 또는 이의 약학적으로 허용가능한 염.

[화학식 1]

\[
\text{\includegraphics[width=0.5\textwidth]{chemical_formula}}
\]

(상기 화학식 1에서,
\(R\)은 C\(_1\)-C\(_6\)의 직쇄 또는 측쇄 알킬; 비치환되거나 할로겐 및 C\(_1\)-C\(_6\)의 직쇄 또는 측쇄 알킬로 이루어지는 군으로부터 선택되는 1종 이상으로 친환된 C\(_2\)-C\(_6\) 시클로알킬; 할로겐, C\(_1\)-C\(_6\)의 직쇄 또는 측쇄 알킬, C\(_1\)-C\(_6\)의 직쇄 또는 측쇄 알킬시 및 할로겐으로 친환된 C\(_1\)-C\(_6\)의 직쇄 또는 측쇄 알킬시로 이루어지는 군으로부터 선택되는 1종 이상으로 친환된 C\(_2\)-C\(_6\) 아릴; 비치환되거나 할로겐으로 친환된 C\(_1\)-C\(_6\)의 직쇄 또는 측쇄 알킬, C\(_1\)-C\(_6\)의 직쇄 또는 측쇄 알킬은 안 전 C\(_1\)-C\(_6\)의 직쇄 또는 측쇄 알킬시카보닐 및 고리 내 산소(O)를 1 이상 포함하는 C\(_2\)-C\(_6\) 혈테로시클로알킬로 이루어지는 군으로부터 선택되는 1종 이상으로 친환된 C\(_2\)-C\(_12\) 바닐 또는 이중고리의 혈테로아릴; 비치환되거나 할로겐 및 C\(_1\)-C\(_6\)의 직쇄 또는 측쇄 알킬로 이루어지는 군으로부터 선택되는 1종 이상으로 친환된 C\(_2\)-C\(_6\) 혈테로시클로알킬; 또는 비치환되거나 할로גן, 니트로 및 C\(_1\)-C\(_6\)의 직쇄 또는 측쇄 알킬로 친환된 C\(_2\)-C\(_6\) 아릴 C\(_1\)-C\(_6\)의 직쇄 또는 측쇄 알킬이고, 여기서, 상기 혈테로아릴 및 혈테로시클로알킬은 고리 내 N, O 및 S로 이루어지는 군으로부터 선택되는 1종 이상의 혈테로 원자를 포함한다).

[청구항 2]

상기 R은 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, 시클로프로필, 시클로부틸, 시클로펜릴, 시클로헥실, 비치환되거나 클로로, 플루오로, 브로모, 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, 메톡시, 에톡시, 프로폭시, 부톡시, 트리플루오로메톡시, 플루오로메톡시, 디플루오로메톡시 및 트리플루오로메톡시로 이루어지는 군으로부터 선택되는 1종
이상으로 치환된 C₅-C₆ 아릴; 비치환되거나 클로로, 플루오로,
브로모, 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸,
메틸옥시카보닐, 에틸옥시카보닐, 프로필옥시카보닐,
부틸옥시카보닐, t-부틸옥시카보닐 및 다이옥실라닐로
이루어지는 군으로부터 선택되는 1종 이상으로 치환된 C₅-C₁₂
단일 또는 이중고리의 체테로아릴; 비치환되거나 클로로,
플루오로, 브로모, 메틸, 에틸, 프로필, 이소프로필, 부틸 및
이소부틸로 이루어지는 군으로부터 선택되는 1종 이상으로
치환된 C₅-C₆ 체테로시클로알킬; 또는 비치환되거나 클로로,
플루오로, 브로모, 니트로, 메틸, 에틸, 프로필, 이소프로필, 부틸 및
이소부틸로 이루어지는 군으로부터 선택되는 1종 이상으로 치환된 C₅
-C₆ 아릴 C₅-C₆의 직쇄 또는 측쇄 알킬이고, 여기서, 상기
현도라일 및 체테로시클로알킬은 고리 내 N, O 및 S로
이루어지는 군으로부터 선택되는 1종 이상의 체테로 원자를
포함하는 것을 특징으로 하는 신규한
퓨리닐피리디닐아미노-2,4-디플루오로페닐 산폰아미드 유도체
또는 이의 약학적으로 허용가능한 염.

[청구항 3]
상기 R은 메틸, 에틸, 프로필, 이소프로필, 시클로프로필,
시클로헥실, 비치환되거나 클로로, 플루오로, 메틸, 메톡시 및
트리플루오로메톡시로 이루어지는 군으로부터 선택되는 1종
이상으로 치환된 폐닐; 비치환되거나 메틸,
메틸옥시카보닐(메틸에스테르) 및 다이옥실라닐로 이루어지는
군으로부터 선택되는 1종 이상으로 치환된 티오펜, 티아졸, 퓨린,
이미다졸, 피리딘, 디하이드로벤조퓨린, 벤조퓨린, 프로판,
벤조티아졸, 인돌 또는 피라졸; 올폰, 또는 니트로로 치환된
페닐메틸인 것을 특징으로 하는 신규한
퓨리닐피리디닐아미노-2,4-디플루오로페닐 산폰아미드 유도체
또는 이의 약학적으로 허용가능한 염.

[청구항 4]
제1항에 있어서, 상기 화학식 1로 표시되는 화합물은
(1) N-(2,4-디플루로-3-(3-(9-(데트라히드로-2H-피란-2-일)-9H-푸란-6-
일)피리딘-2-일아미노)페닐)프로필-2-술폰아미드;
(2) N-(3-(3-(9H-푸란-6-일)피리딘-2-일아미노)-2,4-디플루오로페닐)-3-(
트리플루오로메틸)벤젠술폰아미드;
(3) N-(3-(3-(9H-푸란-6-일)피리딘-2-일아미노)-2,4-디플루오로페닐)-4-(
트리플로로메틸)벤젠 су론아미드;
4) N-(3-(3-(9H-푸란-6-일)페리딘-2-일아미노)-2,4-디플로로페닐)피아고린-2-수론아미드;
5) N-(3-(3-(9H-푸란-6-일)페리딘-2-일아미노)-2,4-디플로로페닐)프로판-1-수론아미드;
6) N-(3-(3-(9H-푸란-6-일)페리딘-2-일아미노)-2,4-디플로로페닐)-3,4-디플로로벤젠 су론아미드;
7) N-(3-(3-(9H-푸란-6-일)페리딘-2-일아미노)-2,4-디플로로페닐)벤조 푸란-2-수론아미드;
8) N-(3-(3-(9H-푸란-6-일)페리딘-2-일아미노)-2,4-디플로로페닐)-4-클로로-2-프로로벤젠수론아미드;
9) N-(3-(3-(9H-푸란-6-일)페리딘-2-일아미노)-2,4-디플로로페닐)-1-(2-니트로페닐)벤탄수론아미드;
10) N-(3-(3-(9H-푸란-6-일)페리딘-2-일아미노)-2,4-디플로로페닐)-3,4-디메톡시벤젠수론아미드;
11) N-(3-(3-(9H-푸란-6-일)페리딘-2-일아미노)-2,4-디플로로페닐)시클로헥산수론아미드;
12) N-(3-(3-(9H-푸란-6-일)페리딘-2-일아미노)-2,4-디플로로페닐)-4-(트리플로로메톡시)벤젠수론아미드;
13) N-(3-(3-(9H-푸란-6-일)페리딘-2-일아미노)-2,4-디플로로페닐)-4-플로로-2-(트리플로로메틸)벤젠수론아미드;
14) N-(3-(3-(9H-푸란-6-일)페리딘-2-일아미노)-2,4-디플로로페닐)-3-클로로-2-메틸벤젠수론아미드;
15) N-(3-(3-(9H-푸란-6-일)페리딘-2-일아미노)-2,4-디플로로페닐)푸란-2-수론아미드;
16)
메틸-3-(N-(3-(3H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)산화모일)세오푼-2-카프복실에이트

(17)
N-(3-(3H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)세오푼-3- су폴아미드;

(18)
N-(3-(3H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)푸란-3- су폴아미드;

(19)
N-(3-(3H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)시클로프로판 су폴아미드;

(20)
N-(3-(3H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-2,4-
디메틸씨아졸-5- су폴아미드;

(21)
N-(3-(3H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)모르포린-4- су폴아미드;

(22)
N-(3-(3H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-1- 베타-1H-이미디아졸-4- су폴아미드;

(23)
N-(3-(3H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-5- 베타
피랄린-2- су폴아미드;

(24)
N-(3-(3H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-5-{(1,3-
다이옥산산-2-일)퓨란-2- су폴아미드;

(25)
N-(3-(3H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-2,5-
다이메틸퓨랄-3- су폴아미드;

(26)
N-(3-(3H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-5- 베타-
(트리플로로메틸)퓨랄-3- су폴아미드;

(27)
N-(3-(3H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-2- 클로로-6-메틸벤젠су폴아미드;

(28)
N-(3-(3H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-3- 클로로-4-플로로벤젠су폴아미드;
(29) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디포로페닐)-3-클로로-2-포로벤젠 су론아미드;
(30) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디포로페닐)피리딘-3-су론아미드;
(31) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디포로페닐)-2-벤 털벤젠су론아미드;
(32) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디포로페닐)-2-클로로벤젠 су론아미드;
(33) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디포로페닐)-3-클로로벤젠су론아미드;
(34) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디포로페닐)-2,3- 클로로벤젠су론아미드;
(35) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디포로페닐)벤젠 су론아미드;
(36) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디포로페닐)-2,3- 디하이드로벤조푸란-7- су론아미드;
(37) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디포로페닐)벤조 푸란-7-су론아미드;
(38) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디포로페닐)크로 만-8-су론아미드;
(39) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디포로페닐)-2-메 털벤조[d]싸이아졸-6-су론아미드;
(40) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디포로페닐)-1-메 털-1H-인돌-5-су론아미드;
(41) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디포로페닐)-1-메
릴-1H-인돌-4- су플온아미드;
(42) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-1-메틸-1H-인돌-7-су플온아미드;
(43) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-1-메틸-1H-피라졸-4-су플온아미드; 및
(44) N-(3-(3-(9H-푸린-6-일)피리딘-2-일아미노)-2,4-디플로로페닐)-5-클로로싸이오벤-4-су플온아미드로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는
퓨리닐피리디닐아미노-2,4-디플루오로페닐 설플온아미드 유도체 또는 이의 약학적으로 허용가능한 염.

[청구항 5]

가장 반응식 1에 나타난 바와 같이,
화학식 2의 화합물을 염기 및 용매 하에서 화학식 3의 화합물을 반응시켜 화학식 1의 화합물을 얻는 단계를 포함하는 제1항의
퓨리닐피리디닐아미노-2,4-디플루오로페닐 설플온아미드 유도체의 제조방법:
[반응식 1]

(상기 반응식 1에서,
R은 제 1항의 화학식 1에서 정의한 바와 같다.)

[청구항 6]

제5항에 있어서, 상기 염기는 리튬(버스트리메릴실릴)아미드이고
상기 용매는 테트라하이드로퓨란인 것을 특징으로 하는
퓨리닐피리디닐아미노-2,4-디플루오로페닐 설플온아미드 유도체의 제조방법.

[청구항 7]

가장 반응식 2에 나타난 바와 같이,
화학식 4의 화합물을 염기 및 용매 하에서 화학식 5의 살포닐
화합물과 반응시켜 화학식 1의 화합물을 얻는 단계를 포함하는
제1항의 루리닐피리디닐아미노-2,4-디플루오로페닐 설플온아미드
유도체의 제조방법:
[반응식 2]
(상기 반응식 1에서, R은 제 1항의 화학식 1에서 정의한 바와 같다.)

[청구항 8] 제7항에 있어서, 상기 염기는 페리딘이고 상기 용매는 디클로로메탄임을 특징으로 하는 퓨리닐페리디닐아미노-2,4-디플루오로페닐 셀폰아미드 유도체의 제조방법.

[청구항 9] 제1항 내지 제4항 중 어느 한 항의 퓨리닐페리디닐아미노-2,4-디플루오로페닐 셀폰아미드 유도체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 것을 특징으로 하는 Raf 키나제의 과활성에 의해 유발되는 질환의 예방 또는 치료용 약학적 조성물.

[청구항 10] 제9항에 있어서, 상기 Raf 키나제의 과활성에 의해 유발되는 질환은 암인 것을 특징으로 하는 약학적 조성물.

[청구항 11] 제10항에 있어서, 상기 암은 흉내종, 재장암, 전립선암, 감상선암 및 난소암인 것을 특징으로 하는 약학적 조성물.

[청구항 12] 제1항 내지 제4항 중 어느 한 항의 퓨리닐페리디닐아미노-2,4-디플루오로페닐 셀폰아미드 유도체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 것을 특징으로 하는 Raf 키나제의 과활성에 의해 유발되는 질환의 예방 또는 개선용 진강식품 조성물.

[청구항 14] 제13항에 있어서, 상기 암은 흉내종, 재장암, 전립선암, 감상선암 또는 난소암인 것을 특징으로 하는 건강식품 조성물.

[청구항 15] 제1항 내지 제4항 중 어느 한 항의 화학식 1로 표시되는 퓨리닐페리디닐아미노-2,4-디플루오로페닐 셀폰아미드 유도체 또는 이의 약학적으로 허용가능한 염을 이를 필요하는 환자에게 투여하는 단계를 포함하는 Raf 키나제의 과활성에 의해 유발되는 질환의 예방 또는 치료방법.

[청구항 16] Raf 키나제의 과활성에 의해 유발되는 질환의 예방 또는 치료에 사용되는 제1항 내지 제4항 중 어느 한 항의 화학식 1로 표시되는 퓨리닐페리디닐아미노-2,4-디플루오로페닐 셀폰아미드 유도체 또는 이의 약학적으로 허용 가능한 염.