wo 2016/156513 A1 [N I 00 000 AR O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/156513 Al

6 October 2016 (06.10.2016) WIPO | PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
G06Q 30/02 (2012.01) kind of national protection available). AE, AG, AL, AM,
21) Tnt tional Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: PCT/EP2016/057109 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
31 March 2016 (31.03.2016) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
.) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
(25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: . L
1505553.6 31 March 2015 (31.03.2015) GB (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: IRDETO B.V. [NL/NL]; 105 Taurus Avenue, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
2132 LS Hoofddorp (NL). TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
(72) Tnventors: GU, Yuan Xiang; 2500 Solandt Road, Ottawa, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
. . DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Ontario K2K 3G5 (CA). WAIJS, Andrew, Augustine; Ir-
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
deto B.V., 105 Taurus Avenue, 2132 LS Hootddorp (NL).
o . . SM, TR), OAPI (BF, BI, CF, CG, CIL, CM, GA, GN, GQ,
GIDLEY, Benjamin, Geoffrey; 7-8 Eghams Court, Bo- GW, KM, ML, MR, NE, SN, TD, TG)
ston Drive, Bourne End SL8 5YS (GB). MOOLJ, Wim; Ir- ’ > ’ O ’
deto B.V., 105 Taurus Avenue, 2132 LS Hoofddorp (NL). Published:
(74) Agents: BOULT WADE TENNANT et al.; Verulam Gar- — with international search report (Art. 21(3))
dens, 70 Gray's Inn Road, London WC1X 8BT (GB).
(54) Title: ONLINE ADVERTISEMENTS
,, 80
Publishing server
50
!
Web document ™14 Request Advert network % T
16 server module
B o N i 3
24 LT i‘l |"‘| 26 . 54 :ﬂg
30 LT Antifraud i Ar?]t(l)-gj:d §
! element ! ™ £
L—————— k- -—-}-18 l I =
56
73 Code protection
Browser module
N
29~ 0O/S security module Advert server
o
Client device FIG 2

(57) Abstract: There are disclosed techniques for averting advertising fraud, for example a method of operating a server to deliver
an online advert to a client device, the method comprising: receiving at the server, from a web document executing in a web browser
on the client device, a request for an advert; in response to the request for an advert, preparing, at the server, advert code for execu-
tion within the web document at the client device so as to display the advert to a user of the client device, at least a portion of the
prepared advert code being in a protected form for averting advertising fraud; and transmitting the advert code to the client device
for execution on the browser for execution so as to display the advert to a user of the client device.

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

ONLINE ADVERTISEMENTS

FIELD OF THE INVENTION

The invention relates to the delivery of online advertisements to client

devices, and techniques which can be used to detect and protect against various
fraudulent activities relating to such adverts.

BACKGROUND OF THE INVENTION

Online advertising

Web publishers publish online content that attracts an audience. The
publishers sell space in their websites to advertisers so that the advertisers can
reach their intended audience. The whole process begins when a consumer uses
a browser to visit a webpage. The browser opens a connection to the publisher’s
content server and the server returns the content for the page. If the page
contains ad, the browser requests the advert network to serve an ad. The advert
network may connect to other advert networks or advert exchanges with
necessary client information to better serve the particular client and the
advertisers. There may or may not be an automatic bidding process. After an
advert is selected, the advert network returns the advert information to the
browser. The browser now visits the agency advert server to retrieve the advert
creative (image/rich media) and the advert network records the request as an
impression. The browser now renders the actual page with the advert creative.
The whole process takes less than one second and more systems may be
involved in the process. The advert creative contains a link to the advert network.
When any user clicks on an ad, the advert network first registers the click for
billing purposes and then redirect the browser to the advertiser’s page.

Thus, online advertising is a form of marketing which uses websites to
deliver promotional messages to consumers. Online advertising includes email
marketing, search engine marketing (SEM), social media marketing, many types
of display advertising, and mobile advertising. It is the main financial incentive for

ERQTIAANT D

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

free web contents and services as well as free mobile apps. The online
advertising industry has expanded rapidly and grown into a $121 billion industry
with revenue projected to reach $161 billion by 2016. The largest revenue shares
within internet advertising are generated by display-based and search based
advertising.

Online advertising networks serve advertisements into the web browser
display of client devices such as personal computers, tablet computers and smart
phones. Typically, an advertisement network operator contractually acquires
advertisement space on host web sites, and sells this space on to advertisers.
The advertisement network then manages the injection of advert material
provided by the advertisers into the presentation of the host web site on the client
devices.

Online advertising is readily amenable to measurement of advert delivery
and effectiveness, and such measurements may form a basis of the contractual
terms between advertisers, advertising networks, and host websites. For
example, an advertising network will typically record details such as the number
of times a particular advert has been delivered to client devices, and such
statistics may be quite sophisticated for example recording demographic details
of the client devices and associated users, distinguishing between first and
subsequent delivery of an advert to a particular user or device. Advertising
networks also typically use sophisticated techniques including tracking browsing
activity of particular users, in order to target online adverts more effectively.

Because mere injection of an advert into a web document being displayed
on a browser does not guarantee viewing by a user, advertisers are interested in
paying advertising networks on more sophisticated terms, for example depending
on whether an advert actually appeared on the viewable area of a browser
window (rather than being outside the current scroll area or being covered by
another window), and whether a user interacted with an advert for example by
moving a cursor over the advert, and clicking, tapping or otherwise selecting the
advert.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

Advertisers and publishers use a wide range of payment calculation
methods in online advertising contracts. But they can be broadly categorized into
three models, namely, PPM, PPC and PPA. In pay per mille or PPM (also known
as cost per mille or CPM), advert networks charge advertisers every thousand
displays of their advert to potential customers (mille is the Latin word for
thousand). In the online context, advert displays are usually called “impressions”.
In PPC (Pay Per Click) or CPC (Cost per click), advertisers pay each time a user
clicks on the ad. PPC is the current dominant revenue model for online
advertisement. However, such contracts are open to abuse and fraud, for
example by the operator of a host website boosting the number of downloads,
viewable impressions, or clicks on an advert actually or apparently injected into
display of their own website, in order to increase their revenue from the
advertising network operator, or a third party carrying out similar activities in order
to deplete the advertising budget of a competitor. Thus, not all recorded clicks are
valuable to advertisers. There are claims that up to 36% of all clicks are

fraudulent.

Click fraud

Such fraudulent activity may be carried out in various ways. The biggest
threat to PPC advertisement is click fraud. Click fraud occurs when illegitimate
sources click on online adverts with malicious intent. Such clicks are often called
“‘invalid clicks”. Invalid clicks are any clicks that an advert network chooses not to
charge for. When clicks are marked invalid, the user agent that issued the click is
still directed to an advertiser's website. Since intent is only in the mind of the
person issuing the click or in the mind of the author of software that issues clicks,
it is difficult to know with certainty that any click is fraudulent. It is not trivial to
detect all invalid clicks due to the server-based detection techniques used by the
advert networks. In fact, about 36% of all web traffic is considered fake, the
product of computers hijacked by viruses and programmed to visit sites,
according to estimates cited by the Interactive Advertising Bureau trade group.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

The intentions of click fraud can be different. Different attackers have their
own motivations. Enriching click fraud involves generating invalid advert clicks to
boost pay per click (PPC) income. Depleting click fraud involves clicking rival’'s
adverts to exhaust their PPC advertising budget. Thus, click fraud includes the
practice of deceptively clicking on online adverts with the intention of either
increasing third party website revenues or exhausting an advertiser’'s budget.
Website publishers or rival advertisers may impersonate consumers and click
search ads, driving up advertising costs without increasing sales, effectively
stealing a firm’s paid advertising inventory. Another type of click fraud is
disbarring click fraud which involves attempting to frame a rival by generating
invalid clicks that appear to be associated with the rival, in hopes that this rival
will be banned from an advert network or punished in search engine listings.

Click fraud may be accomplished by employing a number of people in a
low cost jurisdiction to visit target host websites using normal client devices such
as personal computers operating normal web browsers, so that advertisements
are downloaded to the client devices to record an impression in the advertising
network. Advertisements may also be clicked or otherwise selected to record a
click. Such fraud operations are often referred to as click farms. Members of a
click farm click on adverts with no intention of buying or performing any actions

on the advertisers page.

Automated clickers

Technologically more sophisticated fraud operations may operate a
collection of client devices automatically to try and achieve the same effect,
simulate such client devices on servers, or operate less complete simulations
using non browser software to simulate different parts of the advertising operation
such as requesting advert downloads, reporting impressions, reporting advert
clicks and so forth.

Software that can automatically click on online adverts is called a clickbot.
A clickbot can be independent malware (with/without own browser) that infects

internet users’ PCs, PCs of users willingly participated in a botnet, or infected

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

browsers (browser helper objects/extensions). Clickbots can be very
sophisticated and often equipped with capabilities of a real browser. They crawl
to different websites and click on links provided by their user or bot-masters.
Some of them can imitate real human browsing behaviour and mouse movement.

Clickbots go to different publishers’ pages and click programmatically.
Botnets have been extensively used for click fraud during recent years to launch
low-noise large-scale attacks to avoid detection. A botnet is a network of
malware-infected machines that are controlled by a bot-master. However,
advertisers are forced to trust that advert networks detect and prevent click fraud
even though they get paid for every undetected fraudulent click.

A clickbot in a botnet performs some common functions including initiating
HTTP requests to a webserver, following redirections, and retrieving contents
from a web server under the control of a remote bot-master. A bot-master can
leverage millions of clickbots to perform automatic, low-noise, and large-scale
click fraud attacks. For example, first, the bot-master may use the internet to
distribute malware to the victim host. Once compromised, the victim host
becomes a bot and receives instructions from a command-and-control (C&C)
server controlled by the bot-master. Such instructions may specify the target
website, the number of clicks to perform on the website, the referrer to be used in
the fabricated HTTP requests, what kinds of adverts to click on, and when or how
often to click. After receiving instructions, the clickbot begins traversing the
designated publisher website and simulates a click on each selected ads. The
advert network logs the click traffic and then returns a HTTP 302 redirect
response to the advertiser’'s page. Every time an advert is clicked by a clickbot,
the advertiser pays the advert network if the click is not detected as “invalid”, and
the involved publisher receives a portion of the revenue from the advert network.

Technigues used in malicious clickbots

A wide range of click fraud attacks have been reported in the literature.
Daswani et al., Proceedings of the first conference on Hot Topics in
Understanding Botnets, USENIX Association, 2007, analysed “Clickbot.A”

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

malware and found that the bot attempts a low-noise click fraud attack against
syndicated search engines. Launching low-noise attacks from millions of different
infected computers has become popular among bot-masters as it helps them to
avoid detection.

Miller et al. in Proceedings of the Detection of Intrusions and Malware, and
Vulnerability Assessment, Springer, 2011, pp. 164—183, examined two other
clickbot families and found more advanced techniques used to evade detection.
One clickbot introduced indirection between clickbots and advert networks
through middlemen (i.e., service providers), while the other bot exhibited human-
like browsing behaviours.

Dave et al. in Proceedings of the ACM SIGCOMM conference on
Applications, technologies, architectures, and protocols for computer
communication, ACM, 2012, pp. 175—-186, described a number of characteristics
of clickbots. Often, clickbots generate fraudulent clicks periodically and only issue
a click in the background when a legitimate user clicks on a link, which makes
fraudulent traffic hardly distinguishable from legitimate traffic.

Normal browsers may also be exploited to generate fraudulent traffic. The
traffic generated by a normal browser could be hijacked by currently visited
malicious publisher and be further converted to fraudulent clicks. Also, many click
fraud malware infect browsers or use a browser driver to control real browsers to
generate traffic and thus avoiding detection that uses client capability test. In
Alrwais et al. Proceedings of the 28th Annual Computer Security Applications
Conference, ACM, 2012, pp. 21-30, ghost click botnet leveraged DNS changer
malware to convert a victim’s local DNS resolver into a malicious one and then

launched advert replacement and click hijacking attacks.

Click fraud detection

Metwally et al. Proceedings of the 31st international conference on Very
large data bases, VLDB Endowment, 2005, pp. 169—-180, presented three forms
of click fraud and methods to detect them. They found that several websites can

cooperate with each other to create fraudulent clicks and thus advance their

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

commercial interests. They developed an algorithm, called streaming-rules, to
detect fraud in advertising networks. Immorlica et al., Proceedings of the Internet
and Network Economics. Springer, 2005, pp. 34—45, studied fraudulent clicks and
presented a click fraud resistant method for learning the click through rate of
advertisements.

Haddadi, ACM SIGCOMM Computer Communication Review, vol. 40, no.
2, pp- 21-25, 2010, suggested that advertisers can use bluff adverts to detect
fraudulent clicks on their ads. While bluff adverts may be effective in detecting
click fraud, advertisers have to spend extra money on those bluff ads. Also, for
the publisher, it is not good to show meaningless advert to the real users.

Dave et al. Proceedings of the ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 765-776, presented an approach to
catch click spam from an advert network’s perspective. It is designed around the
invariant that click-spam is a business (for click-spammers) that needs to deliver
high return on investment (ROI) to offset the risk of getting caught. Schulte et al.
[27] detected malware using program interactive challenge (PIC) mechanism.
However, in their approach, an intermediate proxy has to be introduced to
examine all HTTP traffic between a client and a server, which is practically not
feasible.

Xu et al., Proceedings of the 19th European Symposium on Research in
Computer Security, Springer, 2014, pp. 419-438, proposed a new approach for
advertisers to independently detect click fraud activities issued by clickbots and
human clickers. Their proposed detection system performs two main tasks of
proactive functionality testing and passive browsing behaviour examination. The
purpose of the first task is to detect clickbots. It requires a client to actively prove
its authenticity of a full-fledged browser by executing a piece of JavaScript code.
For more sophisticated clickbots and human clickers, the system observes what
a user does on the advertised site. However, as mentioned before, their
technique is vulnerable to malware that infect real browsers or perform click fraud
using own version of full-fledged browser and imitate human-like behaviour.

Crussell et al. Proceedings of the 12th annual international conference on

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

Mobile systems, applications, and services, ACM, 2014, pp. 123—134. analysed
Android malware apps to investigate advert related fraud. They achieved an
overall class weighted accuracy of 85.9% in classifying advert requests. Kitts et
al. Real World Data Mining Applications, Springer, 2015, pp. 181-201. presented
a data mining approach to score advert traffic quality and showed some results
on the effectiveness of the system.

Other fraud operations may make use of bona fide users and their client
devices by installing malware which interferes with the browser operation for
example by downloading and displaying adverts preferred by the fraud operator
either in place of other adverts or in places where adverts were not intended by
the host web site, automatically generating advert clicks, changing browser
navigations, adding pop-up windows, and so forth, in ways which affect data
recorded by the advertisement network relating to the adverts. Fraud operations
may also hijack or interfere with HTML sessions between the client device of a
bona fide user and an advert network, through network attacks of various kinds.

Consequently, the prior art includes various proposals for better security
and monitoring of the delivery of online advertisements, and techniques to help
prevent fraudulent activity such as boosting the number of recorded impressions
and user interactions.

The invention seeks to address limitations of the related prior art.

SUMMARY OF THE INVENTION

The invention provides improved detection and/or prevention of online

advertising fraud. Aspects of the invention are based on the fundamental
components of the online advertising ecosystem: publisher, client environment
(webpage and browser) interacting with an advertising network. A client centric
model is proposed based on secured interaction between code (for example
HTML and JavaScript) at the client, and a trusted publisher and advertising
network. Stronger security within the protected client advertising environment can

make the anti-fraud solution more effective, accurate and measurable.

6387447-2

10

15

20

25

WO 2016/156513 PCT/EP2016/057109

In particular, a solution which can be tightly integrated into existing online
advertising eco-systems without changing existing online advertising
infrastructures is proposed. To this end, advert code and/or content at the client
is at least partially protected, for example by applying cloaking technology,
integrity verification, diversity techniques and so forth.

Providing a client based protection scheme can provide a much more fine
grained solution than more global protection approaches, simplifying detection
performance and improving detection results. Unlike existing global based anti-
fraud approaches, the proposed client based anti-fraud approach can provide
truly trusted user data that can be used to accurately capture fraud
characteristics. Therefore, the proposed client based anti-fraud system can work
in conjunction with global based anti-fraud systems to achieve a much higher
degree of detection accuracy with well-defined metrics.

The invention provides a number of anti-fraud methodologies at both the
client and server sides. The invention also provides apparatus arranged to
implement the methods and techniques discussed herein, including, both
separately and in combination, one or more servers and one or more client

devices.

According to a first aspect, the invention provides a method of operating a
server to deliver an online advert to a client device, the method comprising:
receiving at the server, from a web document executing in a web browser on the
client device, a request for an advert; in response to the request for an advert,
preparing, at the server, advert code for execution within the web document at
the client device so as to display the advert to a user of the client device; and
transmitting the advert code to the client device for execution on the browser so
as to display the advert to a user of the client device. Preferably, at least a portion
of the prepared advert code is in a protected form so as to avert advertising

fraud, for example through detection or prevention of such fraud.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
10

The advert code may be in JavaScript (JS) and/or HTML and/or
WebAssembly and/or any other language / source code that is executable in a
browser environment.

The advert code may comprise an anti-fraud element at least partly within
the protected portion of the advert code. The anti-fraud element is arranged for
execution within the web document at the client device so as to provide one or
more anti-fraud functions relating to the advert. The anti-fraud functions may
include one or more anti-fraud verifications arranged to verify integrity of the anti-
fraud element and/or integrity of the advert and/or that the anti-fraud element is
executing within a browser and/or visibility of the advert in a graphical display of
the browser and/or behavioural characteristics of the user of the browser and/or
structure of the DOM of at least part of the web document.

The advert code may comprise an interaction action which at least partly
defines one or more interactions between a user of the browser and the advert,
and one or more actions to be taken by the browser when the one or more
interactions occur, for example navigating to an advertiser webpage when an
advert link is selected or clicked by a user

The anti-fraud element may be arranged to provide one or more of the
anti-fraud functions following occurrence of one or more of the defined user
interactions with the advert. The method may further comprise, following said one
or more anti-fraud functions, permitting the browser to complete an action which
is defined by the interaction action. Permitting an action to be completed by the
browser may comprise one of: transmitting to the browser a redirection URL for
the browser to navigate to in response to the user interaction with the advert; and
permitting the browser to navigate to a redirection URL already comprised in the
web document, in response to the user interaction with the advert. The method
may further comprise recording the user interaction as a suspect or fraudulent
user interaction if one or more of the anti-fraud functions fails.

Preparing the advert code may comprise incorporating an advert serial
code within the advert code, and the method may further comprise carrying out

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

11

an anti-fraud verification that information subsequently received from the advert
code executing on the browser corresponds with the advert serial code.

The method may further comprise: storing, on the server, one or more
initial attributes of the prepared advert code; receiving a subsequent message
from the client device comprising one or more later attributes of the advert code;
and verifying the one or more later attributes of the advert code against the
corresponding stored initial attributes of the advert code .

The method may further comprise: receiving, from the client device, cursor
trajectory data relating to cursor movement associated with an interaction
between a user of the browser and the advert; and verifying the cursor trajectory
data by comparing the received cursor trajectory data against previous cursor
trajectory data stored on the server. The comparing may comprise calculating a
geometric distance between the received cursor trajectory data and the previous
cursor trajectory data. The verifying may comprise comparing the geometric
distance to a threshold.

The server may carry out anti-fraud verification of the request for an advert
before transmitting the advert code to the web browser. Such anti-fraud
verification of the request for an advert may comprise checking an origin of the
request against a database relating origin of a request to fraud risk.

At least some of the prepared advert code in a protected form may be
protected by one or more cloaking techniques and/or one or more software
obfuscation techniques and/or one or more node locking techniques and/or one
or more diversity techniques and/or one or more digital watermarking techniques.
The cloaking techniques may include one or more of homomorphic data
transformation, control flow transformation, white box cryptography, key hiding,
program interlocking and boundary blending.

According to a second aspect, the invention provides a server arranged to
deliver an online advert to a client device by carrying out the method of the first

aspect.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
12

According to a third aspect, the invention provides a method of operating a
client device to display an online advert using a web browser comprising:
receiving and executing, using the browser, a web document including advert
request code, execution of the advert request code causing the browser to
transmit an advert request to an advert server; receiving advert code from the
advert server, at least a portion of the advert code being in a protected form for
averting advertising fraud; and executing the advert code at the client device so
as to present the advert to a user of the client device.

The advert code may comprise an anti-fraud element at least partly within
the protected portion of the advert code, and the method may comprise executing
the anti-fraud element within the web document on the client device to provide
one or more anti-fraud functions relating to the advert. The anti-fraud functions
may include one or more anti-fraud verifications arranged to verify integrity of the
anti-fraud element and/or integrity of the advert and/or that the anti-fraud element
is executing within a browser and/or visibility of the advert in a graphical display
of the browser and/or behavioural characteristics of the user of the browser
and/or structure of the DOM of at least part of the web document.

The advert code may comprise an interaction action which at least partly
predefines one or more interactions between a user of the browser and the
advert, and one or more actions to be taken by the browser if and when the one
or more interactions occur. The anti-fraud element may be executed to provide
one or more of said anti-fraud functions following occurrence of one or more of
the defined user interactions with the advert.

The method may further comprise, following said one or more anti-fraud
functions, permitting the browser to complete an action which is defined by the
interaction action.

The advert code may comprise an advert element including an advert URL
associated with the advert.

The anti-fraud element may be arranged to replace the advert URL with a
fake URL until one or more conditions are satisfied, the fake URL being different
from the advert URL. The one or more conditions may include one or more of: a

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
13

cursor being present over the advert whilst the advert is being displayed to the
user; a fixed time period having elapsed following loading of the web document
on the browser; and a frame rate of the browser having stabilised following
loading of the web document on the browser.

The anti-fraud element may be arranged to periodically replace the advert
URL with an updated advert URL. The anti-fraud element may be arranged to
periodically replace the advert URL in response to user interactions with the web
document using the browser.

The anti-fraud element is arranged to create copies of the advert element
within the DOM of the web document, each copy including a respective fake URL
different from the advert URL, such that the advert and copies of the advert are
displayed in a stack with only the advert being visible to the user at the top of the
stack. The anti-fraud element may be arranged to periodically alter the DOM
structure of the web document so as to randomly rearrange the advert element
and the copies of the advert element within the DOM structure. The anti-fraud
element may be arranged to periodically alter the DOM structure of the web
document in response to user interactions with the web document using the
browser.

The advert element may further include an advert creative associated with
the advert, and the anti-fraud element may be arranged to replace the advert
creative with a fake creative until the advert is displayed to the user, the fake
creative being different from the advert creative.

The anti-fraud element may be arranged to verify whether the advert is on
a viewable portion of the browser window and/or whether the advert is being
displayed on a topmost tab within the browser.

The anti-fraud element may be arranged to store on the client device one
or more initial attributes of the advert code received from the advert server, and
the anti-fraud element may be further arranged to verify one or more later
attributes of the advert code against the corresponding stored initial attributes of
the advert code.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
14

The anti-fraud element may be arranged to send cursor trajectory data to
the advert server, the cursor trajectory data relating to cursor movement
associated with an interaction between a user of the browser and the advert.

According to a fourth aspect, the invention provides a client device
arranged to display an online advert using a web browser by carrying out the
method of the third aspect.

According to a fifth aspect, the invention provides a method of operating a
client device. The method comprises monitoring advertising page visits made by
one or more processes executing on the client device, and detecting if each
advertising page visit is triggered by a user interaction.

The one or more processes may be processes of one or more web
browsers executing on the client device, and the advertising page visits may
comprise HTTP requests to advertising web sites.

The method may further comprise creating an HTTP request tree for each
process and analysing the request trees to identify advertising page visits.

Analysing the request trees may further comprise applying a machine
learning classification to the request trees.

The method may further comprise, for each process, monitoring one or
more respective hardware input device events, and wherein said detecting
comprises, for each process, comparing the one or more respective hardware

input device events with the advertising visits associated with the process.

According to a fifth aspect, the invention provides a method of detecting a
fraudulent process in a client device, wherein the client device is executing one or
more processes. The method comprises, for each process of the one or more
processes: monitoring respective requests transmitted across a network interface
of the client device; monitoring respective hardware input events associated with
the process; identifying one or more respective advert impressions by applying a
machine learning algorithm to the respective requests; classifying the one or

more respective advert impressions as either fraudulent or non-fraudulent in

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
15

dependence on the respective hardware input events; and marking the process
as fraudulent based on said classification.

The identifying may comprise creating a respective request tree based on
the respective requests and applying one or more criteria to the request tree
based on the output of the machine learning algorithm.

The identifying may comprise filtering the respective requests using an
advert blocking list.

The classifying may comprises mapping the respective hardware events to

the one or more respective advert impressions.

The invention also provides aspects in which digital rights management
techniques are used to provide verification and security functions in an
advertising network. In one such aspect, a method of delivering an online advert
to a web browser executing on a client device is provided, the method
comprising: transmitting a web document to the client device for execution by the
browser; receiving from the web document executing on the browser, at a remote
server, a request for a piece of digital rights management (DRM) protected
content; delivering the requested DRM protected content to the client device and
providing the client device with DRM rights for the browser to replay the content,
the content comprising an identifier for the browser to recover from the content
when the content is replayed; and receiving the identifier from the browser.

In response to receiving the identifier from the browser, the method may
comprise preparing advert code for execution within the web document and
transmitting the advert code to the web browser using the methods already set
out above.

Providing mechanisms for defending against advertising fraud using a
client side solution may be provided in various other ways, for example by
operating a client device so as to: monitor advertising page visits made by one or
more processes executing on the client device, and detect if each advertising
page visit is triggered by a user interaction. The one or more processes may be

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
16

processes of one or more web browsers executing on the client device, and the
advertising page visits may comprise HTTP requests to advertising web sites.
Aspects of the invention also provide an anti-fraud system arranged to
receive, from advert request code executing on a browser of a client device, a
request for a piece of digital rights management (DRM) protected content; to
deliver the requested DRM protected content to the client device and provide the
client device with DRM rights for the browser to replay the content, the content
comprising an identifier for the browser to recover from the content when the

content is replayed; and to receive the identifier from the browser.

The invention also provides computer program elements and computer
program code comprising elements for putting into effect some or all of the
aspects of the invention, and one or more computer readable media carrying
such program elements, and a signal transmitted within a network comprising
such program elements. For example, the invention provides advert code, for
example in HTML and/or JavaScript and/or WebAssembly, or other suitable
languages, as described herein, whether stored at a server, at a client, or in

transmission there between.

The present application also discloses subject matter in accordance with
the following numbered clauses:

Clause A1. A method of operating a server to deliver an online advert to
a client device, the method comprising: receiving at the server, from a web
document executing in a browser on the client device, a request for an advert; in
response to the request for an advert, preparing, at the server, advert code for
execution within the web document at the client so as to display the advert to a
user of the client device, at least a portion of the advert code prepared at the
server being in a protected form for averting advertising fraud; and transmitting
the advert code to the client device for execution on the web browser for
execution so as to display the advert to a user of the client device.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

17

Clause A2. The method of clause A1 further comprising the server
carrying out anti-fraud verification of the request for an advert before transmitting
the advert code to the web browser.

Clause A3. The method of clause A2 wherein carrying out anti-fraud
verification of the request for an advert comprises checking an origin of the
request against a database relating origin of a request to fraud risk.

Clause A4. The method of any preceding clause wherein the advert
code comprises an interaction action which at least partly defines one or more
interactions between a user of the browser and the advert, and one or more
actions to be taken by the browser when the one or more interactions occur.

Clause A5. The method of clause A4 wherein the advert code comprises
an anti-fraud element at least partly within the protected portion of the advert
code, the anti-fraud element being arranged to provide one or more anti-fraud
verifications relating to the advert.

Clause A6. The method of clause A5 wherein the anti-fraud element is
arranged to provide an anti-fraud verifications of each of one or more of: integrity
of the anti-fraud element; that the anti-fraud element is executing within a
browser; visibility of the advert in a graphical display of the browser; behavioural
characteristics of the user of the browser; and structure of the document object
model of at least part of the web document.

Clause A7. The method of clause A5 or A6, wherein the anti-fraud
element is arranged to provide one or more anti-fraud verifications following
occurrence of one or more of the defined user interactions with the advert.

Clause A8. The method of clause A7 comprising, following said one or
more anti-fraud verifications, permitting the browser to complete an action which
is defined by the interaction action.

Clause A9. The method of clause A8 wherein permitting an action to be
completed by the browser comprises one of: transmitting to the browser a
redirection URL for the browser to navigate to in response to the user interaction
with the advert; and permitting the browser to navigate to a redirection URL

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
18

already comprised in the web document, in response to the user interaction with
the advert.

Clause A10. The method of any preceding clause wherein preparing the
advert code comprises incorporating an advert serial code within the advert code,
and the method further comprises carrying out an anti-fraud verification that
information received from the advert code executing on the browser corresponds
with the advert serial code.

Clause A11. The method of clause A10 comprising receiving the
information from the advert code executing on the browser in response to a user
interaction.

Clause A12. The method of any of clauses A7 to A11 comprising
recording the user interaction as a suspect or fraudulent user interaction if one or
more of the anti-fraud verifications fails.

Clause A13. A method of operating a client device to display an online
advert using a web browser comprising: receiving and executing, using the web
browser, a web document including advert request code, execution of the advert
request code causing the web browser to transmit an advert request to an advert
server; receiving advert code from the advert server, at least a portion of the
advert code being in a protected form for averting advertising fraud; executing the
advert code at the client so as to present the advert to a user of the client device.

Clause A14. The method of clause A13 wherein the advert code
comprises an anti-fraud element at least partly within the protected form portion
of the advert code, the method comprising executing the anti-fraud element on
the client device to provide one or more anti-fraud verifications relating to the
advert.

Clause A15. The method of clause A14 wherein the advert code
comprises an interaction action which at least partly predefines one or more
interactions between a user of the browser and the advert, and one or more
actions to be taken by the browser if and when the one or more interactions

occur, and the anti-fraud element is executed to provide one or more of said anti-

6387447-2

10

15

20

25

WO 2016/156513 PCT/EP2016/057109
19

fraud verifications following occurrence of one or more of the defined user
interactions with the advert.

Clause A16. The method of clause A14 or A15 comprising, following said
one or more anti-fraud verifications, permitting the browser to complete an action
which is defined by the interaction action.

Clause A17. The method of any preceding clause wherein the anti-fraud
element is arranged to periodically alter a document object model structure of at
least part of the web document.

Clause A18. The method of clause A17 wherein the anti-fraud element is
arranged to periodically alter the structure of the document object model of at
least part of the web document in response to user interactions with the web
document using the browser.

Clause A19. The method of clause A17 or A18 wherein the at least part of
the web document at least partly defines at least one of: one or more interactions
between a user of the browser and the advert; and one or more actions to be
taken by the browser when the one or more interactions occur.

Clause A20. The method of any preceding clause wherein at least some
of the prepared advert code in a protected form is protected by one or more
cloaking techniques.

Clause A21. The method of clause A20 wherein the cloaking techniques
include one or more of homomorphic data transformation, control flow
transformation, white box cryptography, key hiding, program interlocking and
boundary blending.

Clause A22. The method of any preceding clause wherein at least some
of the prepared advert code in a protected form is protected by one or more node
locking techniques.

Clause A23. The method of any preceding clause wherein at least some
of the prepared advert code in a protected form is protected by one or more
diversity techniques.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
20

Clause A24. The method of any preceding clause wherein at least some
of the prepared advert code in a protected form is protected by one or more
digital watermarking techniques.

Clause A25. A method of delivering an online advert to a web browser
executing on a client device comprising: transmitting a web document to the
client device for execution by the browser; receiving from the web document
executing on the browser, at a remote server, a request for a piece of digital
rights management (DRM) protected content; delivering the requested DRM
protected content to the client device and providing the client device with DRM
rights for the browser to replay the content, the content comprising an identifier
for the browser to recover from the content when the content is replayed; and
receiving the identifier from the browser.

Clause A26. The method of clause A25 further comprising, in response to
receiving the identifier from the browser, preparing advert code for execution
within the web document and transmitting the advert code to the web browser
according to any of clauses A1 to A24.

Clause 27. The method of clause A25 or A26 wherein the web
document is arranged to recover the content from a graphics buffer of the client
device during replay of the content.

Clause A28. The method of any of clauses A25 to A27 wherein the
identifier is specific to one or more of: the client device, the web browser
executing on the client device; and the web document executing on the web
browser.

Clause A29. A method of operating a client device comprising: monitoring
advertising page visits made by one or more processes executing on the client
device, and detecting if each advertising page visit is triggered by a user
interaction.

Clause A30. The method of clause A29 wherein the one or more
processes are processes of one or more web browsers executing on the client
device, and the advertising page visits comprise HTML requests to advertising
web sites.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
21

Clause A31. The method of clause A29 or A30 further comprising creating
an HTML request tree for each process and analysing the request trees to
identify advertising page visits.

Clause A32. A server for delivering an online advert to a client device,
comprising: an advert network server module arranged to receive a request for
an advert from a web document executing in a browser on the client device; and
an anti-fraud module arranged to prepare advert code for execution within the
web document at the client so as to display the advert to a user of the client
device, at least a portion of the advert code being arranged for averting
advertising fraud.

Clause A33. The server of clause A32 further arranged to carry out anti-
fraud verification of the request for an advert before transmitting the advert code
to the web browser.

Clause A34. The server of clause A32 or A33 wherein the advert code
comprises an anti-fraud element at least partly within a protected portion of the
advert code, the anti-fraud element being arranged to provide one or more anti-
fraud verifications relating to the advert.

Clause A35. The server of clause A34 wherein the anti-fraud element is
arranged to provide an anti-fraud verifications of each of one or more of: integrity
of the anti-fraud element; that the anti-fraud element is executing within a
browser; visibility of the advert in a graphical display of the browser; behavioural
characteristics of the user of the browser; and structure of the document object
model of at least part of the web document.

Clause A36. A client device comprising a web browser, the web browser
comprising: a web document including advert request code, execution of which
causes the web browser to transmit an advert request to an advert server; advert
code received from the advert server in response to the advert request, the
advert code being arranged to present an advert to a user of the client device,
wherein the advert code is arranged for averting advertisement fraud.

Clause A37. The client device of clause A36 wherein the received advert
code is at least partly in a protected form to avert advertising fraud.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
22

Clause A38. The client device of clause A37 wherein at least some of the
received advert code in a protected form is protected by one or more cloaking
techniques and/or one or more node locking techniques and/or one or more
diversity techniques.

Clause A39. An anti-fraud system arranged for: receiving, from advert
request code executing on a browser of a client device, a request for a piece of
digital rights management (DRM) protected content; delivering the requested
DRM protected content to the client device and providing the client device with
DRM rights for the browser to replay the content, the content comprising an
identifier for the browser to recover from the content when the content is
replayed; and receiving the identifier from the browser.

Clause A40. Advert request code for execution within a web browser on a
client device, the advert request code comprising: a content play function, the
content play function being arranged to send a content request to a remote
server for a piece of DRM protected content, and to receive and cause replay of
the content at the client device, the content comprising an identifier; and a
request generator arranged to receive the identifier from the replayed content and
incorporate the identifier within an advert request for sending to an advert server.

Clause A41. Computer program code arranged to put into effect the
method of any of clauses A1 to A31.

Clause A42. One or more computer readable media carrying the computer
program code of clause A41.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described, by way of example

only, with reference to the drawings of which:

Figure 1 schematically illustrates an example of a computer system for
delivering online adverts to web browsers executing on client devices;

Figure 2 illustrates aspects of a client device and an advert server

according to the invention;

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

23

Figure 3 shows how such a client device and advert server can interact to
deliver an advert to the client device;

Figure 4 shows some functional aspects of anti-fraud code executing at
the client device;

Figure 5 illustrates functional elements of the advert server;

Figure 6 shows how DRM protected content may be used to provide
verification of identity of a client device to which an advert is to be transmitted;

Figure 7 illustrates an approach to advert fraud detection;

Figure 8 shows the process of capturing HTTP packets per process and
saving information along with advert blocker decision;

Figure 9 is an example of HTTP request trees of a process. The darker
shaded nodes are static contents of a webpage and the "Ad request" and
"www.adserver.com" nodes are advert request nodes. The node
advertiser.com/index.html is an advert click node;

Figure 10 graphs accuracy of the positive class (recall) of different
classifiers;

Figure 11 graphs evaluation results for the detection of advert clicks;

Figure 12 gives examples of false advert clicks in the described system;

Figure 13 graphs improvements of precision for identifying advert clicks
after applying filtering. The number of false positive advert clicks is reduced from
69 to 39. Precision is increased to 38.1% from 25.8%;

Figure 14 schematically illustrates a fraudulent scenario concerning a
hijacked client device with session hijacking;

Figure 15 schematically illustrates a fraudulent scenario concerning
adware traffic;

Figure 16 schematically illustrates a fraudulent scenario concerning botnet
fraud without using a browser; and

Figure 17 schematically illustrates a fraudulent scenario concerning botnet

fraud with a “bad” publisher.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
24

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

In the description that follows and in the figures, certain embodiments of

the invention are described. However, it will be appreciated that the invention is
not limited to the embodiments that are described and that some embodiments
may not include all of the features that are described below. It will be evident,
however, that various modifications and changes may be made herein without
departing from the broader spirit and scope of the invention as set forth in the

appended claims.

Online advertising ecosystem

Figure 1 shows schematically a system within which the inventions
described herein may be implemented, in which online adverts are delivered to a
browser executing on a client. In figure 1, a plurality of client devices 10 are
shown connected to the Internet 17. Each such client device 10 could be a
smartphone, a personal computer (laptop, desktop etc.), a tablet computer, a
smart TV, or any other suitable client device capable of presenting online adverts
to a user through a browser. Each client device executes a web browser 12
which is arranged to download web documents 14 for browsing on the client
device. Such web documents 14 are provided by publishing servers 80, which
are also connected to the Internet 17, and which transmit web documents to
client devices in response to corresponding requests for those web documents
from the client devices.

Typically, client devices send requests for web documents to publishing
servers using HTTP requests, and the web documents delivered in response are
typically HTML documents but frequently also include other elements, such as
program code written in JavaScript (JS) or other interpreted languages,
executable code, Java applets, Flash code, and so forth. The publishing servers
may also deliver other data to a requesting client device such as cookies of
various kinds.

It is well known to incorporate adverts within a web document 14 delivered
to a client device. However, such online adverts are not usually explicitly provided

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
25

by the publishing servers 80. Instead, a web document 14 may contain one or
more elements of advert request code 16. When a web document 14 containing
one or more advert request code elements 16 is executed on a browser 12,
execution of an advert request causes the web browser 12 to send a request
over the Internet to an advert server 50, which in reply returns, to the browser 12,
client side advert code 18 for execution by the browser 12 to present the advert
to the user. Thus, the advert code 18 is program code or software executable by
the browser 12 to present the advert to the user.

The advert code 18 transmitted by the advert server 50 may itself contain
media 20 of the advert such as text, image, sound, video and any other required
data, or may cause such media 20 to be subsequently downloaded by the
browser from the advert server 50 or another source. The media 20 may be
referred to as the “ad creative”. The advert code may typically also contain
display parameters 22 such as a preferences or requirements for display of the
advert within the browser, for example constraining position and size of display of
the advert in a browser frame, duration for the display, whether to use a pop-up
box, etc.

The advert code 18 will also typically contain one or more interaction
actions 24, which define what is to happen when a user interacts with the advert
in one or more ways, and one or more reporting actions 26. An interaction action
could for example be for a user to click or tap on the advert and cause
consequential navigation by the browser to a web document defined by the
interaction action 24, such as the web document of a party with an interest in the
advert. Other interaction actions could involve movement of a cursor over the
advert, perhaps causing a change in the displayed advert, closing of a pop-up
box leading to a further display of information, and so forth.

Reporting actions 26 are used for the system to register the effectiveness
of the advert in some way, for example by sending a report to the advert server
50 or some other entity when an interaction action 24 such as a user click or tap
on the displayed advert media takes place, or by sending a report when some

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
26

other suitable event such as partial or complete display of the advert in a visible
part of an active window or tab of the browser takes place.

By means of the interaction actions 24 a user can conveniently access
further information about goods and services advertised using the online advert.
By means of the reporting action 26, the parties involved in the commercial
aspects of the online advert can detect when a advert has been effected in some
way, for example by being displayed in a visible part of a frame, by being
actioned by a user, and/or a variety similar circumstances, and the parties can
manage the associated commercial advertising contracts using the reported
information.

Also shown in figure 1 are a number of attacker entities 8, also connected
to the Internet 17. These attacker entities may interfere in the advert delivery and
monitoring process in various ways as already described above, for example
appearing to the advert server 50 as if they were bona fide client devices which
request and receive adverts, controlling bona fide client devices in various ways
to interfere with the advert processes, interfering in sessions between bona fide
client devices and advert servers, being used by attackers in click farms or botnet
based click fraud, and so forth.

Because the client side advert code 18 typically controls how an advert is
handled by a browser, including how it is displayed, and how interaction actions
24 and reporting actions 26 are handled, it is vulnerable to compromise. For
example, once an attacker 8 has obtained from the client side advert code 18
information about a reporting action 26, the attacker 8 may be able to fraudulently
reproduce the reporting action activity in circumstances where the advert has not
been presented to a bona fide user (e.g. by reporting user clicks automatically

without any human interaction).

Averting fraud in online advertising

Figure 2 illustrates how, in general terms, embodiments of the invention
may be used to deliver protected client side advert code 18, for example from an
advert server 50 to a client device 10, and how further aspects of the client

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
27

device and browser can also be protected to make fraudulent activity relating to
the advert more difficult to carry out.

The client device 10 shown in figure 2 shows the browser 12 executing
within an operating system 28 of the client device. As already shown in figure 1, a
web document 14 downloaded to the browser 12 from a publishing server 80
contains advert request code 16 which causes the browser 12 to request the
client side advert code 18 from the advert server 50. This request is received by
an advert network server module 52 of the advert server, which coordinates with
an anti-fraud module 54 and a code protection module 56 of the advert server to
return to the client device the client side advert code 18 for execution on the
browser 12. The advert network server module 52, the anti-fraud module 54 and
the code protection module 56 each also communicate with an anti-fraud
database 58 of the advert server 50.

Some or all of the advert code 18 delivered to the browser is in a protected
form, and ways in which this protection can be achieved are described in more
detail later in this document. Generally however, the protection achieves at least
one or more of making the advert code tamper resistant, tamper evident, difficult
to read or to extract information from, unique in the sense that repeated versions
of the advert code generated on request from browsers are distinguishable from
each other and can therefore be identified from each other, and diverse in the
sense that repeated versions of the advert code generated on repeated requests
are differently structured so as to make an fraud attack difficult to replicate.

In figure 2 the broken line within the advert code 18 shows the extent of
the protection implemented using the code protection module 56, demonstrating
that in this case the protected advert code includes all of the media 20, display
parameters 22, interaction action 24 and reporting action 26 already discussed in
connection with figure 1 above, although one or more of these elements could
either be omitted from the advert code altogether, or could be outside of the
protected portion of the advert code. The advert code 18 also includes an anti-
fraud element 30 which provides anti-fraud functionality at the browser 12, and
preferably communicates with the anti-fraud module 54 of the advert server 50 as

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
28

part of this provision. This communication, typically via the advert network server
module 52, is preferably implemented to be trusted and secure. As shown in
figure 2, the anti-fraud element 30 is also preferably wholly or at least partly
within the protected portion of the advert code.

The anti-fraud module 54 provides anti-fraud functionality and support to
the advert network server module 52, including by managing the initial protection
of advert code 18 before it is delivered to the browser. The protection processes,
in terms of obfuscation, diversification, and similar processes which can be
applied to protect the advert code, may be carried out wholly or in part by the
code protection module 56 of the advert server.

The advert code 18 should be in a form executable in a browser
environment. Thus, the anti-fraud element 30 (which forms part of the advert
code 18, see figure 2) should also be in a form executable in a browser
environment. Typically, the advert code 18 and the anti-fraud element 30 may be
written in a combination of JavaScript and HTML. Use of WebAssembly rather
than JavaScript would also be an option. Thus, any references to JavaScript
throughout this application should not be viewed as limiting, and could instead be
read to refer to WebAssembly or other suitable languages as appropriate. The
code protection module 56 then provides obfuscation, diversification and other
protections to the JavaScript and HTML code, and has access to or contains one
or more security JavaScript libraries containing code for the anti-fraud element
30, for example stored in the anti-fraud database 58.

The anti-fraud element 30 contained within the advert code can provide a
reasonable level of fraud prevention and detection using conventional software
interactions with API calls or similar to a conventional executing browser 12.
Thus, the anti-fraud element 30 provides anti-fraud protection at the application
layer/level. However, if required an additional browser security module 13 may
also be integrated within the browser to provide further fraud prevention and
detection functionality, whereby the browser becomes a trusted party in this
process for example in interacting and communicating with one or both of the
anti-fraud element 30 of the advert code and the anti-fraud module 54 of the

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
29

advert server 50. Similarly, an additional operating system security module 29
may be integrated within the operating system 28 to thereby become a trusted
party in interactions and communications with other elements of the anti-fraud
scheme. As example of operating system level security is provided in the Annexe
of this application. Trusted / secure communication flows between the anti-fraud
element 18 and the browser security module 13, and between the browser
security module 13 and the operating system security module 29 are shown in
figure 2, but clearly other trusted / secure communication flows can be

implemented between the various elements.

Figure 3 shows communications between a publishing server 80, a
browser 12 on a client device 10, and an advert server 50, these elements having
already been depicted in figure 2, and provides some further detail about process
steps and communications between the browser 12 and the advert server 50
which may take place when the advert code 18 is executed by the browser 12.

In step 102 the browser 12 navigates from a previous web document to a
new web document 14 which is requested by and received at the browser 12
from a publishing server 80 over the Internet 17. During subsequent execution of
the web document 14 received by the browser 12, advert request code 16
contained within the web document 14 is executed causing the browser 12 to
send an advert request message 105 for a corresponding client side advert code
18 to the advert server 50 at step 104. At step 106, the anti-fraud module 54 of
the advert server 50 carries out verification of the advert request message 105.
The verification criteria may include one or more of an ID relating to a publisher of
the web document 14, an IP address of the client device 10, and user agent
information. Such data may be recorded in the anti-fraud database 58 on the
advert server 50 so that if the present advert session is later identified as a
fraudulent session (e.g. during the steps of impression verification 116 and/or
interaction verification 120), then the relevant data may be blacklisted. This
enables the anti-fraud database 58 on the advert server 50 to develop a list of
resources being used by attackers. If the advert request message 105 fails this

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
30

step of verification then some consequential reporting or recording action may be
taken by the anti-fraud module 54. If the advert request message 105 passes the
step of verification then corresponding advert code 18 is prepared at the advert
server 50 at step 108. This step of preparing corresponding advert code 18 may
include explicit steps of protection such as obfuscation, diversification and so
forth carried out using the code protection module 56 (not shown in this figure), or
some or all of these steps may have been carried out in advance, for example if a
library of advert codes which are already suitably protected is used.

An advert serial code 109 may also be included in the advert code 18. The
advert serial code 109 may be generated or assigned by the anti-fraud module 54
in response to the advert request 105. Furthermore, the advert serial code 109
may be assigned as a unique identifier for the advert request 105 so as to
provide a unique identifier for the current protected advert session. In this case,
the advert serial code 109 will be unique to the advert code 18 currently being
prepared. Subsequently, each time the client device 10 sends a message to the
advert server 50 during the current advert session, the advert serial code 109
may be included in the message to enable the anti-fraud module 54 of the advert
server 50 to verify that the message is legitimate. Thus, the advert serial code
109 is one element which may enable a secured channel of communication
between the client device 10 and the advert server 50. The advert serial code
109 may be included in the advert code 18 in a manner which is difficult for an
attacker to read, and/or difficult for an attacker to change. When the advert code
18 has been prepared by the anti-fraud module 54, it is transmitted to the
browser at step 110.

During subsequent execution of the advert code 18 by the browser a
number of different steps and processes occur which are described in more detail
later. However, briefly, at step 112 the anti-fraud element 30 of the advert code
18 carries out an initialisation process. This may involve some communication
with the anti-fraud module 54 of the advert server 50.

During subsequent and ongoing execution of the web document 14 the
anti-fraud element 30 then repeatedly modifies the structure of the document

6387447-2

10

15

20

25

WO 2016/156513 PCT/EP2016/057109
31

object model (DOM) of the web document 14, making it more difficult for an
attacker to quickly or automatically locate particular elements of the web
document 14. This is shown in the figure as a particular step 114, but it should be
noted that this process is ongoing, triggered periodically for example by user
actions in the browser.

At step 116 the client side anti-fraud element 30 carries out a step of
impression verification in which it is verified that the advert has been displayed to
the user according to required parameters (for example being in the currently
active frame or i-frame and being at least 80% visible). This step may occur as
part of the initialisation step 112, immediately after the initialisation step 112, or at
other times, and may be repeated periodically, for example until an adequate
impression of the advert can be reported. The impression verification 116 can be
carried out at the browser 12 and reported to the advert server 50. Alternatively,
the impression verification 116 may be carried out in conjunction with the advert
server 50, for example by gathering impression verification information at the
browser 12, and passing this information for processing to the anti-fraud module
54 of the advert server 50. If either a valid impression of the advert is verified
during this step, or fraudulent activity is detected, then the advert server 50 may
take suitable impression reporting action 118 and may update the anti-fraud
database 58 on the advert server 50 as appropriate.

At step 120 the anti-fraud element 30 carries out interaction verification in
which it is verified that a user has interacted with the advert in one or more
particular ways according to the interaction action 24, for example by clicking or
tapping on an active area of the advert or by passing a cursor over the advert. As
for impression verification, this step may be carried out at the browser 12 and
reported to the advert server 50, or may be carried out in conjunction with the
advert server 50 for example by gathering interaction verification information at
the browser, and passing this information for processing to the anti-fraud module

54 of the advert server 50.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
32

With regard to interaction actions 24, functions may be defined in the
protected JavaScript code of the advert code 18 in order to do different things
based on fired events. For example:

e window.onmousemove=irdetoonmousemove()

e Adurl.onlick=irdetoadclicked()

Such functions may also collect information on browsing behaviours and user
interactions. For example, such functions may be used to track mouse
movements.

If either a valid user interaction with the advert is verified during this step
120, or fraudulent activity is detected, then the advert server 50 may take suitable
interaction reporting action 122 and may update the anti-fraud database 58 on
the advert server 50 as appropriate. During this process, the advert server 50
also receives from the browser 12 the advert serial code 109 from the advert
code 18, or information derived from the advert serial code 109, which can be
compared against the advert serial code 109 as originally included in the advert
code 18 by the advert server 50. If the original and returned serial codes or
related/derived data do not match then the user interaction verification 120 fails
and may be reported as such. Again, the anti-fraud database 58 on the advert
server 50 may be updated as appropriate.

In the description that follows the term URL is used for ease of discussion.
The skilled person would appreciate, however that when a URL is referred to, in
practice this may be a URI or combination of one or more URLs and/or one or
more URls.

In some embodiments of the invention, an interaction action 24 defined in
the advert code 18 can only be completed when the advert server 50 returns
relevant interaction information and/or code to the browser 12 following a positive
result of the interaction verification step 122. In figure 3 this is illustrated by step
124 carried out by the anti-fraud module 54, in which a redirection URL 125 to
which the browser 12 should now navigate following a user interaction with the
advert is returned to the browser 12. The browser 12 then navigates to the

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
33

redirection URL at step 126. The redirection URL or other interaction information
returned to the browser 12 may be in an obfuscated or otherwise protected form
which can only be correctly interpreted by the anti-fraud element 30 of the advert
code 18.

Figure 4 illustrates in apparatus form functional aspects of the anti-fraud
element 30 of the advert code 18, which may be used to implement the steps
outlined in discussion of figure 3 above, along with suitable communication with
an advert server 50 where appropriate. The anti-fraud element 30 includes one or
more of: an initialisation function 32, a DOM diversification function 34, an
impression verification function 36, a deferred action loader 35, and an interaction
verification function 38.

The interaction verification function 38 in turn includes a number of sub
functions including one or more of: a code integrity verification function 40, a
browser verification function 42, a visibility verification function 44, a cursor
verification function 46, and a DOM/URL verification function 48. Of course, the
functionality provided by these functions and sub functions may be provided in
different combinations, further functionality may be added, and some of the
described functionality may be omitted.

The initialization function 32 unpacks data relating to the advert from the
advert code 18 and inserts it into particular locations in the web document 14. For
example advert data fields may include advert serial number or advert serial code
109, publisher ID, advert URL info (creative, tracking pixel, original advert URL,
modification information (if any information changes unexpectedly), modified
advert URL (if malware modifies advert URL), advert URL location (xpath, as it
may change), and DOM change information. In order to provide the code integrity
verification functionality 40 discussed in more detail below, the initialisation
function 32 is also responsible for recording initial attributes of the advert session
from the advert server 50 to enable verification of later values of the same
attributes during the advert session. The initial advert session attributes may be
recorded in a protected form in the user environment of the client device 10. The

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
34

initial attributes may include one or more of the advert serial code 109, a hash
value (or similar) relating to at least a portion of the advert code 18 (e.g. a hash
value of the anti-fraud element 30, or a hash value of an ad tag), a copy of at
least a portion of the advert code 18 (e.g. a copy of the anti-fraud element 30, or
a copy of an ad tag), and any other desired data relating to the advert code 18.

In order to provide the DOM diversification functionality 34 discussed in
more detail below, the initialisation function 32 is also responsible for inserting
suitable sub functions at particular positions in the web document 14, for example
at particular DOM nodes. In order to provide the interaction verification
functionality 38 discussed in more detail below, the initialisation function 32 is
also responsible for configuring the web document 14 so that the interaction
verification function 38 is called when a suitable user action such as a click or tap
on an active region of the advert occurs.

Following suitable setup of the web document 14 by the initialization
function 32, the DOM diversification function 34 may be repeatedly triggered, for
example by user interaction with the web document 14 such as cursor
movements, scrolling, clicks, taps, and/or other actions. The DOM diversification
function 34 may be implemented as a single or as multiple sub functions at
different positions or nodes in the DOM, and when triggered these DOM
diversification sub functions generate changes in the structure of the DOM, for
example moving a DOM subtree containing some or all aspects of the advert to a
different node or position within the DOM. This dynamic DOM modification is
intended to make it more difficult for an attacker to determine a target element of
the advert such as an aspect of the interaction action 24 such as a URL to which
the browser 12 should navigate when the user interacts with the advertin a
predefined manner for example by clicking on the advert. Thus, the DOM
diversification function 34 increases tamper resistance of the advert code 18.

The DOM diversification function 34 may implement what will be referred
to herein as “URL hiding”. This is a form of dynamic DOM modification that is
intended to make it more difficult for an attacker to determine a true URL
associated with the advert (e.g. a URL from which the advert creative is to be

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
35

obtained, or a URL to which the browser 12 should navigate when the user
interacts with the advert in a predefined manner). Thus, when using URL hiding,
an advert is initialised with random attributes such class-name and id, and the
advert URL will be a URL known to be fake by the advert server 50. While the
fake URL still is alive, if there is a click to it, we can conclude that the http client is
a bot. The malicious behaviors by bots will be recorded in the anti-fraud database
58 at the advert server 50 after detecting the fraud case.

In one embodiment of URL hiding, if there is no mouse cursor over the
creative of the advert, the URL related to the advert will be a fake one. This
guarantees that machines without human activity capability cannot get the true
URL since such machines will be programmed to automatically generate an
advert click without using a mouse cursor.

In another embodiment of URL hiding, there is a time dependency
associated with whether a fake or real URL is used. For example, a fake URL
may be used for a time period after the web document 14 is loaded, regardless of
whether a mouse cursor is over the creative. This is because very fast clicking
after loading is usually associated with bot or human click fraud. In comparison, it
generally takes a certain period of time for a normal human user to review an
advert creative, then move a mouse to the creative space before interacting with
(e.g. clicking) the advert. After the time period has elapsed, the true URL may be
provided if all other verifications are positive (e.g. if the mouse cursor is over the
creative, as described above). The time period may be a fixed time period based,
for example, on the fastest expected time for a legitimate human user to interact
with the advert. Alternatively, the time period may be based on other factors such
as the stabilisation of a frame rate of the browser 12 after loading the web
document 14.

The DOM diversification function 34 may additionally/alternatively make
use of a dynamic advert URL. The use of a dynamic advert URL may also be
considered to be a type of URL hiding. In existing advert networks, the advert
URL is only initialized at most once per ad session. In our approach, either the
advert server 50 or the anti-fraud element 30 on the client side will periodically

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
36

update the advert URL using a new identity of the URL. The periodic updates
may happen in response to specific user behaviour/interactions, for instance, per
mouse movement. Each time the anti-fraud element 30 detects a specific user
interaction, an update request message may be sent to the advert server 50. If
such a request is sent, the advert server 50 may return a new identity of the
advert URL (in protected form) to the client device 10 that will replace the old
one. It is optional how often to issue such a update request based on balance
between performance and security. When a user clicks on a URL, the related
message to the advert server 50 includes the advert URL identity. The advert
server 50 keeps track of the advert URLs sent to the client device so that it can
identify if a particular click is against the latest advert URL or an outdated advert
URL. A click to an outdated advert URL may result in updating the anti-fraud
database 58 to blacklist the client device 10. Thus, effectively, the use of a
dynamic advert URL may be considered as a form of real-time token updating. In
particular, the anti-fraud element 30 receives a token from the advert module 50
periodically to update its internal variable and part of the advert URL. Therefore,
even if the hackers find the advert URL in the DOM tree, they still cannot make
valid clicks because the advert server 50 and the anti-fraud element 30 on the
client device 10 will be synchronized in real-time for each advert session.

To summarise, in URL hiding the advert code 18 comprises an advert
element (i.e. an ad tag — see below) including an advert URL associated with the
advert. The anti-fraud element 30 may be arranged to replace the advert URL
with a fake URL until one or more conditions are satisfied, the fake URL being
different from the advert URL. The fake URL may be a real URL associated with
a real webpage, or may be a made-up URL with no associated webpage. The
one or more conditions may include one or more of: a cursor being present over
the advert whilst the advert is being displayed to the user; a fixed time period
having elapsed following loading of the web document on the web browser; and a
frame rate of the browser having stabilised following loading of the web document
on the web browser. The anti-fraud element 30 may additionally/alternatively be
arranged to periodically replace the advert URL with an updated advert URL.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
37

Periodically replacing the advert URL may occur at predefined time intervals, or
in response to user interactions.

The DOM diversification function 34 may additionally/alternatively
implement what will be referred to herein as “DOM shuffling”. In general, for
each advert to be displayed as part of that web document 14, the DOM
comprises a respective piece of code that is often referred to as an advert
element or “ad tag”. An ad tag usually has two parts: a URL from which the
browser 12 will request the advert, and some HTML and/or JavaScript code to tell
the browser 12 how to display the advert received via the URL request. In DOM
shuffling, the DOM diversification function 34 creates multiple copies of a given
ad tag. Only one copy (i.e. the true copy) of the ad tag includes the true advert
URL from which the browser 12 will request the advert. Each other copy (i.e. fake
copies) of the ad tag includes a respective fake URL which is different from the
true URL. The multiple copies are intended to be displayed in the same space on
the web document 14 (i.e. they have the same HTML and/or JavaScript code
telling the browser 12 the size and position of the advert display). However, since
all of the adverts are to be displayed in the same place, only one of the copies
will be displayed on the top of the stack such that it is visible to a human user.
The DOM diversification function 34 ensures that the top (displayed) copy is
always the true copy which includes the true advert URL. Thus, a human user will
always interact with the true copy and will always request the advert from the true
URL. In contrast, an automated clicker is equally likely to click on any of the
multiple copies of the ad tag. On receiving any request for a fake URL, the advert
server 50 may blacklist the device requesting the fake URL by updating the anti-
fraud database 58.

The DOM structure including the multiple copies of a given ad tag may be
“shuffled” when there is activity over it. For example, the DOM shuffling may be
repeatedly triggered by user interaction with the web document 14 such as cursor
movements, scrolling, clicks, taps, and/or other actions. The shuffling involves
randomising the locations of the multiple copies of the ad tag within the DOM
structure of the web document 14. So, each time a user moves the mouse, the

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
38

DOM shuffling dynamically and randomly selects one copy of the ad tag as the
true copy, and ensures that this copy is displayed to a human user.

The DOM shuffling functionality may be accomplished in HTML by
formulating each ad tag as a <div> and creating copies of the div code
associated with the ad tag. To manipulate the multiple divs associated with a
given advert, a unique random ID is created for each div. The divs for a given ad
tag are sitting under the same node in the DOM such that there is a subtree with
all these divs. To hide the redundant (i.e. fake) divs in the subtree, the stack
order of the divs is set such that only the div with the true URL is visible at the top
of the stack. The DOM diversification function 34 may accomplish this by setting
the CSS property of the z-index of these divs so that only the div with the true
URL is located at the top of the stack.

Assume a hijacked browser. An attacker may analyse the DOM tree to find
an ad tag. However, let there be M-1 duplicated fake ad tags in the DOM subtree.
If the attack is only struck once, the attacker can succeed with a probability of
1/M. However, attackers generally conduct fraud repeatedly. Furthermore, we
only need to detect one instance of a fake URL click to identify the attacker
device as a fraud because the fake URLs will never be clicked by a real human
click. Thus, if an attacker strikes repeatedly n times, the attacker can only
succeed with a probability of (1/M)”n, which is very low for reasonable M and big
n.

To summarise, in DOM shuffling the advert code 18 comprises an advert
element (i.e. an ad tag — see below) including an advert URL associated with the
advert. The anti-fraud element 30 may be arranged to create copies of the advert
element within the DOM of the web document 14, each copy including a
respective fake URL different from the advert URL, such that the advert and
copies of the advert are displayed in a stack with only the advert being visible to
the user at the top of the stack (the copies of the advert are associated with the
copies of the advert element). The anti-fraud element 30 may be arranged to
periodically alter the DOM structure of the web document 14 so as to randomly
rearrange/reorder the advert element and the copies of the advert element within

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
39

the DOM structure. Notably, “periodically” may mean at regular time intervals or
may mean at irregular time intervals. Thus, “periodically” should be interpreted to
mean “now and then”. The anti-fraud element 30 may be arranged to periodically
alter the DOM structure of the web document 14 in response to user interactions
with the web document 14 using the browser 12.

In one embodiment, the DOM diversification function 34 may combine the
DOM shuffling and URL hiding functionalities described above. In this case, the
initialization function 32 first replaces the true URL in an original ad tag with a
fake URL, and then copies the whole ad tag. For each copy of the ad tag, a
globally unique ID is created. The z-index of the ad tag copies is then modified so
that the advert displayed at the top of the stack is defined as the true advert.
Then, in response to a user interaction which brings the mouse over the advert,
the DOM diversification function 34 replaces the fake URL in the true advert with
the true URL. Subsequently, the DOM diversification function 34 randomly
shuffles the relevant DOM subtree. Preferably, the true advert should not be the
first child of the parent node.

The DOM diversification function 34 may additionally/alternatively
implement what will be referred to herein as “creative hiding”. In creative hiding,
the true advert creative in an ad tag may be hidden and substituted with a fake
advert creative in certain circumstances. This is intended to prevent hijacking of
the advert creative itself, rather than to prevent click fraud. The criteria for
displaying a true/fake advert creative may include a time dependency (e.g. as for
URL hiding — see above). The decision on whether to display a true/fake creative
may additionally/alternatively depend on the visibility of the creative on screen. A
human user will only interact with a creative that is being displayed to them on
screen (e.g. in a visible portion of a web document 14). Thus, it is possible to hide
the true creative from possible hijacks by displaying a fake creative until the
creative moves on screen, at which point it is necessary to display the true
creative to the user.

To summarise, in creative hiding, the advert element may further include

an advert creative associated with the advert, and the anti-fraud element 30 may

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
40

be arranged to replace the advert creative with a fake creative until the advert is
displayed to the user, the fake creative being different from the advert creative.

Following suitable setup of the web document 14 by the initialization
function 32, execution of the interaction verification function 38 may be triggered
by various user actions such as a user click on an active region of the displayed
advert. The executing interaction verification function 38 then executes one or
more of the interaction verification sub functions as shown in figure 4 before the
interaction action defined for user action on the advert, such as navigation to the
advertisers web page, is carried out.

A first such sub function is the code integrity verification function 40 which
is arranged to verify the integrity of the anti-fraud element 30 and/or any required
combination of parts or all of the advert code 18. This ensures that the
functionality of the advert code 18, and in particular the correct functioning of the
anti-fraud element 30, has not been compromised. Additionally/alternatively to
verifying the correct functioning of the anti-fraud element 30, the code integrity
verification function 40 may be used to verify the integrity of any ad tags. Such
integrity verification can be carried out in various ways. Simple integrity
verification checks involve comparing current attributes of the advert code to the
initial attributes of the advert code 18 that were stored on the client device as part
of the initialisation function 32. If the integrity verification fails then this may be
reported to the anti-fraud module 54 in the advert server 50, and/or further
execution of the interaction verification function halted. In one example, any
modifications to the advert code 18 (e.g. ad tags) may be reported to the advert
server 50 by the code integrity verification function 40 of the anti-fraud element
30. In this case, the code integrity verification function 40 may be triggered by
modifications of the advert code 18, if desired, rather than being triggered by the
various user actions.

A second such sub function is the browser verification function 42 which is
arranged to detect and verify that a genuine browser is being used to execute the
advert code. This seeks to stop attackers from executing parts of the advert code

in another, non-browser environment, which is therefore not presenting the advert

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
41

to a bona fide end user. The browser verification can be carried out in one or
more different ways. One method would be to record in the advert code the "user
agent” field in the http header of the advert request sent to the advert server, and
to detect from the "user agent” field if the agent is not a browser. However, the
"user agent" field can easily be spoofed in the advert request by an attacker.

Other methods would be to check the "session per IP" or "visit count”.

The browser verification function 42 may also be implemented by
detecting features of the client environment which is executing the function. For
example, by detecting aspects of the JavaScript capability of the client. One way
of doing this is to create cookies in the JavaScript side to check if the client
environment does interpret JavaScript - for example a crawler using Curl would
not. Other techniques which could be used by the browser verification function 42
to verify the browser could be to use a third part library providing JavaScript
driven feature detection such as Modernizr (see http://moderizr.com/), or a DRM
based method as discussed below in connection with figure 6.

The browser verification function 42 may be performed in conjunction with
the advert server 50 using a DRM methodology described below in the section
entitled “Browser verification using DRM”.

If the browser verification fails then this may be reported to the anti-fraud
module 54 in the advert server 50, and/or further execution of the interaction
verification function halted.

A third sub function of the interaction verification function 38 is the visibility
verification function 44. This may typically check that the window, tab, frame or
iframe containing the displayed advert is potentially visible to a user, and that the
advert media is at least partially visible to the user. To achieve this, the visibility
verification function 44 may use the browser’s API to check whether the advert is
on a viewable portion of the browser window (i.e. the “viewport”). Most browsers
include native page visibility support (a “Page Visibility API”), which can be used
to detect whether a current tab is the topmost tab in the browser. However, this
support may be limited in working only for multiple tabs within a particular
browser window, and may fail to detect if there are other windows covering the

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

42

browser window, or if the browser is otherwise hidden or not shown by the
operating system. Different or additional functionality may therefore be provided
to determine visibility, for example a measure of the fraction of the advert that is
visible.

If the visibility verification fails then this may be reported to the anti-fraud
module 54 in the advert server 50, and/or further execution of the interaction
verification function halted.

A fourth sub function is the cursor verification function 46. This seeks to
verify that the user of the browser is a bona fide human user, for example by
making an assessment of cursor (or mouse) movements (or trajectories). These
cursor movements could be only movements within the graphical or active area
of the advert itself, or more widely within the browser frame, window, or whole
display. Thus, the cursor verification function 46 is arranged to track cursor
movements and to send to the advert server 50 data relating to cursor
movements. The data may first be stored on the client device 10 if desired. The
data may include, for example, a time series of cursor coordinates, and optionally
the associated time stamps. In one embodiment, the data includes a time series
of cursor coordinates ending with a mouse click (or touchscreen press). Thus, in
response to a mouse click, a cursor trajectory (in the form of a time series of
cursor coordinates) may be sent to the advert server. Determinations of whether
the user is human or not can be made using pattern recognition and other
techniques. Such determinations will generally be made at the advert server 50,
but one or more simple initial determinations could be performed at the client
device 10.

If the cursor verification fails then this may be reported to the anti-fraud
module 54 in the advert server 50, and/or further execution of the interaction
verification function halted.

A fifth sub function is the DOM/URL verification function 48. This sub
function may seek to verify that the document object model (DOM) of the web
document 14 has not been altered in a manner which suggests fraudulent
activity. For example, the sub function may seek to verify that the subtree of the

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
43

DOM relating to the advert has not been unexpectedly modified, which could
indicate compromise of the advert, or that other parts of the DOM have not been
unexpectedly modified, which could indicate malware inserted adverts elsewhere
within the web document. The DOM/URL verification function 48 may also seek
to verify that the interaction action 24 of the advert code 18 has not been
modified, for example that a redirection link for use when the advert is clicked has
not been modified.

If the verification fails due to detection of unexpected modification of the
DOM or of the interaction action then this may be reported to the anti-fraud
module 54 in the advert server 50, and/or further execution of the interaction
verification function halted.

Notably, the system can be set up such that failure of only a single
verification sub function will lead to detection of fraud (i.e. an invalid click),
whereas passing all verification sub functions is necessary to register a legitimate
click. This makes it very difficult for an attacker to circumvent the security
procedures in place.

In a similar manner to the interaction verification function 38 discussed
above, the impression verification function 36 may provide various verification
functions which need to be successfully completed before an advert is
considered to have been delivered to the user of the browser 12 by way of an
impression, whether or not the user subsequently interacts with the advert. Thus,
the impression verification function 36 may use some of the same sub functions
as the interaction verification function 38. For example, current online advertising
practices tend to count an impression once the JavaScript that creates the advert
(i.e. the advert code 18) is loaded by the browser 12, no matter whether the
advert creative can be seen by human beings. However, it is desirable for the
impression verification function 36 to check the viewability of the advert creative
in real-time. This may be done using the functionality of the visibility verification
function 44. If the advert creative is viewable, the verification performed by the
impression verification function 36 will be positive and an impression will be

counted. Otherwise, it will not be considered as a valid impression.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
44

Alternatively/additionally, the impression verification function 36 may check
whether the advert creative is being displayed on a topmost tab within the
browser 12. If the advert creative is detected to be on the topmost tab, the
verification performed by the impression verification function 36 will be positive
and an impression will be counted. Otherwise, it will not be considered as a valid
impression. If both viewability and topmost tab are checked, then a valid
impression will only be counted when the advert creative is both viewable and on
the topmost tab.

The anti-fraud element 30 may include a deferred action loader 35. In this
option, the interaction action 24 of the advert code 18 remains incomplete and
therefore not fully functional until particular conditions are satisfied. For example,
the deferred action loader 35 may wait until the anti-fraud element 30 detects
visibility of the advert on the user device, or detects that the frame of the advert is
the currently active frame, or detects that a cursor is over or proximal to the
advert, and only then modify the interaction action 24 to render it functional for
example to include a URL to which the browser should navigate when the user
interacts with the advert in a predefined manner, for example by clicking on the
advert. The deferred action loader 35 may then render the interaction action 24
again incomplete and not fully functional when the particular conditions are no
longer satisfied.

The conditions to be satisfied before the deferred action loader 35 renders
the interaction action functional could instead be one or more of: that a particular
user action has occurred such as a click on or selection of the advert; that such
an action has occurred and some or all of the verification sub functions of the
interaction verification function 38 have been successfully completed; that data
required to complete the interaction action, such as a redirection URL, has been
received from the advert server 50 following such verification, that a verification
conformation has been received from the advert server 50,and so forth, in various

combinations.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
45

Figure 5 illustrates in more detail functional parts of the advert server 50 of
figures 2 and 3. The anti-fraud module 54 is shown as comprising a request
handler 60, an interaction handler 62, an impression handler 64, and a security
manager 66. The anti-fraud database 58 is shown as comprising diversified anti-
fraud elements 68, anti-fraud policy 70, publisher data 72, user data 74, track
data 76, and base advert code 78.

The request handler 60 carries out the step 106 of verifying an advert
request from a browser, already discussed in connection with figure 3. If the
advert request is suitably verified then the security manager 66 carries out the
step 108 of preparing a suitable advert code 18, including use of the code
protection module 56 to provide protection of the advert code 18, and arranging
transmission of the advert code 18 to the requesting browser 12.

The request verification can include various different verification processes
and steps. For example, the request handler 60 may check whether the advert
request has been received from a client device or other origin corresponds to an
origin which is recorded in the anti-fraud database 58 as being, or not being
associated with a fraud risk. In particular embodiments, the origin may be an IP
address or domain from which the advert request 105 appears to have been
transmitted. If the IP address or domain is that of a publishing server 80, then this
may indicate a server based fraud scenario and the request handler 60 then
causes this IP address to be marked as a fraud device, for example in the
database element shown in figure 5 as publisher data 72, and may also cause
the current advert request and future advert requests from this IP address to be
rejected.

The request handler 60 may also use various statistical techniques to
decide whether an advert request should be rejected.

In carrying out the step 108 of preparing an advert code 18, the security
manager 66 may receive a base advert code 78 from the anti-fraud database 58
or elsewhere. The base advert code 78 will typically have been provided by an
advertiser, defining the media 20, display parameters 22, interaction action(s) 24
and reporting action(s) 26. Typically, the base advert code 78 will have been

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
46

constructed in a combination of HTML and JavaScript. The security manager 66
then causes the base advert code 78 to be protected by the code protection
module 56 using techniques described in more detail below, and integrates the
anti-fraud element 30 with the base advert code to thereby provide the client side
advert code 18. The protection may be carried either one or both of before and
after integration with the anti-fraud element 30.

The security manager 66 may also generate the advert serial code 109
(depicted in figure 3, which may be unique for the particular advert request 105),
and combine this advert serial code 109 into the advert code 18. The advert
serial code 109 may be combined with the advert code 18 in a protected or
obfuscated manner, so that it is at least difficult for an attacker to tamper with,
read or otherwise compromise.

The security manager 66 also provides the advert code 18 with a suitable
entry point for invocation of the initialisation function 32 for execution at step 112
when the advert code 18 has been downloaded to the browser 12.

The anti-fraud element 30 may be obtained by the security manager 66 in
a form ready to integrate into the advert code 18 from a store of pre-prepared
diversified anti-fraud elements 68 in the database 58, or diversification of the
advert code 18 may be carried out during the step 108 of preparing the advert
code 18.

The interaction handler 62 interacts with the interaction verification
function 38 of the client side advert code anti-fraud element in order to support
completion of the interaction verification step 120 of figure 3 in which a user
interaction with an advert (such as clicking on an advert) is subject to various
verification processes before being accepted. The interaction handler 62 also
carries out the step of interaction reporting 122 shown in figure 3 which may
include reporting a failure of the interaction verification or a detection of fraud, for
example by writing corresponding data into the anti-fraud database 58, or the
step 124 of returning suitable data to the browser 12 to enable an interaction
action to be completed, for example by returning a suitable advert URL for the
browser to navigate to. Similarly, the impression handler 64 of figure 5 interacts

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

47

with the impression verification function 36 of the client side advert code anti-
fraud element 30 in order to support completion of the impression verification
step 116 of figure 3, and completes the step of impression reporting 118 if
required, which may include reporting a failure of the impression verification or a
detection of fraud, for example for recording in the database 58.

In more detail, the interaction handler 62 may receive, from the anti-fraud
element 30 of the browser 12, the advert serial code 109 which was included in
the advert code 18 before sending to the browser 12, or information derived from
the advert serial code 109. If the received and original codes do not match, then
the interaction verification step 120 fails, and the interaction reporting step 122
may carry out suitable reporting of this failure. Furthermore, one or more details
of the current advert session (e.g. an IP address of the client device 10) may be
recorded in the anti-fraud database 58 and blacklisted to indicate fraudulent
activity for future reference.

In some embodiments, the advert code 18 delivered to the browser 12
already includes a redirection URL (forming part of the interaction action 24) to
which the browser 12 should navigate if the user interacts with the advert in a
defined way for example by clicking on the advert. This redirection URL may be
passed to the interaction handler 62 as part of the step 120 of interaction
verification. The interaction handler 62 may then check if the redirection URL
received in step 120 matches the redirection URL originally included in the advert
code in step 108. If the two do not match then the verification fails, and the
returned redirection URL or related data identifying the URL such as a
corresponding IP address may be recorded in the database 58, for example in
the publisher data 72, for future reference.

The interaction handler 62 may also receive, from the anti-fraud element
30 executing in the browser 12, a result of fraud detection carried out by the anti-
fraud element 30 in the browser 12 as part of the interaction verification step 120.
If this result indicates fraud then the verification step 120 fails and the interaction
reporting step 122 may carry out suitable reporting of this failure. For example,
the fraud detection carried out in the browser 12 may include executing one or

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

48

more of the sub functions shown in figure 4 as code integrity verification 40,
browser verification 42, visibility verification 44, cursor verification 46 and
DOM/URL verification 48. However, one of more of these functions may be at
least partly carried out by the interaction handler 62, for example on the basis of
data provided by the relevant sub functions executing in the browser 12.
Elements of such client return data, such as mouse movement and track data,
may also be stored in the anti-fraud database 58, for example as user data 74
and track data 76.

As described previously with respect to figure 4, the client-side cursor
verification function 46 sends data relating to cursor movements to the advert
server 50. This data is received and processed by the interaction handler 62. In
one embodiment, the data comprises a cursor trajectory (i.e. a time series of
cursor coordinates). In one embodiment, received cursor trajectory ends with a
mouse click (or touchscreen press). In general, when a human user moves a
mouse from a start point to the point of clicking a clickable webpage object, the
resulting cursor trajectory should be unique due to the randomness of the start
point and due to an individual user’'s own way of moving the mouse. In other
words, detection of the same or similar cursor trajectories at different times while
associated to a different click on the same user environment is very likely to be
an indication of automated malware (i.e. an invalid click). On receiving data
relating to cursor movements (e.g. a cursor trajectory relating to a mouse click)
from the client-side cursor verification function 46, the current trajectory is stored
as track data 76 in the anti-fraud database 58. In addition, the current trajectory is
compared against previous trajectories in the anti-fraud database 58. If there is
an identical or similar previous trajectory, then this is an indication of fraud. In one
embodiment, not all previous trajectories in the anti-fraud database 58 are used
in the comparison. Instead, a subset of previous trajectories is used for
comparison to the current trajectory. In a simple embodiment, the subset of
trajectories used for the comparison comprises the trajectories in which the click
pixel (i.e. the pixel in which the mouse click occurred) is the same pixel as the

click pixel for the current trajectory. The comparison may include any

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

49

mathematical method of determining the similarity between two trajectories. For
example, each time series of cursor coordinates may first be interpolated to
provide a continuous trajectory in space and time. Then, the trajectories may be
compared by calculating the geometric distances between the current trajectory
and each of the subset of trajectories. If the average geometric distance is
greater than a threshold, then the click may be considered to be valid, else the
click may be considered to be invalid and a fraud may be reported. However, it
will be understood that alternative “comparison” methodologies may be used with
or without calculation of geometric distances between trajectories.

The interaction handler 62 may be adapted to detect if the anti-fraud
element 30 and/or other parts of an advert code 18 have been compromised, for
example through circumvention of the protection applied by the code protection
module 56 and so forth. If compromise is detected then the security manager 66
and request handler 60 may then be operated to take suitable action.

Operation of the arrangements described above under various different
scenarios of fraud and attempted compromise by one or more attackers will now

be described.

Scenario 1 - hijacked client device with session hijacking

This scenario is schematically illustrated in figure 14. Under this scenario,
an otherwise valid browser session between the browser of a client device and a
server such as a publishing server 80 is hijacked, for example by malware
running on the same client device which obtains one or more session keys to
thereby participate in the browser session. This enables the hijacker malware to
make additional advert or other HTTP requests which have then been made by
the legitimate browser 12, but are actually independent of content genuinely
requested by the user.

In this scenario, the ongoing step 114 of figure 3 in which the document
object model (DOM) is periodically modified makes it much more difficult for the
hijacker to make effective changes to the web document 14, since the effective
target location of such a change will not be predictable. If the user of the client

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
50

device 10 clicks on an advert, or otherwise interacts with an advert, then as part
of the interaction verification step 120 of figure 3, the DOM/URL verification
function 48 of the client side code anti-fraud element 30 can detect any fraudulent
changes to the DOM or modifications to the interaction action 24 of the advert
code 18. Such changes or modifications could cause the interaction verification
function to fail verification, so that the changes made by the malware code are
blocked, or could cause such changes to be reversed or removed.

During operation of the interaction handler 62 of the advert server 50 as
part of the interaction verification step 120, the interaction handler 62 may check
any redirection URL received as part of the step from the browser 12. If this does
not match the correct redirection URL then this may cause the verification step to
fail. Changes to the redirection URL made at the browser 12 by the malware are
therefore blocked, or the interaction handler 62 could cause such changes to be
reversed or removed. A redirection URL detected as added by a hijacker or
malware could also be marked as the URL or domain of a "bad" publisher or
similar in the publisher data 72 of the anti-fraud database 58 or elsewhere.

The interaction verification may also fail if the advert serial code 109 or
related data returned as part of the interaction verification fails to match the
advert serial code 109 originally added to the advert code 18 by the advert server
50, or inconsistencies or changes in other data relating to the advert are
detected.

Scenario 2 - adware traffic

This scenario is schematically illustrated in figure 15. Under this scenario a
normal user is operating the browser on a client device, but additional html or
advert requests are made by elements of advert request code 16 included in a
web document by a publisher 80 (or other adware), independently of content
genuinely requested by the user. In this way, the advert request code elements
16 of the web document 14 can be used by an attacker / bad publisher to add or
change adverts in the web documents viewed by the user, and to add or modify

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
51

redirections and browser navigations to web documents which are preferred by
the publisher 80 or other party modifying the adware code.

Additionally to the measures described in scenario 1 above, the request
handler 60 of the anti-fraud module 54 at the advert server may detect if the
publisher server 80 which supplied the current web document 14 is recorded as a
bad publisher in the anti-fraud database 58, and if so then can decline to process

or respond to an advert request 105.

Scenario 3 - botnet fraud without using browser

This scenario is schematically illustrated in figure 16. Under this scenario,
a third party process, acting as a botnet but not from within a browser context,
sends messages to the advert server 50 which are intended to be interpreted by
the advert server as genuine user advert requests 105, and then sends further
messages to the advert server 50 which are intended to be interpreted by the
advert server as resulting from genuine user interactions with an advert.

In this scenario, various sub functions of the interaction verification
function 38 will detect failures in verification during the interaction verification step
120. For example, the browser verification function 42 will detect a lack of
browser characteristics in the process sending messages to the advert server 50.

Scenario 4 - botnet fraud with bad publisher

This scenario is schematically illustrated in figure 17. Under this scenario,
a third party process, acting as a botnet operating within a browser context,
sends messages to an advert server 50 which are intended to be interpreted as
genuine user advert requests 105, and then also sends messages which are
intended to be interpreted as arising from genuine user interactions with an
advert. The fraud might be initiated by a publisher 80, for example by including
compromised advert request code 16 in the web document 12, or the publisher
80 might not be involved in the fraud.

As for scenario 2, the request handler 60 of the anti-fraud module 54 at the

advert server may detect if the publisher server 80 which supplied the current

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

52

web document 14 is recorded as a bad publisher in the anti-fraud database 58,
and if so then can decline to answer an advert request 105, and as for scenarios
1 and 2, the ongoing step 114 of figure 3 in which the document object model
(DOM) is modified makes it much more difficult for the attacking party to make
effective changes to the web document. Additionally, the various parts of the
interaction verification process 120 act as already described in respect of
scenarios 1 and 2.

In particular in this scenario, however, the cursor verification subfunction
46 of the verification function 38 aims to detect if the interaction action was not
accompanied or preceded by cursor movements or similar user behaviour
indicating a human user of the browser, leading to a failure of the verification

step.

Three categories of anti-fraud functions

In summary, we envisage three categories of anti-fraud functions which
may be referred to as (a) front-end anti-fraud functions, (b) just-in-time (JIT) anti-
fraud and tracking functions, and (c) back-end anti-fraud functions.

The advert server 50 performs some front-end anti-fraud functions. In
particular, in the step 106, the request handler 60 uses historical data stored in
the anti-fraud database 58 to verify whether an advert request 105 is valid. This
also includes verifying the user and publisher associated with the advert request
105. Notably, the historical data have been collected by running just-in-time and
back-end anti-fraud functions during the processing of previous advert requests.
In addition, the security manager 66 of the advert server 50 performs front-end
anti-fraud functions during the step 108 by applying HTML/JavaScript protections
to the advert content, and by creating protected advert code 18 for delivery to a
client device10 in response to the advert request. In particular, as previously
described, the advert server 50 combines the advert content with a client-side
anti-fraud element 30 for delivery in real time to the user environment.

The client device 10 performs some front-end anti-fraud functions too. In
particular, the client device 10 uses the received anti-fraud element 30 to initialise

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
53

and set-up a protected advert session with an initial state of anti-fraud protection
of the advert content (see the step 112 in figure 3 and the initialisation function 32
in figure 4). The protected advert session is established and the anti-fraud user
environment is up before there are any user actions to the advert content.

Just-in-time (JIT) anti-fraud and tracking functions refer to functions
performed in response to user interactions with the browser. For example, JIT
anti-fraud and tracking functions may be performed in response to movement of a
cursor over the advert creative, or clicking on the advert creative.

The client device 10 performs some just-in-time anti-fraud and tracking
functions. In particular, the client device 10 performs data collection and security
enhancements just-in-time when the user makes any action (e.g. mouse
movement and click) in response to currently displayed advert content. This is
best illustrated by the interaction verification step 120 of figure 3 which performs
the various interaction verification functions 38 shown in figure 4. The JIT anti-
fraud functions on client side collect the latest values of essential attributes of the
protected advert code 18 and information on user behaviour and user
environment (such as browser, window and webpage). This JIT data is then
transferred to the advert server 50 for its peer function to process them.

Some just-in-time anti-fraud and tracking functions are also performed by
the advert server 50. In particular, the advert server 50 performs a series of just-
in-time verifications based on JIT data collected from the client environment. This
is best illustrated by the interaction handler 62 of figure 5. The advert server 50
checks JIT data received from the client device 10 against original values of the
corresponding attributes pre-recorded for the current advert content and session,
user behaviour, and user environment. If there is any difference, this may imply
that these attributes have been modified without authorisation, which leads to the
conclusion that there has been possible hijacking of the user environment or
advert session, or possible tampering with the advert content. The advert server
50 also handles URL dynamics and updates JIT data to the anti-fraud database
58 for the current advert session. Because such just-in-time checks are
performed on the server side, it is impossible for malware on the client side to

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
54

understand and attack such verification and handling. Also, doing these just-in-
time checks on the server side can reduce the security computation load from the
client side.

The advert server 50 also performs some back-end anti-fraud functions. In
particular, the advert server 50 combines both this advert session data and
historical data, performs click verification and accordingly updates the anti-fraud
database 58 for future verification.

Protecting the advert code

Various ways in which the advert code 18 may be protected before
delivery from the advert server 50 to the browser 12 will now be described. As
mentioned above, the protection achieves at least one or more of making the
advert code 18 tamper resistant, tamper evident, difficult to read or to extract
information from, unique in the sense that repeated versions of the advert code
generated on request from browsers are distinguishable from each other and can
therefore be identified, and diverse in the sense that repeated versions of the
advert code generated on repeated requests are different so as to make an fraud
attack difficult to replicate.

Some or all of the advert code may also be optimized in various ways, and
the parts which are protected may or may not overlap with or be the same as the
parts which are protected. Some ways in which items of software such as the
presently discussed advert code may be protected and/or optimized are
described in WO2015/150376, for example using intermediate representation
techniques and/or unified security framework technology described therein. This
document is therefore incorporated by reference herein in its entirety for all
purposes, including to illustrate ways in which protection may be provided to the
advert code.

Some or all of the advert code may also or instead be protected and/or
provided using techniques described in WO2015/150391, which document is
incorporated by reference herein in its entirety for all purposes. These documents
illustrate ways in which protection described herein may be provided to the advert

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
55

code or other software elements, for example comprising applying one or more
white-box, node-locking or other protection techniques to at least a portion of the
advert code or other software elements when these are provided in a scripted
language, interpreted language, or in the form of source code.

Protection of the advert code, however so achieved, may be implemented
wholly or in part by the code protection module 56 of figure 5, or may be
implemented partly before the action of the code protection module 56, for
example by storing diversified and/or partly protected anti-fraud elements in the
anti-fraud database 58 of the advert server 50.

The aim of applying protection to the advert code 18 is to protect the
functionality or data processing aspects of the advert code 18, and/or to protect
data used or processed by the advert code 18. This can be achieved by applying
cloaking techniques such as homomorphic data transformation, control flow
transformation, white box cryptography, key hiding, program interlocking and
boundary blending.

In particular, the advert code 18 after processing by the code protection
module 56 will provide the same functionality or data processing as before such
processing — however, this functionality or data processing is typically
implemented in the advert code 18 in a manner such that a compromised client
device 10, a botnet, or a hijacker of an HTML session between an advert server
50 and a client device 10 cannot access or use this functionality or data
processing from the advert code 18 in an unintended or unauthorised manner
(whereas if the client device 10 were provided with the advert code 18 in an
unprotected form, then the a session hijacker or operator of the client device
might have been able to access or use the functionality or data processing in an
unintended or unauthorised manner).

Similarly, the advert code 18, after processing by the code protection
module 56, may store secret information (such as a cryptographic key or an
advert serial code 109) in a protected or obfuscated manner to thereby make it
more difficult (if not impossible) for an attacker to deduce or access that secret
information (whereas if a client device 10 were provided with the advert code 18

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
56

in an unprotected form, then the operator of the client device 10 might have been
able to deduce or access that secret information).

For example:

The advert code 18 may comprise a decision (or a decision block or a
branch point) that is based, at least in part, on one or more items of data to be
processed by the advert code 18. If the advert code 18 were provided to a client
device 10 in an unprotected form, then an attacker may be able to force the client
device 10 to execute so that a path of execution is followed after processing the
decision even though that path of execution were not meant to have been
followed. For example, the decision may comprise testing whether a program
variable B is TRUE or FALSE, and the advert code 18 may be arranged so that, if
the decision identifies that B is TRUE then execution path PT is
followed/executed whereas if the decision identifies that B is FALSE then
execution path PF is followed/executed. In this case, the attacker could (for
example by using a debugger) force the advert code 18 to follow path PF if the
decision identified that B is TRUE and/or force the advert code 18 to follow path
PT if the decision identified that B is FALSE. Therefore, in some embodiments,
the code protection module 56 aims to prevent (or at least make it more difficult)
for the attacker to do this by applying one or more software protection techniques
to the decision within the advert code 18.

The advert code 18 may comprise one or more of a security-related
function; an access-control function; a cryptographic function; and a rights-
management function. Such functions often involve the use of secret data, such
as one or more cryptographic keys or serial codes. The processing may involve
using and/or operating on or with one or more cryptographic keys. If an attacker
were able to identify or determine the secret data, then a security breach has
occurred and control or management of data (such as audio and/or video
content) that is protected by the secret data may be circumvented. Therefore, in
some embodiments, the code protection module 56 aims to prevent (or at least
make it more difficult) for the attacker to identify or determine the one or more

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
57

pieces of secret data by applying one or more software protection techniques to
such functions within the advert code 18.

A “white-box” environment is an execution environment for an item of
software in which an attacker of the item of software is assumed to have full
access to, and visibility of, the data being operated on (including intermediate
values), memory contents and execution/process flow of the item of software.
Moreover, in the white-box environment, the attacker is assumed to be able to
modify the data being operated on, the memory contents and the
execution/process flow of the item of software, for example by using a debugger
—in this way, the attacker can experiment on, and try to manipulate the operation
of, the item of software, with the aim of circumventing initially intended
functionality and/or identifying secret information and/or for other purposes.
Indeed, one may even assume that the attacker is aware of the underlying
algorithm being performed by the item of software. However, the item of software
may need to use secret information (e.g. one or more cryptographic keys or serial
codes), where this information needs to remain hidden from the attacker.
Similarly, it would be desirable to prevent the attacker from modifying the
execution/control flow of the item of software, for example preventing the attacker
forcing the item of software to take one execution path after a decision block
instead of a legitimate execution path. There are numerous techniques, referred
to herein as “white-box obfuscation techniques”, for transforming the advert code
18 so that it is resistant to white-box attacks. Examples of such white-box
obfuscation techniques can be found, in “White-Box Cryptography and an AES
Implementation”, S. Chow et al, Selected Areas in Cryptography, 9th Annual
International Workshop, SAC 2002, Lecture Notes in Computer Science 2595
(2003), p250-270 and “A White-box DES Implementation for DRM Applications”,
S. Chow et al, Digital Rights Management, ACM CCS-9 Workshop, DRM 2002,
Lecture Notes in Computer Science 2696 (2003), p1-15, the entire disclosures of
which are incorporated herein by reference. Additional examples can be found in
US61/055,694 and WO2009/140774, the entire disclosures of which are
incorporated herein by reference. Some white-box obfuscation techniques

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
58

implement data flow obfuscation — see, for example, US7,350,085, US7,397,916,
US6,594,761 and US6,842,862, the entire disclosures of which are incorporated
herein by reference . Some white-box obfuscation techniques implement control
flow obfuscation — see, for example, US6,779,114, US6,594,761 and
US6,842,862 the entire disclosures of which are incorporated herein by
reference. However, it will be appreciated that other white-box obfuscation
techniques exist and that embodiments of the invention may use any white-box
obfuscation techniques.

As another example, it is possible that the advert code 18 may be intended
to be provided (or distributed) to, and used by, a particular client device 10 (or a
particular set of client devices 10) and that it is, therefore, desirable to “lock” the
advert code 18 to the particular client device(s) 10, i.e. to prevent the advert code
18 from executing on another client device 10. Consequently, there are
numerous techniques, referred to herein as “node-locking” protection techniques,
for transforming the advert code 18 so that the protected advert code 18 can
execute on (or be executed by) one or more predetermined/specific client devices
10 but will not execute on other client devices. Examples of such node-locking
techniques can be found in WO2012/126077, the entire disclosure of which are
incorporated herein by reference. However, it will be appreciated that other node-
locking techniques exist and that embodiments of the invention may use any
node-locking techniques.

Digital watermarking is a well-known technology. In particular, digital
watermarking involves modifying an initial digital object to produce a
watermarked digital object. The modifications are made so as to embed or hide
particular data (referred to as payload data) into the initial digital object. The
payload data may, for example, comprise data identifying ownership rights or
other rights information for the digital object. The payload data may identify the
(intended) recipient of the watermarked digital object, in which case the payload
data is referred to as a digital fingerprint — such digital watermarking can be used
to help trace the origin of unauthorised copies of the digital object. Digital
watermarking can be applied to items of software. Examples of such software

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
59

watermarking techniques can be found in US7,395,433, the entire disclosure of
which are incorporated herein by reference. However, it will be appreciated that
other software watermarking techniques exist and that embodiments of the
invention may use any software watermarking techniques.

It may be desirable to provide different versions of the advert code 18 to
different client devices 10. The different versions of the advert code 18 provide
the different client devices 10 with the same functionality — however, the different
versions of the protected advert code 18 are programmed or implemented
differently. This helps limit the impact of an attacker successfully attacking the
protected advert code 18. In particular, if an attacker successfully attacks his
version of the protected advert code 18, then that attack (or data, such as
cryptographic keys, discovered or accessed by that attack) may not be suitable
for use with different versions of the protected advert code 18. Consequently,
there are numerous techniques, referred to herein as “diversity” techniques, for
transforming the advert code 18 so that different, protected versions of the advert
code 18 are generated (i.e. so that “diversity” is introduced). Examples of such
diversity techniques can be found in WO2011/120123, the entire disclosure of
which are incorporated herein by reference. However, it will be appreciated that
other diversity techniques exist and that embodiments of the invention may use
any diversity techniques. Furthermore, as described above in connection with
figure 5, such diversity techniques may be implemented in advance to provide a
set of diversified copies of whole or parts of the advert code 18 (for example
diversified copies of the anti-fraud element 30 as shown stored in anti-fraud
database 58), before further protection techniques are applied for example by the
code protection module 56.

The above-mentioned white-box obfuscation techniques, node-locking
techniques, software watermarking techniques and diversity techniques are
examples of software protection techniques. It will be appreciated that there are
other methods of applying protection to an advert code 18. Thus, the expression
"protection” as used herein shall be taken to mean any method of applying
protection to an advert code 18 or other piece of software (with the aim of

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
60

thwarting attacks by an attacker, or at least making it more difficult for an attacker
to be successful with his attacks), such as any one of the above-mentioned
white-box obfuscation techniques and/or any one of the above-mentioned node-
locking techniques and/or any one of the above-mentioned software
watermarking techniques and/or any one of the above-mentioned diversity
techniques.

There are numerous ways in which the code protection module 56 and/or
other elements may implement the above-mentioned software protection
techniques within the advert code 18. For example, to protect the advert code 18,
the code protection module 56 may modify one or more portions of code within
the advert code 18 and/or may add or introduce one or more new portions of
code into the advert code 18. The actual way in which these modifications are
made or the actual way in which the new portions of code are written can, of
course, vary — there are, after all, numerous ways of writing software to achieve

the same functionality.

Browser verification using DRM

Referring now to figure 6 there are shown further aspects of ways in which
online adverts can be delivered to a browser 12 executing on a client device 10 in
a system such as that shown in figure 1. These further techniques can
beneficially be used in combination with the other aspects already described
above. As in figure 2, advert request code 16 is included in a web document 14
downloaded from a publisher server 80. However, in this case the advert request
code 16 includes extra functionality to assist the advert server 50 or another
external party in identifying the browser 12 executing the advert request code,
and/or the client device 10 on which the browser is executing.

In particular, the advert request code 16 of figure 6 includes a content play
function 210 which is arranged to send a content request 212 to a remote server
for a piece of content 214 such as a video fragment or still image, and to replay
the content at the browser 12 when received. The content request 212 may, for
example, be an HTTP request made to a remote media server 220. The media

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
61

server 220 could form a part of the advert server 50 of figure 2, but could instead
be a separate entity.

The media server 220 obtains the requested content, for example from a
media database 222, and returns the requested content 214 to the browser 12, in
a DRM (digital rights management) protected form. This DRM protection may be
implemented in a variety of ways familiar to the skilled person, but may typically
involve the media server 220 negotiating DRM rights protection for the content
with a collocated or separate DRM server 224. Typically, the returned content
214 will be transmitted in an encrypted or otherwise obfuscated form, requiring
one or more keys under the DRM scheme in order for the content to be replayed
by the browser 12.

The browser 12 includes or has access to a browser DRM function 230
which enables the browser to replay the DRM protected content, for example by
negotiating access to the one or more keys from the DRM server 224. The
content 214 is then replayed by the browser 12 on a display 15 of the client
device 10.

The content 214 delivered in a DRM protected form to the browser 12
further includes an identifier 216 which can be extracted from the content when
replayed on the display 15. The identifier 216 could, for example, be provided to
the media server for incorporation in the content 214 by the security manager 66
of the advert server 50 discussed in connection with figure 5.

The advert request code 16 then further includes a request generator 218
which recovers the identifier 216 from the content 214 as displayed by the
browser 12 on a display 15 of the client device, and incorporates the identifier
216 or other relevant data derived from the identifier 216 into an advert request
105 sent to the request handler 60 of the advert server 50 as already described
above. The request handler 60 also has access to the identifier 216 or data
derived form the identifier, for example by communication from the security
manager 66, and so is able to determine or verify that the advert request 105 was
indeed generated by a particular browser 12. Thus, this process enables the

advert server 50 to perform browser verification.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
62

Optionally depending on other factors, such as whether or not the request
handler 60 of figure 5 determines that the advert request is to be fulfilled, advert
code 18 such as that described elsewhere herein may then be transmitted to the
browser 12 for incorporation and execution within the current web document 14.

The request generator 218 need not include the identifier in the advert
request 105 in plain text or in a readable form, but could obfuscate the identifier
in various ways, for example by encryption, hashing, etc.. The identifier 216 could
be incorporated in the content 214 in various ways, for example by means of a
watermark, or specific pixels distributed in a predetermined way in time and/or
space, and could be recovered from the displayed content by the request
generator 218 in various ways for example by reading particular pixel values from
a display buffer of the client device and hashing together values of those pixels to
regenerate the identifier 216 or data derived from the identifier.

It may be desirable for the display of the content 214 to be carried out on
the browser in a manner which does not interfere with the user experience. For
example, the content could be displayed briefly in a small and relatively
unimportant part of the display 15, or could be displayed briefly within the
viewport or other display area in which a subsequent advert is to be displayed
shortly thereafter.

The identifier 216 could be unique to a particular client device, or to a
particular group of client devices. It can be seen that by using the scheme of
figure 6, return of the correct identifier 216 or related data makes use of the
secure nature of the browser DRM function 230 and its secure communication
with the DRM server 222. The scheme may be further secured by obfuscated
inclusion of the identifier 216 in the content, for example through watermarking.
By reading the identifier 216 or related data from the screen buffer or another low
level display aspect of the client device 10, the scheme also protects against
advert fraud by requiring the content to actually be displayed on the client device
10 before the identifier 216 can be recovered and used to form a valid advert
request 105. Fraudulent advert requests could be identified by noting that advert
requests including the same identifier 216 were apparently being made a large

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
63

number of times from a particular client device, for example as identified by the IP
address and/or DRM identity of the device.

In figure 6 the media server 220, the media database 222 and the DRM
server 222 are illustrated as being located within the advert server 50, but of
course they could be separately implemented in a common or distant locations.
Similarly, the scheme of figure 6 has been described as making use of the
security manager 66 and request handler 60 already discussed above in
connection with figure 5 and elsewhere, but could of course be implemented in

other contexts and using different server elements.

Q/S level fraud detection

Ad networks mostly use server-based techniques to detect advertising
frauds as they do not have enough control over the client machines. They gather
information from different sources about the user, the machine and the behaviour
of the user. Then, they apply machine learning or pattern recognition techniques
to identify suspicious impressions or clicks. However, botnets that control real
PCs avoid detection by imitating human behaviour and limiting the number of
click per day per bot. If a botnet controls thousands of computers, then it
manages to click thousands of adverts even if one bot clicks only one advert per
day. Novel approaches are presented herein to address this problem from the
client-side. The conjecture is that a better performance can be achieved if we
leverage the information that is only available to the operating system of a client
machine.

In one example, we capture HTTP packets from all the running processes
for a specific time-frame each day along with mouse events from all hardware
mouse devices. In order to identify advert clicks from the captured raw HTTP
packets the following may be done in this example. We first construct HTTP
request trees to represent a causal relationship between different HTTP requests
and responses. Then, we create features from HTTP headers, query parameters
and properties of the subtree of a node to classify advert request nodes using
machine learning classification. We may also use the decision of a popular advert

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
64

block filter as one of our features. Finally, based on our observations, we create
rules to identify advert clicks in the request tree. We also populate the tree with
real mouse click information. We detect all fraudulent processes that
programmatically click on adverts as they cannot generate real mouse click. They
either make a new HTTP request to simulate click on an advert or generate
software simulated clicks which is distinguishable from real mouse clicks. A
potential limitation though, is that our approach does not detect fraudulent
processes if they somehow interact with a real human using the mouse. In this
particular case, the same process is shared by the malware and the human and
the process receives both real and fraudulent clicks.

Over the last decade, researchers from big companies like Google and
Yahoo! are doing much work to detect click fraud. Since advertising revenue is
the main source of income of these companies and many independent
publishers, click fraud became a major threat to the survival of free content on the
web. Advertisers also have strong interest to combat all sorts of advertising
frauds that are draining their money. Examples of techniques used in malicious
clickbots are set out in the “Background of the invention”. One major limitation of
all these clickbots is, they either generate software simulated mouse clicks or
generate HTTP request to the advert link without any mouse click. Our approach
uses this limitation of the bots to identify them.

Examples of click fraud detection are set out in the “Background of the
invention”. In the field of click fraud, most research focuses on the detection from
the server-side. In industry, either the advert networks or the advertisers use
global advertising web traffic and their own proprietary technology to detect
fraudulent clicks. Most of these techniques involve data mining or pattern
recognition which are not very effective against large-scale low-noise botnets that
imitate human browsing behaviour. In our understanding, click fraud is a client-
side behaviour. Therefore, our approach focuses on client-side click fraud
detection.

There is provided a method of operating a client device, the method

comprising: monitoring advertising page visits by running processes and

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
65

identifying whether said visits are preceded by real mouse clicks. In this way a
process attempting to make automated clicks on online advertisements may be
detected. Typically such a process will then be reported to the user and/or
marked for further action. As shown in figure 7, in one example HTTP packets
and mouse events (such as clicks) are extracted per process. Based on the
HTTP packets and/or mouse events create respective HTTP request tree is
created for each process. The request trees may then be analysed to identify
advert requests and/or advert clicks. Based on the analysis advert clicks may
then be identified as fraudulent if they are not preceded by a mouse click.

In the description that follows the term URL is used for ease of discussion.
The skilled person would appreciate, however that when a URL is referred to, in
practice this may be a URI or combination of one or more URLs and/or one or
more URls.

The traffic across a network interface is monitored. In particular, requests,
such as HTTP requests, are captured (or logged or otherwise inspected).
Typically, said monitoring comprises capturing (or recording) packets from the
network interface. These packets are usually all (or substantially all) of the HTTP
packets from the network interface. An HTTP packet usually comprises an HTTP
request or an HTTP response. Whilst the discussion below relates to HTTP
requests it will be appreciated that a similar approach could be used with HTTP
responses or a combination of HTTP requests and HTTP responses. There are
many ways to identify packets as HTTP packets, such as by using a tcp port
filter. For example, the port filter might use ports 80 and or 8080, which are the
standard ports for HTTP traffic. In this way a port filter may enable the capture of
only those packets that have a specified port as that packet’s destination port.
Said capturing may be performed using a packet capture library, such as libcap
(described further in “The libpcap project,” http://sourceforge.net/projects/libpcap/,
accessed: 2015-02-06)

Each HTTP request has a respective source port. The respective source
port is typically the port of the client device from which the packet originates (or
was sent). For each captured HTTP request, the respective process associated

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
66

with said packet is identified. The respective process is typically the process that
sent the packet. Typically, for an HTTP request the respective process is
identified based on the source port of the request. In particular, the operating
system may be queried, substantially at the time of capturing the request, to
identify the process using the source port. It will be appreciated that there are
many ways to query the operating system to identify such a process. For
example, in a Linux (or Unix-like) system the the “/proc” file system can be
interrogated to find out the process which is currently using the source port. It will
also be appreciated that the query typically must be carried out during said
monitoring of the network interface. Usually processes use random ports for
making HTTP requests and same port may be used by different processes at
different times.

Additionally other fields from the HTTP request (and/or any respective
response) may be recorded. To find the respective response of a request, the
respective source port of the request may be matched with the destination port of
the response. From the request the other fields recorded may comprise any
combination of: timestamp, source IP, source port, destination IP, destination
port, referrer, the host URL, the request URL, and so on. From the response the
other fields recorded may comprise any combination of: location, content type,
content length, content encoding, http version, status code, reason phrase, and
so on. This information may be stored in a database (such as a SQLite
database). Typically, information is not extracted from the body of the requests,
and the packets themselves are not saved as to do so may require gigabytes of
storage space.

Optionally, the HTTP requests may be further processed based on the
content requested. Such further processing may be based on any one of or any
combination of: request URL, host URL, timestamp, and so forth. Typically, the
further processing comprises identifying HTTP requests for advert related
content. In particular, a set of rules for identifying HTTP requests for advert
related content may be used. For example, advert blocking filters may be used to
identify HTTP requests for advert related content. Such advert blocking filters are

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
67

usually used in web browsers to prevent adverts being downloaded and/or
displayed and are well known in the art, An example advert block filter that may
be used is EasyList (“Easylist advert block filter,”

https://easylist.adblockplus.org/en/, accessed: 2015-02-06). Easylist is a popular

advert block filter maintained by the online community and used in advert blocker
add-ons of web browsers. It can filter advert related content via any of: URL
filters, DOM element filters, and third-party advertisement domain filters.

Examples of the further processing steps above are shown in figure 8 use
the Easylist filter which contains a total of 45423 rules. In these example steps a
respective URL (for example the host URL and/or the request URL) from each
HTTP request is checked against these rules. A decision as to whether the URL
is blocked or not may then be saved in a database. These decisions may then be
used to determine whether the request is classified as a request for advert
related content as described in more detail shortly below.

The HTTP requests are logically grouped together. In particular, an HTTP
request tree may be generated using the HTTP requests. Typically, a respective
request tree is generated for each process. In this way it will be understood that a
request tree usually comprises some or all of the HTTP requests for a given
process.

Multiple HTTP requests may be generated when a web browser loads a
given web page. For example, a browser loading a web page may fetch many
other static resources, such as CSS, JavaScript or images, to embed in the web
page. Each of these static resources may be fetched using a respective HTTP
request. It will be appreciated that the respective HTTP requests for each static
resource corresponding to a given web page may be grouped with the HTTP
request for the given web page. One such example of grouping HTTP requests is
presented in Crussel et al. (J. Crussell, R. Stevens, and H. Chen, “Madfraud:
investigating ad fraud in android applications,” in Proceedings of the 12th annual
international conference on Mobile systems, applications, and services. ACM,
2014, pp. 123—-134). In this case, we can group the HTTP requests using the

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
68

HTTP referrer header to form a tree of requests where the request to the HTML
page is the root and requests to the static resources are the children.

By constructing a request tree corresponding to a given scenario of
browsing, then it is easier to analyse and automatically detect advert clicks.
Typically, each HTTP request (and/or the corresponding response) is
represented as a single node in the request tree. A request tree may comprise a
plurality of nodes (each node usually corresponding to a single HTTP request
and/or the corresponding HTTP responses) and a plurality of connections (or
edges or links) between nodes. Each connection usually connects two nodes. A
node may have more than one connection to it. Nodes may be connected based
on pre-determined criteria. For example, two nodes may be connected if:

1) The HTTP request of the latter node contains the request referrer field
set to the host of the HTTP request of the former node; and/or

2) The HTTP request of the former node contains a location header along
with a redirection status code to redirect the client to the latter node (such as to a
URL of the HTTP request to the latter node); and/or

3) The HTTP request of the latter node contains an identifier (such as a
client ID) of the former node in a URL of the HTTP request of the latter node.

Additionally, in the case of (1) above the former node may be considered
as the parent of the latter node. As such, the connection may be marked as a
“referrer” (e.g. see figure 9). In the case of (2) above the former node may be
considered as the parent of the redirected node. As such, the connection may be
marked as a “location” (e.g. see figure 9). In the case of (3) above, the former
node may be considered as the parent node of the latter node. As such, the
connection may be marked as a “client ID”. In this case, the client ID of a
publisher (typically assigned by the advert network at the time of registration)
may be used.

A given HTTP request tree may be processed to identify advert visits (or
advert clicks or advert impressions). In particular, nodes corresponding to
requests for advert related content may be identified (or classified). This is done

using machine learning classification (or a machine learning algorithm). Machine

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
69

learning typically involves the automatic use of past observations to make
accurate predictions and would be well known to the skilled person. As such
machine learning itself is not discussed any further herein. The classification may
be based on one or more common characteristics of requests for advert related
content. For example, requests for advert related content may comprise large
number of query parameters. Additionally, or alternatively, responses
corresponding to said requests normally comprise image or JavaScript content.
Typically, the features (or data) extracted from the requests include any of: query
parameters HTTP headers of the request (and/or the response); the constructed
HTTP request trees, and so forth. The machine learning classification may then
be based on any of these features. Optionally, so as to increase the accuracy of
the classification decisions from the further processing, described previously,
may be used.

It will be appreciated that there are many kinds of advert provider in the
web space and it would be very difficult to identify all kinds of advert requests
entirely by hard coded rules. The use of machine learning classification to
automatically identify advert requests helps address this problem and often
results in more accurate identification. Typically, web advertising links show much
more diversification over time. As such, machine learning allows the classifiers to
be retrained automatically. Typically, a machine learning library is used to
implement machine learning classification. One such machine learning library is
the weka machine learning library (M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and |. H. Witten, “The weka data mining software: an update,” in
ACM SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10-18, 2009).

It will be appreciated that the classification problem, outlined above, may
be considered to be a binary classification problem on URLs. Typically, positive
results are advert related and negative results are not advert related. In other
words, advert related URLs may be considered requests to serve adverts to an
advert network and negative examples may be considered all other requests (i.e.
requests that are not related to serving ads).

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
70

As outlined above, the machine learning classification may be based on
features related to the HTTP requests. These may include any of: characteristics
of the structure of the URL, other URL (or URLS) present in the URL, and other
page properties. Typically, features are encoded as either binary or integer
values. This enables all features to be given equal weight at training time.
Examples of such features are described in more detail below. It will be
appreciated that embodiments of the invention may use any of, or any
combination of, such features.

Features related to HTTP packet headers. Features in this set are
typically extracted from the captured packet headers. These features can be
based on any of: destination IP, content type, content length, status code,
location URL, etc. For example, based on the location URL, the number of
subdomains in the URL may be calculated as a feature. Additionally, or
alternatively, the length (such as the number of characters) of the URL may be
calculated as a feature. Features may be calculated from the host and/or request
URL. These feature may include any of: the length of the host and/or request
URL, number of subdomains in the host and/or request URL, whether a referrer
is present or not, the length of the referrer URL, the number of subdomains in
referrer URL, etc.

Features related to query parameters. A typical advert related HTTP
request comprises a large number of query parameters. These query parameters
are often used to relay information about the particular client machine and
browser to find a matching advert for the request. Examples of features may
include any of number of query parameters, average length of query parameters,
the presence of pre-determined query parameters, etc.

Features related to HTTP request trees. Features may be calculated
based on an HTTP request tree itself. Additionally, or alternatively, features may
be calculated based on sub-trees of the HTTP request tree. A sub tree may be a
part of the tree rooted at a given node (typically corresponding to a parent HTTP
request). For example, features may include any of: the height of the tree or
subtree (such as the height rooted at each node), the number of blocked URLs in

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
71

the tree or subtree, the number of image and/or JavaScript requests in the tree or
subtree, the number of different domains in the tree or subtree, etc.

The machine learning classification uses a classification model. The
classification model is typically implemented using a machine learning library,
such as that described previously. Five example classification models are
described in more detail below, but it will be appreciated that the invention is not
limited to any of these models. In these examples a binary output ids given for all
instances. This can be thought of as returning either “ad” (i.e. the request is
related to advert content) or “notad” (i.e. the request is not related to advert
content) for every input instance. Of course it will be appreciated that other
models may instead provide relative likelihoods, for example using percentages,
and so on.

Naive Bayes: Naive Bayes is a simple probabilistic classifier which relies
on Bayes Theorem with the assumption of independence between individual
features of an example. Naive Bayes has been shown to be effective on low-
dimensional data in certain situations (O. Aydemir, M. Ozturk, and T. Kayikcioglu,
“Performance evaluation of five classification algorithms in low-dimensional
feature vectors extracted from eeg signals,” in Proceedings of the 34th
International Conference on Telecommunications and Signal Processing (TSP).
IEEE, 2011, pp. 403—407). This model may be implemented using weka as
outlined above. Typically, a Gaussian distribution is used for the likelihood of
each feature P(x;| y). This may be particularly advantageous due to the numeric
nature of the features. The class is computed by the following equation:

y = arg mary P()ILL P(xily)

For Naive Bayes classifier, other parameters are usually left at the default
values.

Support Vector Machines: Support Vector Machines or SVMs are non-
probabilistic classifiers that typically work in high-dimensional feature spaces.
SVMs for binary classification are trained to construct hyperplanes with the

widest possible margins to the nearest training examples. The decision rule

6387447-2

10

15

20

25

WO 2016/156513 PCT/EP2016/057109

72

during testing is made by determining which side of the hyperplane the point lies

on and is given by the sign of the result of the following formula:

ke
> viaiK (2, 2)
=l

Here, K(x;, x) is the kernel function that implicitly maps the feature vectors
into higher-dimensional space. x; refers to each example in the training set, y; to
each corresponding class and i to the weight of each training example.

This model may also be implemented using weka. Typically, Sequential
Minimal Optimizaiton (SMO) is used with polykernel as the kernel function. The
penalty parameter C may take the value of 1.0.

k-Nearest Neighbours: k-Nearest Neighbours (sometimes referred to as
iBK) is a popular non-parametric estimator for classification problems and can be
efficient on low-dimensional data. The decision function is computed implicitly by
taking the majority vote of a data points k-nearest neighbours classes. The kNN
classifier may use the distance-weighted k-nearest neighbours rule. Usually
weights are assigned to the k-nearest points proportional to the inverse of the
Euclidian distance between each neighbour and the point in question. In some

examples, the weight w; of each point x; in the vote may be given by:

1
Wi 00—
"z,)
, or
1

HORTER

Different values of k that may be include, k=2 and k=5 (often denoted in the
evaluation as 2kNN and 5kNN). This model may be implemented using weka.
C4.5: C4.5is an algorithm developed by Quinlan (J. R. Quinlan, C4. 5:
programs for machine learning. Elsevier, 2014) that builds decision trees from a
set of training data using the concept of information entropy. A leaner may be

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
73

constructed using J48 in weka which is an implementation of C4.5. For an
implementation using weka the default values are sufficient in this classifier.

Random Forest: The random forest (RF) classifier (L. Breiman, “Random
forests,” in Journal of Machine Learning, vol. 45, no. 1, pp. 5-32, 2001) utilizes
bagging and the “random subspace method” to construct randomized decision
trees. The outputs of ensembles of these randomized, unpruned decision trees
are then typically combined. A maximum depth value of 10 may be used.

Typically, when a user clicks on an advert, the browser generates a HTTP
request to the advert network and the browser is redirected to the advertiser’s
page. The advert network may also record the event. The URL of the advertiser’s
page is typically provided in the response (for example, as part of the location
header). This whole process may be thought of as an advert visit, initiated by an
advert click. In this case this is a real advert click as the user initiated the visit.

Advert clicks (or advert visits) are identified in a request tree. Typically, a
node is identified as an advert click based on the classification of the HTTP
request corresponding to the node, as set out above. In particular, criteria are
used to identify nodes as advert clicks in the request tree. For example, a node
may be marked as an advert click if the node is a child of an advert request, the
edge is marked as location, and it is the root of a subtree whose nodes
represents a separate website. Additionally, or alternatively, a node may be
marked as an advert click where the node is a root of a subtree (or subtrees)
representing visits of separate websites. In particular, it may be considered that if
the parent of such a node contains a pre-specified number of advert request
nodes, then the node is an advert click. Such criteria may be especially useful
where there is no location header.

In some cases it may be assumed that the parent node contains a number
of adverts and the subtree is formed because of the user click on one of the
adverts. Typically such nodes use the former pages as referrer. Both scenarios
are illustrated in figure 9. The criteria may be adjusted to try to maximize the
recall of advert clicks. Recall may be calculated by the following formula:

6387447-2

10

15

20

25

WO 2016/156513 PCT/EP2016/057109
74

true positives

recall = — :
true positives + false negatives

This allows the detection of as many real advert clicks as possible so as to
find fraudulent clicks.

Hardware mouse events are logged/monitored during the monitoring of the
network interface. In particular, a timestamp is typically recorded for each
hardware mouse click. Such logging is usually performed on a per process basis.
The logging of the hardware mouse events may comprise executing a separate
thread for each mouse device present in the system.

In order to perform the logging per process, the active process on the
system for each hardware mouse event is typically recorded. For example, at the
time of recording a mouse event, the top window ID of the GUI system is
determined. The process IDs associated with said window (and, optionally, its
parent and/or child windows) is recorded. This may be recorded as “event— pid1,
pid2, pid3, ...—time” in a database.

The above discussion refers to hardware mouse events which may be
thought of as events triggered by a physical device in communication with the
system. Usually, events from such devices trigger interrupts on the system via
their device drivers. It will be appreciated that the above discussion is equally
applicable to virtual devices, such as where interrupts are triggered by virtual
device drivers. In particular, the invention may be used with systems running on
virtual machines where “hardware” devices seen by the system correspond to
virtual devices presented to the “hardware” interface by the host system. In other
words, the “hardware” events outlined above may be thought of as any device
level event, rather than say an API level event of the operating system of the
system. These APl level events are typically the mechanism by which “ghost”
events, or fraudulent clicks, are triggered.

Based on the advert clicks identified in a request tree the process
corresponding to said request tree may be marked as fraudulent or non-
fraudulent. Typically, if at least one click which is real, then we consider the

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
75

process as non-fraudulent. We assume that the process is communicating with
real user and fraudulent clicks are false positives.

Individual advert clicks (or impressions) are classified as based on the
hardware mouse clicks logged previously. In particular, the advert clicks in a
request tree (or trees) and the hardware mouse events for the corresponding
process are compared (or mapped). Such a comparison allows it to be
determined if a process clicked on an advert without a corresponding hardware
mouse event (or click). In this way it may be determined that the process used a
software simulated click or independent HTTP request (without a mouse click).
For example, if the HTTP request trees of a process contain nodes detected as
advert click, however they do not receive any hardware mouse click, then the
click is marked as fraudulent. In this way it will be appreciated that the mapping is
typically one-to-one, however there may be advert clicks which do not map to any
hardware mouse click. Such advert clicks are considered fraudulent.

As describe above, typically if all the detected advert clicks are fraudulent
for a given process, then the process is marked as fraudulent. On the other hand,
if some of the mouse clicks are real, then the process is marked as non-
fraudulent. However, it will be appreciated that this behaviour may be modified to
alter the false positive/false negative rate. In particular, in some examples, if the
number real mouse clicks exceed a certain threshold the process may be marked
as non-fraudulent. Equally, the marking of the process may be based upon a ratio
of real to fraudulent clicks, and so forth.

It will be appreciated that information regarding fraudulent processes may
be transmitted to the advertising network. For example, once a process has been
marked as fraudulent then subsequent advertising visits (or impressions) related
to that process may be discarded by the advertising network. Additionally, or
alternatively, an advertising network may disregard all (or some) previous
impressions related to that process. In some cases an advertising network may
extend any of these measures to include instances of the same and/or processes

running on different client devices.

6387447-2

10

15

20

25

WO 2016/156513 PCT/EP2016/057109
76

Example implementations and testing

Described below are various example implementations of the systems and
methods outlined above. Accompanying these example implementations is test
data derived from testing performed on these example implementations. It will be
appreciated that these examples below and the accompanying testing is merely
provided to aid understanding of the invention and to highlight some of the
advantages it may provide. The skilled person would recognise that these
examples are not in any way limiting to the invention described herein and the
presence and/or lack of specific features from these examples does not in any
way limit how the skilled person may work the invention.

To evaluate the average classification accuracy of each classifier, we use
k-fold cross validation (CV) with k=3. By using k-fold CV, we ensure that the
classifier is trained on every example at one point as opposed to random splits
where some examples might be excluded all together. In comparing the overall
effectiveness of the classifiers, we look at the overall average accuracy on the
testing data as well as the precision and false positive rate. The formulas to
calculate precision and false positive rate are given below:

true positives

precigion = o —
true positives + false positives

false positives

false positive rate = — -
false positives + true negatives

In our case, we like to minimize false positive rate and maximize the
overall positive classification accuracy.

We select 25 high ranked websites containing advertisements for our
experiments. We use firefox developer edition and four bots to browse these
websites and generate a total of 7708 HTTP requests. The table below lists the
category of the websites and average global rank of the websites in

www.alexa.com:

6387447-2

10

15

20

WO 2016/156513 PCT/EP2016/057109

77
Lategory # of pages | Avg plobal rank
articles] B45
auto 1 i
tlog E} L19.6667
compuler ganes i Gid1l
education i 534
T e it 5 595
heatih i 326l
WS 2 6325
SCIEBCE 4 L3
wchnology i 3255
travel i} 1447
WEaner z iz
Tl 0%

TABLE I. Category and Average rank of websites in
Alexa.com

A. Execution of our approach

We execute our approach as a service of the operating system in client
machine. The OS select a time frame each day when it detects heavy network
use and run our service to capture the HTTP requests. Then, in its idle time, it
analyses the requests and alarms the user accordingly. In our experiment, it took
429.336 seconds to analyse 7708 HTTP requests in a Pentium Core i7-4770
3.4GHz machine with 20GB of RAM and UBUNTU 14.04 64-bit operating system.

B. Click bots

We use four kinds of bots to generate fraudulent traffic. Two of them use
browser-driver to control two browsers (Google Chrome and PhantomdJS).
Browser drivers are application programming interfaces (API) that can
communicate with a browser and can do all the interactions programmatically.
We use selenium browser driver available from “Selenium: Browser automation,”
http://www.seleniumhq.org/, accessed: 2015-01-09. Google chrome creates
visible window and thus noticeable by the user. So, in case of google chrome, we
make the window hidden. PhantomdS is a headless browser and does not create
any human viewable window. The third one is a firefox extension that visits
instructed webpages and click on links. The fourth bot is an independent

6387447-2

10

15

20

WO 2016/156513 PCT/EP2016/057109
78

program, which generates HTTP traffic and parses the response. We use web

browser control to implement the feature.

Number of HLLP request | NGmber o) o0 fguest | Number of ad telten goman
TI08 S it

TABLE 1II: Ground truth for classifiers

In all the bots, we supply website addresses and XPaths of the web
elements containing ads. XPath is a query language for selecting nodes in a XML
document. The bots first visit the websites given to them and randomly scroll up
and down. Then they generate clicks on the web elements containing adverts
which redirect the browser to the advertisers’ pages. Occasionally our bots
generate multiple clicks on the same page, if multiple xpaths are supplied to

them.

C. Ground truth for advert request classifier

To build the ground truth dataset for identifying advert requests, we visit all
the websites and inspect the advert elements by using firebug extension of
firefox. We, then manually classify 809 advert requests from 7708 HTTP requests
generated by our bots and firefox browser. We do not classify tracking and
conversion requests to the advert networks and advertisers as they are not
requests for serving ads. Total number of advert related domain is 13. We

present the statistics in Table Il.

Classtlication Algorithm Avg, Acowrscy %0 Preciion (90 FP Bawe ()

WarveHayes e 1 U A%
VM 06,85 108 i
45 ey 500 {150
kNN .77 95.64 0.52
SkIWNN 49,29 9564 .52
RandomPorest 89,57 G743 030

TABLE II: Performance of different machine leamning classi-
fiers to classify ad requests over 3-fold cross-validation. They
classify a web request as either “ad” or “notad”. We consider
the instances from the class “ad” as positive.

6387447-2

10

15

20

WO 2016/156513 PCT/EP2016/057109
79

D. Identifying advert requests

After we build the training dataset, we use our classifiers to classify them.
Table 11l shows the comparison of the average accuracy, precision and false
positive rate of various classification algorithms. In figure 10, we present the
accuracy of the positive class (recall) of each classifier. Other than Naive Bayes
and SVM, all other algorithms perform acceptably. In our experiment,
RandomForest classifier do the best job in classifying advert requests (highest
recall and lowest false positive rate). In fact, SVM and k-neighbours do poorly on
categorical (i.e., non-Euclidean) feature space. We believe that for our feature
space decision trees would be an appropriate choice as we include categorical
features. Nonetheless, the acceptable performance of the classification
algorithms come from the choice of features and the use of the decision of an
advert blocker. In conclusion, we decide to use RandomForest as our
classification algorithm. The RandomForest classifier creates a forest of decision
trees by randomly selecting subsets of the feature space and training a decision
tree using each subset. The most predictive decision trees are weighted
appropriately, and in turn indicate which features are the most predictive.

To compare, in Table IV and Table V, we present the confusion matrix of
our RandomForest classifier and from a similar work done by Crussell et. al.
(“Madfraud: investigating ad fraud in android applications,” in Proceedings of the
12th annual international conference on Mobile systems, applications, and
services. ACM, 2014, pp. 123—134). They analysed HTTP requests from Android

apps and used RandomForest classifier to find advert requests.

6387447-2

WO 2016/156513 PCT/EP2016/057109
80

TNUTAD Al Recall
ML BRI 20 Ll

AD 17 792 W00
Precison G480 90 T

TABLE 1V: Confusion matrix of our RandomForest classifier,
computed using 3-fold cross validation. The class-weighted
accuracy is 98.8%

ARG NARQ

Y {0 75 i1
MARD L] 11475
Precasion | 73709 | W99

TABLE V: Confusion matrix of RandomForest classifier
from [28]. They analyzed HTTP requests from Android apps.
the class-weighted accuracy is 85.9%. Here, ARQ is the
positive class of ad requests and NARQ is the negative class
of not ad requests.

As we can clearly see, our algorithm outperforms their with a large margin
in detecting positive instances. We achieve 97.9% recall and 99.7% precision for
advert request class, while they reported 71.8% recall and 75.7% precision for
the same class. We believe the use of an advert block filter may have impacted
our performance positively. Table VI shows some example of the ad-related
domains present in detected advert requests.

6387447-2

10

15

WO 2016/156513

81

PCT/EP2016/057109

pubads.paoublechick net

seleet brealime com

OSSO COnn

DT, CET

pagendd googlesyndication oo

sidx. g doublecthick.net

goopteads. g doublechekonet

woge. insighlexpressal. com

WRW, 008 eadse IVIORS.Com

i noatads oot

celpvery. s amvaw tichads com nasibad doublechick ool
VORET EVETEATCOTn CHS. TV 5 CTHEn.om
bid.g. doablechek net asset pagelar et

CHCks SYeIe T com rlace advertismg. oom
adelick g doublechek net assel pagelair.com

Crap a0 sl e rhising. oo

us-ails. openx.aet

delvery.swid swilchads com

& COHECTVE-THO0 L T

ad.doublechokonet

190 indolinks.com

extmap. ubace. advertising.oom edni.cpmstar com
THPCOR-CTIL P Veruila oom LS8V, US.CTHE0, COm
dbovrmw by Pwhoes.cloudiontoet | speed pomirolloom

st noatads com

www, gooele-analybcs.com

puxe L adsaleproiecled.oom

www.ersckle com

googleadsd.g.doublechichnet acaityplaticrm.oom
adtarm. mediaplex. com CHLEV.HS.CTHE0.00T
wmg medples.coamn aanlodn.oom
ang-oin, mediap e X.oom at.atwola.com

g, 24 Trealmediacom

cr.gdoublechick.net

log.adaplv.adverising oom

whm Pwmrmnet

TABLE VI: Some examples of domains found in detected ad

requests
E. Finding advert clicks in request tree

Finding advert click is the trickiest part in our approach. In figure 11, we

report the result of our detection. We detect 24 advert clicks among a total of 28.
Our system could not detect 4 advert clicks because those requests do not
contain a referrer or location header in the HTTP packet and they are likely
generated by dynamic javascript code with those information hidden in different
url parameters. Here, we have a total 69 false positives. However, in this step,
the most important thing is to detect real advert clicks. False positives do not
impact the result of the next step of detecting fraudulent processes. We only fail
in the event of all the detected advert clicks are false positives but there exist
some real advert clicks. Fortunately, we find no such case in our experiment.
Crussell et. al. did not report the performance of their advert click detection, so
we are unable to compare in this case. Table VIl shows the recall and precision
of our advert click detection system.

6387447-2

10

15

20

25

WO 2016/156513 PCT/EP2016/057109
82

Ferall Precuion
§ Ad ok delection AN AR

TABLE VII: Evaluation of ad click detection

F. Finding fraudulent processes

We successfully detect all our bots as fraudulent. We find all the advert
clicks are detected as fraudulent in them. In contrast, we mark the firefox
developer edition non-fraudulent because we find 26.98% of the clicks are
fraudulent. Since it contains 73.02% real advert clicks, it must have interacted
with a real human. We assume that the fraudulent advert clicks are the result of
the false positives that are not preceded by any real mouse click.

G. False positive advert clicks and improvement

We have a large number of false fraudulent clicks in our result. We begin
to investigate the reason and observe that websites load contents from different
domain which is falsely detected as advert clicks in our system. We also observe
that many requests to the advert networks, web analytics, and web tracking sites
generate further communications with them and those later requests use the first
one as referrer, which is falsely detected as advert click by the second rule of our
detection algorithm. Unfortunately, we have to use our second rule to improve the
recall of our system as detecting real clicks are very important for identifying
fraudulent processes. Figure 12 gives some examples of false advert clicks. We
can see that, some of the requests are made to static resources, such as css
files.

So, we write a filter to remove those clicks and ultimately we have 39 false
positives. Figure 13 shows the improvement. The precision goes up from 25.8%
to 38.1%.

Final comments

Although aspects and embodiments of the invention have been described

herein as operating and executing on particular computer equipment such as

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
83

portable and hand help computing devices and servers, the skilled person will be
aware that aspects of the invention can be implemented on a wide variety of data
processing equipment. Generally, such equipment will be provided with at least
one processor element for execution of the software, and suitable memory
operatively coupled to the at least one processor for storing the software and
data relevant to execution of the software. For example, a smart phone or other
hand held device will typically comprise one or more microprocessor cores,
usually one or more graphical processor cores, suitable memory, network
connectivity typically through Wi-Fi, Bluetooth and other arrangements, and so
forth. Such computer equipment will also typically be provided with suitable in/out
functionality such as a display screen, touch screen, keyboard, pointer device,
data storage elements and so forth as desired or needed.

However, it should be understood that where particular functionality or
software components are described herein as being provided on or executing at
a particular device, such functionality or software components may also be
distributed across multiple devices, multiple processors and so forth. For
example, functions which are described as being executed at a client device may
be partly or wholly executed at a server and vice versa.

Similarly, where functionality or software components are described as
being located at a server, such functionality or software components may be
implemented on a single server computer or processor or distributed across
multiple servers or processors, which may be collocated in a single server unit, or
distributed across multiple units which may be adjacent or far apart. Such servers
are also provided with suitable processors, memory, network connectivity and
other functions as required for their operation.

Although particular embodiments have been described, the skilled person
will be aware of modifications and alterations to these which remain within the
spirit and scope of the invention. For example, although various ways in which
the anti-fraud element 30 may contribute to aversion of fraud through detection
and/or prevention have already been described, other techniques may be used
by the anti-fraud element 30, by other aspects of the advert code 18, or by other

6387447-2

WO 2016/156513 PCT/EP2016/057109
84

processes or software elements executing on the client device. Some examples
of such techniques are described in detail in the annexe below.

Therefore, further background, examples, embodiments and discussion of
the invention are set out in the following annexe. Although the material in this
annexe refers specifically to various aspects such as mouse clicks, platforms and
operating systems, of course it is equally applicable to other situations such as
any suitable user selection action such as a suitable interaction with a touch

screen or a selection using a keyboard or other switch element.

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

85

CLAIMS:

1. A method of operating a server to deliver an online advert to a client
device, the method comprising:

receiving at the server, from a web document executing in a web browser
on the client device, a request for an advert;

in response to the request for an advert, preparing, at the server, advert
code for execution within the web document at the client device so as to display
the advert to a user of the client device, at least a portion of the prepared advert
code being in a protected form for averting advertising fraud; and

transmitting the advert code to the client device for execution on the
browser for execution so as to display the advert to a user of the client device.

2. The method of claim 1 wherein the advert code comprises an anti-fraud
element at least partly within the protected portion of the advert code, the anti-
fraud element being arranged for execution within the web document at the client

device so as to provide one or more anti-fraud functions relating to the advert.

3. The method of any preceding claim wherein the advert code comprises an
interaction action which at least partly defines one or more interactions between a
user of the browser and the advert, and one or more actions to be taken by the

browser when the one or more interactions occur.

4. The method of claim 3 when dependent on claim 2 wherein the anti-fraud
element is arranged to provide one or more of the anti-fraud functions following

occurrence of one or more of the defined user interactions with the advert.
5. The method of claim 4 comprising, following said one or more anti-fraud

functions, permitting the browser to complete an action which is defined by the

interaction action.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
86

6. The method of claim 5 wherein permitting an action to be completed by the
browser comprises one of: transmitting to the browser a redirection URL for the
browser to navigate to in response to the user interaction with the advert; and
permitting the browser to navigate to a redirection URL already comprised in the
web document, in response to the user interaction with the advert.

7. The method of any of claims 4 to 6 comprising recording the user
interaction as a suspect or fraudulent user interaction if one or more of the anti-

fraud functions fails.

8. The method of any preceding claim wherein preparing the advert code
comprises incorporating an advert serial code within the advert code, and the
method further comprises carrying out an anti-fraud verification that information
subsequently received from the advert code executing on the browser

corresponds with the advert serial code.

9. The method of any preceding claim further comprising:

storing, on the server, one or more initial attributes of the prepared advert
code;

receiving a subsequent message from the client device comprising one or
more later attributes of the advert code; and

verifying the one or more later attributes of the advert code against the

corresponding stored initial attributes of the advert code.

10. The method of any preceding claim further comprising:

receiving, from the client device, cursor trajectory data relating to cursor
movement associated with an interaction between a user of the browser and the
advert; and

verifying the cursor trajectory data by comparing the received cursor

trajectory data against previous cursor trajectory data stored on the server.

6387447-2

10

15

20

25

WO 2016/156513 PCT/EP2016/057109
87

11. The method of claim 10 wherein the comparing comprises calculating a
geometric distance between the received cursor trajectory data and the previous

cursor trajectory data.

12. The method of claim 11 wherein the verifying comprises comparing the
geometric distance to a threshold.

13. The method of any preceding claim further comprising the server carrying
out anti-fraud verification of the request for an advert before transmitting the
advert code to the browser.

14. The method of claim 13 wherein carrying out anti-fraud verification of the
request for an advert comprises checking an origin of the request against a
database relating origin of a request to fraud risk.

15. The method of any preceding claim wherein at least some of the prepared
advert code in a protected form is protected by at least one of:

one or more cloaking techniques;

one or more software obfuscation techniques;

one or more node locking techniques;

one or more diversity techniques; and

one or more digital watermarking techniques.
16. The method of claim 15 wherein the cloaking techniques include one or
more of homomorphic data transformation, control flow transformation, white box

cryptography, key hiding, program interlocking and boundary blending.

17. A method of operating a client device to display an online advert using a

web browser comprising:

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
88

receiving and executing, using the browser, a web document including
advert request code, execution of the advert request code causing the browser to
transmit an advert request to an advert server;

receiving advert code from the advert server, at least a portion of the
advert code being in a protected form for averting advertising fraud; and

executing the advert code at the client device so as to present the advert

to a user of the client device.

18. The method of claim 17 wherein the advert code comprises an anti-fraud
element at least partly within the protected portion of the advert code, the method
comprising executing the anti-fraud element within the web document on the
client device to provide one or more anti-fraud functions relating to the advert.

19. The method of claim 18 wherein the advert code comprises an interaction
action which at least partly predefines one or more interactions between a user of
the browser and the advert, and one or more actions to be taken by the browser if
and when the one or more interactions occur, and the anti-fraud element is
executed to provide one or more of said anti-fraud functions following occurrence

of one or more of the defined user interactions with the advert.

20. The method of claim 18 or claim 19 comprising, following said one or more
anti-fraud functions, permitting the browser to complete an action which is

defined by the interaction action.

21. The method of any of claims 17 to 20 wherein the advert code comprises
an advert element including an advert URL associated with the advert.

22. The method of claim 21 wherein the anti-fraud element is arranged to

replace the advert URL with a fake URL until one or more conditions are
satisfied, the fake URL being different from the advert URL.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109

89

23. The method of claim 22 wherein the one or more conditions include one or
more of:

a cursor being present over the advert whilst the advert is being displayed
to the user;

a fixed time period having elapsed following loading of the web document
on the browser; and

a frame rate of the browser having stabilised following loading of the web

document on the browser.

24. The method of any of claims 21 to 23 wherein the anti-fraud element is
arranged to periodically replace the advert URL with an updated advert URL.

25. The method of claim 24 wherein the anti-fraud element is arranged to
periodically replace the advert URL in response to user interactions with the web

document using the browser.

26. The method of any of claims 21 to 25 wherein the anti-fraud element is
arranged to create copies of the advert element within the DOM of the web
document, each copy including a respective fake URL different from the advert
URL, such that the advert and copies of the advert are displayed in a stack with

only the advert being visible to the user at the top of the stack.

27. The method of claim 26 wherein the anti-fraud element is arranged to
periodically alter the DOM structure of the web document so as to randomly

rearrange the advert element and the copies of the advert element within the
DOM structure.

28. The method of claim 27 wherein the anti-fraud element is arranged to

periodically alter the DOM structure of the web document in response to user

interactions with the web document using the browser.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
90

29. The method of any of claims 21 to 28 wherein the advert element further
includes an advert creative associated with the advert, and wherein the anti-fraud
element is arranged to replace the advert creative with a fake creative until the
advert is displayed to the user, the fake creative being different from the advert

creative.

30. The method of any of claims 17 to 29 wherein the anti-fraud element is
arranged to verify whether the advert is on a viewable portion of the browser
window and/or whether the advert is being displayed on a topmost tab within the

browser.

31. The method of any of claims 17 to 30 wherein the anti-fraud element is
arranged to store on the client device one or more initial attributes of the advert
code received from the advert server, and wherein the anti-fraud element is
further arranged to verify one or more later attributes of the advert code against

the corresponding stored initial attributes of the advert code.

32. The method of any of claims 17 to 31 wherein the anti-fraud element is
arranged to send cursor trajectory data to the advert server, the cursor trajectory
data relating to cursor movement associated with an interaction between a user

of the browser and the advert.

33. The method of any preceding claim when dependent on claim 2 or claim
18 wherein the anti-fraud functions include one or more anti-fraud verifications
arranged to verify one or more of:

integrity of the anti-fraud element;

integrity of the advert;

that the anti-fraud element is executing within a browser;

visibility of the advert in a graphical display of the browser;

behavioural characteristics of the user of the browser; and

structure of the DOM of at least part of the web document.

6387447-2

10

15

20

25

WO 2016/156513 PCT/EP2016/057109
91

34. A server arranged to deliver an online advert to a client device by carrying
out the method of any of claims 1 to 16.

35. Aclient device arranged to display an online advert using a web browser
by carrying out the method of any of claims 17 to 33.

36. A method of delivering an online advert to a web browser executing on a
client device comprising:

transmitting a web document to the client device for execution by the
browser;

receiving from the web document executing on the browser, at a remote
server, a request for a piece of digital rights management (DRM) protected
content;

delivering the requested DRM protected content to the client device and
providing the client device with DRM rights for the browser to replay the content,
the content comprising an identifier for the browser to recover from the content
when the content is replayed; and

receiving the identifier from the browser.

37. The method of claim 36 further comprising, in response to receiving the
identifier from the browser, preparing advert code for execution within the web
document and transmitting the advert code to the web browser according to any
of claims 1 to 24.

38. The method of claim 36 or 37 wherein the web document is arranged to

recover the content from a graphics buffer of the client device during replay of the

content.

6387447-2

10

15

20

25

WO 2016/156513 PCT/EP2016/057109
92

39. The method of any of claims 36 to 38 wherein the identifier is specific to
one or more of: the client device, the web browser executing on the client device;

and the web document executing on the web browser.

40. An anti-fraud system arranged for:

receiving, from advert request code executing on a web browser of a client
device, a request for a piece of digital rights management (DRM) protected
content;

delivering the requested DRM protected content to the client device and
providing the client device with DRM rights for the browser to replay the content,
the content comprising an identifier for the browser to recover from the content
when the content is replayed; and

receiving the identifier from the browser.

41. Advert request code for execution within a web browser on a client device,
the advert request code comprising:

a content play function, the content play function being arranged to send a
content request to a remote server for a piece of DRM protected content, and to
receive and cause replay of the content at the client device, the content
comprising an identifier; and

a request generator arranged to receive the identifier from the replayed
content and incorporate the identifier within an advert request for sending to an

advert server.

42. A method of operating a client device comprising:

monitoring advertising page visits made by one or more processes
executing on the client device, and detecting if each advertising page visit is
triggered by a user interaction.

6387447-2

10

15

20

25

30

WO 2016/156513 PCT/EP2016/057109
93

43. The method of claim 42 wherein the one or more processes are processes
of one or more web browsers executing on the client device, and the advertising

page visits comprise HT TP requests to advertising web sites.

44. The method of claim 42 or claim 43 further comprising creating an HTTP
request tree for each process and analysing the request trees to identify
advertising page visits.

45. The method of claim 44, wherein said analysing comprises applying a
machine learning classification to the request trees.

46. The method of any of claims 42 to 45 further comprising, for each process,
monitoring one or more respective hardware input device events, and wherein
said detecting comprises, for each process, comparing the one or more
respective hardware input device events with the advertising visits associated
with the process.

47. A method of detecting a fraudulent process in a client device, wherein the
client device is executing one or more processes, the method comprising, for
each process of the one or more processes:

monitoring respective requests transmitted across a network interface of
the client device;

monitoring respective hardware input events associated with the process;

identifying one or more respective advert impressions by applying a
machine learning algorithm to the respective requests;

classifying the one or more respective advert impressions as either
fraudulent or non-fraudulent in dependence on the respective hardware input
events; and

marking the process as fraudulent based on said classification.

6387447-2

10

15

20

WO 2016/156513 PCT/EP2016/057109
94

48. The method of claim 47 wherein said identifying comprises creating a
respective request tree based on the respective requests and applying one or
more criteria to the request tree based on the output of the machine learning
algorithm.

49. The method of claim 47 or claim 48 wherein said identifying comprises
filtering the respective requests using an advert blocking list.

50. The method of any one of claims 47 to 49 wherein said classifying
comprises mapping the respective hardware events to the one or more

respective advert impressions.

51. Computer program code arranged to put into effect the method of any one
of claims 1 to 33, 36 to 39, or 42 to 50.

52. One or more computer readable media carrying the computer program
code of claim 51.

PCT/EP2016/057109

WO 2016/156513

1717

0§

8
!

} OI4

8
!

19YOERY

19YOERY

0} 8}
!

Bunioday gz

uooeIRN| || .~

JoAIDS
JBAPY

06—~

JoNBS
MaApy

[

3ysliqnd

‘Jed Aejdsiqg -

1
/ eps || oz
\
I 7
1 /
\ \\\
\ \\\
1 7
[pid
L s
1 /
/
..\\} /
o B
| ™74
Josmoig L -,
Juslio

0l

0l

SUBSTITUTE SHEET (RULE 26)

PCT/EP2016/057109

WO 2016/156513

2/17

¢ 9ld

86

9seqelep pnel-iuy

801A8P JUBIID
S/I0
JOMISS POAPY eInpow Anoes s/0 |42
X
a|npow Y 1asmolg
uoiosjoid 8po)) sInpoul Aunoes Jesmoig |
96 ~ X
y A \
g e——- :
. | Juswsa|d _
B a|npow _ pnes-nuy LT~
prey-juy | My ot o
G~ 9z TN U L TTre
] |
zz- T J L TToz
|||||||||||||]
J a|NpowW JonIas _~9}
HOMIBU LIBADY 1senbay JUSWNOOP G
Vi~
A y
Janes buiysignd
08—~

SUBSTITUTE SHEET (RULE 26)

PCT/EP2016/057109

WO 2016/156513

3/17

GZlL

vel

¢cl

8L

601

801

901

THN uoHdIIPSY
v

& Ol4

14N 0} uingey

Burpodas uonoeisu|

BunJodas uoissaidw)

w JOAIBS UBARY
\
125

(

G0}

\N 8p00 LSS UBADY N 601 mwh
)
v OLL
) V_H_ ap0d w
9p02 JaApe asedaid (HBADY (
+
jsenbal « «, Jsanbal N]
| | weape uoneoyuap HRADY "y

~" TV}
TdN uondalipal
0) ajebineN L1192z,
UONBINLISA UCIORIB|
~—1 [N0Z}
uoneoulaA uoissaldul
~-1 "9}
WOQ dlweuiq
~T [P}}
uonesijeniuj
~-T [*C}}
48]
JUSWINJOP SNOIABIH !
Jasmoig
w 9JIASP JUBIID

Janues Buiysignd

o~

SUBSTITUTE SHEET (RULE 26)

WO 2016/156513 PCT/EP2016/057109
4 /17
30
S 38
(
)
e — 32 40—
Initialisation Code integrity verif.
DOM 34 4271 Browser verification
diversification
44— . o
Visibility verification
Impression |36
verification #6711 Cursor verification
Deferred action [~~35 48— povyuRL verification
loader

FIG. 4

SUBSTITUTE SHEET (RULE 26)

PCT/EP2016/057109

WO 2016/156513

5/ 17

9/

v/

¢l

8/

04

89 1

BJep yoel|

Blep Jasn

G ol4

Ejep Jaysiiqnd

900 JApPE 8seq

A

£o1j0d pneuj-nuy

SJUSWSIS pnelj-Huy

(pausiani)

a|npouw
uonosjold apo
PoD | 96
99 09 9 v9
))))
((((
Jabeuew Ja|puey Ja|puey Jajpuey
Aunosg 1s8nbay uonoeIBy| uoissasdu|
N A
148

8|NPOL JBABS
$IOM}BU aADY

SUBSTITUTE SHEET (RULE 26)

PCT/EP2016/057109

WO 2016/156513

6/17

9 9Id

Js|puey
1sanbay ke
09 ~-pLZ
Gl / \.
99~ Jebeuew 7
Aunoeg [*0) ol ~Vl
_U opoo
(MoApPY
wwm 9L mwm
) ¥
Jonas 912 vic
NG Jojesousb 1sanbay NG
+/v JENEN - lasmoig
A\v EIP3 uonouny P N
aseq.p N A Aeyd Jusyuon ~LoLz 067
JUBU0Y 022
{)
222 cic N /\
¢l 9l N

0l

SUBSTITUTE SHEET (RULE 26)

PCT/EP2016/057109

WO 2016/156513

7117

$8858201d
JUSINPNE.IJ-UON

A

$8858201d
Jus|npnel4

S9N
Buluies| aulyoey
azhjeuy

/Z Old

ssa00.d Jad suonoe
asnouw Joeix3

$$98204d
asnow paimde)

soaJ))senbal
dl1H ®esi)

$s8201d Jad sjexoed
d1llHenxy

ssa00.d
dL1H paimden

SUBSTITUTE SHEET (RULE 26)

PCT/EP2016/057109

WO 2016/156513

8/17

8 9l

aseyd UOISIBA ybug)
9p0o2 SnjeIS
uoseay dllH Jusjuod asuodsal
Guipaous adA) Jusyuo uoneso Mod di uoneunss od 821no di821no dwejsauwi dLlH
JUBIUO) }Jusjuod ed07 uoneunsaq /| heunseqj|{ ¥ S . S 1sswil]
o) JETETE Mod di uoneunss od 821no di821no dwejsauwi Jsenbal
[N JSOH JoY uoneunseq /| heunseqj|{ ¥ S . S 1sswil] dLLH

Je)|y 1siifse3

¢19%00|q pe
Aq payoolg

$5900.d

201d/

wayshs
9l SO

aa oS

SUBSTITUTE SHEET (RULE 26)

PCT/EP2016/057109

WO 2016/156513

9/17

6 9l4

6dl) sle
“** JW0D JSSIUBAPY “** JW0D IBSIUBAPY Bud'p s'0
“** JWIOY IBSIUBAPY “** [0 IBSIBAPY
JEVETEY EEYETEY oo v
budy Sf0 " JLI0D" IOAIOSPE’ MMM 1sanba)
MO IeSHeRRY [0 ISSeARY / i Pv W)Y XSPUI/WOD JaSILBAPE D
. . PY
1819)8 1819)8 he&m\h\ -,
bdiqg |/] sfe - Bdlq sle
[WIY Xapul/wod IssisApe ...\Eoo.gmov\ "** L0 QISOY "'JWOJ ISAISSPE MMM " W09 B)SOY "** W0J"BISOY
o soep Ja10j01
3 JaJgjal Jalgjal JaJgjal JaJajel
W09 GISOY MMM W02 BISOY MMM
1senbal 1senbal 1senbal | 550001
PY PY PY

SUBSTITUTE SHEET (RULE 26)

PCT/EP2016/057109

0} 9Old

10/ 17

153104 WOpUEY NNYS NNYZ %) WAS safeg snjeN .
\\
7 7 \ 0z
7 7
oF
g 09
7 9669 02
— V|6 001
1586 5916 2516 7186
0zl

WO 2016/156513

(%) l1eosy

SUBSTITUTE SHEET (RULE 26)

PCT/EP2016/057109

WO 2016/156513

11/17

annisod asiey Jo #

T/

annebou asey 10 #

(I PBJOSISP JO #

YOI [ENjoE JO #

L1

iy

0l
0¢
0¢
oy
0g
09
0L
08

SUBSTITUTE SHEET (RULE 26)

PCT/EP2016/057109

WO 2016/156513

12/ 17

¢l Old

gyEgEaTy :edizsbpy - :IspesyuoTienoTssuodssy JUIOD 'POITM " MMM I8Y
Z000008YPSEP6I89IEO66LTS/0000F0PSPSPIFOT9I86P08FS/Pequs /wod spTasud "1aleTd 139
IP8ES :d2IS T- PITUDUTPYIOISqUMN sS4 YOTTOPYST sa4 :snortotdsng pejou :ISTITSSEID

ek tcr .mmmwmmvm - .mmﬁmmmaoﬂumuaqmmnaammmmemmu:awx =jUsqUod UNNB9ZTOST uUe 0SZX
00 SOI =uIs] UNSQEeINO0® =SoINnos wansueq —umtpsu unsyquoutbp] zubredues uing /ssbejueape
~UTEeI}/US/ED TTRIRTA MMM! ISY
SSD'GLEQSSSLPASPZATROFIEASTRBLRRRFZPT SSO/SSD/SOTTI/TTR/SS3TS /0" TTRIRTA MMM : LED
€LLBY 4235 T- 'PITUDUIPYIOISCUMN s9& :ADOTIIPYST so& :snototdsng pe3jou :I9TITSSEID

NOILIV¥DOT
odizebpa 62ZTLIZ0TFT0Z:SsD suoy be/sso/dy-uz/a/oT3e3s/W0d " 2T3R3SOUT ' TeqoTh// :d33y
: Mwﬁmmmﬁa.ﬂpmﬁogmmaﬂ&mwm .‘...EGU "ESMDUXOT T MMM I9Y
6ZZTLIZOTFT0Z:SSD suoy be/sso/dy-uz/a/oT3e3s /W00 2T3e3sdUT " TeqoTh (139
ZHOER :d0IS T- :PTITUYDUTIPYIOISqUMN sSo4 :YITTOPYST s=i :snorotdsng pe3jou :ISTITSSEID

SUBSTITUTE SHEET (RULE 26)

WO 2016/156513 PCT/EP2016/057109

13/17
o
=
| —
Q
E
S
@
o=
i 5
[a
(T
Y
o
I
o
=
>
= ™
5 T~
o=
m L]
= (D
=
) —
> Ll~
o
S
£
o
(T
»
S
o
=
o
S
-
o
I

80
70
60
50
30
20
10

0

40

SUBSTITUTE SHEET (RULE 26)

PCT/EP2016/057109

WO 2016/156513

14 /17

vl Ol4

é JeApe peq, Jo Jaysignd peq,)
B SB papiooal aq Aew YN JUSNpNel;
U} ‘I9A0BIO[“PNelj e Se pajpuey
aq M)senbaJ sy} ‘punoy si Aoussisuooul
Aue J *G dess Je uanpe paindes
[euIBUO 8Y) Y)IM PaJeId0sSSe ale UYoIym ‘gG
aSeqejep pnelj-nue ay) woyj eyep Ausdoid
JaUI0 pue eiep uoissas ‘elep 1Ir ‘601
9p02 |euss JaApe anbiun jsuiebe ejep
1senbaJ bunosyd Aq 1senbal YN 1eApe
Aue jo AoewniBa ayy AjuaA |Im G 8|npow
_ PNe4-jue JanIss pue uoesyusA Yol

l

_
obedgom s Josmgape yym Bundessil gl
Ang s%0110°6
abed|iesianpy9l
;Hmmsce MG
00.peY Yl |
uJnjaJ uonedlLIaA PeipRd Yl
UO paseq Yoy sBoT e} syo8yd Alunoss
JUBLUBDIOMS | Jayjo pue 0z}
. 1sanbal THN WaApe .
neJj-
PREdRtv el pUB UINJaJ UPNBOYLIBA L < $10 AN 0} >

PE U0 SYI1D'6

”

suonoe
pnel-ue 11¢'8

1sanbal uoNeoIlE

uoissaidwi sbo79

A BWN-USNI TG

suonoe
pneli-nue 11119

4 PaAOWAY)
pue payoo|q ‘pelosiep
a4 ued apo?d [eulbuo sy
10 SPISJNO JUSJUCI JBApe
ay1 Jo suonesipow Aue
‘0€ JusWae pnelj-ue
3 JO UONBILLIBA
P jopedsy)

~N

JINDILIP BI0W yonLw
aW029q ||Im Jasn ay Aq
paisenbal Bulaq Jusjuod
JSAPE 0} SUOiBdIIpOW

pneJj-ljue _
Q] 9P0J LBAPE [)8IN28s UINBY'G JusIP IOk gL L \Mﬂwﬂﬂﬂc%hﬂ:ﬂﬁ__\ﬂw%
ap0o asleniu|’ .
tm%mccmsomm < APz alweuAp Jo asnedag
GOJ Jsanbal ueApe Spe . J
901 aJsedaud
_ SI JoApe
pue ‘S JieApe UM abeg 'z
0) uonos)oid «—
WIOLOd 1senbal o' L
124 0S 08 9 0¢
JOSIUBAPY S|NPOW pneJj-ue IETNEL Janas Joxoel Juswiae
IEVNEIS MoApY Jaysignd oS pneJj-liue jusi|)

SUBSTITUTE SHEET (RULE 26)

PCT/EP2016/057109

WO 2016/156513

15/17

GlL old

é JeApe peq, Jo Jaysignd peq,)
B SB papiooal aq Aew YN JUSNpNel;
U} ‘I9A0BIO[“PNelj e Se pajpuey
aq M)senbaJ sy} ‘punoy si Aoussisuooul
Aue J *G dess Je uanpe paindes
[euIBUO 8Y) Y)IM PaJeId0sSSe ale UYoIym ‘gG
aSeqejep pnelj-nue ay) woyj eyep Ausdoid

JaUI0 pue eiep uoissas ‘elep 1Ir ‘601

9p02 |euss JaApe anbiun jsuiebe ejep
1senbaJ bunosyd Aq 1senbal YN 1eApe
Aue jo AoewniBa ayy AjuaA |Im G 8|npow
_ PNe4-jue JanIss pue uoesyusA Yol

l

_
obedgom s Josmgape yym Bundessil gl
Ang s%0110°6
abed|iesianpy9l
;Hmmsce MG
00.peY Yl |
uJnjaJ uonedlLIaA PeipRd Yl
UO paseq Yoy sBoT e} syo8yd Alunoss
JUBLUBDIOMS | Jayjo pue 0z}
. 1sanbal THN WaApe .
neJj-
PREdRtv el pUB UINJaJ UPNBOYLIBA L < 10 Auon 0} N

PE U0 SYI1D'6

i

suonoe
pnel-ue 11¢'8

;Hmm:ce UONBOILGA mE_H-c_-Hm:ﬂ.N.my

uoissaidwi sbo79

suonoe
pneli-nue 11119

4 PaAOWAY)
pue payoo|q ‘pelosiep
a4 ued apo?d [eulbuo sy
10 SPISJNO JUSJUCI JBApe
ay1 Jo suonesipow Aue
‘0€ JusWae pnelj-ue
3 JO UONBILLIBA
P jopedsy)

~N

JINDILIP BI0W yonLw
aW029q ||Im Jasn ay Aq
paisenbal Bulaq Jusjuod
JSAPE 0} SUOiBdIIpOW

pnelj-jue _

JOU IO 3UO e, S J‘) | g1 apoo uaape gaindas umay'g JusIP J0s CLL \Mﬂwﬂﬂﬂc%hﬂ:ﬂﬁ__\m_w%
1s9nbai 8y} uo Jaysiignd auyy JoypeyMm 9p0oo J osieniu’. SILUBUAD 10 5SNEDS
AJLIBA [IM $G SINPOW PNEBIJ-[UE JOAISS HBADE pBINOss c0} 1senbal uaape grie _ Pl d)

PUB UONBIILIaA }sanbal JaApe ay | 80} eJedaud Sr Honpe
puB ‘SF Hanpe e
0) uonos)oid < ki d¢
WwioLad 1senbal o' L
¥S 05 08 g 0¢
JOSIUSADY S|NPOW PNE-UE JoNIBS JaAIBS Jooeli JUsWa[e
JONSS JoApY Jaysigngd ; pnelj-jue Ui

SUBSTITUTE SHEET (RULE 26)

PCT/EP2016/057109

WO 2016/156513

16/ 17

91 Old

4 N

JeApe peq, Jo Jaysignd peq,

B SB papiooal aq Aew YN JUSNpNel;
U} ‘I9A0BIO[“PNelj e Se pajpuey
aq M)senbaJ sy} ‘punoy si Aoussisuooul
Aue J *G dess Je uanpe paindes
[euIBUO 8Y) Y)IM PaJeId0sSSe ale UYoIym ‘gG
aseqe)ep pnelj-ue ay) woij eyep Auedoid
JaUI0 pue eiep uoissas ‘elep 1Ir ‘601
8p02 |euas JaApe anbiun jsuiebe ejep
1senbaJ bunosyd Aq 1senbal YN 1eApe
Aue jo AoewniBa ayy AjuaA |Im G 8|npow

_ PNEJJ-HUE JOAISS PUE UOJEOUUaA YOIID

~

<

Y

_
obedgom s Josmgape yym Bundessil gl
Ang s%0110°6
abed|iesianpy9l
;Hmmsce MG (
00.peY Yl |
uJnjaJ uonedlLIaA PeipRd Yl
UO paseq Yoy sBoT e} syo8yd Alunoss
JUBLUBDIOMD e Jayjo pue 0z}
. 1sanbal THN WaApe .
neJj-
PREdRtv el pUB UINJaJ UPNBOYLIBA L < $10 AN 0} N

PE U0 SYI1D'6

Jus|npney; I

Pa%JeW 8q M STIN

JUBARJR) Auy “pnelj e Se
pajeaJ) pue pajos)ep aq
UBJ SJOIABYS(JOSMOI] OU

‘0€ JuBWald pnel-Hue
3} JO UONEINLIBA

P jopedsy)

”

_
(ejep
uoISSes pue ejep || buisn Ag uonesluaa
_ PUe-¥0eq djey ued uonoa[0o eep 1|r

\usupusasecs <

suonoe

pney-jue 1r¢'g

1sanbal uoNeoIlIE

uoissaidwi sbo79

A BWN-USNI TG

pney-jue 118

suonoe

pneJj-ljue
Q] 9P0J LBAPE [)8IN28s UINBY'G JusIP IOk gL L
apoo aslienu’,
MOAPE paIndas 501 150Nba] UBADE SFE
901 aJsedaud
_ SI JoApe
pue ‘Sr JeApe i 96847
0) uonos)oid «——
WwioLad 1senbal o' L
124 0S 08 9 0€
JOSIUBAPY S|NPOW pneJj-ue IETNEL Janas Joxoel Juswiae
IEVNEIS MoApY Jaysignd oS pneJj-liue jusi|)

SUBSTITUTE SHEET (RULE 26)

PCT/EP2016/057109

WO 2016/156513

17117

”
'«

ZL Old

\

-

aq [Im1s8nbal 8y ‘punoy st Aoussisuooul
[eu1bLo ay) LyIM PaJRIOOSSE 8. YoIYM ‘gg

aseqe)ep pnelj-hue ay) woij ejep Auedoid

1s8nbai Bujosyd Aq 1senbal TYN WeApe
Aue Jo Aoewnibal ayy Ajuea [m G sinpol

JaApe peq, Jo Jaysiignd peq,)
B SB papiodal 8q Aew YN Usnpnel;
8y} ‘JaA08I0)\ "pNel} B SE pajpuBy

Aue J g dajs Je pape painoss

JaUI0 pue Biep uoissas ‘elep LI ‘601
9p02 |euss JaApe anbiun jsuiebe ejep

PNEJJ-UE JAAISS PUE UOEOYISA YLD)

7

_
obedgom s Josmdape yym Bundessil gl
Ang %0106
abed|iesianpy9l
150nbal GOM'G |
2011paY’
UJIN)aJ UONBILLISA wollped vl
] uo paseq v_yo__o sboT7¢) syoeUp Aunoss
JUBLUBDIOMD e 13yjo pue (¢l
. 1sanbal THN WaApe .
neJj-nu
pred-ilv el pue uINjaJ UPNBOULBA || P e Awapol

PE U0 SYI1D'6

]

uoIsses pue ejep || buisn Ag uonesiaa

pus-yoeq djsy Ued uonas||oo BIep ||

< Lt

suonoe
pnel-ue 11¢'8

159NnbaJ uoneoyud

«

A SUI-UHSN('Z'Q |

pney-jue 118

L

suonoe

4 SYIP)
UeWNY-ou sulwislep
0] Bjep Juswarow
-9SNoW asn ued Jl ‘os|y

"[nySS80NSUN
yoJeas 74N Aue ayew
TYN/NOQ pue Jduogener
J0 uoneayuan Ajubaul
PUE UOjewIojul JaApE
pawuojsuel) ‘yduogener
JaApe pajosjoid sy
‘0¢ JusWa|s pnely-hue
U} JO UOIJEIYLIBA
3010 Jo Jed sy

\. J

JINOIIP 2JOW YINW R

J

- uoissasdwi s607°9 < > aWo9aq M Jasn ayy Aq
_ > - cwﬂmﬁv_ém paisenbal Bulaq Jusjuod
("~ popoequmisenba ey S)EPOMIMEINOSS UG | A DO HSADE 0} SUOREIYIPOW
SIY) ‘0S J])1 19919P PUB AJLIaA [IM G JoDE pairoas 4 Hemdr Aue ‘sanbiuyoa) pnel-jue
3INPOW PNEJJ-HU. JOAISS PuB UOIBILLISA 901, aiedod G0} ysanbaj uanpe Srg Jayjo pue Buiynys NOQ
159nbai JeApe ay) ‘Jaysiignd peq, DUE ‘S[* 1OADE SI MeApe L dlweuAp Jo asnedag
__ Eumsl Jsanbai JsApe [eRiul BY} 0] uonoaoid Lpim 8bed 'z
;:otmn_.v 1senbal o' L
128 0S 08 9 0¢
JOSIJOAPY 9|npow pnelj-jue JonIBS JanIas Joxoell Juswale
JoNBS JoApY Jaysiignd oS pnelj-nue jusi)

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2016/057109

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6Q30/02
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6Q

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

abstract; figure 2

abstract; figures 4-8

paragraph [0010]

abstract; figures 6,7,8

X US 2006/265493 Al (BRINDLEY RICHARD [GB]
ET AL) 23 November 2006 (2006-11-23)

paragraph [0028] - paragraph [0046]

X US 2009/024461 Al (WILLNER BARRY E [US] ET
AL) 22 January 2009 (2009-01-22)

paragraph [0033] - paragraph [0038]
X US 2012/173315 Al (MARTINI EDUARD ERWIN
[RO] ET AL) 5 July 2012 (2012-07-05)

paragraph [0086] - paragraph [0105]

1-52

1-52

1-52

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

28 April 2016

Date of mailing of the international search report

09/05/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Lopes Margarido, C

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2016/057109

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

US 2006/136294 Al (LINDEN JOHN [US] ET AL)
22 June 2006 (2006-06-22)

abstract

paragraph [0012] - paragraph [0027]
paragraph [0042] - paragraph [0048]

1-52

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2016/057109
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2006265493 Al 23-11-2006 AU 2006341536 Al 10-01-2008
BR P1I0610014 A2 11-10-2011
CA 2610438 Al 20-11-2006
EP 1894158 A2 05-03-2008
EP 2219149 Al 18-08-2010
JP 2008541318 A 20-11-2008
US 2006265493 Al 23-11-2006
US 2014244382 Al 28-08-2014
WO 2008004027 A2 10-01-2008
US 2009024461 Al 22-01-2009 NONE
US 2012173315 Al 05-07-2012 EP 2659418 Al 06-11-2013
US 2012173315 Al 05-07-2012
WO 2012089915 Al 05-07-2012
US 2006136294 Al 22-06-2006 US 2006136294 Al 22-06-2006
US 2013080248 Al 28-03-2013
US 2015178771 Al 25-06-2015

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - claims
	Page 87 - claims
	Page 88 - claims
	Page 89 - claims
	Page 90 - claims
	Page 91 - claims
	Page 92 - claims
	Page 93 - claims
	Page 94 - claims
	Page 95 - claims
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - wo-search-report
	Page 114 - wo-search-report
	Page 115 - wo-search-report

