(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property Organization
(43) International Publication Date
8 May 2014 (08.05.2014)
(51) International Patent Classification:
A61K 39/395 (2006.01) A61K 47/26 (2006.01)
A61K 47/18 (2006.01) A61K 9/19 (2006.01)
(21) International Application Number:
PCT/EP2013/072766
(22) International Filing Date:
31 October 2013 (31.10.2013)
(25) Filing Language:
English
(26) Publication Language:
English
(30) Priority Data:
61/720,914 31 October 2012 (31.10.2012) US
(74) Agents: KOCH, Andreas et al; Schiweck Weinzierl Koch, European Patent Attorneys, Landsberger Str. 98, 80339 Munich (DE).
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).
Published:
— with international search report (Art. 21(3))
— with sequence listing part of description (Rule 52(a))

(54) Title: LYOPHILIZED FORMULATION COMPRISING GM-CSF NEUTRALIZING COMPOUND
(57) Abstract: The present invention relates to aqueous formulations comprising at least 20 mg/ml of a compound neutralizing GM-CSF, a lyoprotectant and an amino acid and/or a buffer. The ingredients of the formulation preferably provide stability to the compound neutralizing GM-CSF in view of lyophilisation, storage and reconstruction. In a preferred aspect, the formulation, e.g. after reconstruction's for use in therapy, preferably for use in the treatment of inflammatory and autoimmune disorders, preferably including allergic and psoriatic disorders, as well as arthritic and asthmatic disorders. Furthermore, a kit comprising the formulation of the invention is provided.
Lyophilized formulation comprising GM-CSF neutralizing compound

[0001] The present invention relates to stable lyophilized formulations comprising a compound neutralizing Granulocyte-macrophage colony stimulating factor (GM-CSF). The ingredients of the formulations preferably provide stability over lyophilization, storage and reconstruction. In a preferred aspect, the formulations are for use in therapy, preferably for use in the treatment of inflammatory and autoimmune disorders, preferably including allergic and psoriatic disorders, as well as arthritic and asthmatic disorders. Furthermore, a kit comprising the formulations of the invention and a solvent for reconstruction is provided.

[0002] Proteins are used in a wide range of applications in the fields of pharmaceuticals, veterinary products, cosmetics and other consumer products, foods, feeds, diagnostics, industrial chemistry and decontamination. At times, such uses have been limited by constraints inherent in proteins themselves or imposed by the environment or media in which they are used. Such constraints may result in poor stability of the proteins, variability of performance or high cost. Due to the advent of biotechnology it is possible to produce a wide variety of proteins for therapeutic applications. After their production, protein pharmaceuticals are usually stored prior to their use. Due to the fact that proteins are generally larger and more complex than "traditional" pharmaceuticals, formulation and processing of protein pharmaceuticals that are suitable for storage can be particularly challenging. For reviews of protein pharmaceutical formulation and process design, see Carpenter et al. (1997), Pharm. Res. 14: 969-975; Wang (2000), Int. J. Pharmaceutics 203: 1-60; and Tang and Pikal (2004), Pharm. Res. 21: 191-200.

[0003] Several factors can be considered in designing formulations and processes for protein pharmaceutical production. Of primary concern is the stability of the protein through any or all steps of manufacture, shipping, and handling steps, which may include preparation of the composition, freezing, lyophilizing, drying, storage, shipping, reconstitution, and post-reconstitution storage by the end user. Other potential considerations include ease and economy of manufacture, handling, and distribution; composition of the final product for patient administration; and ease of use by the end user, including solubility of the lyophilized formulation upon reconstitution.
Liquid formulations may satisfy certain objectives. Possible advantages of liquid formulations include ease and economy of manufacture and convenience for the end user. Frequently, when stored for extended periods polypeptides are unstable in solution (Manning et al (1989), Pharm. Res. 6: 903-918). Accordingly, additional processing steps have been developed to allow for a longer shelf life including drying, e.g., lyophilization. Lyophilized formulations may also provide certain advantages. Potential benefits of lyophilization include improved protein stability as well as ease and economy of shipping and storage. However, lyophilized pharmaceutical compositions may be less convenient for the end user.

In addition to the choice of the basic form of the composition (e.g., lyophilized, liquid, frozen, etc.), optimization of a protein formulation typically involves varying the components of the formulation and their respective concentrations to maximize protein stability. A variety of factors may affect protein stability, including ionic strength, pH, temperature, shear forces, freezing, lyophilizing, drying, agitation, and reconstitution. Protein instability may be caused by physical degradation (e.g., denaturation, aggregation, or precipitation) or chemical degradation (e.g., deamidation, oxidation, or hydrolysis). Optimization of formulation components and concentrations is solely based on empirical studies and/or rational approaches to overcoming sources of instability.

Sometimes, in long-term storage of pharmaceutical compositions containing polypeptides, including aqueous and lyophilized formulations, active polypeptides can be lost due to aggregation and/or degradation.

Accordingly, typical practices to improve polypeptide stability can be addressed by varying the concentration of elements within the formulation, or by adding excipients to modify the formulation (U.S. Patent Nos. 5,580,856 and 6,171,586 and U.S. Patent application Nos. US 2003/0202972, US 2003/0180287). US 5,580,856 is a prototype patent disclosing agents such as natural polymers, surfactants, sulfated polysaccharides, proteins and buffers which can be added to stabilize a dried protein during or after rehydration. However, apart from many options, US patent 5,580,856 does not teach which stabilizer should be added for which protein. Accordingly, while the skilled reader is made aware of that many options, he or she would have to find out for his/her protein the best conditions among the many options described by US 5,580,856. US patent application 2003/0202972 describes a stable lyophilized formulation of an anti-Her2 antibody, wherein the stabilizer is sugar, trehalose, or a buffer. Yet, while these stabilizers may be useful for an antibody, they cannot be extrapolated to other proteins. US patent application 2003/0180287 is similar to US 2003/0202972 in that it also describes a stable solution of an immunoglobulin-like protein,
i.e., a protein containing an Fc domain. The stabilizer may be sodium phosphate, potassium phosphate, sodium or potassium citrate, maleic acid, ammonium acetate, Tris-buffer, acetate, diethaolamine, histidine, lysine or cysteine. Among these chemically distinct stabilizers which could be chosen by the skilled reader, lysine turned out to be suitable. However, like with US 2003/0202972, the specific stabilizer is merely suitable for a specific protein, here an Fc domain containing protein, and cannot per se be extrapolated to another protein. Accordingly, the use of additives cannot be extrapolated from a specific protein to another un-related protein. Indeed, the use of additives - while improving storage - can still result in inactive polypeptides. In addition, in the case of lyophilization, the rehydration step can introduce conditions that result in inactivation of the polypeptide by, for example, aggregation or denaturation (Hora et al. (1992), Pharm. Res., 9: 33-36; Liu et al. (1991), Biotechnol. Bioeng., 37: 177-184). In fact, aggregation of polypeptides is undesirable as it may result in immunogenicity (Cleland et al. (1993), Crit. Rev. Therapeutic Drug Carrier Systems, 10: 307-377; and Robbins et al. (1987), Diabetes, 36: 838-845).

[0008] Maintenance of biological activity during the development and manufacture of pharmaceutical products depends on the inherent stability of the macromolecule, as well as the stabilization techniques employed. A range of protein stabilization techniques exist; including addition of chemical "stabilizers" to the aqueous solution or suspension of a protein. For example, United States patent 4,297,344 discloses stabilization of coagulation factors II and VIII, antithrombin III and plasminogen against heat by adding selected amino acids. United States patent 4,783,441 discloses a method for stabilizing proteins by adding surface-active substances. United States patent 4,812,557 discloses a method for stabilizing interleukin-2 using human serum albumin. Freeze/thaw methods in which the preparation is mixed with a cryoprotectant and stored at very low temperatures is another option to stabilize a protein. However, not all proteins will survive a freeze/thaw cycle. Cold storage with cryoprotectant additive, normally glycerol is a further option. Storage in the glass form, as described in United States patent 5,098,893 could also be made. In this case, proteins are dissolved in water-soluble or water-swellable substances which are in amorphous or glassy state. The most widely used method for the stabilization of proteins is freeze-drying or lyophilization. Whenever sufficient protein stability cannot be achieved in aqueous solution, lyophilization provides the most viable alternative. One disadvantage of lyophilization is that it requires sophisticated processing, is time consuming and expensive. In addition, if lyophilization is not carried out carefully, most preparations are at least partially denatured by the freezing and dehydration steps of the technique. The result is frequently irreversible aggregation of a portion of protein molecules, rendering a formulation unacceptable for parenteral administration.
[0009] Generally spoken, the degradation of proteins has been well described in the literature, but the storage and solubility of compounds neutralizing Granulocyte-macrophage colony stimulating factor (further referred to as GM-CSF), in particular of polypeptides and anti-GM-CSF antibodies, has not been described.

[0010] In addition, while it was known in the art that a multitude of options for protein stabilizing agents as well as for agents which allow a high concentration of a protein while being kept stable were available, up to the present invention, it was not recognized in the art that a formulation comprising compounds neutralizing GM-CSF in high concentrations could be unstable and thus require improvement.

[0011] In the preparation of a pharmaceutical composition comprising a protein, such as an antibody, e.g., a monoclonal antibody, it is an aim to develop high concentration liquid formulations due to the potential of subcutaneous administration which results in higher convenience for the patient. However, there is a general consensus that development of high-concentration formulations of antibodies, in particular monoclonal antibodies, poses serious challenges with respect to the physical and chemical stability of the monoclonal antibodies such as increased formation of soluble as well as insoluble aggregates which enhance the probability of an immunogenic response as well as give rise to low bioactivity.

[0012] Aggregate formation by a polypeptide during storage of a liquid pharmaceutical composition can adversely affect biological activity of that polypeptide, resulting in loss of therapeutic efficacy of the pharmaceutical composition. Furthermore, aggregate formation may cause other challenges such as blockage of tubing, membranes, or pumps when the polypeptide-containing pharmaceutical composition is administered using an infusion system. Furthermore, high-concentration formulations of antibodies have been reported to result in increased viscosity thereby creating serious challenges for the manufacturability and injectability. Highly viscous formulations are difficult to manufacture, draw into a syringe, and inject. The use of force in manipulating the viscous formulations leads to excessive frothing, which can lead to denaturation and inactivation of active monoclonal antibodies.

[0013] Therefore, there is a high need for a stable high-concentrated protein pharmaceutical composition comprising a compound neutralizing GM-CSF, e.g. an antibody and having a low and feasible viscosity which is suitable for subcutaneous administration, such as in a ready to use device. Furthermore, from a patient point of view it would be highly desirable to have room temperature stable products. At this moment, there are in particular no marketed antibody formulations where storage at room temperature is a possibility throughout the shelf
life of the drug product. Typically, increased protein aggregation occurs causing an unacceptably high level of aggregates and protein related impurities, which may give rise to immunogenic reactions.

[0014] Granulocyte-macrophage colony stimulating factor (GM-CSF), initially identified as a hematopoietic growth factor, has more recently been shown to be an important cytokine in inflammation and autoimmunity. Elevated levels of GM-CSF mRNA or protein are measured in a variety of inflammatory sites including in allergic and psoriatic patients, arthritic and asthmatic patients. Numerous in vivo studies have shown over the past few years that blockade of GM-CSF via neutralizing antibodies can prevent or even cure pro-inflammatory diseases in various models of inflammation including models for arthritis experimental autoimmune encephalitis, psoriasis, and lung disease. Therefore, it is highly desirable to have available a formulation with a GM-CSF neutralizing compound that is, in particular, stable, contains high amounts of a GM-CSF neutralizing compound and/or can be administered via the subcutaneous route.

[0015] Hence, the technical challenge of the present invention is to comply with the needs described above.

[0016] The present invention addresses these needs and thus provides as a solution to the technical challenge the embodiments concerning formulations as well as methods and uses applying these formulations in the treatment of subjects suffering from diseases which would benefit from the administration of compounds neutralizing GM-CSF. These embodiments are characterized and described herein, illustrated in the Examples, and reflected in the claims.

[0017] It must be noted that as used herein, the singular forms "a", "an", and "the", include plural references unless the context clearly indicates otherwise. Thus, for example, reference to "an antibody" includes one or more of such different antibodies and reference to "the method" includes reference to equivalent steps and methods known to those of ordinary skill in the art that could be modified or substituted for the methods described herein.

[0018] Unless otherwise indicated, the term "at least" preceding a series of elements is to be understood to refer to every element in the series. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the present invention.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integer or step. When used herein the term "comprising" can be substituted with the term "containing" or sometimes when used herein with the term "having" or could even be replaced by consisting of.

When used herein "consisting of" excludes any element, step, or ingredient not specified in the claim element. When used herein, "consisting essentially of" does not exclude materials or steps that do not materially affect the basic and novel characteristics of the claim. In each instance herein any of the terms "consisting essentially of" and "consisting of may be replaced with each other.

As used herein, the conjunctive term "and/or" between multiple recited elements is understood as encompassing both individual and combined options. For instance, where two elements are conjoined by "and/or", a first option refers to the applicability of the first element without the second. A second option refers to the applicability of the second element without the first. A third option refers to the applicability of the first and second elements together. Any one of these options is understood to fall within the meaning, and therefore satisfy the requirement of the term "and/or" as used herein. Concurrent applicability of more than one of the options is also understood to fall within the meaning, and therefore satisfy the requirement of the term "and/or" as used herein.

Several documents are cited throughout the text of this specification. Each of the documents cited herein (including all patents, patent applications, scientific publications, manufacturer's specifications, instructions, etc.), whether supra or infra, are hereby incorporated by reference in their entirety. To the extent the material incorporated by reference contradicts or is inconsistent with this specification, the specification will supersede any such material. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

The present invention is aiming to provide a formulation which contains a high amount of compound(s) neutralizing GM-CSF, in order to, e.g., enable lower volume when being injected into subjects in need thereof so as to reduce side effects like pain due to high volume injection or being suitable for subcutaneous administration at a low volume,
recognized that compounds neutralizing GM-CSF may be unstable at high concentrations and may also be unstable over a prolonged period of storage.

[0024] Indeed, there are many ways in which compounds neutralizing GM-CSF, like proteins, can be unstable. For example, protein instability could be caused by protein aggregation or degradation, but also by chemical instability due to deamination, deamidation, oxidation, disulfide bond breakage and formation, hydrolysis, succinimidation, non-disulfide crosslinking, deglycosylation or "enzymatic browning" (Maillard reaction) or any combination of these phenomena; see, for example, Wang et al. (1999), Int. J. Pharm. 185: 129-188. Furthermore, physicochemical parameters such as the temperature, pH value, surface adsorption, salts, metal ions, chelating agents, physical forces such as shear forces, protein denaturants, non-aqueous solvents, protein concentration, source and purity of the protein, protein morphism or pressure can influence protein stability.

[0025] Yet, while many factors can influence protein stability, many measures could also be taken to stabilize a protein. For example, a protein can be stabilized internally (by changing amino acids) or externally. External stabilization could be achieved by the addition of chelating agents, metal ions, reducing agents, polymers, polyethylene glycols/polysols, serum albumin, surfactants, sugars and polysols, fatty acids and phospholipids, amino acids, buffers, etc.; see, for example, Wang, Y and Hanson M (1988), J. Parental Sci. & Technology, 42, Supplement: 4-26; Wang et al. (1999), Int. J. Pharm. 185: 129-188. In sum, for stabilizing GM-CSF neutralizing compounds such as antibodies in a formulation, the skilled person would have had many options available.

[0026] In the present case, the inventors observed that the compounds neutralizing GM-CSF may show aggregation and/or may not be dissolved in higher concentrations. Many different factors can, cause aggregation of a protein in a formulation. Typical purification and storage procedures can expose protein formulations to conditions and components that cause the protein to aggregate. For example, proteins in a formulation may aggregate as a result of any one or more of the following: storage, exposure to elevated temperatures, the pH of the formulation, the ionic strength of the formulation, and the presence of certain surfactants (e.g., polysorbate-20 and polysorbate-80) and emulsifying agents. Similarly, proteins may aggregate when exposed to shear stress, such as, reconstituting a lyophilized protein cake in solution, filter-purifying a protein sample, freeze-thawing, shaking, or transferring a protein solution via syringe. Aggregation can also occur as a result of interactions of polypeptide molecules in solution and at the liquid-air interfaces within storage vials. Conformational changes may occur in polypeptides adsorbed to air-liquid and solid-liquid interfaces during
compression or extension of the interfaces resulting from agitation during transportation. Such agitation can cause the protein of a formulation to aggregate and ultimately precipitate with other adsorbed proteins.

[0027] In addition, exposure of a protein formulation to light can cause the protein to aggregate. The present invention thus provides formulations which enable high concentrations of compounds neutralizing GM-CSF and which reduce aggregation of these compounds. Without being bound by theory the reduction of aggregation is believed to be achieved by controlling one or more of the above-mentioned aggregation mechanisms. This can result in, for example, improved product stability, and greater flexibility in manufacturing processes and storage conditions.

[0028] Disclosed is a solution containing compounds neutralizing GM-CSF which is stable and does not undergo the production of conjugates/aggregates when stored for a long period, especially then this solution is lyophilized, and is suitable for subcutaneous administration, especially after reconstruction, due to a suitable viscosity.

[0029] Specifically, the present inventors found that out of many tested agents that amino acids are useful to stabilize compounds neutralizing GM-CSF at a high concentration with regard to lyophilization by, inter alia, mediating protein solubility and/or inhibiting protein aggregation. When referred herein an amino acid is meant to be an L-amino acid or D-amino acid, wherein L-amino is preferred. Preferably the amino acid is histidine, arginine or a salt thereof; preferably the salt is a chloride, phosphate, acetate or sulphate, more preferably the salt is a chloride. The pH of the solution containing histidine or arginine is between 5 and 7, preferred to between 5,5 and 6,5 , more preferred the pH is 5,8.

[0030] Another, preferred substance to stabilize compounds neutralizing GM-CSF at a high concentration with regard to lyophilization is a citrate buffer system with a pH of between 5 and 7, preferably between 5,5 and 6,5, more preferably with a pH of 5,8.

[0031] Moreover the compounds neutralizing GM-CSF could be further stabilized if a further stabilizer/lyoprotectant, which is also a tonicity modifier, is added to the solution which is to be lyophilized. Therefore one or more of non-reducing sugars, such as sucrose or trehalose or one or more of sugar alcohols, such as mannitol or sorbitol could be added, also combinations of non-reducing sugars and sugar alcohols, like sucrose and mannitol, or sucrose and sorbitol, could also be added to the solution. More preferably a combination of the histidine buffer and trehalose or even more preferably sucrose is used to stabilize the
compounds neutralizing GM-CSF in the lyophilisate to prevent aggregation. It was shown that it is preferable in terms of stability to have at least the same amount of non-reducing sugars, preferably sucrose, in the formulation as compounds neutralizing GM-CSF. However, the osmolality of the reconstituted solution increases alongside with the amount of sucrose in the formulation. The administration of this hypertonic solution could be painful for the patient, therefore the upper limit for osmolality of the solution is set to be about 470 mOsm/kg which is however still hyperosmotic. A compromise between optimal stability, toxicity and antibody concentration had therefore to be found. A preferably weight ratio used for the lyophilisate of the present invention is therefore in the range of 1:0:1.0 to 1,5:1.0 (compounds neutralizing GM-CSF to sugar alcohol), more preferably 1,2 :1 .0.

[0032] In biopharmaceutical products to be lyophilized, the addition of surfactants can be useful to minimize protein degradation during vial filling, freezing, lyophilization and reconstitution. The polysorbates 20 and 80 (Tween 20 and Tween 80) are well established excipients for this purpose. Polysorbate 80 was chosen for the lyophilisate of the present invention because the stabilizing effect can be achieved with lower concentrations and hence less impact on product appearance or glass transition. Minimisation of subvisible particles is achieved with concentrations of 0,05 mg/ml to 2,0 mg/ml, preferably 0,1 mg/ml to 1,0 mg/ml. More preferably 0,2 mg/ml polysorbate 80 is used in the lyophilisate of the present invention. Polysorbate 80 (Tween 80) reduces significantly the number of subvisible particles present in the reconstituted solution and has no detectable impact on the formation of aggregates or fragments.

[0033] The density of the produced lyophilization product and therefore the drying time as well as the reconstitution time is largely dependent on the total mass load of the liquid to be lyophilized. Moreover a high protein concentration will lead to a high pressure drop in the sterile filter and to large losses in the dead space during filling in the manufacturing process. Thus a concentration more than 100 mg/ml of the respective compounds neutralizing GM-CSF in the lyophilisate was regarded as being too high. Concentrations of 20 mg/ml to 100 mg/ml, preferably 50 mg/ml to 95 mg/ml, are therefore used in the present invention, more preferably the concentration of the compounds neutralizing GM-CSF in the lyophilisate to be freeze-dried is 75mg/ml.

[0034] The shelf life of the produced lyophilized product has a minimum requirement of 24 months at 2 to 8 °C, more preferably 36 months or 48 months at 2 to 8 °C or 24 months at ambient temperature. Stability can be determined by e.g. the parameter fragmentation of the product measured by size exclusion chromatography and the parameter active concentration
of the product as measured by surface plasmon resonance technology (such as Biacore system).

[0035] The reconstitution of the lyo cake is to be made with a required amount of water for injection to result in a predefined final concentration of the compounds neutralizing GM-CSF. In determining the required amount of water for injection it has to be considered, that the lyo cake contributes to the final volume after the reconstitution. With increasing vial size the reconstitution time of the lyo cake of the present invention become shorter and more consistent within the batch. With the standard tubing glass vial 10 R (hydrolytic class I) the reconstitution time drops below 10 min if a lyophilized product produced out of about 2,5 g lyophilisate with 75mg/ml of the compound neutralizing GM-CSF is used. With even larger vials it is suspected that the extractable volume would drop below the compendial requirements. Therefore the 10 R glass vial was selected for the lyophilization of the present invention. The reconstitution process typically takes less than 10 min, more preferably less than 5 minutes. The in-use stability of the reconstituted solution can be determined by size exclusion chromatography and surface plasmon resonance technology (such as Biacore system) e.g. at room temperature. The active concentration of the reconstituted solution does not change over 2 hours, preferably over 24 hours, at ambient conditions and the increase in aggregation is 5% or less, preferably 2% or less, more preferably 1% or less.

[0036] For the lyophilization process of the present invention every conventionally used lyophilization process may be used, e.g. initially a freezing rate of 1°C/ min to - 50°C to completely freeze the solution at a controlled freezing rate can chosen. The solution is then kept at -50 °C for an hour to allow complete freezing/solidification. Then an annealing step at - 15°C to enable the ice crystals to grow and achieve a homogenous pore size distribution is introduced. After the annealing step the vials containing the lyophilisate are frozen again at - 50°C for 2 h. In the following primary drying step ice is sublimated. For example 24h at -20°C as an initial shelf temperature and 0,1 mbar chamber pressure for the primary drying step is chosen. In the secondary drying non frozen water is desorbed. A ramp of 0,1 °C / min is used to increase the shelf temperature from - 20°C to the shelf temperature for secondary drying.

[0037] Accordingly, an aspect of the invention is based, on the discovery that formulations comprising

- an compound neutralizing GM-CSF
- and an amino acid, preferably histidine, arginine or a salt thereof, wherein the salt is preferably a chloride, phosphate, acetate or sulphate, and the pH of the buffer system is preferred to be between 5 and 7,
- and/or a citrate buffer system with a preferred pH of between 5 and 7,
- and the formulation may additionally comprises non-reducing sugars, such as sucrose and/or trehalose
- and/or sugar alcohols, such as mannitol and/or sorbitol
- and optionally polysorbate 80,

are rendered sufficiently stable for long-term storage and/or lyophilization. The formulation of the invention has many advantages over standard buffered formulations. In one aspect, the formulation shows minimal aggregation behaviour upon reconstitution of the lyo cake and can be stored after lyophilisation without deleterious effects that might be expected with high protein formulations. Further advantages achieved are long-term stability at ambient temperatures and short reconstitution times of less than 10 min of the lyo cake and a desired acceptable viscosity for administration after reconstruction.

[0038] An acceptable viscosity for the formulation to be lyophilized and for the reconstructed solution for administration is only slightly elevated in comparison to water. Preferably it is below 20 mPa·s at a temperature of about 20°C and a shear rate y of between 50 and 1000 1/s. More preferably it is below 15 mPa·s at a temperature of about 20°C and a shear rate y of between 50 and 1000 1/s.

[0039] Preferred embodiments of the first aspect of the invention are the following:
Formulations according to the invention, wherein the compound neutralizing GM-CSF is a polypeptide, a peptidomimetic, a nucleic acid, or a small molecule.

[0040] In a preferred embodiment, the compound neutralizing GM-CSF (which is preferably a polypeptide and more preferably an antibody or a functional fragment thereof) binds or specifically binds to GM-CSF or to the GM-CSF receptor. It is envisaged that the GM-CSF or GM-CSF receptor is of an animal, including but not limited to mammals such as laboratory animals (rodents such as rats, guinea-pigs, hamsters or mice, non-human primates such as cynomolgus or macaque monkey), domestic or pet animals (e.g. dogs or cats), farm or agricultural animals (e.g. bovine, ovine, caprine and porcine animals) and/or human. Preferably, the GM-CSF or GM-CSF receptor is human GM-CSF (Homo sapiens) or human GM-CSF receptor, respectively, or non-human primate GM-CSF or non-human primate GM-CSF receptor, respectively. Especially preferred variants (homologs) of non-human primate GM-CSF or non-human primate GM-CSF receptor include those of gibbon monkey
(nomascus concolor, also known as the western black crested gibbon) and of monkeys of the macaca family, for example rhesus monkey (Macaca mulatta) and cynomolgous monkey (Macaca fascicularis). According to a particularly preferred embodiment of the invention, the compound binding to GM-CSF or to the GM-CSF receptor (preferably the antibody or fragment thereof) exhibits cross reactivity between both human and at least one of the monkey species mentioned above. For example, an antibody or fragment thereof is capable of binding to (and neutralizing) both the human GM-CSF and the GM-CSF of the cynomolgus monkey (Macaca fascicularis). This is especially advantageous for an antibody molecule which is intended for therapeutic administration in human subjects, since such an antibody will normally have to proceed through a multitude of tests prior to regulatory approval, of which certain early tests involve non-human animal species. In performing such tests, it is generally desirable to use as a non-human species a species bearing a high degree of genetic similarity to humans (e.g. non-human primates such as cynomolgus monkey), since the results so obtained will generally be highly predictive of corresponding results which may be expected when administering the same molecule to humans. However, such predictive power based on animal tests depends at least partially on the comparability of the molecule, and is very high when, due to a cross-species reactivity, the same therapeutic molecule may be administered to humans and animal models. As in this embodiment of the invention, when an antibody molecule is cross reactive for the same antigen in humans and in another closely related species, tests may be performed using the same antibody molecule in humans and in this closely related species, for example in one of the monkey species mentioned above. This increases both the efficiency of the tests themselves as well as predictive power provided by such tests regarding the behavior of such antibodies in humans, the ultimate species of interest from a therapeutic standpoint. It is preferred that the antibody or a functional fragment thereof binding to GM-CSF or to the GM-CSF receptor is a monoclonal antibody or a functional fragment thereof. The same holds true for alternative embodiments with compounds neutralizing GM-CSF, which are not antibodies or not antibody derived.

[0041] Preferably the compound neutralizing GM-CSF is a human monoclonal antibody or a functional fragment thereof;

[0042] The compound neutralizing GM-CSF may be an antibody or a functional fragment thereof that binds to an epitope of human and non-human primate GM-CSF. This epitope preferably comprises amino acids 23-27 (RRLLN) and/or amino acids 65-77 (GLR/QGSLTKLGPL). The variability at position 67 within the amino acid sequence stretch 65-77 reflects the heterogeneity in this portion of GM-CSF between, on the one hand, human and gibbon GM-CSF (in which position 67 is R) and, on the other hand, monkeys of the
macaca family, for example cynomolgous and rhesus monkeys (in which position 67 is Q). If
the epitope comprises two amino acid sequence stretches which are non-adjacent, such as
23-27 (RRLLN) and 65-77 (GLR/QGSLTKLKGPL), the epitope can also be called a
"discontinuous" epitope. Said GM-CSF epitope or said GM-CSF discontinuous epitope may
further comprise amino acids 28-31 (LSRD), amino acids 32-33 (TA), and/or amino acids 21-
22 (EA).

[0043] The human monoclonal antibody or the functional fragment thereof preferably
comprises in its heavy chain variable region a CDR3 comprising an amino acid sequence
selected from the group consisting of those set out in SEQ ID NOs: 1-13 and 56; preferably
the heavy chain variable region CDR3 comprises the amino acid sequence set out in SEQ ID
NO: 2.

[0044] Any of said heavy chain variable region CDR3 sequences can further exist together in
a heavy chain variable region with the heavy chain variable region CDR1 comprising the
amino acid sequence set out in SEQ ID NO: 14 and the heavy chain variable region CDR2
comprising the amino acid sequence set out in SEQ ID NO: 15.

[0045] Further, the human monoclonal antibody or the functional fragment thereof can
comprise in its light chain variable region a CDR1 comprising the amino acid sequence set
out in SEQ ID NO: 16, a CDR2 comprising the amino acid sequence set out in SEQ ID
NO: 17, and a CDR3 comprising the amino acid sequence set out in SEQ ID NO: 18.

[0046] In a especially preferred aspect of the invention, the human monoclonal antibody or
the functional fragment thereof comprises in its light chain variable region a CDR1
comprising an amino acid sequence as set out in SEQ ID NO: 16, a CDR2 comprising an
amino acid sequence as set out in SEQ ID NO: 17 and a CDR3 comprising an amino acid
sequence as set out in SEQ ID NO: 18, and in its heavy chain variable region a CDR1
comprising an amino acid sequence as set out in SEQ ID NO: 14, a CDR2 comprising an
amino acid sequence as set out in SEQ ID NO: 15 and a CDR3 comprising an amino acid
sequence selected from the group consisting of those set out in SEQ ID NOs: 1-13 and 56, most
preferably SEQ ID NO: 2.

[0047] According to a preferred embodiment, the human monoclonal antibody or functional
fragment thereof comprises in its light chain variable region an amino acid sequence
selected from the group consisting of those set out in SEQ ID NOs: 19, 54 and 55. According
to another preferred embodiment, the human monoclonal antibody or functional fragment
thereof comprises in its heavy chain variable region an amino acid sequence selected from the group consisting of those set out in SEQ ID NOs: 20-33, 52 and 53. The human monoclonal antibody or the functional fragment thereof may in a further embodiment comprise a light chain amino acid sequence as set out in SEQ ID NO: 34 and/or a heavy chain amino acid sequence selected from the group consisting of those set out in any of SEQ ID NOs: 35-48, most preferably SEQ ID NO: 35.

[0048] The human monoclonal antibody or the functional fragment thereof can comprise one or more amino acid sequences bearing at least 70%, 80%, 90%, 95%, 98% or 99% homology to the respective amino acid sequence as set out in any of SEQ ID NOs: 1-48 and 52-56, preferably to the respective amino acid sequence as set out in any of SEQ ID NOs: 1-18 and 56 and/or to the amino acid sequence of the framework regions (FRs) within the amino acid sequence as set out in any of SEQ ID NOs: 19-48 and 52-55. Thus, in a preferred embodiment the human monoclonal antibody or the functional fragment thereof can comprise one or more amino acid sequences bearing at least 70%, 80%, 90%, 95%, 98% or 99% homology to the respective amino acid sequence as set out in any of SEQ ID NOs: 1-18 and 56.

Alternatively, in any one of the amino acid sequences of a CDR set out in any of SEQ ID NOs: 1-18 and 56 one, two, three, four, five, six, seven, eight, nine, or 10 amino acids may be substituted. Preferably, such a CDR having substitutions is still capable of binding to GM-CSF as described herein.

In the alternative or in addition to, it is preferred that the human monoclonal antibody or the functional fragment thereof can comprise one or more amino acid sequences bearing at least 70%, 80%, 90%, 95%, 98% or 99% homology to the respective amino acid sequence of a VH, VL, H or L region, respectively, as set out in any of SEQ ID NOs: 19-48 and 52-55. Preferably, the homology is over the entire VH, VL, H or L amino acid sequence. More preferably, the homology is within the CDRs as described before or the homology is within the FRs (or non-CDRs) of such a VH, VL, H or L region as set out in any of SEQ ID NOs: 19-48 and 52-55. Accordingly, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or 25 amino acids may be substituted in each of the FRs. Such a FR substitution variant is still capable of binding to GM-CSF as described herein.

The skilled person can easily identify the FRs (or non-CDRs) within SEQ ID NOs: 19-48 and 52-55, since SEQ ID NOs: 1-18 and 56 show CDR sequences comprised in one or more of the VH, VL, H or L sequences shown in SEQ ID NOs: 19-48 and 52-55. Namely, the sequence listing provides in sequence identifier <223> the designation of each of the amino acid sequences. Identical designations indicate that these amino acid sequences "belong" together, meaning that a CDR is contained in a VH, VL, H, or L region, e.g., SEQ ID NOs: 16,
17, 18 are amino acid sequences of CDRs that are contained in the amino acid sequence shown in SEQ ID NO: 19 (since all of them are designated "5-306").

By way of further illustration, if amino acids are substituted in one or more or all of the CDRs or FRs of the heavy and/or light chain, it is preferred that the then-obtained "substituted" sequence is at least 70%, more preferably 80%, even more preferably 90%, particularly preferable 95%, more particularly preferable 98% or 99% identical to the "original" CDR or FR sequence. This means that it is dependent on the length of the CDR or FR to which degree it is homologous to the "substituted" sequence.

Homology is determined by standard sequence alignment programs such as Vector NTI (InforMaxTM, Maryland, USA) or, more preferably by the program BLASTP, preferably version blastp 2.2.5 (November 16, 2002; cf. Altschul, S. F. et al. (1997) *Nucl. Acids Res.* **25**, 3389-3402). The percentage of homology is based on the alignment of the entire polypeptide sequences (matrix: BLOSUM 62; gap costs: 11.1; cutoff value set to 10^{-3}) using any one of the CDR, VH, VL, H or L amino acid sequence as reference in a pairwise comparison. It is calculated as the percentage of numbers of "positives" (homologous amino acids) indicated as result in the BLASTP program output divided by the total number of amino acids selected by the program for the alignment.

When used herein, homology of amino acid or nucleotide sequences may be used interchangeably with the term "identity". The term "homology" is used in the present invention means the percentage of pair-wise identical residues - following homology alignment of a sequence of an amino acid sequence or nucleotide sequence of the present invention with a sequence in question - with respect to the number of residues in the longer of these two sequences. As described above, programs for determining homology (or identity) compare aligned sequences on an amino acid-by-amino acid basis, and can be set to various levels of stringency for the comparison (e.g. identical amino acid, conservative amino acid substitution, etc.). As the term is used herein, two amino acids in question are considered as being "conservative substitutions" of one another if they each belong to the same chemical class, i.e. acidic, nonpolar / hydrophobic, uncharged polar and basic. By way of non-limiting example, two different amino acids belonging to the class of non-polar amino acids would be considered "conservative substitutions" of one another, even if these two amino acids were not identical, whereas a nonpolar amino acid on the one hand and a basic amino acid on the other hand would not be considered "conservative substitutions" of one another. Panel 3.1 of "Molecular Biology of the Cell", 4th Edition (2002), by Alberts, Johnson, Lewis, Raff, Roberts and Walter groups amino acids into four main groups: acidic, nonpolar, uncharged polar and basic. Such a grouping may be used for the purposes of determining, in the context of the present invention, whether or not a particular amino acid is a conservative substitution of another amino acid in question. The above mentioned main groups can further be sub-
classified into e.g. small non-polar and large non-polar amino acids, large aromatic amino acids etc. The term "conservative amino acid substitution" also indicates any amino acid substitution for a given amino acid residue, where the substitute residue is so chemically similar to that of the given residue that no substantial decrease in polypeptide function (e.g., binding) results.

[0049] The compound neutralizing GM-CSF is typically formulated as a pharmaceutical composition for parenteral, e.g. intravenous, intra-peritoneal, subcutaneous, intramuscular, topical or intradermal administration to a subject, whereby subcutaneous administration is preferred. In certain embodiments, the pharmaceutical composition is a liquid composition, preferably an aqueous composition.

[0050] In one embodiment, the concentration of the compound neutralizing GM-CSF in the liquid pharmaceutical composition is at least 20 mg/ml, preferably at least 50 mg/ml, more preferably at least 100 mg/ml, even more preferably between about 100 mg/ml and about 200 mg/ml, such as about 150 mg/ml. In some embodiments, e.g. when the composition is intended for subcutaneous delivery, higher concentrations of the compound neutralizing GM-CSF can be used.

[0051] As noted above, the compositions of the present invention comprise a buffer. As used herein, the term "buffer" refers to an added composition that allows a liquid formulation to resist changes in pH. In certain embodiments, the added buffer allows a liquid formulation to resist changes in pH by the action of its acid-base conjugate components. Examples of suitable buffers include, but are not limited to, a buffered histidine, arginine or citrate system.

[0052] The term "specifically binds" or related expressions such as "specific binding", "binding specifically", "specific binder" etc. as used herein refer to the ability of the GM-CSF neutralizing compound and preferably the (human) (monoclonal) antibody or functional fragment thereof to discriminate between its target (e.g. GM-CSF or the GM-CSF receptor) and any other potential antigen different from GM-CSF or the GM-CSF receptor to such an extent that, from a plurality of different antigens as potential binding partners, only GM-CSF / the GM-CSF receptor is bound, or is significantly bound. Within the meaning of the invention, a target is "significantly" bound when, from among a plurality of equally accessible different antigens as potential binding partners, the target is bound at least 10-fold, preferably at least 50-fold, most preferably at least 100-fold or greater more frequently (in a kinetic sense) than any other antigen different from the target. Such kinetic measurements can be performed e.g. using SPR technology such as a Biacore instrument. As used herein, the terms
"(specifically) binding to" or related terms such as "(specifically) recognizing", "directed to",
"(specifically) interacting with" and "(specifically) reacting with" mean in accordance with this
invention that a compound neutralizing GM-CSF (e.g. an antibody) exhibits appreciable
affinity for its target (e.g., GM-CSF or the GM-CSF receptor) and, generally, does not exhibit
significant reactivity with proteins or antigens other than the aforementioned targets.

"Appreciable affinity" includes binding with an affinity of about \(10^{-6}\) M (KD) or stronger, such
as \(10^{-7}\) M or stronger. Preferably, binding is considered specific when binding affinity is about
\(10^{-11}\) to \(10^{-8}\) M, preferably of about \(10^{-11}\) to \(10^{-9}\) M, more preferably of about \(10^{-11}\) to \(10^{-10}\) M.
Whether a compound (e.g. an antibody) specifically reacts with or binds to a target can be
tested readily by, inter alia, comparing the reaction of said compound with its target protein or
antigen with the reaction of said compound with proteins or antigens other than its target.
Preferably, a compound according to the invention does not essentially bind or is not capable
of binding to proteins or antigens other than GM-CSF or the GM-CSF receptor. The term
"does not essentially bind" or "is not capable of binding" means that the compounds of the
present invention do not show reactivity of more than 30%, preferably more than 20%, more
preferably more than 10%, particularly preferably more than 9%, 8%, 7%, 6% or 5% with
proteins or antigens other than GM-CSF or the GM-CSF receptor.

[0053] As used herein, "neutralization", "neutralizer", "neutralizing" and grammatically related
variants thereof refer to partial or complete attenuation of the biological effect(s) of GM-CSF.
Such partial or complete attenuation of the biological effect(s) of GM-CSF results from
modification, interruption and/or abrogation of GM-CSF-mediated processes such as signal
transduction, as manifested, for example, in intracellular signalling, cellular proliferation or
release of soluble substances, up- or down-regulation of intracellular gene activation, that
results e.g. in expression of surface receptors for ligands other than GM-CSF. As one of skill
in the art understands, there exist multiple modes of determining whether a compound, for
example an antibody or functional fragment thereof, is to be classified as a neutralizer. As an
example, this may be accomplished by a standard \textit{in vitro} test performed generally as follows:
In a first proliferation experiment, a cell line, the degree of proliferation of which is known to
depend on the activity of GM-CSF, is incubated with a series of samples with varying
concentrations of GM-CSF, following which incubation the degree of proliferation of the cell
line is measured. From this measurement, the concentration of GM-CSF allowing half-
maximal proliferation of the cells is determined. A second proliferation experiment is then
performed employing in each of the series of samples the same number of cells as used in
the first proliferation experiment, the above-determined concentration of GM-CSF and, this
time, varying concentrations of the compound suspected of being a neutralizer of GM-CSF.
Cell proliferation is again measured to determine the concentration of the analyzed
compound which is sufficient to cause half-maximal growth inhibition. If the resulting graph of growth inhibition vs. concentration of the analyzed compound is sigmoidal in shape, resulting in decreased cell proliferation with increasing concentration of the analyzed compound, then some degree of growth inhibition has been effected, i.e. the activity of GM-CSF has been neutralized to some extent. In such a case, the compound in question may be considered a "neutralizer" in the sense of the present invention. One example of a cell line, the degree of proliferation of which is known to depend on the activity of GM-CSF, is the TF-1 cell line, as described in Kitamura, T. et al. (1989). J Cell Physiol 140, 323-34.

[0054] As one of ordinary skill in the art understands, the degree of cellular proliferation is not the only parameter by which the GM-CSF neutralizing capacity may be established. For example, measurement of the level of signaling molecules (e.g. cytokines), the level of secretion of which depends on GM-CSF, may be used to identify a suspected GM-CSF neutralizer/GM-CSF inhibiting compound).

[0056] It is understood that neutralization of GM-CSF, in line with the present invention, can be effected either outside the cells bearing GM-CSF receptors or inside said cells. Thus, the neutralization of GM-CSF by a compound can either be an inhibition or prevention of the binding of GM-CSF to its specific receptor or an inhibition of the intracellular signal induced by a binding of the cytokines to their receptors. A compound neutralizing GM-CSF may e.g. bind to GM-CSF directly or to the GM-CSF receptor, thereby interfering in both cases with the biological effects of GM-CSF.

[0057] As defined herein above, inhibitors of GM-CSF can be selected from the group consisting of a polypeptide, a peptidomimetic, a nucleic acid molecule, and a small molecule.

[0058] The term "polypeptide" as used herein describes a group of molecules, which usually consist of at least 30 amino acids coupled to each other via a covalent peptide bond. In accordance with the invention, the group of polypeptides comprises "proteins" consisting of a
single polypeptide or more than one polypeptide. The term "polypeptide" also describes fragments of proteins as long as these fragments consist of at least 30 amino acids. It is well known in the art that polypeptides may form multimers such as dimers, trimers and higher oligomers, i.e. consisting of more than one polypeptide molecule. Such multimers are also included in the definition of the term "polypeptide". Polypeptide molecules forming such dimers, trimers etc. may be identical or non-identical. The corresponding higher order structures of such multimers are, consequently, termed homo- or heterodimers, homo- or heterotrimers etc. An example for a heteromultimer is an antibody molecule, which, in its naturally occurring form, consists of two identical light polypeptide chains and two identical heavy polypeptide chains. The terms "polypeptide" and "protein" also refer to naturally or non-naturally modified polypeptides/proteins wherein the modification is effected e.g. by post-translational modifications like glycosylation, acetylation, phosphorylation, formation of disulfide bridges and the like or by chemical modifications such as PEGylation. Such modifications are well known in the art.

[0059] The term "nucleic acid" or "polnucleotide" defines in the context of the invention polymeric macromolecules consisting of multiple repeat units of phosphoric acid, sugar and purine and pyrimidine bases. Embodiments of these molecules include DNA, RNA and PNA. The nucleic acid can be single-stranded or double-stranded, linear or circular. A particularly preferred embodiment of a nucleic acid in the context of the invention is an aptamer. Nucleic acid aptamers are DNA or RNA molecules that have been selected from random pools based on their ability to bind other molecules. Aptamers have been selected which bind nucleic acid, proteins, small organic compounds, and even entire organisms. They consist of usually short strands of oligonucleotides, typically 50 bases or less.

[0060] The term "small molecule" defines a group of organic drug compounds having a molecular weight of less than 1000 Daltons, preferably up to 800 Daltons, and more preferably of 300 to 700 Daltons. The upper molecular weight limit for a small molecule allows for the possibility to rapidly diffuse across cell membranes so that they can reach intracellular sites of action. Corresponding small molecules can be derived from an at least partially randomized peptide library. Libraries of small molecules suitable according to the present invention are well known in the art and/or can be purchased from commercial distributors.

[0061] The term "peptidomimetic" describes a small protein-like chain designed to mimic a peptide. This type of molecule is artificially derived by modifying an existing peptide in order to alter the molecule's properties. For example, the parent existing peptide is modified to
change the molecule's stability or biological activity. These modifications comprise the alteration of the backbone and the incorporation of nonnatural amino acids.

[0062] The term "GM-CSF receptor" refers to the physiological cell surface receptor of GM-CSF, which is described in the art as a heteromer of an alpha-chain (CD1 16) and a common beta (beta-c) subunit.

[0063] A preferred embodiment of a neutralizing polypeptide is an antibody or functional fragments thereof, more preferably a human antibody or functional fragments thereof. Techniques for the production of antibodies are well known in the art and described, e.g. in Harlow and Lane "Antibodies, A Laboratory Manual", Cold Spring Harbor Laboratory Press, 1988 and Harlow and Lane "Using Antibodies: A Laboratory Manual" Cold Spring Harbor Laboratory Press, 1999.

[0064] The definition of the term "antibody" includes embodiments such as monoclonal, chimeric, single chain, humanized and human antibodies. In addition to full-length antibodies, the definition also includes antibody derivatives and antibody fragments, like, inter alia, Fab fragments. Antibody fragments or derivatives further comprise F(ab')2, Fv, scFv fragments or single domain antibodies such as domain antibodies or nanobodies, single variable domain antibodies or immunoglobulin single variable domain comprising merely one variable domain, which might be VHH, VH or VL, that specifically bind an antigen or epitope independently of other V regions or domains; see, for example, Harlow and Lane (1988) and (1999), loc. cit.; Kontermann and Dubel, Antibody Engineering, Springer, 2nd ed. 2010 and Little, Recombinant Antibodies for Immunotherapy, Cambridge University Press 2009. Said term also includes diabodies or Dual-Affinity Re-Targeting (DART) antibodies. Further envisaged are (bispecific) single chain diabody, tandem diabody (Tandab), „ minibodies“ exemplified by a structure which is as follows: (VH-VL-CH3)2, (scFv-CH3)2 or (scFv-CH3-scFv)2, „Fc DART“ and „IgG DART“, multibodies such as triabodies. Immunoglobulin single variable domains encompass not only an isolated antibody single variable domain polypeptide, but also larger polypeptides that comprise one or more monomers of an antibody single variable domain polypeptide sequence.

Furthermore, the term “antibody” as employed herein also relates to derivatives or variants of the antibodies described herein which display the same specificity as the described antibodies. Examples of “antibody variants” include humanized variants of non-human antibodies, “affinity matured” antibodies (see, e.g. Hawkins et al. J. Mol. Biol. 254, 889-896 (1992) and Lowman et al., Biochemistry 30, 10832-10837 (1991)) and antibody mutants with
altered effector function(s) (see, e.g., US Patent 5, 648, 260, Kontermann and Dubel (2010), loc. cit. and Little (2009), loc. cit.).

The term "antibody" also comprises immunoglobulins (Ig's) of different classes (i.e. IgA, IgG, IgM, IgD and IgE) and subclasses (such as IgG1, IgG2 etc.). Derivatives of antibodies, which also fall under the definition of the term antibody in the meaning of the invention, include modifications of such molecules as for example glycosylation, acetylation, phosphorylation, disulfide bond formation, farnesylation, hydroxylation, methylation or esterification.

[0065] A functional fragment of an antibody include the domain of a F(ab')2 fragment, a Fab fragment, scFv or constructs comprising single immunoglobulin variable domains or single domain antibody polypeptides, e.g. single heavy chain variable domains or single light chain variable domains as well as other antibody fragments as described herein above. The F(ab')2 or Fab may be engineered to minimize or completely remove the intermolecular disulphide interactions that occur between the C\text{H}1 and C\text{L} domains.

[0066] The term "human" antibody as used herein is to be understood as meaning that the antibody or its functional fragment, comprises (an) amino acid sequence(s) contained in the human germline antibody repertoire. For the purposes of definition herein, an antibody, or its fragment, may therefore be considered human if it consists of such (a) human germline amino acid sequence(s), i.e. if the amino acid sequence(s) of the antibody in question or functional fragment thereof is (are) identical to (an) expressed human germline amino acid sequence(s). An antibody or functional fragment thereof may also be regarded as human if it consists of (a) sequence(s) that deviate(s) from its (their) closest human germline sequence(s) by no more than would be expected due to the imprint of somatic hypermutation. Additionally, the antibodies of many non-human mammals, for example rodents such as mice and rats, comprise VH CDR3 amino acid sequences which one may expect to exist in the expressed human antibody repertoire as well. Any such sequence(s) of human or non-human origin which may be expected to exist in the expressed human repertoire would also be considered "human" for the purposes of the present invention. The term "human antibody" hence includes antibodies having variable and constant regions corresponding substantially to human germline immunoglobulin sequences known in the art, including, for example, those described by Kabat et al. (See Kabat et al. (1991) loc. cit.). The human antibodies of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs, and in particular, CDR3. The human antibody can have at least one, two, three, four, five, or more
positions replaced with an amino acid residue that is not encoded by the human germline immunoglobulin sequence.

[0067] The non-human and human antibodies or functional fragments thereof are preferably monoclonal. It is particularly difficult to prepare human antibodies which are monoclonal. In contrast to fusions of murine B cells with immortalized cell lines, fusions of human B cells with immortalized cell lines are not viable. Thus, the human monoclonal antibodies are the result of overcoming significant technical hurdles generally acknowledged to exist in the field of antibody technology. The monoclonal nature of the antibodies makes them particularly well suited for use as therapeutic agents, since such antibodies will exist as a single, homogeneous molecular species which can be well-characterized and reproducibly made and purified. These factors result in products whose biological activities can be predicted with a high level of precision, very important if such molecules are going to gain regulatory approval for therapeutic administration in humans. The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations and/or post-translation modifications (e.g., isomerizations, amidations) that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they are synthesized by the hybridoma culture, uncontaminated by other immunoglobulins. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., Nature, 256: 495 (1975), or may be made by recombinant DNA methods (see, e.g., U. S. Patent No. 4,816,567). The "monoclonal antibodies" may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature, 352: 624-628 (1991) and Marks et ai, J. Mol. Biol., 222: 581-597 (1991), for example.

[0068] It is especially preferred that the monoclonal antibodies or corresponding functional fragments be human antibodies or corresponding functional fragments. In contemplating antibody agents intended for therapeutic administration to humans, it is highly advantageous that the antibodies are of human origin. Following administration to a human patient, a
human antibody or functional fragment thereof will most probably not elicit a strong
immunogenic response by the patient's immune system, i.e. will not be recognized as being
a foreign that is non-human protein. This means that no host, i.e. patient, antibodies will be
generated against the therapeutic antibody which would otherwise block the therapeutic
antibody's activity and/or accelerate the therapeutic antibody's elimination from the body of
the patient, thus preventing it from exerting its desired therapeutic effect.

[0069] According to a preferred embodiment of the invention, the human monoclonal
antibody or functional fragment thereof to be utilized for pharmaceutical purposes exhibits
reactivity between both human and at least one monkey species. The same cross-species
reactivity is also preferred for all other non-antibody or non-antibody derived
neutralizing/inhibiting compounds of GM-CSF.

[0070] According to a further embodiment of the invention, the antibody may be an IgG
antibody. An IgG isotype comprises not only the variable antibody regions of the heavy and
light chains responsible for the highly discriminative antigen recognition and binding, but also
the constant regions of the heavy and light antibody polypeptide chains normally present in
"naturally" produced antibodies and, in some cases, even modification at one or more sites
with carbohydrates. Such glycosylation is generally a hallmark of the IgG format, and located
in the constant regions comprising the so called Fc region of a full antibody which is known to
elicit various effector functions in vivo. In addition, the Fc region mediates binding of IgG to
Fc receptor, as well as facilitating homing of the IgG to locations with increased Fc receptor
presence - inflamed tissue, for example. Advantageously, the IgG antibody is an IgG1
antibody or an IgG4 antibody, formats which are preferred since their mechanism of action in vivo is particularly well understood and characterized. This is especially the case for IgG1
antibodies.

[0071] According to a further embodiment of the invention, the functional fragment of
the antibody may preferably be an scFv, a single domain antibody, an Fv, a VHH antibody, a
diabody, a tandem diabody, a Fab, a Fab' or a F(ab)2. These formats may generally be
divided into two subclasses, namely those which consist of a single polypeptide chain, and
those which comprise at least two polypeptide chains. Members of the former subclass
include a scFv (comprising one VH region and one VL region joined into a single polypeptide
chain via a polypeptide linker); a single domain antibody (comprising a single antibody
variable region) such as a VHH antibody (comprising a single VH region). Members of the
latter subclass include an Fv (comprising one VH region and one VL region as separate
polypeptide chains which are non-covalently associated with one another); a diabody
(comprising two non-covalently associated polypeptide chains, each of which comprises two antibody variable regions - normally one VH and one VL per polypeptide chain - the two polypeptide chains being arranged in a head-to-tail conformation so that a bivalent antibody molecule results); a tandem diabody (bispecific single-chain Fv antibodies comprising four covalently linked immunoglobulin variable - VH and VL - regions of two different specificities, forming a homodimer that is twice as large as the diabody described above); a Fab (comprising as one polypeptide chain an entire antibody light chain, itself comprising a VL region and the entire light chain constant region and, as another polypeptide chain, a part of an antibody heavy chain comprising a complete VH region and part of the heavy chain constant region, said two polypeptide chains being intermolecularly connected via an interchain disulfide bond); a Fab' (as a Fab, above, except with additional reduced disulfide bonds comprised on the antibody heavy chain); and a F(ab)2 (comprising two Fab' molecules, each Fab' molecule being linked to the respective other Fab' molecule via interchain disulfide bonds). In general, functional antibody fragments of the type described hereinabove allow great flexibility in tailoring, for example, the pharmacokinetic properties of an antibody desired for therapeutic administration to the particular exigencies at hand. For example, it may be desirable to reduce the size of the antibody administered in order to increase the degree of tissue penetration when treating tissues known to be poorly vascularized (for example, joints). Under some circumstances, it may also be desirable to increase the rate at which the therapeutic antibody is eliminated from the body, said rate generally being accelerable by decreasing the size of the antibody administered. An antibody fragment is defined as a functional antibody fragment in the context of the invention as long as the fragment maintains the specific binding characteristics for the epitope/target of the parent antibody, i.e. as long as it specifically binds to GM-CSF or to the GM-CSF receptor.

[0072] According to a further embodiment of the invention, said antibody or functional fragment thereof may be present in monovalent monospecific; multivalent monospecific, in particular bivalent monospecific; or multivalent multispecific, in particular bivalent bispecific forms. In general, a multivalent monospecific, in particular bivalent monospecific antibody such as a full human IgG as described hereinabove may bring with it the therapeutic advantage that the neutralization effected by such an antibody is potentiated by avidity effects, i.e. binding by the same antibody to multiple molecules of the same antigen, here GM-CSF or the GM-CSF receptor. Several monovalent monospecific forms of fragments of antibodies have been described above (for example, a scFv, an Fv, a VHH or a single domain antibody). Multivalent multi-specific, in particular bivalent bi-specific forms of an antibody may include a full IgG in which one binding arm binds to primate GM-CSF / the GM-CSF receptor, while the other binding arm of which binds to another antigen different from
GM-CSF / the GM-CSF receptor. A further multivalent multi-specific, in particular bivalent bi-specific form may advantageously be a human single chain bi-specific antibody, i.e. a recombinant human antibody construct comprising two scFv entities as described above, connected into one contiguous polypeptide chain by a short interposed polypeptide spacer as generally known in the art (see for example WO 99/54440 for an anti-CD19 x anti-CD3 bi-specific single chain antibody). Here, one scFv portion of the bi-specific single chain antibody comprised within the bispecific single chain antibody will specifically bind GM-CSF / the GM-CSF receptor as set out above, while the respective other scFv portion of this bi-specific single chain antibody will bind another antigen determined to be of therapeutic benefit.

[0073] According to a further embodiment the antibodies or functional fragments thereof may be derivatized, for example with an organic polymer, for example with one or more molecules of polyethylene glycol ("PEG") and/or polyvinyl pyrrolidone ("PVP"). As is known in the art, such derivatization can be advantageous in modulating the pharmacodynamic properties of antibodies or functional fragments thereof. Especially preferred are PEG molecules derivatized as PEG-maleimide, enabling conjugation with the antibody or functional fragment thereof in a site-specific manner via the sulfhydryl group of a cysteine amino acid. Of these, especially preferred are 20kD and/or 40 kD PEG-maleimide, in either branched or straight-chain form. It may be especially advantageous to increase the effective molecular weight of smaller human anti- GM-CSF antibody fragments such as scFv fragments by coupling the latter to one or more molecules of PEG, especially PEG-maleimide.

[0074] The antibodies of the present invention also include "chimeric" antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain (s) is (are) identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U. S. Patent No. 4,816,567; Morrison et al., Proc. Natl. Acad. Sci. USA, 81: 6851-6855 (1984)). Chimeric antibodies of interest herein include "primitized" antibodies comprising variable domain antigen-binding sequences derived from a non-human primate (e.g., Old World Monkey, Ape etc.) and human constant region sequences.

[0075] "Humanized" forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) of mostly human sequences,
which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region (also CDR) of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, "humanized antibodies" as used herein may also comprise residues which are found neither in the recipient antibody nor the donor antibody. These modifications are made to further refine and optimize antibody performance. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature, 321: 522-525 (1986); Reichmann et al., Nature, 332: 323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2: 593-596 (1992).

[0076] As used herein, the numbering of the amino acid residues or positions of human and non-human primate GM-CSF refers to that of mature GM-CSF, i.e. GM-CSF without its 17 amino acid signal sequence (the total length of mature GM-CSF in both human and non-human primate species described above is 127 amino acids). The sequence of human GM-CSF and gibbon GM-CSF is as follows:

SEQ ID NO : 49

 APARSPSPST QPWEHVNAIQ EARRLLNLSR DTAEMNETV EVISEMFSDLQ
 EPTCLQTRLE LYKQGLRGSL TKLGPLTMM ASHYKQHCPP TPETSCATQI
 ITFESFKENL KDFLLVIPFD CWEPVQE

[0077] The sequence of GM-CSF in certain members of the macaca monkey family such as for example rhesus monkey and cynomolgous monkey is as follows:

SEQ ID NO : 50

 APARSPSPGT QPWEHVNAIQ EARRLLNLSR DJAAEMNKTV EVVISEMFSDLQ
 EPSCLQTRLE LYKQGLQGSL TKLGPLTMM ASHYKQHCPP TPETSCATQI
 ITFQSFKENL KDFLLVIPFD CWEPVQE

[0078] The sequence of human GM-CSF is also shown in SEQ ID NO:57. That of gibbon GM-CSF is also shown in SEQ ID NO: 58:

 APARSPSPST QPWEHVNAIQ EARRLLNLSJ? DTAEMNETV EVISEMFSDLQ
 EPTCLQTRLE LYKQGLRGLS TKLGPLTMM ASHYKQHCPP TPETSCATQI
 ITFESFKENL KDFLLVIPFD CWEPVQE

(SEQ ID NO: 57 and 58)
The sequence of GM-CSF in certain members of the macaca monkey family such as for example rhesus monkey (SEQ ID NO:59) and cynomolgous monkey (SEQ ID NO:60) is also as follows:

APARSPSPGT QPWEHVNAIQ EARRLLNLSR DTAEMNKTV EVVSEMFDLQ
EPSCLQTRLE LYKQGLQGSL TKLKGPLIMM ASHYKQHCPP TPETSCATQI
ITFQSFKENL KDFLLVIPFD CWEPVQE

SEQ ID NO: 59 and 60)

The minimum epitope, advantageously a discontinuous epitope as described herein, bound by the antibody, preferably a human monoclonal antibody (or functional fragment thereof) is indicated in the GM-CSF sequence(s) is shown above in boldface.

According to a preferred embodiment, the compound neutralizing GM-CSF is an antibody (preferably a human monoclonal antibody) or functional fragment thereof which binds to GM-CSF. More preferably, it binds to an epitope of GM-CSF which preferably comprises amino acids 23-27 (RRLLN) and/or amino acids 65-77 (GLR/QGSLTKLGPL). These amino acid sequence stretches are indicated in the above GM-CSF sequence in boldface. The term "epitope" refers to a site on an antigen or a target (e.g., GM-CSF) to which a compound, such as an antibody or functional fragment thereof, specifically binds. Said binding/interaction is also understood to define a "specific recognition". "Epitopes" can be formed both by contiguous amino acids or non-contiguous amino acids juxtaposed by tertiary folding of a protein. A "linear epitope" is an epitope where an amino acid primary sequence comprises the recognized epitope. A linear epitope typically includes at least 3 or at least 4, and more usually, at least 5 or at least 6 or at least 7, for example, about 8 to about 10 amino acids or more in a unique sequence. In the context of the present invention, it is preferred that the GM-CSF epitope is a discontinuous epitope. In case that the antibody binds to both sequence stretches 23-27 and 65-77, the epitope can be called "discontinuous".

In the secondary structure of human GM-CSF, amino acids 15-35 are situated in helix A while residues corresponding to positions 65-77 are part of a loop-structure located between helices C and D. A three-dimensional model of folding of the molecule reveals close sterical proximity of these sites with respect to one another (see also WO2006/11353). As used herein, the term "discontinuous epitope" is to be understood as at least two non-adjacent amino acid sequence stretches within a given polypeptide chain, here mature human and non-human primate GM-CSF, which are simultaneously and specifically bound by an antibody. According to this definition, such simultaneous specific binding may be of the GM-CSF polypeptide in linear form. Here, one may imagine the mature GM-CSF polypeptide forming an extended loop, in one region of which the two sequences indicated in boldface above line up, for example more or less in parallel and in proximity of one another. In this
state they are specifically and simultaneously bound by the antibody fragment. According to this definition, simultaneous specific binding of the two sequence stretches of mature GM-CSF indicated above may also take the form of antibody binding to a conformational epitope. Here, mature GM-CSF has already formed its tertiary conformation as it normally exists in vivo. In this tertiary conformation, the polypeptide chain of mature GM-CSF is folded in such a manner as to bring the two sequence stretches indicated above into spatial proximity, for example on the outer surface of a particular region of mature, folded GM-CSF, where they are then recognized by virtue of their three-dimensional conformation in the context of the surrounding polypeptide sequences.

[0082] In a further preferred embodiment, the above epitope or the above discontinuous epitope of GM-CSF further comprises:

- amino acids 28-31 (LSRD), italicized in the above sequences of human and non-human primate GM-CSF;
- amino acids 32-33 (TA), underlined in the above sequences of human and non-human primate GM-CSF; and/or
- amino acids 21-22 (EA), underlined in the above sequences of human and non-human primate GM-CSF.

[0083] Preferred human monoclonal anti-GM-CSF antibodies or functional fragments thereof are those as disclosed specifically in WO2006/11353 under the referenced SEQ ID NOs 1 to 48 and 52 to 56, depicting amino acid sequences of heavy and light chain complementary determining regions (CDRs) 1-3 as well as variable regions of heavy and light chains and full length heavy and light chains.

[0084] Especially preferred are anti-GM-CSF antibodies or functional fragments thereof comprising a heavy chain variable region CDR1 sequence as set out in SEQ ID NO: 14, a heavy chain variable region CDR2 sequence as set out in SEQ ID NO: 15 and a heavy chain variable region CDR3 sequence as set out in SEQ ID NO: 1; or comprising a heavy chain variable region CDR1 sequence as set out in SEQ ID NO: 14, a heavy chain variable region CDR2 sequence as set out in SEQ ID NO: 15 and a heavy chain variable region CDR3 sequence as set out in SEQ ID NO: 2; or comprising a heavy chain variable region CDR1 sequence as set out in SEQ ID NO: 14, a heavy chain variable region CDR2 sequence as set out in SEQ ID NO: 15 and a heavy chain variable region CDR3 sequence as set out in SEQ ID NO: 3; or comprising a heavy chain variable region CDR1 sequence as set out in SEQ ID NO: 14, a heavy chain variable region CDR2 sequence as set out in SEQ ID NO: 15 and a heavy chain variable region CDR3 sequence as set out in SEQ ID NO: 4; or
comprising a heavy chain variable region CDR1 sequence as set out in SEQ ID NO: 14, a heavy chain variable region CDR2 sequence as set out in SEQ ID NO: 15 and a heavy chain variable region CDR3 sequence as set out in SEQ ID NO: 5; or comprising a heavy chain variable region CDR1 sequence as set out in SEQ ID NO: 14, a heavy chain variable region CDR2 sequence as set out in SEQ ID NO: 15 and a heavy chain variable region CDR3 sequence as set out in SEQ ID NO: 6; or comprising a heavy chain variable region CDR1 sequence as set out in SEQ ID NO: 14, a heavy chain variable region CDR2 sequence as set out in SEQ ID NO: 15 and a heavy chain variable region CDR3 sequence as set out in SEQ ID NO: 7; or comprising a heavy chain variable region CDR1 sequence as set out in SEQ ID NO: 14, a heavy chain variable region CDR2 sequence as set out in SEQ ID NO: 15 and a heavy chain variable region CDR3 sequence as set out in SEQ ID NO: 8; or comprising a heavy chain variable region CDR1 sequence as set out in SEQ ID NO: 14, a heavy chain variable region CDR2 sequence as set out in SEQ ID NO: 15 and a heavy chain variable region CDR3 sequence as set out in SEQ ID NO: 9; or comprising a heavy chain variable region CDR1 sequence as set out in SEQ ID NO: 14, a heavy chain variable region CDR2 sequence as set out in SEQ ID NO: 15 and a heavy chain variable region CDR3 sequence as set out in SEQ ID NO: 10; or comprising a heavy chain variable region CDR1 sequence as set out in SEQ ID NO: 14, a heavy chain variable region CDR2 sequence as set out in SEQ ID NO: 15 and a heavy chain variable region CDR3 sequence as set out in SEQ ID NO: 11; or comprising a heavy chain variable region CDR1 sequence as set out in SEQ ID NO: 14, a heavy chain variable region CDR2 sequence as set out in SEQ ID NO: 15 and a heavy chain variable region CDR3 sequence as set out in SEQ ID NO: 12; or comprising a heavy chain variable region CDR1 sequence as set out in SEQ ID NO: 14, a heavy chain variable region CDR2 sequence as set out in SEQ ID NO: 15 and a heavy chain variable region CDR3 sequence as set out in SEQ ID NO: 13; or comprising a heavy chain variable region CDR1 sequence as set out in SEQ ID NO: 14, a heavy chain variable region CDR2 sequence as set out in SEQ ID NO: 15 and a heavy chain variable region CDR3 sequence as set out in SEQ ID NO: 14, a heavy chain variable region CDR3 sequence as set out in SEQ ID NO: 15 and a heavy chain variable region CDR3 sequence as set out in SEQ ID NO: 56.

[0085] Still more preferred, any of the above 14 combinations of heavy chain CDR1, CDR2 and CDR3 sequences exists in an antibody or functional fragment thereof further comprising in its light chain variable region a CDR1 comprising the amino acid sequence set out in SEQ ID NO: 16, a CDR2 comprising the amino acid sequence set out in SEQ ID NO: 17, and a CDR3 comprising the amino acid sequence set out in SEQ ID NO: 18.

[0086] An especially preferred anti-GM-CSF antibody or functional fragment thereof comprises a heavy chain variable region CDR1 sequence as set out in SEQ ID NO: 14, a
heavy chain variable region CDR2 sequence as set out in SEQ ID NO: 15 and a heavy chain variable region CDR3 sequence as set out in SEQ ID NO: 2 and further comprises in its light chain variable region a CDR1 comprising the amino acid sequence set out in SEQ ID NO: 16, a CDR2 comprising the amino acid sequence set out in SEQ ID NO: 17, and a CDR3 comprising the amino acid sequence set out in SEQ ID NO: 18. This anti-GM-CSF antibody is a most preferred compound for neutralizing GM-CSF and is also described in WO 2006/1 11353.

[0087] According to a further embodiment, the anti-GM-CSF antibody or functional fragment thereof comprises in its light chain variable region an amino acid sequence as set out in SEQ ID NO: 19. Preferred is an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 19 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 20; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 19 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 21; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 19 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 22; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 19 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 23; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 19 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 24; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 19 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 25; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 19 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 26; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 19 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 27; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 19 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 28; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 19 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 29; or an
antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 19 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 30; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 19 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 31; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 19 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 32; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 19 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 53.

[0088] According to a further embodiment, the anti-GM-CSF antibody or functional fragment thereof comprises in its light chain variable region an amino acid sequence as set out in SEQ ID NO. 54. Preferred is an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 54 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 20; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 54 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 21; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 54 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 22; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 54 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 23; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 54 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 24; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 54 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 25; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 54 and a heavy chain
variable region comprising an amino acid sequence as set out in SEQ ID NO: 26; or an
antibody or functional fragment thereof, the light chain variable region comprising an amino
acid sequence as set out in SEQ ID NO: 54 and a heavy chain variable region comprising an
amino acid sequence as set out in SEQ ID NO: 27; or an antibody or functional fragment
thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ
ID NO: 54 and a heavy chain variable region comprising an amino acid sequence as set out in
SEQ ID NO: 28; or an antibody or functional fragment thereof, the light chain variable
region comprising an amino acid sequence as set out in SEQ ID NO: 54 and a heavy chain
variable region comprising an amino acid sequence as set out in SEQ ID NO: 29; or an
antibody or functional fragment thereof, the light chain variable region comprising an amino
acid sequence as set out in SEQ ID NO: 54 and a heavy chain variable region comprising an
amino acid sequence as set out in SEQ ID NO: 30; or an antibody or functional fragment
thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ
ID NO: 54 and a heavy chain variable region comprising an amino acid sequence as set out in
SEQ ID NO: 31; or an antibody or functional fragment thereof, the light chain variable
region comprising an amino acid sequence as set out in SEQ ID NO: 54 and a heavy chain
variable region comprising an amino acid sequence as set out in SEQ ID NO: 32; or an
antibody or functional fragment thereof, the light chain variable region comprising an amino
acid sequence as set out in SEQ ID NO: 54 and a heavy chain variable region comprising an
amino acid sequence as set out in SEQ ID NO: 33; or an antibody or functional fragment
thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ
ID NO: 54 and a heavy chain variable region comprising an amino acid sequence as set out in
SEQ ID NO: 52; or an antibody or functional fragment thereof, the light chain variable
region comprising an amino acid sequence as set out in SEQ ID NO: 54 and a heavy chain
variable region comprising an amino acid sequence as set out in SEQ ID NO: 53.

[0089] According to a further embodiment, the anti-GM-CSF antibody or functional fragment
thereof comprises in its light chain variable region an amino acid sequence as set out in SEQ
ID NO: 55. Preferred is an antibody or functional fragment thereof, the light chain variable
region comprising an amino acid sequence as set out in SEQ ID NO: 55 and a heavy chain
variable region comprising an amino acid sequence as set out in SEQ ID NO: 20; or an
antibody or functional fragment thereof, the light chain variable region comprising an amino
acid sequence as set out in SEQ ID NO: 55 and a heavy chain variable region comprising an
amino acid sequence as set out in SEQ ID NO: 21; or an antibody or functional fragment
thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ
ID NO: 55 and a heavy chain variable region comprising an amino acid sequence as set out in
SEQ ID NO: 22; or an antibody or functional fragment thereof, the light chain variable
region comprising an amino acid sequence as set out in SEQ ID NO. 55 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 23; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 55 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 24; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 55 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 26; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 55 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 28; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 55 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 29; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 55 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 31; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 55 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 32; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 55 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 33; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 55 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 52; or an antibody or functional fragment thereof, the light chain variable region comprising an amino acid sequence as set out in SEQ ID NO. 55 and a heavy chain variable region comprising an amino acid sequence as set out in SEQ ID NO: 53.
[0090] A preferred anti-GM-CSF antibody or functional fragment thereof comprises in its light chain variable region a CDR1 comprising an amino acid sequence as set out in SEQ ID NO. 16, a CDR2 comprising an amino acid sequence as set out in SEQ ID NO. 17 and a CDR3 comprising an amino acid sequence as set out in SEQ ID NO. 18 and comprises in its heavy chain variable region a CDR1 comprising an amino acid sequence as set out in SEQ ID NO. 14, a CDR2 comprising an amino acid sequence as set out in SEQ ID NO. 15 and a CDR3 comprising an amino acid sequence as set out in any of SEQ ID NOs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 56.

[0091] In a further preferred embodiment the antibody comprises in its light chain an amino acid sequence as set out in SEQ ID NO: 34 and in its heavy chain an amino acid sequence as set out in SEQ ID NO: 35; or in its light chain an amino acid sequence as set out in SEQ ID NO: 34 and in its heavy chain an amino acid sequence as set out in SEQ ID NO: 36; or in its light chain an amino acid sequence as set out in SEQ ID NO: 34 and in its heavy chain an amino acid sequence as set out in SEQ ID NO: 37; or in its light chain an amino acid sequence as set out in SEQ ID NO: 34 and in its heavy chain an amino acid sequence as set out in SEQ ID NO: 38; or in its light chain an amino acid sequence as set out in SEQ ID NO: 34 and in its heavy chain an amino acid sequence as set out in SEQ ID NO: 39; or in its light chain an amino acid sequence as set out in SEQ ID NO: 34 and in its heavy chain an amino acid sequence as set out in SEQ ID NO: 40; or in its light chain an amino acid sequence as set out in SEQ ID NO: 34 and in its heavy chain an amino acid sequence as set out in SEQ ID NO: 41; or in its light chain an amino acid sequence as set out in SEQ ID NO: 34 and in its heavy chain an amino acid sequence as set out in SEQ ID NO: 42; or in its light chain an amino acid sequence as set out in SEQ ID NO: 34 and in its heavy chain an amino acid sequence as set out in SEQ ID NO: 43; or in its light chain an amino acid sequence as set out in SEQ ID NO: 34 and in its heavy chain an amino acid sequence as set out in SEQ ID NO: 44; or in its light chain an amino acid sequence as set out in SEQ ID NO: 34 and in its heavy chain an amino acid sequence as set out in SEQ ID NO: 45; or in its light chain an amino acid sequence as set out in SEQ ID NO: 34 and in its heavy chain an amino acid sequence as set out in SEQ ID NO: 46; or in its light chain an amino acid sequence as set out in SEQ ID NO: 34 and in its heavy chain an amino acid sequence as set out in SEQ ID NO: 47; or in its light chain an amino acid sequence as set out in SEQ ID NO: 34 and in its heavy chain an amino acid sequence as set out in SEQ ID NO: 48. The anti-GM-CSF antibody comprising in its light chain an amino acid sequence as set out in SEQ ID NO: 34 and in its heavy chain an amino acid sequence as set out in SEQ ID NO: 35 is a most preferred compound for neutralizing GM-CSF and is also described in WO 2006/1 1353.
The preferred embodiments above provide antibody molecules and/or functional fragments thereof, preferably human monoclonal antibody molecules and/or functional fragments thereof, which are especially advantageous as neutralizers of the activity of primate and human GM-CSF. Antibodies or functional fragments thereof according to these especially preferred embodiments are highly advantageous for several reasons.

First, they recognize primate and human GM-CSF with high specificity. That is to say that from a mixture of primate GM-CSF with other primate colony stimulating factors (for example primate G-CSF and M-CSF), the binding molecules according to these especially preferred embodiments are highly discriminating for primate GM-CSF, whereas the other colony stimulating factors in the same milieu are not recognized. The same applies mutatis mutandis to the human GM-CSF. This means that an antibody or functional fragment thereof according to these embodiments, when administered to a human, will be expected to specifically bind to and neutralize only the desired target, whereas other undesired targets are neither bound nor neutralized. Ultimately, this leads to a high degree of predictability concerning the therapeutic mode of action in vivo.

Second, binders according to these especially preferred embodiments bind to primate and human GM-CSF with appreciable affinity. "Appreciable affinity" includes binding with an affinity of about \(10^{-8}\) M (KD) or stronger. Preferably, binding is considered appreciable (or high or specific) when binding affinity is about \(10^{-12}\) to \(10^{-8}\) M, \(10^{-12}\) to \(10^{-9}\) M, \(10^{-12}\) to \(10^{-10}\) M, \(10^{-11}\) to \(10^{-9}\) M, preferably of about \(10^{-11}\) to \(10^{-9}\) M. Accordingly, a binder of the invention has preferably a \(K_D\) within that range. Given the fact that \(K_D\) values of from about 4 x \(10^{-9}\) M down to as low as about 0.04 x \(10^{-9}\) M, the latter corresponding to about 40 pM, have been observed for antibody molecules described herein, it is preferred that antibody molecules of the invention have a \(K_D\) within that range. However, it is also preferred that antibody molecules of the invention have a \(K_D\) as described herein above. Since the kinetic on-rate of such molecules in aqueous media is largely diffusion controlled and therefore cannot be improved beyond what the local diffusion conditions will allow under physiological conditions, the low \(K_D\) arises primarily as a result of the kinetic off-rate, \(k_{off}\), which for the highest affinity antibody binder is approximately \(10^{-5}\) s\(^{-1}\). This means that once the complex between a human monoclonal antibody or functional fragment thereof according to any of these embodiments on the one hand and GM-CSF on the other hand is formed, it does not readily, or at least does not quickly separate. For binding molecules intended as neutralizers of biological activity, these characteristics are highly advantageous since the desirable neutralizing effect will normally last only as long as the molecule, the biological activity of which is to be neutralized (here primate and human GM-CSF) remains bound by the
neutralizing binding molecule. So a neutralizing molecule which remains bound to its intended target for a long time will continue to neutralize for a correspondingly long time.

[0095] The high binding affinity of antibodies or functional fragments thereof to primate and human GM-CSF has an additional advantage. Normally, antibodies or functional fragments thereof will be eliminated from the bloodstream of a patient in a size-dependent fashion, with smaller molecules being excreted and eliminated before larger ones. Since the complex of the two polypeptides - antibody or antibody fragment and bound GM-CSF - is obviously larger than the antibody alone, the low k_{off} mentioned above has the effect that the therapeutic neutralizer is excreted and eliminated from the patient's body more slowly than would be the case, were it not bound to GM-CSF. Thus, not only the magnitude of the neutralizing activity but also its duration in vivo is increased.

[0096] The neutralizing activity determined for binders according to the above embodiments is surprisingly high. As will be described in more detail herein below, GM-CSF-neutralizing activity was measured in vitro using a TF-1 growth inhibition assay (Kitamura, T. et al. (1989). J. Cell Physiol. 140, 323-34). As an indication of neutralizing potential, IC$_{50}$ values were measured, IC$_{50}$ representing the concentration of the antibody or functional fragment thereof according to any of these embodiments required to elicit a half-maximal inhibition of TF-1 cell proliferation. For the human monoclonal anti-GM-CSF antibodies or functional fragments thereof specified above an IC$_{50}$ value of approximately 3×10^{-10} M, or about 0.3 nM was determined. The binding molecules are therefore highly potent neutralizers of the activity of primate and human GM-CSF.

[0097] Other examples of neutralizing anti-GM-CSF antibodies are the human E10 antibody and human G9 antibody described in Li et al., (2006) PNAS 103(10):3557-3562. E10 and G9 are IgG class antibodies. E10 has an 870 pM binding affinity for GM-CSF and G9 has a 14 pM affinity for GM-CSF. Both antibodies are specific for binding to human GM-CSF and show strong neutralizing activity as assessed with a TF-1 cell proliferation assay. Other examples are the human anti-GM-CSF antibodies as disclosed in WO 2006/122797.

[0098] GM-CSF antagonists or neutralizers that are anti-GM-CSF receptor antibodies can also be employed in the present invention. Such GM-CSF antagonists include antibodies to the GM-CSF receptor alpha chain or beta chain. An anti-GM-CSF receptor antibody employed in the invention can be in any antibody form as explained above, e.g., intact, chimeric, monoclonal, polyclonal, antibody fragment or derivative, single-chain, humanized, humaneered, and the like. Examples of anti-GM-CSF receptor antibodies, e.g., neutralizing
high-affinity antibodies, suitable for use in the invention are known in the art (see e.g., US Patent 5,747,032 and Nicola et al., Blood 82:15 1724, 1993).

[0100] In summary, the anti-GM-CSF antibodies or functional fragments thereof exhibit a high degree of discrimination for the desired antigen, bind this antigen extremely tightly and for a long time and exhibit highly potent neutralizing activity for the long time they remain bound. At the same time, the long persistence of the binder-antigen complex slows elimination of this binder from the body, thereby lengthening the duration of the desired therapeutic effect in vivo. The same characteristics preferably also apply for antibodies that recognize the GM-CSF receptor, as described above.

[0101] The composition according to the present invention is preferably a pharmaceutical composition. In accordance with the present embodiments, the term "pharmaceutical composition" relates to a composition for administration to a patient, preferably a human patient. Pharmaceutical compositions or formulations are usually in such a form as to allow the biological activity of the active ingredient to be effective and may therefore be administered to a subject for therapeutic use as described herein. Usually, a pharmaceutical composition comprises suitable (i.e. pharmaceutically acceptable) formulations of carriers, stabilizers and/or excipients. In a preferred embodiment, the pharmaceutical composition is a composition for parenteral, trans-dermal, intra-luminal, intra-arterial, intra-thecal and/or intranasal administration or for direct injection into tissue. It is in particular envisaged that said composition is administered to a patient via infusion or injection. Administration of the suitable compositions may be effected by different ways, e.g., by intravenous, intra-peritoneal, subcutaneous, intra-muscular, topical or intra-dermal administration. The composition of the present invention may further comprise a pharmaceutically acceptable carrier. Examples of suitable pharmaceutical carriers are well known in the art and include buffered saline solutions, water, emulsions, such as oil/water emulsions, various types of wetting agents, sterile solutions, liposomes, etc. Compositions comprising such carriers can be formulated by well-known conventional methods.

[0102] In accordance with the present embodiments, the term "effective amount" refers to an amount of the compound neutralizing GM-CSF that is effective for the treatment of diseases associated with GM-CSF, like inflammatory and autoimmune disorders.
[0103] Preferred dosages and preferred methods of administration are such that after
administration the compound neutralizing GM-CSF is present in the blood in effective
dosages. The administration schedule can be adjusted by observing the disease conditions
and analyzing serum levels of the compound neutralizing GM-CSF in laboratory tests
followed by either extending the administration interval e.g. from twice per week or once per
week to once per two weeks, once per three weeks, once per four weeks, and the like, or,
alternatively, reducing the administration interval correspondingly.

[0104] The pharmaceutical compositions can be administered to the subject at a suitable
dose. The dosage regimen will be determined by the attending physician and by clinical
factors. As is well known in the medical arts, dosages for any one patient depend upon many
factors, including the patient's size, body surface area, age, the particular compound to be
administered, sex, time and route of administration, general health, and other drugs being
administered concurrently.

[0105] Preparations for parenteral administration include sterile aqueous or non-aqueous
solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene
glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters
such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions
or suspensions, including saline and buffered media. Parenteral vehicles include sodium
chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed
oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers
(such as those based on Ringer's dextrose), and the like. Preservatives and other additives
may also be present such as, for example, antimicrobials, anti-oxidants, chelating agents,
inert gases and the like. In addition, the pharmaceutical composition in accordance with the
present invention might comprise proteinaceous carriers, like, e.g., serum albumin or
immunoglobulin, preferably of human origin. It is envisaged that the pharmaceutical
composition in accordance with the invention might comprise, in addition to the above
described compounds further biologically active agents, depending on the intended use
of the pharmaceutical composition. Such agents might be drugs acting on the gastro-intestinal
system, drugs acting as cytostatica, drugs preventing hyperurikemia, drugs inhibiting
immunoreactions (e.g. corticosteroids), drugs modulating the inflammatory response, drugs
acting on the circulatory system and/or agents such as cytokines known in the art.

[0106] To analyze the effect of a GM-CSF neutralizing compound for example in rheumatoid
arthritis (RA), outcome measures can be selected e.g. from pharmacokinetics,
immunogenicity, and the potential to improve clinical signs and symptoms of RA as
measured by DAS28, ACR20/50/70 and/or EULAR response criteria, MRI imaging for synovitis and bone edema as well as patient reported outcomes. ACR is a measure summarizing improvement in the number of tender and swollen joints, pain scale, patients' and physicians' assessment of improvement and certain laboratory markers. ACR 20 describes the percentage of study participants who achieved a 20 percent improvement in clinical signs and symptoms, e.g. 20 percent improvement in tender or swollen joint counts as well as 20 percent improvement in three other disease-relevant criteria.

[0107] Another major challenge in the development of drugs such as the pharmaceutical composition in accordance with the invention is the predictable modulation of pharmacokinetic properties. To this end, a pharmacokinetic profile of the drug candidate, i.e. a profile of the pharmacokinetic parameters that affect the ability of a particular drug to treat a given condition, is established. Pharmacokinetic parameters of the drug influencing the ability of a drug for treating a certain disease entity include, but are not limited to: half-life, volume of distribution, hepatic first-pass metabolism and the degree of blood serum binding. The efficacy of a given drug agent can be influenced by each of the parameters mentioned above. "Half-life" means the time where 50% of an administered drug are eliminated through biological processes, e.g. metabolism, excretion, etc. By "hepatic first-pass metabolism" is meant the propensity of a drug to be metabolized upon first contact with the liver, i.e. during its first pass through the liver. "Volume of distribution" means the degree of retention of a drug throughout the various compartments of the body, like e.g. intracellular and extracellular spaces, tissues and organs, etc. and the distribution of the drug within these compartments. "Degree of blood serum binding" means the propensity of a drug to interact with and bind to blood serum proteins, such as albumin, leading to a reduction or loss of biological activity of the drug.

[0108] Pharmacokinetic parameters also include bioavailability, lag time (Tlag), Tmax, absorption rates and/or Cmax for a given amount of drug administered. "Bioavailability" means the amount of a drug in the blood compartment. "Lag time" means the time delay between the administration of the drug and its detection and measurability in blood or plasma. "Tmax" is the time after which maximal blood concentration of the drug is reached, the absorption is defined as the movement of a drug from the site of administration into the systemic circulation, and "Cmax" is the blood concentration maximally obtained with a given drug. The time to reach a blood or tissue concentration of the drug which is required for its biological effect is influenced by all parameters.

[0109] The term "toxicity" as used herein refers to the toxic effects of a drug manifested in
adverse events or severe adverse events. These side events might refer to a lack of
tolerability of the drug in general and/or a lack of local tolerance after administration. Toxicity
could also include teratogenic or carcinogenic effects caused by the drug.

[0110] The terms "safety", "in vivo safety" or "tolerability" as used herein define the
administration of a drug without inducing severe adverse events directly after administration
(local tolerance) and during a longer period of application of the drug. "Safety", "in vivo safety" or "tolerability" can be evaluated e.g. at regular intervals during the treatment and
follow-up period. Measurements include clinical evaluation, e.g. organ manifestations, and
screening of laboratory abnormalities. Clinical evaluation may be carried out and deviation to
normal findings recorded/coded according to NCI-CTC and/or MedDRA standards. Organ
manifestations may include criteria such as allergy/immunology, blood/bone marrow, cardiac
arrhythmia, coagulation and the like, as set forth e.g. in the Common Terminology Criteria for
adverse events v3.0 (CTCAE). Laboratory parameters which may be tested include for
instance haematology, clinical chemistry, coagulation profile and urine analysis and
examination of other body fluids such as serum, plasma, lymphoid or spinal fluid, liquor and
the like. Safety can thus be assessed e.g. by physical examination, imaging techniques (i.e.
ultrasound, x-ray, CT scans, Magnetic Resonance Imaging (MRI), other measures with
technical devices (i.e. electrocardiogram), vital signs, by measuring laboratory parameters
and recording adverse events. The term "effective and non-toxic dose" as used herein refers
to a tolerable dose of the compound neutralizing GM-CSF, preferably the antibody as defined
herein, which is high enough to cure or stabilize the disease of interest without or essentially
without major toxic effects. Such effective and non-toxic doses may be determined e.g. by
dose escalation studies described in the art and should be below the dose inducing severe
adverse side events (dose limiting toxicity, DLT).

[0111] The formulation of the invention (sometimes also referred to herein as "composition of
matter" or "composition") may preferably be in various physical states such as liquid, frozen,
lyophilized, freeze-dried, spray-dried and reconstituted formulations, with liquid and
lyophilized being preferred.

[0112] "Liquid formulation" as used herein refers to a composition of matter that is found as
a liquid, characterized by free movement of the constituent molecules among themselves but
without the tendency to separate at room temperature. Liquid formulations include aqueous
and non-aqueous liquid, with aqueous formulations being preferred. An aqueous formulation
is a formulation in which the solvent or main solvent is water, preferably water for injection
(WFI). The dissolution of the compound neutralizing GM-CSF in the formulation may be homogenous or heterogeneous, with homogenous being preferred as described above.

[0113] Any suitable non-aqueous liquid may be employed provided that it provides stability to the formulation of the invention. Preferably, the non-aqueous liquid is a hydrophilic liquid. Illustrative examples of suitable non-aqueous liquids include: glycerol; dimethyl sulfoxide (DMSO); polydimethylsiloxane (PMS); ethylene glycols, such as ethylene glycol, diethylene glycol, Methylene glycol, polyethylene glycol ("PEG") 200, PEG 300, and PEG 400; and propylene glycols, such as dipropylene glycol, tripropylene glycol, polypropylene glycol ("PPG") 425 and PPG 725.

[0114] "Mixed aqueous/non-aqueous liquid formulation" as used herein refers to a liquid formulation that contains a mixture of water and an additional liquid composition.

[0115] When used herein a "formulation" or "composition" is a mixture of a compound neutralizing GM-CSF (i.e., the active drug/substance) and further chemical substances and/or additives required for a medicinal product which is preferably in a liquid state. A formulation of the invention includes a pharmaceutical formulation.

[0116] The preparation of the formulation includes the process in which different chemical substances, including the active drug, are combined to produce a final medicinal product such as a pharmaceutical composition. The active drug of the formulation of the invention is a compound neutralizing GM-CSF.

[0117] In certain embodiments, the compound neutralizing GM-CSF to be formulated is essentially pure and/or essentially homogeneous (i.e., substantially free from contaminating substances, e.g. proteins, etc. which can be product-related and/or process-related impurities). The term "essentially pure" means a composition comprising at least about 80%, preferably about 90% by weight of the compound, preferably at least about 95% by weight of the compound, more preferably at least about 97% by weight of the compound or most preferably at least about 98% by weight of the compound, preferably of the compound in a monomeric state. The term "essentially homogeneous" means a composition comprising at least about 99% by weight of the compound, preferably of the compound in a monomeric state, excluding the mass of various stabilizers and water in solution.

[0118] When used herein, the term "about" is understood to mean that there can be variation in the respective value or range (such as pH, concentration, percentage, molarity, number of
amino acids, time etc.) that can be up to 5%, up to 10%, up to 15% or up to and including 20% of the given value. For example, if a formulation comprises about 5 mg/ml of a compound, this is understood to mean that a formulation can have between 4 and 6 mg/ml, preferably between 4.25 and 5.75 mg/ml, more preferably between 4.5 and 5.5 mg/ml and even more preferably between 4.75 and 5.25 mg/ml, with the most preferred being 5 mg/ml. As used herein, an interval which is defined as \(\text{"(from) X to Y"} \) equates with an interval which is defined as \(\text{"between X and Y"} \). Both intervals specifically include the upper limit and also the lower limit. This means that for example an interval of \(\text{"5 mg/ml to 10 mg/ml"} \) or \(\text{"between 5 mg/ml and 10 mg/ml"} \) includes a concentration of 5, 6, 7, 8, 9, and 10 mg/ml as well as any given intermediate value.

[0119] A "stable" formulation is one in which the compound neutralizing GM-CSF therein essentially retains its physical stability and/or chemical stability and/or biological activity upon storage and/or does not show substantial signs of aggregation, precipitation, fragmentation, degradation and/or denaturation compared to a control sample, preferably upon visual examination of colour and/or clarity, or as measured by UV light scattering or by size exclusion chromatography. Various further analytical techniques for measuring protein stability are available in the art and are reviewed in Peptide and Protein Drug Delivery, 247-301, Vincent Lee Ed., Marcel Dekker, Inc., New York, N.Y., Pubs. (1991) and Jones, A. Adv. Drug Delivery Rev. 10: 29-90 (1993), for example.

[0120] "During storage," as used herein, means a formulation that once prepared, is not immediately used; rather, following its preparation, it is packaged for storage, either in a liquid form, in a frozen state, or in a dried form for later reconstitution into a liquid form or other form.

[0121] It is envisaged that the compound neutralizing GM-CSF is preferably stable insofar that it does not substantially form aggregates (for example, because of one or more of the aforementioned causes) during or after lyophilization and/or during storage and/or during or after reconstitution. Accordingly, it is preferably envisaged that not more than 10% of a compound neutralizing GM-CSF, more preferably not more than 8%, even more preferably not more than 5%, particularly preferably not more than 2% relative to the amount of the compound neutralizing GM-CSF at the beginning of storage forms aggregates within a suitable shelf life of at least 2 years at refrigerated or even ambient conditions.

[0122] In the alternative, it is envisaged that a compound neutralizing GM-CSF is preferably stable insofar that it does not form dimers, oligomers or fragments. Put it differently, the
stability of a compound neutralizing GM-CSF can be determined according to the percentage of monomer protein in the solution, with a low percentage of degraded (e.g., fragmented) and/or aggregated protein. For example, a formulation of the invention comprising a GM-CSF neutralizing compound such as an antibody may include at least 90%, more preferably at least 92%, even more preferably at least 95%, particularly preferably at least 98%, and most preferably at least 99% monomer of the compound neutralizing GM-CSF.

[0123] By "aggregate" is meant a physical interaction between protein molecules that results in the formation of covalent or non-covalent dimers or oligomers (i.e. high molecular weight entities) which may remain soluble, or form insoluble aggregates that precipitate out of solution. An "aggregate" also includes degraded and/or fragmented protein.

[0124] As mentioned herein above, a number of different analytical methods can be used to detect the presence and levels of aggregates in a formulation comprising a compound neutralizing GM-CSF. These include, but are not limited to, for example, native polyacrylamide gel electrophoresis (PAGE), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), capillary gel electrophoresis (CGE), size exclusion chromatography (SEC), analytical ultracentrifugation (AUC), field flow fractionation (FFF), light scattering detection, sedimentation velocity, UV spectroscopy, differential scanning calorimetry, turbidimetry, nephelometry, microscopy, size exclusion -high performance liquid chromatography (SE-HPLC), reverse phase-high performance liquid chromatography (RP-HPLC), electrospray ionization tandem mass spectroscopy (ESI-MS), and tandem RP-HPLC/ESI-MS, flow field-flow fractionation technique and static and/or dynamic light scattering. These methods may be used either alone, or in combination. Preferably, the analytical methods to detect the presence and levels of aggregates and/or fragments in a formulation comprising a compound neutralizing GM-CSF, are size exclusion chromatography such as SE-HPLC, analytical ultracentrifugation and asymmetric field flow fractionation. A method of determining the biologic activity of a compound neutralizing GM-CSF is e.g. the measurement of its degree of binding to (immobilized) GM-CSF (or GM-CSF receptor) is the so-called surface plasmon resonance (SPR).

[0125] A common challenge with a formulation comprising a protein is the irreversible accumulation of aggregates with time, thermal, or shear stress. Typically, when aggregates precipitate they form large particles that are easy to detect. Smaller, non-covalent soluble aggregates, however, which are often precursors of precipitation into large particles, are more difficult to detect and to quantify. Thus, methods to detect and to quantify protein
aggregation in a protein formulation need to be based on the kind of aggregate being assessed.

[0126] Among the above methods, the suggested methods to determine the presence and/or amounts of soluble, covalent aggregates in a protein formulation are: SEC/light scattering, SDS-PAGE, CGE, RP-HPLC/ESI-MS, FFF and AUC: The suggested methods to determine the presence and/or amounts of soluble, non-covalent aggregates in a protein formulation are: SEC, PAGE, SDS-PAGE, CGE, FFF, AUC, and dynamic light scattering. The suggested methods to determine the presence and/or amounts of insoluble, non-covalent aggregates in a protein formulation are: UV spectroscopy, turbidimetry, nephelometry, microscopy, AUC, asymmetric field flow fractionation and dynamic light scattering.

[0127] Moreover, the formulation of the invention preferably provides improved long-term storage such that the compound neutralizing GM-CSF is stable over the course of storage either in liquid or lyophilized, preferably in lyophilized form. As used herein, the phrase "long-term" storage is understood to mean that the formulation can be stored for at least one month, two or three months or more, for six months or more, and preferably for one year or more. Long term storage is also understood to mean that the pharmaceutical composition is stored either at 2-8°C or at ambient temperature, preferably at 2-8°C, thereby the formulation does preferably not lose its biological activity to the extent as described herein and/or does not form aggregates to the extent as described herein and/or comprises monomers to the extent as described herein. Tests for these properties are described herein elsewhere.

[0128] In one aspect of the invention, the compound neutralizing GM-CSF in the formulations is stable in a lyophilized form for at least 1 month, 2 month, 3 months; at least 4 months, at least 5 months; at least 6 months; at least 12 months. Ranges intermediate to the above recited time periods are also intended to be part of this invention, e.g., 9 months, and so forth. In addition, ranges of values using a combination of any of the above recited values as upper and/or lower limits are intended to be included. Preferably, the formulation is stable at room temperature (about 20°C) or at 40°C for at least 3 month and/or stable at about 2-8°C for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 months, or more preferably stable at about 2-8°C for at least 2 years.

[0129] Another important aspect of stability is that the compound neutralizing GM-CSF within the composition according to the invention maintains its biological activity or potency during the time of storage and within the storage conditions, especially the temperature and
possible temperature changes. The activity or potency is e.g. reflected by the compound’s neutralizing capacity itself (which can be measured in cell-based assays, as described herein above) or by the capacity of the GM-CSF neutralizing compound to bind to GM-CSF or to the GM-CSF receptor. The binding affinity can be assessed by SPR or other methods well known in the art, e.g. a Biacore or a Scatchard assay.

[0130] The formulation of the invention is prepared by combining, additionally to a compound neutralizing GM-CSF as described herein, e.g. in an aqueous solution, a amino acid, a buffer, a tonicity modifier and/or a stabilizer and, optionally, an additional excipient. Persons having ordinary skill in the art will understand that the combining of the various components to be included in the formulation can be done in any appropriate order. For example, the buffer can be added first, middle or last and the tonicity modifier can also be added first, middle or last. It is also to be understood by one of ordinary skill in the art that some of these chemicals can be incompatible in certain combinations, and accordingly, are easily substituted with different chemicals that have similar properties but are compatible in the relevant mixture.

[0131] In a preferred aspect of the invention the formulation comprises an amino acid and/or a buffer. The term "buffer" or "buffering agent" as used herein, includes those agents that maintain the pH in a desired range, that means, also amino acids in high concentrations serve as buffers in sense of the invention. A buffer is an aqueous solution consisting of a mixture of a weak acid and its conjugate base or a weak base and its conjugated acid. It has the property that the pH of the solution changes very little when a small amount of a strong acid or base is added. Buffer solutions are used as a means of keeping pH at a nearly constant value in a wide variety of chemical applications. In general, a buffer when applied in the formulation of the invention preferably stabilizes the compound neutralizing GM-CSF.

[0132] "Amino acid buffers" when used herein include, for example, the amino acid base e.g. histidine, arginine and their conjugated salts. Examples of amino acid buffers histidine/histidine chloride, histidine/histidine phosphate etc.. These examples are preferably applied in the invention.

[0133] The concentration of the amino acid, preferably histidine or arginine in the formulation of the present invention, that means the solution prior to the lyophilisation, is preferably between about 1 mg/ml to about 4 mg/ml, more preferably about 2 mg/ml to about 3 mg/ml, even more preferably about 2 mg/ml to about 2.5 mg/ml, and particularly preferably at about 2.3 mg/ml. The amino acids are available from commercial suppliers.
The preferred pH of a formulation as described herein may be chosen from the following ranges: from about 4 to about 10, preferably from about 4 to about 6 or from about 5 to about 7, more preferably from about 5.5 to about 6.5. Most preferably the pH is about or exactly 5.8. Accordingly, a buffer that can maintain a solution at pH 5 to 7 is preferably used. The term "about" when used in the context of pH value/range preferably means a numeric value having a range of +/- 20% around the cited value. When the pH of the pharmaceutical composition is set at or near physiological levels, comfort of the patient upon administration is maximized. It is to be understood that the pH can be adjusted as necessary to maximize stability and solubility of the compound neutralizing GM-CSF in a particular formulation and as such, a pH outside of physiological ranges, yet preferably tolerable to the patient, is within the scope of the invention.

Generally, the nature of a formulation as described herein is such that the osmolality of the formulation is between 240 - 470 mosmol/kg, more preferred between 300 and 460 mosmol/kg. In particular, it is preferred that the pH be within a range of pH about 5.0 to 7.0, with about 5.5 to 6.5 being preferred, more preferably the pH is pH 5.8, it is to be understood that the pH can be adjusted as necessary to maximize stability and solubility of the compound neutralizing GM-CSF in a particular formulation and as such, a pH outside of physiological ranges, yet preferably tolerable to the patient, is within the scope of the invention. The viscosity is given in milli Pascal * seconds (mPa’s) at a given temperature and a givenshear rate. An acceptable viscosity for the formulation to be lyophilized and for the reconstructed solution for administration is only slightly elevated in comparison to water. Preferably it is below 20 mPa’s at a shear rate between about 50 and about 1000 1/s at a temperature of 20°C. More preferably it is below 15 mPa’s at a temperature of about 20°C and a shear rate of between 50 and 1000 1/s.

Non-limiting examples of buffers that may be used in a formulation described herein include, histidine, arginine, succinate, gluconate, citrate, lysine, aspartic acid, glutamic acid, tris (trometamol), Bis-Tris, MOPS, ACES, TES, HEPES, EPPS, ethylenediamine, phosphoric acid, maleic acid/ phosphate, 2-morpholinoethanesulfonic acid (MES), phosphate, acetate and diethanolamine.

Preferred buffers are histidine, arginine and citrate buffers. More preferably a histidine buffer is applied in the formulation of the invention, preferably between pH 5 and 7, more preferably between pH 5.5 and 6.5, even more preferably at pH 5.8. The buffers applied in the invention are well known in the art and are manufactured by known methods and available from commercial suppliers.
The concentration of an amino acid, e.g. histidine, arginine or salts thereof, a buffer, such as but not limited to histidine buffer, arginine buffer or citrate buffer in the compositions of the invention may be chosen from the following ranges: from about 1 to about 500 mM, from about 1 to about 400 mM, from about 1 to about 300 mM, from about 1 to about 200 mM, from about 1 to about 150 mM, from about 1 to about 100 mM, from about 1 to about 50 mM, from about 1 to about 30 mM, from about 1 to about 20 mM, from about 1 to about 10 mM, from about 10 to about 30 mM, from about 10 to about 20 mM, from about 15 to about 20 mM, from about 10 to about 15 mM. Preferably the concentration in the composition prior to lyophilisation is 15 mM and the concentration in the composition after reconstruction is 26mM.

In some embodiments, the formulation further comprises sodium chloride (NaCl). In particular embodiments, the formulation comprises 1-200 mM, or less than 50 mM, less than 40 mM, less than 35 mM, less than 30 mM, less than 25 mM, less than 20 mM, or less than 15 mM, e.g. 10 mM NaCl.

In addition to the compounds neutralizing GM-CSF, a formulation as described herein may also contain other substances. These substances include, but are not limited to, stabilizing agents (stabilizers)/lyoprotectants.

Accordingly, in a preferred aspect, the formulation comprises a stabilizer. The term "stabilizing agent" refers to an agent that improves or otherwise enhances stability of the formulation, in particular of the compounds neutralizing GM-CSF. A stabilizing agent may be a disaccharide, a sugar alcohol, a metal chelator or a combination of metal chelators, a radical scavenger or combinations thereof.

Preferably, the stabilizing agent may be one or more of non-reducing sugars, such as sucrose or trehalose or one or more of sugar alcohols, such as mannitol or sorbitol, also combinations of non-reducing sugars and sugar alcohols, like sucrose and mannitol, or sucrose and sorbitol, are preferred. In certain embodiments, the concentration of the stabilizing agent in the composition is chosen from the following ranges: from 1 to 15% (w/w), from 2 to 10% (w/w), from 3 to 8% (w/w), from 5 to 6,5% (w/w), from 6 to 6,5%, (w/w). In particular embodiments, the concentration of disaccharide in the composition is about 5 to 6,5% (w/w), for example about 6 to 6,5% (w/w). A preferred stabilizer applied in the formulation of the invention is sucrose, preferably at 6,25% (w/w).

In a preferred embodiment, a formulation described herein comprises an excipient. Preferably the excipient is selected from the group consisting of a cryoprotectant, a lyoprotectant, a surfactant, a bulking agent, an anti-oxidant, and combinations thereof.
Excipients, also referred to as chemical additives, co-solutes, or co-solvents, that preferably stabilize the compounds neutralizing GM-CSF while in solution (also in dried or frozen forms) can be added to a formulation of the invention. Preferably, excipients contribute to the stability of the compounds neutralizing GM-CSF, but it is to be understood that excipients may otherwise contribute to the physical, chemical, and biological properties of the formulation. Excipients are well known in the art and are manufactured by known methods and available from commercial suppliers.

Examples of excipients include but are not limited to sugars/polyols such as: sucrose, lactose, glycerol, xylitol, sorbitol, mannitol, maltose, inositol, trehalose, glucose; polymers such as: serum albumin (bovine serum albumin (BSA), human SA or recombinant HA), dextran, PVA, hydroxypropyl methylcellulose (HPMC), polyethyleneimine, gelatin, polyvinylpyrrolidone (PVP), hydroxyethylcellulose (HEC), hydroxyethylstarch (HES); non-aqueous solvents such as: polyhydric alcohols, (e. g., PEG, ethylene glycol and glycerol) dimethylsulfoxide (DMSO) and dimethylformamide (DMF); amino acids such as: proline, L-serine, sodium glutamic acid, alanine, glycine, lysine hydrochloride, sarcosine and gammaminobutyric acid; surfactants such as: Tween-80, Tween-20, SDS, polysorbate, polyoxyethylene copolymer; and miscellaneous excipients such as: potassium phosphate, sodium acetate, ammonium sulfate, magnesium sulfate, sodium sulfate, trimethylamine N-oxide, betaine, metal ions (e. g., zinc, copper, calcium, manganese, and magnesium), CHAPS, monolaurate, 2-O-beta-mannoglycerate or any combination of the above. Preferably the excipient is a surfactant which is selected from Tween-80 and Tween-20, more preferably the surfactant is Tween-80. In certain embodiments, the concentration of surfactant in the formulation is from 0.001 to 5.0%, from 0.001 to 2.5%, from 0.001 to 1%, from 0.001 to 0.5%, from 0.001 to 0.2%, from 0.001 to 0.1%, from 0.001 to 0.05%, from 0.005 to 0.02%, or 0.01% per weight.

Another preferable excipient in the formulations of the present invention is glycerol, as this excipient facilitate the (freeze-)drying of the formulation and results in products/lyo-cakes that have an improved degree of dryness.

"Cryoprotectants" include substances that provide stability to the frozen protein during production, freezing, storage, handling, distribution, reconstitution, or use. In a particular aspect, "cryoprotectants" include substances that protect the protein from stresses induced by the freezing process. Cryoprotectants may have lyoprotectant effects. Non-limiting examples of cryoprotectants include sugars, such as sucrose, glucose, trehalose, mannitol,
mannose, and lactose; polymers, such as dextran, hydroxyethyl starch, Polyvinylpyrrolidone (PVP) and polyethylene glycol; surfactants, such as polysorbates (e.g., PS-20 or PS-80); and amino acids, such as glycine, arginine, leucine, and serine. A cryoprotectant exhibiting low toxicity in biological systems is generally used.

[0148] A disaccharide as described herein may act as a lyoprotectant or cryoprotectant. "Lyoprotectants" include substances that prevent or reduce chemical or physical instability of a protein upon lyophilization and subsequent storage. In one aspect, the lyoprotectant prevents or reduces chemical or physical instabilities in the protein as water is removed from the composition during the drying process. In a further aspect, the lyoprotectant stabilizes the protein by helping maintain the proper conformation of the protein through hydrogen bonding.

[0149] Accordingly, in one aspect, a disaccharide as described herein may serve to stabilize the compounds neutralizing GM-CSF during freezing. As protection during freezing may depend upon the absolute concentration of the disaccharide (Carpenter et al., Pharm. Res. (1997), 14:969-975, concentrations greater than 5% may be necessary to maximize stability.

[0150] In one aspect, the disaccharide stabilizes the compounds neutralizing GM-CSF during drying. Protection during drying may depend upon the final mass ratio between the final mass ratio between the disaccharide and the protein. Carpenter et al., Pharmaceutical Research 14:969-975 (1997). Accordingly, in some embodiments, the concentration of disaccharide is selected to achieve the desired mass ratio of disaccharide to the compound neutralizing GM-CSF, typically at least 1:1. However, the resulting osmolality might be unacceptably high, e.g. > 600 mOsm/kg. The administration of this hypertonic solution could be painful for the patient, therefore the upper limit for osmolality of the solution is set to be about 470 mOsm/kg which is however still hyperosmotic. A compromise between optimal stability, tonicity and antibody concentration had therefore to be found. A preferably weight ratio used for the lyophilisate of the present invention is therefore in the range of 1.0:1.0 to 1.5:1.0 (compounds neutralizing GM-CSF to sugar alcohol), more preferably 1.2:1.0.

[0151] In one embodiment, a lyoprotectant is added to a formulation described herein. The term "lyoprotectant" as used herein, includes agents that provide stability to the protein during the freeze-drying or dehydration process (primary and secondary freeze- drying cycles), by providing an amorphous glassy matrix and by binding with the protein through hydrogen bonding, replacing the water molecules that are removed during the drying process. This helps to maintain the protein conformation, minimize protein degradation during the lyophilization cycle, and improve the long-term product stability. The lyoprotectant is added to
the pre-lyophilized formulation in a "lyoprotecting amount" which means that, following lyophilization of the compounds neutralizing GM-CSF in the presence of the lyoprotecting amount of the lyoprotectant, the compounds essentially retains their physical and chemical stability and integrity upon lyophilization and storage.

Non-limiting examples of lyoprotectants include sugars, such as sucrose or trehalose; an amino acid, such as monosodium glutamate, glycine or histidine; a methylamine, such as betaine; a lyotropic salt, such as magnesium sulfate; a polyl, such as trihydric or higher sugar alcohols, e.g., arabitol, xylitol, sorbitol, and mannitol; polyethylene glycol; pluronics; and combinations thereof. Preferably lyoprotectants are as described above for stabilizing agents. The amount of lyoprotectant added to a formulation is generally an amount that does not lead to an unacceptable degree of degradation/aggregation of the protein when the protein formulation is lyophilized. Where the lyoprotectant is a sugar (such as sucrose or trehalose) and the protein is an antibody, non-limiting examples of lyoprotectant concentrations in the protein formulation prior to lyophilisation are from about 10 mM to about 400 mM, and preferably from about 50 mM to about 300 mM, and most preferably from about 50 mM to about 200 mM. Preferably concentrations are also described for stabilizing agents above. In certain embodiments, a surfactant may be included in the formulation.

Another preferred excipient is a surfactant. The term "surfactant" generally includes those agents that protect the compounds neutralizing GM-CSF from air/solution interface-induced stresses and solution/surface induced-stresses. For example surfactants may protect the protein from aggregation.

Examples of surfactants include, without limitation, non-ionic surfactants, such as polysorbates (e.g., polysorbate 80 or polysorbate 20); poloxamers (e.g., poloxamer 188); lipoaminoacids (e.g. SEPICLEARTM); and cyclodextrines. The amount of surfactant added is such that it maintains aggregation of the reconstituted protein at an acceptable level as assayed using, e.g., SEC-HPLC, or light obscuration measurements to determine the percentage of high molecular weight (HMW) species or low molecular weight (LMW) species, and minimizes the formation of particulates after reconstitution of a lyophilisate of a protein formulation described herein. For example, the surfactant can be present in a formulation (liquid, or prior to reconstitution of a lyophilisate) in an amount from 0.001 to 5.0%, from 0.001 to 2.5%, from 0.001 to 1%, from 0.001 to 0.5%, from 0.001 to 0.2%, from 0.001 to 0.1%, from 0.001 to 0.05%, from 0.005 to 0.02%, or 0.01% per weight. A preferred surfactant applied in the formulation of the invention is polysorbate 20 or 80, more preferred polysorbat 80.
A further preferred excipient may by a bulking agent. The term "bulking agent" as used herein, includes agents that provide the structure of a freeze-dried product without interacting directly with the pharmaceutical product. In addition to providing a pharmaceutically elegant cake, bulking agents may also impart useful qualities in regard to modifying the collapse temperature, providing freeze-thaw protection, and enhancing the protein stability over long-term storage. Non-limiting examples of bulking agents include mannitol, glycine, lactose, and sucrose. Bulking agents may be crystalline (such as glycine, mannitol, or sodium chloride) or amorphous (such as dextran, hydroxyethyl starch) and are generally used in protein formulations in an amount from 0.5% to 10%.

Preferably, the bulking agent applied in the formulation of the invention promotes the formation of a cake that is aesthetically acceptable, uniform, or mechanically strong. Bulking agents also preferably promote the formation of an open pore structure and the ease and speed of reconstitution. Bulking agents also preferably reduce or prevent cake collapse, eutectic melting, or retention of residual moisture. In another aspect, bulking agents preferably help protect the compounds neutralizing GM-CSF against stresses (e.g., physical and chemical stresses) and help maintain protein activity.

In some embodiments, the formulation may optionally contain a preservative. A "preservative" is a compound which can be added to the formulations herein to reduce bacterial activity. The addition of a preservative may, for example, facilitate the production of a multi-use (multiple-dose) formulation. Examples of potential preservatives include octadecyldimethylbenzyl ammonium chloride, hexamethonium chloride, benzalkonium chloride (a mixture of alkylbenzyl(dimethylammonium) chlorides in which the alkyl groups are long-chain compounds), and benzethonium chloride. Other types of preservatives include aromatic alcohols such as phenol, butyl and benzyl alcohol, alkyl parabens such as methyl or propyl parabene, catechol, resorcinol, cyclohexanol, 3-pentanol, and m-cresol. The most preferred preservative herein is benzyl alcohol.

Accordingly, in more preferred embodiments a formulation of the invention is a liquid, preferably aqueous, formulation for lyophilization which comprises between about 50 mg/ml and 100 mg/ml compounds neutralizing GM-CSF and a amino acid selected from the group consisting of histidine and/or arginine, and/or a citrate buffer and the formulation may additionally comprises one or more of sucrose, trehalose, mannitol and sorbitol as stabilizer/lyoprotectant and optionally polysorbate 80 as surfactant.
In particular preferred embodiments a formulation of the invention is a liquid, preferably aqueous, formulation for lyophilization which comprises between about 50 mg/ml and 100 mg/ml compounds neutralizing GM-CSF, more preferably about 75, and a 15 mM histidine buffer and the formulation may additionally comprises 62,5 mg/ml sucrose and optionally 0,10 mg/ml polysorbat 80 as surfactant.

After lyophilisation of the above preferred composition the reconstruction may be preformed under conditions to enrich the concentration of the compounds neutralizing GM-CSF. A preferred composition after reconstruction with e.g. water for injection, the composition comprises 130 mg/ml of a compound neutralizing GM-CSF, 26 mM histidine buffer, 108 mg/ml sucrose, and 0,17 mg/ml polysorbat 80. The nature of formulations after reconstruction is such that the osmolality of the formulation is between 240 - 470 mosmol/kg, more preferred between 300 and 460 mosmol/kg.

It is to be understood that certain components of the composition may be interchanged with alternatives known in the art. However, one skilled in the art will also understand that inclusion of certain components will preclude the use of other components, concentrations, or methods of preparing the formulation, for reasons that include, but are not limited to, chemical compatibility, pH, tonicity, and stability.

As mentioned herein, this application generally relates to the discovery that the addition of several substances to a formulation comprising compounds neutralizing GM-CSF can reduce aggregation and/or degradation/fragmentation of these compounds in a formulation. Regardless of what causes a compound neutralizing GM-CSF in a formulation to aggregate or to be degraded, the addition of the substances as described herein reduces aggregation / fragmentation of the compounds neutralizing GM-CSF in the formulation. In certain embodiments, addition of a the described substances reduces aggregation / degradation in a formulation caused, for example, by storage, exposure to elevated temperatures, exposure to light, exposure to shear stress, the presence of surfactants, pH and ionic conditions, and any combinations thereof.

The measures found by the present inventors may be used to decrease aggregation and/or degradation/fragmentation of compounds neutralizing GM-CSF formulated, in particular in liquid and lyophilized form. The reduced aggregation/fragmentation is thus preferably observed in a liquid formulation. It is assumed that a reduced aggregation/degradation may also be observed when stored directly in liquid form for later use, stored in a frozen state and thawed prior to use, or prepared in a dried form, such as a
lyophilized, air-dried, or spray-dried form, for later reconstitution into a liquid form or other form prior to use.

[0164] Thus, it is envisaged that a formulation described herein may be stored by any method known to one of skill in the art. Non-limiting examples include freezing, lyophilizing, and spray drying the formulation, wherein storage after lyophilization is preferred.

[0165] The term "lyophilized" or "freeze-dried" includes a state of a substance that has been subjected to a drying procedure such as lyophilization, where at least 90% preferably 95%, most preferably 98% of moisture has been removed. Accordingly, the term "lyophilization" as used herein, refers to a process by which the material to be dried is first frozen followed by removal of the ice or frozen solvent by sublimation in a vacuum environment. An excipient (e.g., lyoprotectant) may be included in formulations that are to be lyophilized so as to enhance stability of the lyophilized product upon storage. The term "reconstituted formulation" as used herein, refers to a formulation that has been prepared by dissolving a lyophilized protein formulation in a diluent such that the compound neutralizing GM-CSF is dispersed in the diluent.

[0166] The term "diluent" as used herein, is a substance that is pharmaceutically acceptable (safe and non-toxic for administration to a human) and is useful for the preparation of a liquid formulation, such as a formulation reconstituted after lyophilization. Non-limiting examples of diluents include sterile water, bacteriostatic water for injection (BWFI), a pH buffered solution (e.g., phosphate- buffered saline), sterile saline solution, Ringer's solution, dextrose solution, or aqueous solutions of salts and/or buffers.

[0167] Lyophilized formulations are typically reconstituted for use by addition of an aqueous solution to dissolve the lyophilized formulation. A wide variety of aqueous solutions can be used to reconstitute a lyophilized formulation. Preferably, lyophilized formulations are reconstituted using water. Lyophilized formulations are preferably reconstituted with a solution consisting essentially of water (e.g., USP WFI, or water for injection (WFI)) or bacteriostatic water (e.g., USP WFI with 0.9% benzyl alcohol). However, solutions comprising buffers and/or excipients and/or one or more pharmaceutically acceptable carries can also be used.

[0168] Lyophilized formulations are typically prepared from liquids that is, from solutions, suspensions, emulsions, and the like. Thus, the liquid that is to undergo lyophilization preferably comprises all components desired in a final reconstituted liquid formulation. As a
result, when reconstituted, the lyophilized formulation will render a desired liquid formulation upon reconstitution.

[0169] In another aspect of the invention, the formulation is envisaged for use in therapy. Accordingly, the invention envisages a pharmaceutical composition (or medicament) comprising the formulation described herein.

[0170] In yet another embodiment, the invention provides a method of treating a subject comprising administering a therapeutically effective amount of the formulation described herein, wherein the subject has a disease or disorder that can be beneficially treated with a compound neutralizing GM-CSF.

[0171] Preferably, the formulation described herein is applied in the prophylaxis and/or treatment of a disease that can be prevented and/or treated and/or ameliorated with compounds neutralizing GM-CSF.

[0172] The term "subject" is intended to include living organisms. Examples of subjects include mammals, e.g., humans, dogs, cows, horses, pigs, sheep, goats, cats, mice, rabbits, rats, and transgenic non-human animals. In preferred embodiments of the invention, the subject is a human.

[0173] The term "effective dose" or "effective dosage" is defined as an amount sufficient to achieve or at least partially achieve the desired effect. The term "therapeutically effective dose" is defined as an amount sufficient to cure or at least partially arrest the disease and its complications in a patient already suffering from the disease. Amounts effective for this use will depend upon the severity of the medical condition and the general state of the subject's own immune system. The term "patient" includes human and other mammalian subjects that receive either prophylactic or therapeutic treatment.

[0174] The appropriate dosage, or therapeutically effective amount, of the formulation will depend on the condition to be treated, the severity of the condition prior to therapy, and the patient's clinical history and response to the therapeutic agent. The proper dose can be adjusted according to the judgment of the attending physician such that it can be administered to the patient once or over a series of administrations. The pharmaceutical composition can be administered as a sole therapeutic or in combination with additional therapies as needed.

[0175] The pharmaceutical compositions of this invention are particularly useful for parenteral administration, i.e., subcutaneously, intramuscularly, intravenously, intra-articular
and/or intra-synovial, wherein subcutaneous administration is preferred. Parenteral administration can be carried out by bolus injection or continuous infusion.

[0176] Pharmaceutical compositions for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. In addition, a number of recent drug delivery approaches have been developed and the pharmaceutical compositions of the present invention are suitable for administration using these new methods, e.g., Inject-ease, Genject, injector pens such as Genen, and needleless devices such as MediJector and BioJector. The present pharmaceutical composition can also be adapted for yet to be discovered administration methods. See also Langer, 1990, Science, 249: 1527-1533.

[0177] The lyophilized pharmaceutical compositions may preferably be presented in a vial containing the active ingredient. In one embodiment the pharmaceutical compositions additionally comprise a solution for reconstruction.

[0178] The pharmaceutical composition may further comprise additional pharmaceutically acceptable components. Other pharmaceutically acceptable carriers, excipients, or stabilizers, such as those described in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980) may also be included in a protein formulation described herein, provided that they do not adversely affect the desired characteristics of the formulation. As used herein, "pharmaceutically acceptable carrier" means any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed and include: additional buffering agents; preservatives; co-solvents; antioxidants, including ascorbic acid and methionine; chelating agents such as EDTA; metal complexes (e.g., Zn-protein complexes); biodegradable polymers, such as polyesters; salt-forming counter-ions, such as sodium, polyhydric sugar alcohols; amino acids, such as alanine, glycine, asparagine, 2-phenylalanine, and threonine; sugars or sugar alcohols, such as lactitol, stachyose, mannose, sorbose, xylose, ribose, ribitol, myoinositol, myo-inositol, galactose, galactitol, glycerol, cyclitols (e.g., inositol), polyethylene glycol; sulfur containing reducing agents, such as glutathione, thiocystic acid, sodium thioglycolate, thioglycerol, [alpha]-monothioglycerol, and sodium thio sulfate; low molecular weight proteins, such as human serum albumin, bovine serum albumin, gelatine, or other immunoglobulines; and hydrophilic polymers, such as polyvinylpyrrolidone.
The formulations described herein are useful as pharmaceutical compositions in the treatment and/or prevention and/or amelioration of a disease, or disorder in a patient in need thereof. The term "treatment" refers to both therapeutic treatment and prophylactic or preventative measures. Treatment includes the application or administration of the formulation to the body, an isolated tissue, or cell from a patient who has a disease/disorder, a symptom of a disease/disorder, or a predisposition toward a disease/disorder, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease, the symptom of the disease, or the predisposition toward the disease.

Those "in need of treatment" include those already with the disorder, as well as those in which the disorder is to be prevented. The term "disorder" is any condition that would benefit from treatment with the protein formulation described herein. This includes chronic and acute disorders or diseases including those pathological conditions that predispose the mammal to the disorder in question. Non-limiting examples of disorders to be treated herein include inflammatory and autoimmune disorders, preferably including allergic and psoriatic disorders, as well as arthritic and asthmatic disorders, e.g., arthritis, rheumatoid arthritis (RA), autoimmune encephalitis, psoriasis, multiple sclerosis, lung disease such as asthma, chronic obstructive pulmonary disease (COPD) and Acute Respiratory Distress Syndrome (ARDS); Crohn's Disease, Idiopathic Pulmonary Fibrosis (IPF), Inflammatory Bowel Disease (IBD), uveitis, macular degeneration, colitis, Wallerian Degeneration, antiphospholipid syndrome (APS), acute coronary syndrome, restinosis, atherosclerosis, relapsing polychondritis (RP), acute or chronic hepatitis, failed orthopedic implants, glomerulonephritis, lupus, atopic dermatitis, and inflammatory, arthritic and osteoarthritic pain.

An allergic disorder is any disorder that is caused by an allergy or an allergic reaction. An allergy is a hypersensitivity disorder of the immune system. It occurs when a person's immune system reacts or overreacts to normally harmless foreign substances (allergens), such as food, pollen, molds, house dust, animal dander, dust mites.

Psoriasis is an autoimmune disease that mainly affects the skin. The growth cycle of skin cells speeds up due to erroneous signals sent out by the immune system. There are five types of psoriasis: plaque, guttate, inverse, pustular, and erythrodermic. The most common form, plaque psoriasis, is commonly seen as red and white hues of scaly patches appearing on the top first layer of the epidermis (skin). Some patients, though, have no dermatological signs or symptoms. The disorder is a chronic recurring condition that varies in severity from minor localized patches to complete body coverage. Fingernails and toenails are frequently
affected (psoriatic nail dystrophy) and can be seen as an isolated sign. Psoriasis can also cause inflammation of the joints, which is known as psoriatic arthritis.

[0183] Arthritis is a form of joint disorder that involves inflammation of one or more joints. There are over 100 different forms of arthritis. The most common form osteoarthritis (degenerative joint disease) is a result of trauma to the joint, infection of the joint, or age. Other arthritis forms are rheumatoid arthritis, psoriatic arthritis and other related autoimmune diseases. Septic arthritis is caused by joint infection.

[0184] Asthma is a common chronic inflammatory disorder of the airways in which many cells and cellular elements play a role. Asthma is associated with airway hyperresponsiveness that leads to recurrent episodes of wheezing, coughing, chest tightness, and shortness of breath. These episodes are usually associated with widespread, but variable airflow obstruction within the lung that is often reversible either spontaneously or with treatment. Asthma can be classified according to the frequency of symptoms, forced expiratory volume in one second and peak expiratory flow rate. Asthma may also be classified as atopic (extrinsic) or non-atopic (intrinsic).

[0185] In addition to the compounds neutralizing GM-CSF, the pharmaceutical composition of the invention can comprise additional therapeutic or biologically active agents. For example, therapeutic factors useful in the treatment of a particular indication such as osteoarthritis (e.g. one or more inhibitors that are involved in destruction of articular cartilage or synovial components selected from, but not limited to anti-metalloproteinases, cycline compounds, cytokine antagonists, corticosteroids, TNF inhibitors, IL-inhibitors, anti-angiogenic substances, aggrecanase inhibitors, p38 kinase inhibitors, apoptosis inhibitors, hyaluronidase inhibitors and inhibitors of proteolytic enzymes) can be present. Factors that control inflammation including infliximab, etanercept, adalimumab, nerelimomab, lenecercept and the like, or combinations thereof can also be part of the composition. It is also envisaged that the pharmaceutical composition may include extracellular matrix components such as hyaluronic acid or a derivative thereof including salts, ester, inner ester and sulphated derivates, preferably partial ester of hyaluronic acid.

[0186] In another embodiment, the present invention is directed to a kit (or article of manufacture) or container, which contains a formulation of the invention. The formulation is preferably in a lyophilized state and can be prepared by the practitioner as (liquid) aqueous pharmaceutical composition. For example, the formulation with is lyophilized would then have to be reconstituted. Accordingly, the kit may further comprise means for the
reconstitution of a lyophilized formulation and/or means for diluting the formulation and/or means for administering the formulation or pharmaceutical composition, respectively, such as a syringe, pump, infuser, needle or the like. The kit may comprise one or more vials containing the formulation of the invention. The kit can also be accompanied by instructions for use.

[0187] Thus, an article of manufacture is provided which contains a formulation described herein and preferably provides instructions for its use. The article of manufacture comprises a container suitable for containing the formulation. Suitable containers include, without limitation, bottles, vials (e.g., dual chamber vials), syringes (e.g., single or dual chamber syringes), test tubes, nebulizers, inhalers (e.g., metered dose inhalers or dry powder inhalers), or depots. The container can be formed from a variety of materials, such as glass, metal or plastic (e.g., polycarbonate, polystyrene, polypropylene, polyolefine). The container holds the formulation, and the label on, or associated with, the container may indicate directions for reconstitution and/or use. The label may further indicate that the formulation is useful or intended for subcutaneous administration. The container holding the formulation may be a multi-use vial, which allows for repeated administrations (e.g., from 2-6 administrations) of the formulation. The article of manufacture may further comprise a second container comprising a suitable diluent (e.g., WFI, 0.9% NaCl, BWFI, phosphate buffered saline). When the article of manufacture comprises a lyophilized version of a compound neutralizing GM-CSF formulation, mixing of a diluent with the lyophilized formulation will provide a desired final protein concentration in the reconstituted formulation. The article of manufacture may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.

[0188] The invention is further illustrated by the which are merely illustrative and are not constructed as a limitation of the scope of the present invention.
[0189] It should be understood that the inventions disclosed herein are not limited to particular methodology, protocols, or reagents, as such can vary. The discussion and examples provided herein are presented for the purpose of describing particular embodiments only and are not intended to limit the scope of the present invention, which is defined solely by the claims. The following Examples will illustrate the present invention.

[0190] General sample preparation

10 Production and initial formulation
ANTI-GM-CSF ANTIBODY is a human monoclonal antibody (IgGi) that neutralizes with high affinity and specificity the human cytokine granulocyte/macrophage colony-stimulating factor (GM-CSF). The ANTI-GM-CSF ANTIBODY may in the following also be denoted as "the antibody" is described in WO 2006/1 11353. Its generation is described in Example 2 of WO 2006/1 11353. More specifically, the antibody comprises the light chain and heavy chain CDR sequences as depicted in SEQ ID NOs: 16, 17, 18, 14, 15 and 2. These CDR sequences are comprised in the heavy and light chain variable domain, respectively, that are shown in SEQ ID Nos: 34 and 35, respectively. GM-CSF is aberrantly overproduced in a multitude of pro-inflammatory and autoimmune human diseases, and addition of recombinant GM-CSF was found to aggravate such diseases. Possible disease indications for treatment with a GM-CSF-neutralizing antibody include rheumatoid arthritis (RA), asthma and other forms of lung inflammation, multiple sclerosis (MS) and psoriasis.
ANTI-GM-CSF ANTIBODY was produced in a bioreactor using serum- and protein-free medium. The inoculum for the production fermenter was prepared from a single vial of the ANTI-GM-CSF ANTIBODY producing clone. Upon completion of the fermentation process, the harvest containing secreted ANTI-GM-CSF ANTIBODY is processed by filtration to separate cells and debris from the supernatant. Purification of the harvest is based on common chromatographic approaches to reduce HCPs, DNA and potential viruses. An integral virus inactivation step (pH shift) was an additional part of the downstream process.

30 For the formulation a concentration and buffer exchange step was performed.

Initial Low Concentration Liquid (LCL) Formulation (Drug Substance):

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTI-GM-CSF ANTIBODY</td>
<td>about 50mg/ml</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>5% (w/v)</td>
</tr>
<tr>
<td>L-Histidines buffer</td>
<td>30 mM (hydrochloride monohydrate)</td>
</tr>
<tr>
<td>pH</td>
<td>5.8 (adjusted with 2M sodium hydroxide)</td>
</tr>
</tbody>
</table>
Concentration adjustment via ultra-filtration using an Amicon 8400 stir cell
The concentration of the drug substance is increased if desired via ultra-filtration.
The membrane is hydrated with the exchange buffer and placed into the membrane holder. The cell is assembled according to the manufacturer's instructions, filled with the sample and placed on a magnetic stirrer. The solution is gently stirred without creating foam. The system is pressurized with nitrogen. The pressure is adjusted to give a continuous dropwise filtrate. The sample is concentrated up to approx. 100 mg/ml and then diluted back with filtrate to the desired concentration e.g. 75 mg/ml. This procedure is carried out at room temperature. Subsequently the buffer exchange is performed either via ultrafiltration/diafiltration in the stir cell or via dialysis

Buffer exchange via ultra-filtration/diafiltration in the Amicon 8400 stir cell
The membrane is hydrated with the exchange buffer and placed into the membrane holder. The cell is assembled according to the manufacturer's instructions, filled with the sample and placed on a magnetic stirrer. The solution is gently stirred without creating foam. The system is pressurized with nitrogen. The pressure is adjusted to give a continuous dropwise filtrate. The sample is concentrated up to approx. 100 mg/ml and then diluted with exchange buffer to approx. 25 mg/ml.
This procedure is repeated until the exchange factor is at least 100 (e.g. four times from 100 mg/ml to 25 mg/ml gives an exchange factor of $4^4 = 256$). Finally the sample is diluted back with exchange buffer to the desired concentration e.g. 75 mg/ml. This procedure is carried out at room temperature.

Buffer exchange via dialysis
The buffer exchange is performed in a beaker with Slide-A-Lyzer dialysis cassettes; MWCO 20,000
The cassettes are hydrated with dialysis solution and then the drug substance is filled into the cassette with a syringe equipped with a hypodermic (e.g. 21 gauge) needle. The fill volume ranges from 10 to 30 ml. The cassettes are then placed in a beaker containing the dialysis solution in at least 100 times the volume of the sample (e.g. 20 ml fill and 2 L exchange volume). The cassettes float on the dialysis solution which is gently stirred with a magnetic stirrer. The dialysis is performed at room temperature over night. The dialysed sample is then removed with a new syringe and needle from the cassette.
Freeze drying

The reformulated solution was sterile filtered and filled into 10R glass vials, partly stoppered with lyo stoppers and put into the freeze dryer. A typical lyophilisation program used for ANTI-GM-CSF ANTIBODY reads as follows:

Table 1: Lyophilisation programme

<table>
<thead>
<tr>
<th>Step</th>
<th>Time/Rate</th>
<th>Temperature (°C)</th>
<th>Pressure (mbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 loading</td>
<td>n.a.</td>
<td>RT</td>
<td>1000</td>
</tr>
<tr>
<td>2 ramp to freezing 1</td>
<td>1°C/min</td>
<td>To-50</td>
<td>1000</td>
</tr>
<tr>
<td>3 Freezing 1</td>
<td>1 h</td>
<td>-50</td>
<td>1000</td>
</tr>
<tr>
<td>4 ramp to annealing</td>
<td>1°C/min</td>
<td>To -15</td>
<td>1000</td>
</tr>
<tr>
<td>5 annealing</td>
<td>4h</td>
<td>-15</td>
<td>1000</td>
</tr>
<tr>
<td>6 ramp to freezing 2</td>
<td>1°C/min</td>
<td>To-50</td>
<td>1000</td>
</tr>
<tr>
<td>7 freezing 2</td>
<td>2h</td>
<td>-50</td>
<td>1000</td>
</tr>
<tr>
<td>8 ramp to pre-evacuation</td>
<td>1°C/min</td>
<td>To-30</td>
<td>1000</td>
</tr>
<tr>
<td>9 pre-evacuation</td>
<td>15 min</td>
<td>-30</td>
<td>0,1</td>
</tr>
<tr>
<td>10 ramp to primary drying</td>
<td>1°C/min</td>
<td>To-20</td>
<td>0,1</td>
</tr>
<tr>
<td>11 primary drying</td>
<td>24h</td>
<td>-20</td>
<td>0,1</td>
</tr>
<tr>
<td>12 ramp to secondary drying</td>
<td>0,1°C/min</td>
<td>To +20</td>
<td>0,1</td>
</tr>
<tr>
<td>13 secondary drying</td>
<td>4h</td>
<td>+20</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Total duration of the cycle: approx. 44.5 h

Stability evaluation:

The lyophilized samples are stored for 6 weeks at 40 °C. After reconstitution with water for injection the samples are analysed. The key quality attribute is the degree of aggregation. This is determined by Size Exclusion Chromatography (SE-HPLC) (HPLC: Agilent 1100 Chemstation; column: Tosoh Biosep TSKgel G4000SWXL). All assays were performed using 100 mM KH₂PO₄, 200 mM Na₂SO₄, pH 6.6 as running buffer.

[0191] Example 1:

Trehalose-Citrate Polysorbate Formulation:

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTI-GM-CSF ANTIBODY</td>
<td>100 mg/mL</td>
</tr>
<tr>
<td>Trehalose</td>
<td>100 mg/mL</td>
</tr>
<tr>
<td>Citric acid</td>
<td>20 mM</td>
</tr>
<tr>
<td>Polysorbate 80</td>
<td>0.2 mg/mL</td>
</tr>
<tr>
<td>NaOH(2 M)</td>
<td>q.s.</td>
</tr>
<tr>
<td>pH</td>
<td>5.8</td>
</tr>
</tbody>
</table>
After six weeks storage at 40 °C the samples with a fill weight of 1.6 g were reconstituted with 1.0 mL of purified water, resulting in 120 mg/mL of anti-GM-CSF antibody, showed less than 3 % aggregation.

[0192] Example 2
Sucrose-Mannitol-Histidine Formulation

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTI-GM-CSF ANTIBODY</td>
<td>90 mg/mL</td>
</tr>
<tr>
<td>Sucrose</td>
<td>25 mg/mL</td>
</tr>
<tr>
<td>Mannitol</td>
<td>12.5 mg/mL</td>
</tr>
<tr>
<td>L-histidine</td>
<td>15 mM</td>
</tr>
<tr>
<td>HCl (2 M)</td>
<td>q.s.</td>
</tr>
<tr>
<td>pH</td>
<td>5.8</td>
</tr>
</tbody>
</table>

After six weeks storage at 40 °C the samples with a fill weight of 2.0 g were reconstituted with 1.0 mL of purified water, resulting in 140 mg/mL of anti-GM-CSF antibody showed less than 3 % aggregation.

[0193] Example 3
Sucrose- Histidine-Polysorbate Formulation

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTI-GM-CSF ANTIBODY antibody</td>
<td>75 mg/mL</td>
</tr>
<tr>
<td>Sucrose</td>
<td>62.5 mg/mL</td>
</tr>
<tr>
<td>L-Histidine</td>
<td>15 mM</td>
</tr>
<tr>
<td>Polysorbate 80</td>
<td>0.1 mg/mL</td>
</tr>
<tr>
<td>HCl (2 M)</td>
<td>q.s.</td>
</tr>
<tr>
<td>pH</td>
<td>5.8</td>
</tr>
</tbody>
</table>

After six weeks storage at 40 °C the samples with a fill weight of 2.5 g were reconstituted with 1.2 mL of purified water, resulting in 130 mg/mL of anti-GM-CSF antibody showed less than 2 % aggregation.

In-use stability
The in-use stability of the reconstituted solution in the 10R glass vials was determined by size exclusion chromatography for the parameter aggregation and surface plasmon resonance for the parameter active concentration over 24 hours at ambient conditions. The
active concentration of the reconstituted solution did not change over 24 hours at ambient conditions and the increase in aggregation was minor (from 0.64 % to 0.76 %).

Short term stability

After reconstitution with water for injection the samples are analysed. The key quality attribute is the degree of aggregation. This is determined by Size Exclusion Chromatography.

<table>
<thead>
<tr>
<th>Storage time interval:</th>
<th>Temperature [°C]</th>
<th>Aggregates [%]</th>
<th>Protein content [mg/ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>relative humidity (r.h.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₀</td>
<td>5</td>
<td>0.5</td>
<td>130 ± 10%</td>
</tr>
<tr>
<td>1 months</td>
<td>5</td>
<td>0.5</td>
<td>130 ± 10%</td>
</tr>
<tr>
<td>3 months</td>
<td>5</td>
<td>0.6</td>
<td>130 ± 10%</td>
</tr>
<tr>
<td>6 months</td>
<td>5</td>
<td>0.6</td>
<td>130 ± 10%</td>
</tr>
<tr>
<td>T₀</td>
<td>25; 60% r.h.</td>
<td>0.5</td>
<td>130 ± 10%</td>
</tr>
<tr>
<td>1 months</td>
<td>25; 60% r.h.</td>
<td>0.6</td>
<td>130 ± 10%</td>
</tr>
<tr>
<td>3 months</td>
<td>25; 60% r.h.</td>
<td>0.9</td>
<td>130 ± 10%</td>
</tr>
<tr>
<td>6 months</td>
<td>25; 60% r.h.</td>
<td>1.1</td>
<td>130 ± 10%</td>
</tr>
<tr>
<td>T₀</td>
<td>40; 75% r.h.</td>
<td>0.5</td>
<td>130 ± 10%</td>
</tr>
<tr>
<td>1 months</td>
<td>40; 75% r.h.</td>
<td>1.1</td>
<td>130 ± 10%</td>
</tr>
<tr>
<td>2 months</td>
<td>40; 75% r.h.</td>
<td>1.6</td>
<td>130 ± 10%</td>
</tr>
<tr>
<td>3 months</td>
<td>40; 75% r.h.</td>
<td>1.9</td>
<td>130 ± 10%</td>
</tr>
</tbody>
</table>

After 3 months at all storage conditions the aggregates are below 2%.

Long term stability:
The samples have been stored at 5°C ± 3°C for the indicated time intervals in the 10R vials. After reconstitution with water for injection the samples are analysed. The key quality attribute is the degree of aggregation. This is determined by Size Exclusion Chromatography.

<table>
<thead>
<tr>
<th>Storage time interval:</th>
<th>Aggregates [%]</th>
<th>Fragments [%]</th>
<th>Protein content [mg/ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
<td>< 1.0</td>
<td>130 ± 10%</td>
</tr>
<tr>
<td>3 months</td>
<td>0.6</td>
<td>< 1.0</td>
<td>130 ± 10%</td>
</tr>
<tr>
<td>6 months</td>
<td>0.6</td>
<td>< 1.0</td>
<td>130 ± 10%</td>
</tr>
<tr>
<td>9 months</td>
<td>0.7</td>
<td>< 1.0</td>
<td>130 ± 10%</td>
</tr>
<tr>
<td>12 months</td>
<td>0.7</td>
<td>< 1.0</td>
<td>130 ± 10%</td>
</tr>
<tr>
<td>18 months</td>
<td>0.7</td>
<td>< 1.0</td>
<td>130 ± 10%</td>
</tr>
</tbody>
</table>
Viscosity evaluation:

Viscosity is determined with a rheometer. A rheometer is used for those fluids which cannot be defined by a single value of viscosity and therefore require more parameters to be set and measured than is the case for a viscometer.

For some fluids, viscosity is a constant over a wide range of shear rates (Newtonian fluids). The fluids without a constant viscosity (non-Newtonian fluids) cannot be described by a single number. Non-Newtonian fluids exhibit a variety of different correlations between shear stress and shear rate. Therefore, the viscosity is dependent on the temperature as well as the shear rate for non-Newtonian fluids.

The viscosity is given in milli Pascal seconds (mPa·s) at a given temperature and a given shear rate. An acceptable viscosity for the formulation to be lyophilized and for the reconstructed solution for administration is only slightly elevated in comparison to water. Preferably it is below 20 mPa·s at a shear rate between about 50 and about 1000 1/s at a temperature of 20°C. More preferably it is below 15 mPa·s at a temperature of about 20°C and a shear rate of between 50 and 1000 1/s.

The viscosity of the reconstituted ANTI-GM-CSF ANTIBODY formulation with 130 + 10 mg/ml of antibody is below 15 mPa·s at a shear rate γ between 50 and 1000 1/s at a temperature of 20 °C.

Liquid formulation:

Paragraph for the description:

The viscosity of the formulation preferably is below 20 mPa·s at a shear rate between about 50 and about 1000 1/s at a temperature of 20°C. More preferably it is between about 2 and 10 mPa·s.

The viscosity of the HCL formulation with 150 mg/ml of antibody is below 12 mPas·s at a shear rate between about 50 and about 1000 1/s at a temperature of 20°C.

The viscosity of the HCL formulation with 150 mg/ml of antibody is below 20 mPas·s at a shear rate between about 50 and about 1000 1/s at a temperature of 5°C.
Claims

1. A composition comprising a compound neutralizing GM-CSF in a concentration of at least about 20 mg/ml, a lyo-protectant and an amino acid and/or a buffer.

2. The composition according to claim 1, wherein the compound neutralizing GM-CSF is present in a concentration of at least about 25 mg/ml and less than about 200 mg/ml, the lyo-protectant is present in a concentration from about 1% to about 15% (w/w) and the amino acid and/or the buffer is present in a concentration from about 1 mM to about 500 mM.

3. The composition according to claims 1 or 2, wherein the lyo-protectant is a sugar or a sugar alcohol.

4. The composition according to any one of claims 1 to 3, wherein the sugar or the sugar alcohol selected from sucrose, trehalose, mannitol and/or sorbitol.

5. The composition according to any one of claims 1 to 4, wherein the amino acid is selected from histidine and/or arginine and the buffer is a histidine, arginine and/or citrate buffer.

6. The composition according to any one of claims 1 to 5, wherein the compound neutralizing GM-CSF is present in an amount greater than about 25 mg/ml and less than about 150 mg/ml, the lyoprotectant is present in an amount from about 5% to about 15% (w/w) and the amino acid and/or the buffer is present in an amount from about 10 mM to about 50 mM.

7. The composition according to any one of claims 1 to 6, wherein the pH is between about 5 and about 7.

8. The composition according to any one of claims 1 to 7, further comprising a surfactant.

9. The composition according claim 8, wherein the surfactant is present in an amount from about 0.001% to about 1% (w/w).

10. The composition according claim 8 or 9, wherein the surfactant is polysorbate 80.
11. The composition according to any one of claims 1 to 10, wherein the compound neutralizing GM-CSF is selected from the group consisting of a polypeptide, a peptidomimetic, a nucleic acid, and a small molecule.

12. The composition according to claim 11, wherein the polypeptide is an antibody or a functional fragment thereof binding to GM-CSF or to the GM-CSF receptor.

13. The composition according to claim 12, wherein the antibody or the functional fragment thereof is a human monoclonal antibody or a functional fragment thereof.

14. The composition according to claim 12 or 13, wherein the antibody is an IgG, an IgG1 or an IgG4 antibody.

15. The composition according to any one of claims 12 to 14, wherein the antibody or the functional fragment thereof binds to an epitope, of GM-CSF, the epitope preferably comprising amino acids 23-27 (RRLLN) and/or amino acids 65-77 (GLR/QGSLTKLKGPL).

16. The composition according to claim 15, wherein said epitope further comprises:
 (i) amino acids 28-31 (LSRD);
 (ii) amino acids 32-33 (TA) and/or
 (iii) amino acids 21-22 (EA).

17. The composition according to claim 15 or 16, wherein said epitope is a discontinuous epitope.

18. The composition according to any one of claims 12 to 17, wherein said antibody or functional fragment thereof comprises in its heavy chain variable region a CDR3 comprising an amino acid sequence chosen from the group consisting of those set out in any of the SEQ ID NOs: 1-13 and 56.

19. The composition according to claim 18, wherein any of said heavy chain variable region CDR3 sequences exists together in a heavy chain variable region with the heavy chain variable region CDR1 comprising the amino acid sequence set out in SEQ ID NO: 14 and heavy chain variable region CDR2 comprising the amino acid sequence set out in SEQ ID NO: 15.
20. The composition according to any one of claims 11 to 19, wherein said antibody or functional fragment thereof comprises in its light chain variable region a CDR1 comprising the amino acid sequence set out in SEQ ID NO: 16, a CDR2 comprising the amino acid sequence set out in SEQ ID NO: 17, and a CDR3 comprising the amino acid sequence set out in SEQ ID NO: 18.

21. The composition according to any one of claims 11 to 20, wherein said antibody or functional fragment thereof comprises in its light chain variable region an amino acid sequence as set out in any of SEQ ID NOs. 19, 54 and 55.

22. The composition according to any one of claims 11 to 21, wherein said antibody or functional fragment thereof comprises in its heavy chain variable region an amino acid sequence as set out in any of SEQ ID NOs: 20-33, 52 and 53.

23. The composition according to any one of claims 11 to 22, wherein said antibody or functional fragment thereof comprises in its light chain variable region a CDR1 comprising an amino acid sequence as set out in SEQ ID NO. 16, a CDR2 comprising an amino acid sequence as set out in SEQ ID NO. 17 and a CDR3 comprising an amino acid sequence as set out in SEQ ID NO. 18; and comprises in its heavy chain variable region a CDR1 comprising an amino acid sequence as set out in SEQ ID NO. 14, a CDR2 comprising an amino acid sequence as set out in SEQ ID NO. 15 and a CDR3 comprising an amino acid sequence as set out in any of SEQ ID NOs. 1-13 and 56.

24. The composition according to any one of claims 11 to 23, wherein said antibody or functional fragment thereof comprises in its light chain variable region a CDR1 comprising an amino acid sequence as set out in SEQ ID NO. 16, a CDR2 comprising an amino acid sequence as set out in SEQ ID NO. 17 and a CDR3 comprising an amino acid sequence as set out in SEQ ID NO. 18; and comprises in its heavy chain variable region a CDR1 comprising an amino acid sequence as set out in SEQ ID NO. 14, a CDR2 comprising an amino acid sequence as set out in SEQ ID NO. 15 and a CDR3 comprising an amino acid sequence as set out in SEQ ID NO. 2.

25. The composition according to any one of claims 11 to 24, wherein said antibody or functional fragment thereof comprises a light chain amino acid sequence as set out in SEQ ID NOs: 34 and a heavy chain amino acid sequence chosen from the group consisting of those as set out in any of SEQ ID NOs: 35-48.
26. The composition according to any one of claims 11 to 25, wherein said antibody or functional fragment thereof comprises an amino acid sequence bearing at least 70% homology to the respective amino acid sequence as set out in any of SEQ ID NOs: 1-48 and 52-56, preferably to the respective amino acid sequence as set out in any of SEQ ID NOs: 1-18 and 56 and/or to the amino acid sequence of the framework regions within the amino acid sequence as set out in any of SEQ ID NOs: 19-48 and 52-55.

27. The composition according to any one of the preceding claims which comprises

i) about 75 mg/ml of a compound neutralizing GM-CSF,

ii) about 62.5 mg/ml sucrose,

iii) about 15.0 mM L-Histidine,

iv) about 0.10 mg/ml polysorbate 80 and

v) has a pH of about 5.8.

28. The composition of any one of the preceding claims which can be lyophilized.

29. A composition according to claim 28 which comprises

i) about 130 mg/ml of a compound neutralizing GM-CSF,

ii) about 108 mg/ml sucrose,

iii) about 26.0 mM L-Histidine,

iv) about 0.17 mg/ml polysorbate 80 and

v) a pH of about 5.8,

after reconstruction of the lyophilized composition.

30. The composition according to any one of the preceding claims, wherein the composition is stable.

31. The composition according to any one of the preceding claims, which is for intravenous and/or subcutaneous administration.

32. The composition of any one of the preceding claims for use in therapy.

33. The composition of any one of the preceding claims for use in the treatment of inflammatory and autoimmune disorders, preferably including allergic and psoriatic disorders, as well as arthritic and asthmatic disorders.
34. A kit comprising the composition of any one of the preceding claims, wherein said composition may be liquid, lyophilized or reconstructed.

35. Use of the composition according to any one of claims 1 to 27 in a lyophilization process.

36. Product obtainable by the lyophilization process according to claim 35.
1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application and necessary to the claimed invention, the international search was carried out on the basis of:
 a. (means)
 - [square] on paper
 - [x] in electronic form
 b. (time)
 - [x] in the international application as filed
 - [square] together with the international application in electronic form
 - [square] subsequently to this Authority for the purpose of search

2. [square] In addition, in the case that more than one version or copy of a sequence listing and/or table relating thereto has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished.

3. Additional comments:
A. CLASSIFICATION OF SUBJECT MATTER
ADD.

According to International Patent Classification (IPC) and/or both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols):
A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used):
EPO-Internal, WPI Data, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search
21 January 2014

Date of mailing of the international search report
27/01/2014

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer
Schnack, Anne

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>wo 2010/071923 AI (UNIV MELBOURNE [AU]; HAMILTON JOHN ALLAN [AU]; COOK ANDREW DAVID [AU]) 1 July 2010 (2010-07-01) paragraphs [0052] - [0059]</td>
<td>1-36</td>
</tr>
<tr>
<td>Y</td>
<td>us 2001/014326 AI (ANDYA JAMES [US] ET AL) 16 August 2001 (2001-08-16) cited in the application on claims 1-36</td>
<td>1-36</td>
</tr>
<tr>
<td>Y</td>
<td>us 6 171 586 BI (LAM XANTHE M [US] ET AL) 9 January 2001 (2001-01-09) cited in the application on claims 1-29</td>
<td>1-36</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>wo 2006111353 A2</td>
<td>26-10-2006</td>
<td>AU 2006237159 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0608281 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2605402 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101184777 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103342751 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 200702008 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 200901500 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1874819 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2468774 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5085533 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008536505 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080005962 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 562093 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2012115683 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 161292 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009297532 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012009195 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2006111353 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200708201 A</td>
</tr>
<tr>
<td>wo 2009133103 Al</td>
<td>05-11-2009</td>
<td>AU 2009242088 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2717987 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102014958 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201001496 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2279001 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011518857 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100135937 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 587865 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011104172 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2009133103 Al</td>
</tr>
<tr>
<td>wo 2010128035 Al</td>
<td>11-11-2010</td>
<td>AU 2010244525 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2760755 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102439039 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2427495 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012530047 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20120011883 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2011145434 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012116059 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2010128035 A1</td>
</tr>
<tr>
<td>wo 2010071923 Al</td>
<td>01-07-2010</td>
<td>AU 2009329811 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2747206 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102256621 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2387418 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012512814 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20110117659 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2011127333 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 20121287027 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013243791 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2010071923 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2006249062 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0610796 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2608498 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101218255 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103087190 A</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>EP 1888643 A2</td>
<td>20-02-2008</td>
<td></td>
</tr>
<tr>
<td>EP 2468773 A2</td>
<td>27-06-2012</td>
<td></td>
</tr>
<tr>
<td>HK 1114620 A1</td>
<td>16-05-2013</td>
<td></td>
</tr>
<tr>
<td>IL 187375 A</td>
<td>28-06-2012</td>
<td></td>
</tr>
<tr>
<td>JP 5295759 B2</td>
<td>18-09-2013</td>
<td></td>
</tr>
<tr>
<td>JP 2008545632 A</td>
<td>18-12-2008</td>
<td></td>
</tr>
<tr>
<td>JP 2013116912 A</td>
<td>13-06-2013</td>
<td></td>
</tr>
<tr>
<td>KR 2008015008 A</td>
<td>15-02-2008</td>
<td></td>
</tr>
<tr>
<td>NZ 564027 A</td>
<td>30-06-2011</td>
<td></td>
</tr>
<tr>
<td>US 2009053213 A1</td>
<td>26-02-2009</td>
<td></td>
</tr>
<tr>
<td>US 2011045000 A1</td>
<td>24-02-2011</td>
<td></td>
</tr>
<tr>
<td>WO 2006122797 A2</td>
<td>23-11-2006</td>
<td></td>
</tr>
<tr>
<td>WO 2009064399 AI</td>
<td>22-05-2009</td>
<td></td>
</tr>
<tr>
<td>AR 069290 A1</td>
<td>13-01-2010</td>
<td></td>
</tr>
<tr>
<td>AU 2008321429 A1</td>
<td>22-05-2009</td>
<td></td>
</tr>
<tr>
<td>CA 2705539 A1</td>
<td>22-05-2009</td>
<td></td>
</tr>
<tr>
<td>CN 101970489 A</td>
<td>09-02-2011</td>
<td></td>
</tr>
<tr>
<td>CO 6382188 A2</td>
<td>15-02-2012</td>
<td></td>
</tr>
<tr>
<td>DK 2215119 T3</td>
<td>04-02-2013</td>
<td></td>
</tr>
<tr>
<td>EC SP10010251 A</td>
<td>31-08-2010</td>
<td></td>
</tr>
<tr>
<td>EP 2215119 A1</td>
<td>11-08-2010</td>
<td></td>
</tr>
<tr>
<td>EP 2535353 A1</td>
<td>19-12-2012</td>
<td></td>
</tr>
<tr>
<td>EP 2559706 A1</td>
<td>20-02-2013</td>
<td></td>
</tr>
<tr>
<td>ES 2401536 T3</td>
<td>22-04-2013</td>
<td></td>
</tr>
<tr>
<td>HK 1146729 A1</td>
<td>14-06-2013</td>
<td></td>
</tr>
<tr>
<td>HR P20130204 T1</td>
<td>30-04-2013</td>
<td></td>
</tr>
<tr>
<td>KR 20100102108 A</td>
<td>20-09-2010</td>
<td></td>
</tr>
<tr>
<td>MA 31899 BI</td>
<td>01-12-2010</td>
<td></td>
</tr>
<tr>
<td>NZ 586027 A</td>
<td>12-01-2012</td>
<td></td>
</tr>
<tr>
<td>NZ 597023 A</td>
<td>26-07-2013</td>
<td></td>
</tr>
<tr>
<td>PE 14202009 A1</td>
<td>17-10-2009</td>
<td></td>
</tr>
<tr>
<td>PT 2215119 E</td>
<td>11-02-2013</td>
<td></td>
</tr>
<tr>
<td>RS 52713 B</td>
<td>30-08-2013</td>
<td></td>
</tr>
<tr>
<td>RU 2010123693 A</td>
<td>20-12-2011</td>
<td></td>
</tr>
<tr>
<td>SG 176499 A1</td>
<td>29-12-2011</td>
<td></td>
</tr>
<tr>
<td>SI 2215119 T1</td>
<td>30-04-2013</td>
<td></td>
</tr>
<tr>
<td>TW 200927760 A</td>
<td>01-07-2009</td>
<td></td>
</tr>
<tr>
<td>TW 201206955 A</td>
<td>16-02-2012</td>
<td></td>
</tr>
<tr>
<td>UY 31466 A1</td>
<td>17-07-2009</td>
<td></td>
</tr>
<tr>
<td>WO 2009064399 AI</td>
<td>22-05-2009</td>
<td></td>
</tr>
<tr>
<td>US 2001014326 AI</td>
<td>16-08-2001</td>
<td></td>
</tr>
<tr>
<td>US 2001014326 AI</td>
<td>16-08-2001</td>
<td></td>
</tr>
<tr>
<td>US 2003202972 AI</td>
<td>30-10-2003</td>
<td></td>
</tr>
<tr>
<td>US 6171586 BI</td>
<td>09-01-2001</td>
<td>NONE</td>
</tr>
</tbody>
</table>