(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O O OO OO

International Bureau

(43) International Publication Date
26 March 2009 (26.03.2009)

(10) International Publication Number

WO 2009/036500 Al

(51) International Patent Classification:
GOG6F 17/30 (2006.01)

(21) International Application Number:
PCT/AU2008/001378

(22) International Filing Date:
17 September 2008 (17.09.2008)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
60/972,948 17 September 2007 (17.09.2007) US
(71) Applicant (for all designated States except US): INIVAL
TECHNOLOGIES PTY LTD [AU/AU]; 136 Balcombe

Road, Mentone, Victoria 3194 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CROSBIE,
Nicholas, Daryl [AU/AU]; 36 Mather Road, Mount Eliza,
Victoria 3930 (AU). CORDIOLI, Vittorio [IT/AU]; Unit
22, 5 Brindisi Street, Mentone, Victoria 3194 (AU).

(74) Agent: GRIFFITH HACK;, Level 3, 509 St Kilda Road,
Melbourne, Victoria 3004 (AU).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

(54) Title: LAYOUT MANAGER

10 —~

Browser

16ﬂ

26, ; Client 26

SRS

18 Launch | Sync 20
14 —— 1 Services| Services
Metadata Service [« 22
. T __ I I U A,
30 — 28
12— { Watched |32 (
Folder
Figure 1

009/036500 A 1 |00 0 00000 0 0 O 0

(@

o

W

(57) Abstract: A computer-implemented system for creating or managing layouts, comprising a browser application and one or
more display clients for rendering data-oriented views. The browser application is user-operable to select or locate data sources and
to select data-oriented views and thereby to control the browser application to control the display clients to render the selected data-
oriented views based on the selected data sources. The browser application may include an icon module for generating increment
icons, the increment icons being user-operable to select the data sources and the data-oriented views.

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

Layout Manager

Related Agplication

This application is based on and claims the benefit of the
filing date of US application no. 60/972,948 filed 17
September 2007, the content of which as filed is

incorporated herein by reference in its entirety.

Field of the Invention

The present invention relates to a layout manager system
and to a method for managing layouts, of particular but by
no means exclusive application in simplifying the
compositing, navigation, and data source provisioning of

persistent data-oriented views.

Background of the Invention

In computing, information-based tasks may require a user
to assimilate and manipulate multiple pieces of data in
order to form comparisons between separate but related
data sets. For example, a medical researcher or doctor
may wish to compare one or more images obtained from a
patient with a particular pathology with images obtained
from a patient without that pathology.

In existing systems, a user typically must manually
aggregate the required data into a meaningful (and
possibly interactive) presentation comprising ‘display

elements’ that form a ‘task-oriented wview’.

Complex information processing, such as in the medical
example referred to above, often requires the navigation
and manipulation of several task-oriented views and - as a
result - the interaction of multiple display elements,
software applications and data sources. In such cases,
the data source selection, configuration and on-screen
organization (e.g. window placement) of the display

elements of each task-oriented view places a considerable

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

burden on the user. Moreover, the user’s ability to
select data sources for the purpose of making valid and
informative comparisons can be limited by his or her
incomplete knowledge of the various metadata differences

that exist for a given collection of data sources.

Summary of the Invention

According to a first broad aspect, therefore, the present
invention provides a computer-implemented system for
creating or managing layouts, comprising:
a browser application; and

one or more display clients for rendering data-
oriented views;

wherein said browser application is user-operable
to select or locate data sources and to select data-
oriented views and thereby to control said browser
application to control said display clients to render said
selected data-oriented views based on said selected data

sources.

Thus, the system is able to generate a layout manager

after having retrieved information stored in different
locations (such as in files and databases, possibly in
different formats), and analysed and evaluated that

information.

The browser application may include an icon module for
generating increment icons, the increment icons being
user-operable to select the data soutrces and the data-

oriented views.

Alternatively the browser application may include a tick
box module for generating tick boxes, the tick boxes being
user-operable to select the data sources,

In one embodiment, the browser application includes a

user-operable menu for selecting the data sources and the

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

data-oriented views.

The system may be configured to operate either supervised

or unsupervised.

Moreover, in one embodiment the system is controllable to
establish connections between computing devices and
perform an analysis, and to output the results of the
analysis (such as by displaying or printing the results)

according to according to user definable settings.

For example, the system may be controllable to search for
the data sources according to one or more user-defined

search criteria.

The term ‘data-oriented view’ (DOV) is used herein to
refer to a task-oriented view, where the display elements
comprising the task-oriented view are provisioned by a

single data source (as further explained below).

The skilled person will also appreciate that the browser
application may be provided in the form of a ‘stand-alone’
browser application, or in the form of a plugin to, or
module of, an existing application, such as an HTML
browser (e.g. the Microsoft brand Internet Explorer
browser, Mozilla brand Firefox browser or Apple brand
safari browser) or a file browser (e.g. Microsoft brand
Explorer or Apple brand Finder). As will also be
appreciated, however, the term ‘browser application’
refers to any application that can - or can be used to -
browse, that is, search, explore, navigate or establish a
connection (whether internally or externally), and with
essentially any form of hardware or electronic content
(whether in HTML or otherwise). It may comprise, for
example, a stand-alone software application that
facilitates access to and interaction between different

hardware devices and software, according to the present

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

- 4 -

invention, or be distributed. The hardware may comprise
computers, mobile computing devices or mobile
telephones...), and the software may comprise databases

and other data sets.

The data-oriented views may comprise display elements, the
display clients rendering the data-oriented views by

rendering the display elements.

The browser application may include a module for inviting
one or more display clients to render the display elements
constituting a data-oriented view or views, and for

handling return states.

In one embodiment, the system includes a UUID module
(typically comprises GUI elements and methods) that is
operable by a user to associate a data-oriented view with
a universal unique identifier, and configured to make the
universal unique identifier available to a display client
or clients responsible for rendering the data-oriented

view and to the browser application.

The system may further comprise:

a synchronization service for providing
persistent storage and synchronization of records
pertaining to the data-oriented views;

a metadata service for creating, storing,
accessing, discovering and exchanging metadata; and

an application launch service for allowing the

browser application to open one or more display clients.

Moreover, in one embodiment, the system is user-operable
to locate or collect information from a plurality of
sources according to user defined criteria, and thereby to
locate or collect information from databases, xml files,

binary files, etc, whether stored locally or remotely.

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

- 5 -

The system may include an event notification system for

managing notifications across multiple tasks.

In a particular embodiment, the invention can simplify the
compositing, navigation, and data source selection of
data-oriented views with a software architecture that
includes synchronization, application launching and
metadata services, an event-notification system, browser
application and one or more display clients, GUI elements
and methods for associating a data-oriented view with a
Universal Unique Identifier (UUID), the UUID made
available both to display clients responsible for
rendering the data-oriented view’s display elements and to
the browser application, GUI elements and methods of the
browser application that implement configurable and
movable increment icons that allow the user to easily
select data sources and data-oriented views, and invites
relevant display clients to render the display elements
constituting a data-oriented view or views, and handles
return states, a set of standard methods that display
clients must support in order to participate in the
compositing and rendering of one or more data-oriented
views, where those methods are implemented through a

plugin architecture.

The system may also include a metadata service configured
to control displaying of data source metadata presented

for browsing or operation of the increment icons.

The system may also be adapted to generate increment icons
if needed or according to a user configurable default

setting.

According to a second broad aspect, the present invention
provides a computer-implemented method for creating or
managing layouts, comprising:

operating a browser application to select or

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

- 6 -

locate data sources and to select data-oriented views; and
controlling the browser application to control
the display clients to render the selected data-oriented

views based on the selected data sources.

The method may include generating increment icons with a
module of the browser application, and operating the
increment icons to the select data sources and the data-

oriented views.

The method may include performing the functions of any or

all of the features of the above-described system.

The invention also provides computer program code that
when executed by a processor implements the method
described above. The invention also provides a computer

readable medium comprising that program code.

In addition, the invention provides a data packet or
packets comprising computer program code that when
executed by a processor implements the method described

above.

Brief Description of the Drawing

In order that the invention may be more clearly
ascertained, embodiments will now be described, by way of
example, with reference to the accompanying drawing, in
which:

Figure 1 is a schematic view of a system
comprising a software stack according to an embodiment of
the present invention;

Figure 2 is a schematic view of a graphical
canvas generated by the software stack of figure 1, on
which are displayed four exemplary data-oriented views
(DOVs), each comprising display elements (DEs), rendered
by respective display clients (DCs) of the software stack;

Figure 3 illustrates an active window (‘Views

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

-7 -

Table’) that is displayed when the ‘Views...’ menu option
is selected;

Figure 4 illustrates a flow diagram describing
the methods executed by the browser application when the
‘4+7 button described with respect to Figure 3 is left-
clicked;

Figure S5A illustrates an active window
(‘Configure Browser Table’) that is displayed when the
‘Configure Browser...’ menu option is selected according
to this embodiment;

Figure 5B illustrates the Configure Browser Table
of Figure 5A after the manipulation of various attributes
and their display;

Figure 6 is a flow diagram of a method executed
by the browser application when the show attributes button
of the Configure Browser Table of Figure 5A is left-
clicked;

Figure 7 is a view of a browser document
according to certain teachings of the present invention;

Figure 8A is a schematic illustration of a
Configurable and Movable Increment Icon (CAMII) entity-
relationship data structure according to this embodiment
of the present invention;

Figure 8B is a schematic illustration of an
exemplary drop-down list, accessed by right-clicking the
CAMII of Figure 8A, used for indirectly setting the value
of a CAMII’s dovUUID property:

Figure 9 is a flow diagram of methods executed by
the browser application and display clients during the
updating of an ActiveDOV record according to this
embodiment; and

Figure 10 illustrates the contents of an
exemplary temporary file, created, written and read during
the compositing of a view;

Figure 11 is an example of the output displayed
to a display and resulting from the settings shown in

Figure 7;

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

- 8 -

Figure 12 is an example of the output displayed
to a display and resulting from the use of a system
according to an embodiment of the present invention
operating unsupervised according to user defined criteria;
and

Figure 13 is a flow diagram of the method of the
embodiment of Figure 12.

Detailed Description of the Embodiments

Figure 1 is a schematic view of a system comprising a
software stack 10 according to an embodiment of the
present invention. Only components germane to the
understanding of the present invention are shown. The
elements of software stack 10 may be regarded as discrete
modules. Software stack 10 is configured for execution on
one or more computing devices in a computing environment,
and to control those devices to perform the tasks
described below.

Software stack 10 comprises a file system and system
services layer 12 (the lowest layer), an application
frameworks and services layer 14, and an application layer
16 (the highest layer). (Some other layers of software
and firmware are omitted for clarity.) Generally, the
software elements of any particular layer use resources
from the layers below and provide services to the layers
above, but in practice not all components of a particular

software element behave entirely in that manner.

File system and system services layer 12 includes a
plurality of files and directories, which are maintained
by the file system of the computing environment.
Application frameworks and services layer 14 is an
amalgamation of functions commonly expressed as two layers
(e.g. an applications frameworks layer and an applications
services layer). In this embodiment, both of these layers

12, 14 provide high-level and, commonly, functional

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

-9 -

support for application programs that reside in

application layer 16.

Application frameworks and services layer 14 includes an
application launching service in the form of Launch
Service 18, a Synchronization Service 20 and a Metadata
Service 22. The Launch Service 18 allows a running
Browser Application 24 to open (i.e. launch or activate)
one or more Display Cliénts 261, 263,..., 265, and
comprises a high-level framework or API such as Apple
brand LaunchServices Framework. It should be noted that,
because software stack 10 is configured for execution on
one or more computing devices, if more than one Display
Client participates in rendering a particular DOV, those
Display Clients may execute on a plurality of computing

devices.

In this embodiment, Synchronization Service 20 is provided
through a high-level framework or API that provides
efficient persistent storage and synchronization of DOV
records, and uses Extensible Markup Languange (XML) for
its data model. Suitable examples are Apple brand
SyncServices Framework, Microsoft brand Synchronization
Framework for ADO.NET, or the SyncML API (JAVA). Metadata
Service 22 is provided through a high-level framework or
API for the creation, storage, access, discovery, and
exchange of metadata, such as Apple brand ‘Spotlight
technology’, Microsoft brand ADO.NET, or JAVA Metadata
Interface.

Software stack 10 also includes an event-notification
system, such as Kqueue, or an equivalent higher-level
event-notification API that manages notifications across
multiple tasks (such as Apple brand Cocoa
NSDistributedNotificationCenter API or the SUN brand Java
System Message Queue API), to facilitate the transmission
(see data flows 28, 30 in Figure 1) of targeted event-

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

- 10 -

notification messages to Browser Application 24 and
Display Clients Display Clients 263, 2632,..., 26 upon
changes to a watched memory 32, in the form of a watched
memory address (such as an array) or a watched persistent
store (such as a directory folder on a hard disk). 1In
this embodiment, watched memory 32 comprises a watched
folder, so is referred to hereinafter as the ‘watched
folder.’

Figure 2 is a schematic view of a graphical canvas 40
generated by software stack 10 of Figure 1, on which are
displayed four exemplary data-oriented views (DOVs)
generated by software stack 10. First, second, third and
fourth DOVs 42, 44, 46, 48 each comprise one or more
display elements (DEs), each of which may comprise a
table, a graph, an image, or any other element capable of
being rendered or otherwise computer-generated (including
an audio element) by a display client. In this example
first DOV 42 comprises display elements DE;, DE;, DE3 and
DE,. These display elements constitute a ‘data source’
comprising discrete visual representations of a data set
(or a subset thereof) or plural related data sets (or
subsets thereof), resolved by a single URI (termed
dataSourceURI); in this example first DOV 42 has the
notional dataSourceURI http://path/to/data sourceA.FCS).

Second DOV 44 comprises display elements DEs, DEg, DEq,
DEg, DEg, DEjq, DE;; and DE;;, and has notiomal
dataSourceURI http://path/to/data sourceB.RDF. Third DOV
46 comprises display elements DEj3, DEj4, DE;5, DEj1s, DE21,
DE,,, DE,;3 and DEy4, with notional dataSourceURI
file:///path/to/data sourceC.RDF. Fourth DOV 48 comprises
display elements DE;;, DE;g, DE;y3 and DEj,, with notional
dataSourceURI http://path/to/data sourceD.FCS.

The dataSourceURI of a DOV can be any legal absolute or

relative path to the corresponding data source. The term

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

- 11 -

‘resolved’ refers herein to the ability to retrieve data,
that is, the data’s address is given by the dataSourceURI
or, as may be in the case of hyperlinked data (for
example, HTML or RDF files), can be found by traversing a
path, commencing with the dataSourceURI. Graphical canvas
40 is commonly contained on the display area of a single
display device, such as a computer monitor, but in some
embodiments spans plural such display devices with each

display device mapping a portion of the canvas.

A display element is often contained within its own window
(controlled by a window server), though this is not
essential and in this embodiment plural display elements
may be present in a given window. Display elements
forming any particular DOV may be rendered contiguously
(e.g. display elements DE;, DE,, DE; and DE; constituting
first DOV 42 or display elements DE;, DEg, DE;, DEg, DEy,
DE;o, DE;; and DE;, constituting second DOV 44), or non-
contiguously (e.g. display elements DE;3, DEj;4, DE;s and
DE;¢ in the lower left of display canvas 40 and display
elements DE;;, DE;;, DEj3 and DE,, in the lower right of the
display canvas 40, which together comstitute third DOV
46) .

One or more of Display Clients 263, 263,..., 26, are
responsible for rendering the display elements that
constitute DOVs 42, 44, 46, 48. In the example of Figure
2, the display elements constituting first, second and
fourth DOVs 42, 44, 48 are rendered by Display Clients 50,
52, 54 respectively. The display elements constituting
third DOV 46 are rendered by two Display Clients 56, 58:
Display Client 56 renders elements DE;3, DEi4, DE;s and
DE;4; Display Client 58 renders elements DEj;3;, DEjzz, DEj3
and DEj,;.

Browser Application 24 provides a ‘Views...’ menu option

that, when selected, displays in an active window a ‘Views

10

15

20

WO 2009/036500

PCT/AU2008/001378

Table’ that summarizes the previously configured data-

oriented views.

Figure 3 is a schematic view of an

exemplary Views Table 60, displayed following the

selection of the ‘Views...’ menu option, which comprises

seven views each associated with a title (in a ‘View Name’

column 62) and comments (in a
Table 60 includes a

‘Comment’ column 64). Views

‘+/ button 66, for activating the

composition of a ViewRecord (discussed below), a ‘-’

button 68, for deleting one or plural DOV record and a

‘Save View’ button 70.

In this embodiment, Display Clients support a set of

standard methods in order to participate in the

compositing and rendering of one or more DOVs; these

methods are implemented through a plugin architecture.

Table 1 provides an example of such a plugin architecture,

methods of which are discussed below.

TABLE 1: Methods of exemplary Display Client plugin

METHOD

RETURN
TYPE

DESCRIPTION

DISPLAY ELEMENT SELECTION & WINDOW HIGHLIGHTING

displayElement

Selection

void

User-invoked method to enable
recording selection of DE(s)
for the purpose of composing
a DOV record and a
DisplayElements record. May
include methods to provision
and select a menu item in a
context-dependent menu
exposed, for example, by a
right-mouse-click of the
display element. Calls
setWindowBorderSelection
Method.

WO 2009/036500

PCT/AU2008/001378

setWindowBorder

Selection

void

Called by
displayElementSelection to
highlight the selection of
display elements during the
composition of a DOV.

COMPOSING A DOV RECORD

handleWatchedFolder

FileRenameEvent

BOOL.
YES if
success-
ful.

Responds to notification of a
file RENAME event in watched
folder:

Determine if Display Client
can participate in
compositing a DOV record. If
NO, display error message to
the user. If YES, then
retrieve the UUID from the
renamed temporary file (the
first line of the temporary
file).

handleDisplay

ElementSelection

BOOL.
YES if
success-
ful.

Call only if handleWatched
FolderFileRenameEvent returns
YES.

Respond to notifications of
selected display elements
during compositing of DOV
record and DisplayElements

record:

write the displayClientID to
the end of the temporary file
upon the selection of the
first-selected DE, but not
subsequent selections of

DE (s) .

WO 2009/036500

- 14

PCT/AU2008/001378

BOOL.
handleWatchedFolder | YES if
FileDeletionEvent success-

ful.

Respond to notification of
file DELETION event in
watched folder:

Create a persistent store, in
the form of DisplayElements
record, of the configurations
required to recreate the
DOV’s DE(s) (given the
provision of a
dataSourceURI(s) . Write out
dovUUID

property with the dovUUID

the DisplayElements’

retrieved from the temporary
file.

PARTICIPATE IN A DOV SESSION

handleRequestSync BOOL. Negotiate whether or not to
ActiveDOV YES if join a Sync Session for
success- |updating ActiveDOV record
ful. properties.
handleChangedActive | BOOL. Respond to changes to
DOVPersistentStore |YES if ActiveDOV record properties:
success-
ful. (i) use the ActiveDOV dovUUID

value(s) as key(s) for
retrieval of the relevant

DisplayElements record(s).

(ii) use the configuration
information contained in the
DisplayElements record(s),
and the value(s) of ActiveDOV
dovColor property (Table 2)
to render the DOV(s).

Calls setWindowBorderColor

WO 2009/036500

PCT/AU2008/001378

Returns YES if successful, NO

otherwise.

setWindowBorder

Color

void

value (s)
handleChangedActiveDOV

PersistentStore.

Set to ActiveDov’s dovColor

(Table 2). Called by

END PARTICIPATION IN A DOV SESSION

DOV Session

handleRequestToExit | BOOL.

YES if
success-
ful.

session.

User-invoked method to cease
participation in a DOV
User access to this
method may be provided by a
menu inserted into the

Display Client’s main menu.

TABLE 2: Exemplary Sync properties for ‘ActiveDOV’ record

KEY TYPE DESCRIPTION/VALUE
dovUUID NSArray (NString;.., |Universal Unique
NStringy) Identifier for
each DOV.
dataSourceURT NSArray (NSURL;.., Data Source URI
NSURLy) for each DOV.
dovColor NSArray (NSColor;.., Color setting for
NSColory) each DOV.

According to this embodiment, a DOV is associated with a

UUID (Universally Unique Identifier) by the creation of a

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

- 16 -

ViewRecord. The ViewRecord of each DOV is composed
through the combined action of Browser Application 24 and
the Display Client(s) associated with that DOV. The
composition of a ViewRecord is summarized in flow diagram
74 of Figure 4. At step 76, the user commences by left-
clicking on the ‘4’ button 66 of Views Table 60, whereupon
the Browser Application 24 creates a new row 72 in Views
Table 60 and generates a UUID which is then associated
with that row; hence, each row of Views Table 60 has a one
to one relationship with a DOV entity. Browser
Application 24 then creates, at step 78, a temporary file
in a watched folder, writes the just-created UUID to the
temporary file 84, then renames the temporary file. At
step 80 a notification of this ‘rename event’ is
immediately detected by each DOV-compliant Display Client
through a notification mechanism (in this embodiment
RENAME Kqueue filter), whereupon each such Display Client,
by invocation of its handleWatchedFolderRenameEvent (see
Table 1) writes a displayClientID (see entries 222, 224,
226, 228, 230 of exemplary temporary file 220 of Figure
10), such as in reverse DNS format, to the end of the
renamed temporary file upon selection of a display element
(but not subsequent selections of display elements), then
reads and stores the first line of the temporary file
(which contains the UUID) in, for example, an in-memory

array.

Through the action of each Display Client’s
displayElementSelection and setWindowBorderSelection
methods (see Table 1), the display elements thus selected
are marked as having been selected for inclusion in a DOV,
such as by setting their window border to red for the
duration of the selection process. Other display client
methods employed are handleWatchedFolderFileRenameEvent
and handleDisplayElementSelection.

At step 82 the user completes the process of composing a

10

15

20

25

WO 2009/036500 PCT/AU2008/001378

- 17 -

view by left-clicking the ‘Save View’ button 70. This
prompts, at step 84, Browser Application 24 to write an
‘END’ token (which, in combinétion with the presence of
the UUID and at least one displayClientID, flags a
complete DOV record) to the end of the aforementioned
temporary file; at step 86, Browser Application 24 reads
and parses the contents of the temporary file (an example
of which is shown at 220 in Figure 10) and, at step 88,
uses the parsed temporary file to construct a DOV record
(see Table 3) and push-syncs that record to the

Synchronization Service’s central (truth) database.

TABLE 3: Exemplary Sync properties for ‘DOV‘ record

Key Type Description/Value

dovUUID NSString Universal Unique
Identifier for DOV.

displayClientID NSstringi..., Unique identifier for
NSStringy each Display Client, in
standard format (e.g.

reverse DNS-style).

At step 90, Browser Application 24 deletes the temporary
file. Then, at step 92, upon the user’s left-clicking the
‘end selection’ button, a notification of the deletion of
the temporary file is sent; at step 94 this notification
is detected by each DOV-participating display client’s
DELETE Kqueue event filter, instructing the DOV-
participating display client, through the action of their
handleWatchedFolderFileDeletionEvent method (see Table 1),
to store - as a ‘DisplayElements’ record (see Table 4) -
all configuration information required to reconstruct
those display element(s) that it contributed to the DOV.

TABLE 4: Exemplary Sync properties for ‘DisplayElements’
record

10

15

20

25

30

WO 2009/036500 PCT/AU2008/001378

- 18 -

Key Type Description/Value

dovUUID NSString Universal Unique Identifier
for DOV.

displayElements NSData Binary archive containing
configuration information
for each Display Element.

Configuring and Populating the Browser

The user configures a browser document with data sources
and associated metadata with the ‘configure browser’
table, shown schematically at 96 in Figure 5A. The user
populates the ‘data source’ column 98 of configure browser
table 96 with a list of data sources (typically files) of
potential interest by copy-and-paste or drag-and-drop,
such as with a file browser such as Apple brand Finder or
Microsoft brand Window’s Explorer. The user‘may also
directly add and delete files with the add button 100 and
delete button 102, respectively. (The add button 100
retrieves the system’s file browser, with which the user
can select additional files.) Upon population of the data
source column 98 with a list of data source files, a show
attributes button 104 is enabled.

Pressing the show attributes button 104 causes the browser
client to execute a method (shown as a flow diagram in
Figure 6) that populates a metadata attribute column 106
with a list of unique metadata attributes, sorted
alphabetically. The user can subsequently reorder (drag-
and-drop between column rows), delete (delete button 102
or delete key action) or merge metadata attributes listed
in the metadata attribute column 106. To merge metadata
attributes, the user selects the attributes to merge, then
left-clicks a merge attributes button 108, whereupon the

user is prompted to enter a new name for the merged

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

- 19 -

attributes. For example, in the hypothetical example of
Figure 5A, the metadata attributes ‘Commentl’ 110 and
‘Comment2’ 112 could be merged. Additionally, the
metadata attributes ‘Fluorescence Comp’ 114, ‘Gating’ 116,
‘Study’ 118 and ‘Total Events’ 120 might be removed from
metadata attribute column 106. The effect of manipulating
these attributes and their display is illustrated in
Figure 5B, in which Commentl 110 and Comment2 112 have
been merged to form a single Comment attribute 122,
Fluorescence Comp 114, Gating 116, Study 118 and Total
Events 120 have been removed, and the remaining metadata
attributes in metadata attribute column 106 have been

reordered.

Figure 7 is a view of a browser document 130 according to
this embodiment of the present invention. Browser
document 130 includes a browser document table 132
comprising rows 134, each of which identifies a single
file (in Data Source column 136) and associated metadata
that is organized into columns that are controllably shown
or hidden; the set of metadata columns is determined by
the metadata attributes selected by the user in their
interaction with the configure browser table 96 of Figure
5A. In the illustrated example, the displayed metadata
columns are Data Source 136, Sample ID column 138 and

Comment column 140.

Rows 134 and associated data may be deleted (by selecting
the respective row(s) and then activating - typically by
left-clicking - delete button 142) or copied within and-

between browser documents.

Horizontal and vertical ‘split views’ can be created to
facilitate effective navigation of large browser
documents; this is also depicted in this figure, in which
the view is divided in two panes 154, 156. That this mode
of display is in operation is flagged to the user by

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

dimple 158.

The user can associate one or more DOVs with a
Configurable and Movable Increment Icon (or CAMII,
discussed further below) by left-click-selecting one or
more rows 72 of Views Table 60 (see Figure 3) and dragging
(i.e. with mouse button depressed) to a target CAMII.
Releasing the mouse button with the target CAMII ‘in
focus’ associates the one or more DOVs with that CAMII,
and populates a drop-down list (see Figure 8B) from which
the user can select a DOV (as is described below). A DOV
may be associated with any number of CAMII.

In one variation, software stack 10 can generate one or
more CAMII and one or more split views to display entities
such as files or records from databases that display
similarities or dissimilarities (described in greater
detail below).

Configurable and Movable Increment Icons (CAMIIs)

A valuable functional aspect provided by this embodiment
of the present invention is the ability to create and use
one or more ‘Configurable and Movable Increment Icons’
(CAMIIs). A user can create a CAMII by dragging an icon
from the CAMIT well 144 (of browser document 130 of Figure
7) onto browser document table 132 (such as in DSI column
146 at 148).

The user may locate a newly created CAMII, or relocate an
existing CAMII, at any row 134 of browser table 132 that
i) holds data (that is, a CAMII cannot be positioned at an
empty row), and ii) does not already have a CAMII. A user
effects relocation of a CAMII by any of three methods: (i)
drag-and-drop, (ii) copy-and-paste, or (iii) use of an UP
or DOWN key (or the like). With CAMII relocation methods

(1) and (ii), the user is free to vertically reposition a

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

- 21 -

CAMII across any number of table rows, whereas the extent
of vertical movement of a CAMII by relocation method (iii)
depends on the ‘increment behaviour’ of a CAMII, which is

itself configurable (discussed below).

A CAMII’s vertical position within browser document table
132 (i.e. the row 134 in which it is located) sets the
contents of its dataSourceURI attribute (discussed below),
which are updated upon each CAMII relocation event. A
CAMII may be deleted by left-click-selecting it and
pressing delete 142 or selecting ‘delete’ from an

application menu.

Properties determining the configuration of a CAMII are
set and accessed via a CAMII entity-relationship data
structure. Figure 8A is a schematic illustration of a
CAMII entity-relationship data structure 170 according to
one embodiment of the present invention. Referring to
Figure 8A, the CAMII entity-relationship data structure
includes the following entities, attributes and
relationships: a CAMII entity 172 containing the
attributes status 174a, dovColor 174b, dataSourceURI 174c,
and index 174d (where dovColor and dataSourceURI are
display properties), and the relationships dov 1l74e and ig
174f; an IncrementGroup entity 176 containing the
attributes incrementMembers 178a and incrementValue 178b,
and the relationship camii 178c (which is the inverse
relationship of ig relationship 174f of CAMII entity 172);
a DOV entity 180 containing the attributes comment 182a,
dovName 182b, dovUUID 182c and index 182d, and the
relationship camii 182e (the inverse relationship of dov
relationship 174e of CAMII entity 172).

Each CAMII is mapped to one instance of a CAMII entity.
The status attribute 174a, which may be modelled as a

Boolean, refers to the active (Boolean value = YES) or
inactive (Boolean value = NO) status of a CAMII. When

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

- 22 -

created, each CAMII defaults to an inactive status, which
status is indicated to the user, such as by being
displayed in a different colour or greyed out (not shown) .
A CAMII can be toggled between active or imnactive status
by double-clicking it with the left mouse button.

Referring to Figure 7, to set the increment behaviour of a
CAMII, the user selects the relevant CAMII then chooses or
enters an increment value using a combo box user interface
element 150. The increment behaviour of more than one
CAMII can be entered as a group, that is, by selecting two
or more CAMII and then entering an increment value with
user interface element 150. When the increment behaviour
of a CAMII is entered in group fashion, the thus
configured CAMII will move in tandem with its group
members, that is, moving any CAMII of that group will
cause all other CAMIIs of that group to move by the
increment value set for the group. Properties of the
increment value of a CAMII are held in the IncrementGroup
entity 176, and are accessed by each CAMII object via its
ig relationship 174f. The incrementMembers attribute 178a
contains an array of CAMII entity object identifiers, one
object identifier for each CAMII that ‘participates’ in a
given increment behaviour configuration. The
incrementValue attribute 178b, which may be modelled as an
integer, contains the increment value (i.e. the number of
rows one or more CAMIIs will move up or down in response
to a user’s initiating CAMII relocation) for the

‘increment group’ and defaults to a value of 1.

Figure 8B is a schematic illustration of a drop-down list
180, accessed by right-clicking a CAMII, for example CAMIT
148 of Figure 7, and used for indirectly setting the value
of a CAMII’s dovUUID property. Referring to Figure 8B,
right-clicking a CAMII prompts the display of drop-down
list 180, from which the user can left-click-select a DOV
182 from a list of the one or more available DOVs 184

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

- 23 -

associated with the CAMII through the mechanism described
above. Upon selection of a DOV, the name of the selected
DOV 182 (dovName) and associated comment (comment)
properties are henceforth displayed as a ‘tool tip’ upon
mousing (i.e. hovering) over a CAMII (unless no DOV is
selected, in which case the default value ‘none’ is

displayed).

The user is able to graphically communicate an association
between the display elements of a DOV with an associated
CAMITI by left-click-selecting a CAMIT and selecting
‘highlight display elements’ from an application menu that
is then displayed. For example, the colour of the
selected CAMII can be set via a colour well 152; the
resulting colour setting is written to the colour
attribute, colour 174b, and sets the ActiveDOV property,
dovColor (see Table 2)). The selected colour is applied
to the display element(s) of the active DOV to highlight
them, by setting the colour of their associated window
frame upon DOV invocation. (Display clients call the
setWindowBorderColor method, described below.)
Highlighting a DOV’'s display elements enables the user to
readily distinguish and identify those elements and their
associated data source where multiple DOVs are
simultaneously in view on a graphical canvas. By left-
clicking a CAMII and selecting ‘remove display highlights’
from the application menu displayed in response, the user
removes the highlighting effect from display elements
associated with its active DOV.

Tn a variation of this embodiment, browser document 130
includes a user-operable menu to facilitate the selection
of data sources and data-oriented views. Users can select
contiguous or discontinuous rows, and can select from the
menu to move up or down one or two, and conceivably more,
rows (such as by selecting ‘jump up one row’, ‘jump down

one row’, ‘jump up two rows’ or ‘jump down two rows’) .

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

- 24 -

For example, in use the user might select two contiguous
rows from upper pane 154 and two (non-contiguous) rows
from lower pane 156. The system is configured to respond
by comparing the selected rows, displaying the rows on the
screen and - in response to the user clicking the down and

up arrow - display to the screen the resulting windows.

Tf the user wishes to change his or her selection having,
for example, previously selected rows 3 and 4 from upper
pane 154, he or she may subsequently jump to - and select
for display - rows 5 and 6 without having to select rows 4
and 5 first.

Display Client Launch and Rendering of Display Elements

Figure 9 is a flow diagram 190 of the methods executed by
the browser application and display clients during the
updating of an ActiveDOV record according to this
embodiment. As illustrated in Figure 9, the methods
commence in response to a user’s opening a browser
document. Thus, at step 192, DOVCounter is set to 0;
while DOVCounter has a value of 0, the browser application
document can be described as in an inactive mode. In this
mode, any change to the properties of a CAMII will not
cause the invocation (display client launch and DE
rendering) of the associated DOV(s).

At step 194, the user selects a browser document window,
then a ‘DOV Session’ from the browser application menu.

At step 196, the DOVCounter value of the selected browser
document is set to 1. At step 198, the browser
application immediately launches (via Launch Services) all
display clients required for display of the DOV (s) that
are associated with active CAMIIs, and push syncs that
browser document’s active CAMII display properties
(updating ActiveDOV record(s) - see Table 2) to the
Synchronization Service’s central (truth) database. If at

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

- 25 -

step 200 synchronization of the aforementioned display
properties is found not to have been successful,
processing continues at step‘202 where the errors are
caught and responded to. Processing then continues at
step 204. If at step 200 synchronization of the
aforementioned display properties is found to have been

successful, processing proceeds directly to step 204.

At step 204, DOVCounter is set to 2. In this mode, a
change to any display property of an active DOV (at step
206) will cause the system to respond, at step 208, by
launching the relevant display clients (via Launch
Services) and to push sync changed active CAMII display
properties (updating ActiveDOV record(s) - see Table 2) to
Sync Services’ truth Database.

If at step 210 synchronization of the display properties
is found not to have been successful, processing continues
at step 212 where the errors are caught and responded to,
after which processes returns to step 208. If at step 210
synchronization of the display properties is found to have

been successful, processing continues at step 214.

At step 214, software stack 10 determines whether the user
has closed the Browser Document. If so, processing ends.
Otherwise, processing returns to step 206.

Display clients render a DOV or DOVs through the
invocation of three methods (see Table 1). A display
clients’ handleRequestSyncActiveDOV negotiates whether or
not to join a synchronization session for updating its
ActiveDOV record properties. Upon agreeing to join the
sync session (which may depend on display client-specific
custom logic, such as on the availability of suitable
resources for DOV rendering), the
handleChangedActiveDOVPersistentStore method receives a
notification that its ActiveDOV record has changed,

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

- 26 -

whereupon it uses the ActiveDOV dovUUID value(s) as key (s)
for retrieval of the relevant DisplayElements record(s).
Subsequently, it uses the configuration information
contained in the DisplayElements record(s), and the

value (s) of ActiveDOV dovColor property (see Table 2) to
render the DOV or DOVs.

Figure 11 is an example of the output 240 displayed to a
display and resulting from the settings shown in Figure 7.
However, in another variation of this embodiment, software
stack 10 can generate essentially the same result by
conducting an independent search for similarities (or
indeed dissimilarities) in some parameter or parameters of
the data using, for example, statistical analysis, cluster

analysis or geometric figures.

In one example, software stack 10 can be controlled to
identify all data files (from a user specified or defined
list of files) that meet some user defined criterion. In
the exemplary output 250 shown in Figure 12, the parameter
is that the data files should include a similar percentage
of events in the range identified by a specified marker Ml
(from channel 264 to channel 834 in this example), where
‘similar’ means to within - say - 10%. This can be done

in a supervised or unsupervised manner.

The results are outputted to a display, as shown at 250 in
Figure 12. In this example, three files have been located
(viz. samplel.fcs, sample2.fcs and sample3.fcs), and are
displayed at 250 along with the percentage of events in
the range identified by marker M1 (respectively 46.5%,
42.1% and 43.6%) and plots - on the right of Figure 12 -
of the data in the range of marker Ml.

Figure 13 is a flow diagram 260 of the method of this
embodiment whereby the system searches a set list of
available sources (databases, files, etc) for such

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

- 27 -

similarities. Thus, at step 262 the system searches the
user defined list of locations or files for sources
meeting the predefined similarity until a match is found

or the end of the list has been reached.

At step 264, the system checké whether a match has been
found (i.e. that this is why searching has paused) and, if
so, processing continues at step 266 where the found
source is grouped with the others (if any) already found
and the position of the found source is stored in a list

maintained by the system as a database or in a file.

If, at step 264, the system determines that a match had
not been found (and hence that the end of the list had,
instead, been reached), processing continues at step 268
where the system outputs the results of the search to a
display or printer. At step 270, the user would typically
inspect or check the results (on the display or printout)
and, if at step 272 the user confirms (such as by
activating an ‘accept’ icon) that the results are
satisfactory, processing continues at step 274 where the
system sets the split viewer and CAMII according to the
grouped groups. At step 276, the system outputs the
results to the display and processing ends.

If at step 272 the user does not confirm that the results
are satisfactory (such as by activating a ‘reject’ icon),

processing ends.

Modifications within the scope of the invention may be
readily effected by those skilled in the art. For
example, although the system of Figure 1 - comprising
software stack 10 - is located on a single computing
device, in other embodiments the system may be
distributed. It is to be understood, therefore, that this
invention is not limited to the particular embodiments

described by way of example hereinabove.

10

WO 2009/036500

- 28 -

PCT/AU2008/001378

Tn the claims that follow and in the preceding description

of the invention, except where the context requires

otherwise owing to express language
implication, the word “comprise” oxr
“comprises” or “comprising” is used
that is, to specify the presence of
but not to preclude the presence or

or necessary
variations such as

in an inclusive sense,
the stated features

addition of further

features in various embodiments of the invention.

Further, any reference herein to prior art is not intended

to imply that such prior art forms or formed a part of the

common general knowledge in any country.

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

- 29 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-implemented system for creating or managing
layouts, comprising:

a browser application; and

one or more display clients for rendering data-
oriented views;

wherein said browser application is user-operable
to select or locate data sources and to select data-
oriented views and thereby to control said browser
application to control said display clients to render said
selected data-oriented views based on said selected data

sources.

2. A system as claimed in claim 1, wherein said browser
application includes an icon module for generating
increment icons, said increment icons being user-operable

to select said data sources and said data-oriented views.

3. A system as claimed in claim 1, wherein said system is

configure to operate either supervised or unsupervised.

4. A system as claimed in claim 1, wherein said system is
controllable to establish connections between computing
devices and perform an analysis, and to output results of
said analysis according to user definable settings.

5. A system as claimed in claim 1, wherein said system is
controllable to search for said data sources according to

one or more user-defined search criteria.

6. A system as claimed in claim 5, wherein said one or
more user-defined search criteria comprise similarity in
one or more user-defined parameters to within a user-

defined tolerance.

7. A system as claimed in claim 1, wherein said data-

10

15

20

25

30

35

WO 2009/036500 PCT/AU2008/001378

- 30 -

oriented views comprise display elements, said display
clients rendering said data-oriented views by rendering

said display elements.

8. A system as claimed in claim 1, wherein said browser
application includes a module for inviting one or more
display clients to render said display elements
constituting a data-oriented view or views, and for

handling return states.

9. A system as claimed in claim 1, including a UUID
module operable by a user to associate a data-oriented
view with a universal unique identifier, and configured to
make said universal unique identifier available to a
display client or clients responsible for rendering said

data-oriented view and to said browser application.

10. A system as claimed in claim 9, wherein said UUID

module comprises GUI elements and methods.

11. A system as claimed in claim 1, further comprising:

a synchronization service for providing
persistent storage and synchronization of records
pertaining to said data-oriented views;

a metadata service for creating, storing,
accessing, discovering and exchanging metadata; and

an application launch service for allowing said

browser application to open one or more display clients.

12. A system as claimed in claim 1, including an event
notification system for managing notifications across

multiple tasks.

13. A system as claimed in claim 1, including a metadata
service configured to control displaying of data source
metadata presented for browsing or operation of said

increment icons.

10

15

20

25

WO 2009/036500 PCT/AU2008/001378

14. A computer-implemented method for creating or
managing layouts, comprising:
operating a browser application to select or
locate data sources and to select data-oriented views; and
controlling said browser application to control
said display clients to render said selected data-oriented

views based on said selected data sources.

15. A method as claimed in claim 14, including generating
increment icons with a module of said browser application,
and operating said increment icons to said select data

sources and said data-oriented views.

16. A method as claimed in claim 14, including employing
a metadata service to control display of data source
metadata presented for browsing or operation of said

increment icomns.

17. A method as claimed in claim 14, including searching
for said data sources according to one or more user-

defined search criteria.

18. A method as claimed in claim 14, wherein said one or
more user-defined search criteria comprise similarity in
one or more user-defined parameters to within a user-

defined tolerance.

WO 2009/036500

10 —

16 —

PCT/AU2008/001378

Browser
Application

18 Launch | Sync — 20

14 — 1 Services| Services [*
> Metadata Service 22
T 30 = o8 | V. 4 |
12— { _| Watched [~ 32
Folder
Figure 1

Figure 2

WO 2009/036500

PCT/AU2008/001378
2/10
60
™ 62 64
\
(. . ‘
OJOXO,; ! Window | h
Index “w’:&w !‘szxma 7 Comment
T 1 ! ~ Adult Cancers t _ Breast & Prostate Cancers
AAAAAAA 2 lmmunology“g;tudy | Blood data views
3 Epidemiological L Virus data views
4 Childhood Cancers Childhood Leucemia
5 “control ~ Flow cytometry study
6 antbodyA ! Flowcytometrystudy
7. antbody:B 1 Fowcytometrystudy

[Save View]

] —
66 ©8 70

Figure 3

WO 2009/036500 PCT/AU2008/001378

3/10

74 —

User left-clicks ‘+' button 66; Browser Application 76
24 creates a new row 72 in Views Table 60 and —
new dovUUID value-

!

Browser Application 24 creates a temporary file in 78
watched folder 32, writes the just-created —
dovUUID value to the temporary file, then
renames the temporary file

|}
Renaming of temporary file is detected by each
display client's RENAME Kqueue filter; each 80
display client writes its displayClientID tothe [
end of the renamed file upon first selection of a
display element, and takes in the first line
(containing the dovUUID) of the renamed file

! 82
User pushes ‘Save View’ button 70 —

!
Browser Application 24 responds by writing an 84
‘END’ token to the end of the temporary file —

!

Browser Application 24 reads and stores the 86
contents of the temporary file

{
Browser Application 24 constructs and push- 88
syncs a DOV record to the Synchronization
Service's central (truth) database

!

Browser Application 24 deletes the temporary file —

90

92

Notification of deletion of temporary file sent —

Each display client detects notification of deletion J94
and writes a DisplayElements record

END

Figure 4

WO 2009/036500

PCT/AU2008/001378
4/10
96 - 98 106
-
OO0 / Window / A
Data Source | | Metadata Attribute
sample001 Comment] < — 110
sample002 Comment2 <~ 112
sample003 S _File Name
‘sample004 “}»Fluorescence Comp «—1 1114
sample005 | | | Gating «_-116_
sample006 SamplelD
sample007 - Study — 1 18
sample008 Total E Events ,_/120
009 :
102 | PP
100_ N 108
= [Merge Attributes}—-/
L Show Attributeﬂ FConfigure BrowseﬂJ
]
104 — .
Figure 5A
96 — . 106
00O Window ¥)
DamSource | [MetadataAttribute
Asample()m File Name
sample02 SamplelD
sample003 | |Comment « 122
sample004 |
sample005 .
sample006 e e
sample007 x
sample008
sample009
+[—= ﬁ/lerge Attributes]
L [Show Attributeg Eonfigure Browser]J

Figure 5B

WO 2009/036500

5/10

Extract (typically file-type) descriptors from data sources |

(typically files) listed in ‘Data Source’ column

!

Retrieve list of metadata attributes corresponding to

each unique data source descriptor; where a data source |

is represented by multiple descriptors, return the
metadata attributes corresponding to the most specific

descriptor ‘

Remove duplicates from list of metadata attributes, sort

PCT/AU2008/001378

124

126

alphabetically and display list in ‘Metadata Attribute’ J1 28
column of ‘Configure Browser’ table
Figure 6
—176
170~ (1 72 (" IncrementGroup |
6 CAMII) ¥ Attributes
174a [¥ Aftributes incrementMembers «<—178a
| status incrementValue ~—178b
174c —1» dataSourceURL ~_camii ~—5 180
174d—L+ index) L
v Relationships DoV
174e —{. dov B ¥ Attributes
_ig . 182a—1. comment
1747 - — 182b —~dovName
182¢ —»dovUUID
182d —{~ index
: 182¢ v Relationships
Figure 8A = camii)
180~ - »
Adult Cancers
Immunoclogy Study
Epidemioclogical
184 —s Childhood Cancers | 182
fcontrol T
antibody-A
Figure 8B antibody-B

WO 2009/036500 PCT/AU2008/001378

6/10
130 ~
(OO0 1 /52 /146 1/50 Window \
@ 1/ 7 Dy
144 > ‘
NN 1 [w 136 138 140
148 Y f f f
AN index | DSI | Data Source| Sample 1D Comment
134 "4 1 » | sample001 mouse1 control
\\ 2 > | sample002 mouse1 antibody-A 154
3 P | sample003 mouse antibody-A
4 sample004 mouse2 control
5 sample005 mouse2 antibody-A
6 sample006 mouse2 antibody-B
7 sample007 mouse3 control
8 sample008 mouse3 antibody-A
9 sample009 mouse3 antibody-B
O -« 158
Index | DSI |Data Source| Sampie ID Comment
1 » | sampie001 mouse1 control
2 > | sample002 mouse1 antibody-A
3 P> | sample003 “mouse1 antibody-A 156
4 sample004 mouse2 control
5 sample005 mouse2 antibody-A
6 sample006 mouse2 antibody-B
7 sample007 mouse3 control
8 sample008 mouse3 antibody-A
9 sample009 mouse3 antibody-B
4+] —) Show Column |
- J
S~ 142

Figure 7

WO 2009/036500

PCT/AU2008/001378
7/10
START: User opens
190 Browser Document
Set DovCounter =0 —
Y
User selects browser J1 94
document window, then
‘DOV Session’ from menu
|
Set DOVCounter = 1 J1 96
!
Launch relevant DC(s) & push-sync | 198
active CAMII display properties
202
200 [
Sync Catch and
successful respond
to errors

204

206

to ‘display
property’ of active CAMII
AND DovVCounter
=27

Launch relevant DC(s) &
push sync changed active |«
CAMII display properties

212
210 f
successful Catch and
respond
?
(no errors)? respone

tloses Browse
Document?

Figure 9

WO 2009/036500 PCT/AU2008/001378

8/10

220 —_

222 | 2BE6080D-5550-4D82-82AF-861E4DE16685
294 L com.inivai.statsMajic

“~— | com.inivai.graphMajic
226 ™ | com.invai.dicomMajic

_— | com.inivai.gatelogic
228 - com.inivai.patientDB

230 LEND

Figure 10

et
©
24
o
.
i o 8
L =])
| & W e & W
1| S 3 z
| ES =7 £ = o
‘RS 2 8 =4
e N £ £ N
Q_ ;
g1 ok
R €4
||‘|‘||n||||||||.u ||||||||||-||||=: ||||||u!u|||.||
1024 2048 3u72 qo8! . 1024 2048 agr2 4080 1024 2048 3072 4098
! : s . FS FS
N Gaopmne T T e o o e 4 R VRN
(8 sample00170 (B L3218 saimplettz Y bl sample0d3

= <l o

ER @l %]

) 2 - =R

o N N

53 = 8

= W = S G

7 ;] 7

2 £ = = &

B %4 Bz & 5

& 7 8- z R

=] 5 —

8 g8 BN

- s 8
“||x|||t||||ln| |||nl||-lr|| i A|||.|||||-|‘r||
1024 2048 3072 4008 - 1024 2048 3072 sjoea 1024 2048 3072 40e8

FS FS FS
‘ e ; = e

Figure 11

WO 2009/036500 PCT/AU2008/001378

|| Untitled
[File Edit

e :
A (=] samplelfes

i?,|l|III|I|I|
1024 2048 3072 4008

}#..:;.uf;u rw.”»

==

“;|||l|||||1||
1024 2048 3072 4006

e ;:'%I%.r’np‘!eﬁ fts a

M1 43.6%

]

)

]]
024!

= T | T l L | Ly B
; azg 2048 - 3OF2 4005
FS. : i : F&g

Figure 12

WO 2009/036500

10/10
260 —_

TART: system starts

S
(search in a list of sources)
!

PCT/AU2008/001378

262

Search list for sources meeting

found or end of list reached

predefined similarity until match

3

\ _— 264

Y
Group found source and

store location in a list in a
database or file

~—— 266

System outputs results of
search to display or printer

~ 268

User checks results

270

Are results
satisfactory?

System sets split viewer
and CAMII according to the
grouped groups

274

'

Output results to display

~— 276

END

Figure 13

INTERNATIONAL SEARCH REPORT International application No.

PCT/AU2008/001378

A. CLASSIFICATION OF SUBJECT MATTER
Int. Cl,
GOG6F 17/30 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B.

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the ficlds scarched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPODOC, WPI, Google Patent: IPC- GO6F17/30/ic/ec/icai & Keywords (Data Analysis, Browse+, Render) and similar words.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages : Relevant to
claim No.

US 7107285 B2 (VON KAENEL et al.) 12 September 2006

X See whole Document 1-18
US 7146384 B2 (SAWAFTA) 5 December 2006

X Lines 3-20 Column 5, Lines 35-40 Column 6, Lines 58-60 Column 11 i 1-5, 14-15
US 6867788 BI{TAKEDA) 15 March 2005

A Fig 4 and 11, Column 5 1,14
US 2004/0239681 AI(ROBOTHAM et al.) 2 December 2004

A See entire document 1,14

D Further documents are listed in the continuation of Box C See patent family annex

*

nA

wE!

npn

ekl

npy

Special categories of cited documents: .
document defining the general state of the art which is
not considered to be of particular relevance

carlier application or patent but pablished on or after the
international filing date ’

document which may throw doubis on priority claim(s)
or which is cited to establish the publication date of
another citation or other special reason (as specified)
document referring to an oral disclosure, use, exhibition
or other means

document published prior to the international filing date
but later than the priority date claimed

nh

'Y

ryn

ngn

later document published after the international filing date or priority date and not in
conflict with the application but cited to understand the principle or theory
underlying the invention

document of particular relevance; the claimed invention cannot be considered novel
or cannot be considered to involve an inventive step when the document is taken
alone

document of particular relevance; the claimed invention cannot be considered to

. involve an inventive step when the document is combined with one or more other

such documents, such combination being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

29 October 2008 0 4 NOV 2008
Name and mailing address of the ISA/AU Authorized officer
KANWAL PAHWA

AUSTRALIAN PATENT OFFICE

PO BOX 200, WODEN ACT 2606, AUSTRALIA
E-mail address: pct@ipaustralia.gov.au

Facsimile No. +61 2 6283 7999

AUSTRALIAN PATENT OFFICE
(ISO 9001 Quality Certified Service)
Telephone No : +61 2 6283 2644

INTERNATIONAL SEARCH REPORT | International application No.
Information on patent family members PCT/AU2008/001378

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the
above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars
which are merely given for the purpose of information.

Patent Document Cited in Patent F arr;ily Member
Search Report

Us 7107285 AU 2003233407 AU 2003297152 AU 2003300950
CA 2479375 CA 2510108 CA 2510111
EP 1502175 EP 1573597 EP 1573598
US 2004117358 US 2006100912 US 2006105775
US 2007050340 WO 03081388 WO 2004059420
WO 2004059538

US 7146384 AU 2003221884 AU 2003226043 CA 2479818
CA 2480202 EP 1495432 EP 1500030
US 2004010515 US 2004019432 US 2007043694
WO 03088090 WO 03088125

US 6867788 JP 2000048087

US 2004239681 AU 85405/01 AU 86645/01 US 6704024
US 7242406 US 2002015042 US 2002015064
US 2007263007 WO 0213176 WO 0219081

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001,

END OF ANNEX

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - wo-search-report
	Page 44 - wo-search-report

