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(57) Abstract: A hybrid nanotube, high-performance, dynamically reconfigurable architecture, NATURE, is provided, and a design
optimization flow method and system, NanoMap. A run-time reconfigurable architecture is provided by associating a non-volatile
universal memory to each logic element to enable cycle-by-cycle reconfiguration and logic folding, while remaining CMOS com-
patible. Through logic folding, significant logic density improvement and flexibility in performing area-delay tradeoffs are possible.
NanoMap incorporates temporal logic folding during the logic mapping, temporal clustering and placement steps. NanoMap pro-
vides for automatic selection of a best folding level, and uses force-direct scheduling to balance resources across folding stages.
Mapping can thereby target various optimization objectives and user constraints. A high-density, high-speed carbon nanotube RAM
can be implemented as the universal memory, allowing on-chip multi-context configuration storage, enabling fine-grain temporal
logic folding, and providing a significant increase in relative logic density.
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A HYBRID NANOTUBE/CMOS DYNAMICALLY
RECONFIGURABLE ARCHITECTURE AND AN INTEGRATED DESIGN
OPTIMIZATION METHOD AND SYSTEM THEREFOR

RELATED APPLICATIONS

[0001] This application claims benefit of U.S. Provisional Application Serial Nos. 60/793,665,
filed April 19, 2006, entitled “A Hybrid Nanotube/CMOS Dynamically Reconfigurable
Architecture;” and 60/919,225, filed March 21, 2007, entitled “NanoMap: An Integrated Design
Optimization Flow for a Hybrid Nanotube/CMOS Dynamically Reconfigurable Architecture.

Each of the above-identified related applications are incorporated herein by this reference.
GOVERNMENT RIGHTS

[0002] The present invention was made with Government support and the Government has

certain rights in the invention.
FIELD OF THE INVENTION

[0003] This invention relates generally to reconfigurable computer architectures, and particularly
to CMOS compatible field-programmable gate arrays (FPGAs) having non-volatile universal
memories supporting fine-grain reconfiguration to enable temporal logic folding, along with an

RTL/gate-level automatic design optimization method and system.
BACKGROUND OF THE INVENTION

[0004] After consistently providing large improvements in productivity and performance for
more than two decades, CMOS is expected to approach its physical limits in the coming decade.
To enable future technology scaling, intensive research is being directed towards the
dcvelopment of nanoscale molecular devices, such as carbon nanotube and nanowire. Such
nanodevices demonstrate superior characteristics over MOSFET in terms of integration density,
performance, power consumption, etc. However, lack of a mature fabrication process is a
roadblock in implementing chips using these nanodevices. If photo-lithography could be used to
implement structures made from these nanodevices, then such structures could be combined with
CMOS logic to create hybrid CMOS/nanochips, which could leverage the beneficial aspects of
both technologies.



WO 2007/124048 PCT/US2007/009658

[0005] Motivated by the impressive potential of nanotechnologies, researchers are investigating
nanoelectronic circuits and architectures. If such circuits/architectures are implemented using
bottom-up chemical self-assembly techniques, then the chip defect levels are expected to be high
(between 1% and 10%). To be able to deal with such high defect levels, regular architectures are
favored. Reconfigurable architectures, in addition to being regular, allow reconfiguration around
fabrication defects as well as run-time faults. Thus, both regular and reconfigurable architectures

have found popularity.
SUMMARY OF THE INVENTION

[0006] The present invention provides a hybrid CMOS/non-volatile universal memory
reconfigurable architecture, referred to as NATURE. In one embodiment, the present invention
is based on CMOS logic and high-density high-speed non-volatile nanotube random-access
memory. In one instance, NRAM® of Nantero, Inc., identifies a source of nanotube random-
access memory chips. Nanotube random-access memory chips can be fabricated using CMOS-
compatible manufacturing processes. Thus, architectures of the present invention can also be
fabricated with currently-available processes.

[0007] The present invention exploits the excellent properties of non-volatile universal
memories, including NRAM® chips, and distributes them in a reconfigurable fabric to act as on-
chip storage for multi-context reconfiguration bits. Non-volatile memories include the emerging
technologies of carbon nanotube RAMs, phase change RAMs, magnetoresistive RAMs, and
ferroelectric RAMs (FRAMSs). Although certain illustrated embodiments of the present
invention describe implementation using NRAM® chips, the present invention is not limited to
such use. All alternative emerging non-volatile technologies could be implemented and are
contemplated in the present invention.

[0008] The logic implemented in the logic elements of the reconfigurable architecture of the
present invention can be changed every few cycles, making both coarse-grain and fine-grain
dynamic reconfiguration possible. The present invention thereby addresses two primary
challenges in existing CMOS-based FPGAs: logic density and efficiency of run-time
reconfiguration. Traditional reconfigurable architectures only allow partial dynamic
reconfiguration, (i.e., only a part of the architecture can be reconfigured at run-time) due to the
area overhead associated with SRAMs that store the reconfiguration bits and the long latency of

reconfiguration due to the accessing of off-chip storage. Since the access latency of on-chip
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storage is small, on-chip storage provides an opportunity to store multiple logic designs in the
on-chip storage, and to invoke different designs through fine-grain dynamic reconfiguration.
[0009] Moreover, the ability to reconfigure the architecture of the present invention every few
cycles provides for temporal logic folding, (i.e., the possibility of folding the logic circuit in time
and mapping each fold to the same logic elements in the architecture). This provides significant
gains (an order of magnitude or more for larger circuits) in the area-time product (where time
refers to circuit delay, or latency) compared to traditional reconfigurable architectures, while
allowing the flexibility of trading area for performance. For instance, a large logic circuit can be
partitioned into a sequénce of logic stages and stored in the on-chip configuration memory. At
run-time, stage-by-stage, the logic circuit can be configured into the same hardware and executed
in different clock cycles. Logic folding increases logic elements utilization, providing high logic
density and a capability of using cheaper chips, having smaller capacities, to execute similar
applications, hence, making them attractive for use in cost-conscious embedded systems.

0010} In one exemplary realization, the architecture of NATURE includes island-style logic
blocks, connected by a hierarchical reconfigurable interconnect fabric, where each logic block
contains -a super-macroblock (SMB) and a local switch matrix. The SMB includes a two-level
logic cluster. The first level consists of a set of macroblocks (MBs). Each MB is composed of a
set of logic elements (LEs). Low-latency reconfigurable crossbars are used to form local inter-
MB and inter-LE connections. In NATURE, LE is the atomic functional element, and includes
look-up tables (LUTs) and flip-flops. Each m-input LUT can realize any m-variable Boolean
functions. Flip-flops are used to hold computation results which are used by subsequent cycles.
[0011] In this exemplary realization, support for reconfiguration is provided by using nanotube
random-access memories as on-chip configuration storage, distributed within each level of logic
and interconnect hierarchy. Each individual logi.c or interconnect element is associated with, or
physically adjacent and connected to, a k-set nanotube random-access memory storage.
Therefore, k different logic functions can be realized within the same hardware resource without
accessing off-chip storage, thereby providing significant improvement in logic density with only
moderate area cost and delay oVerhead. Also, since logic folding results in most communicaﬁon
being local, the need for global interconnect is greatly reduced.

[0012] Temporal logic folding enables a realization of different Boolean functions within the
same LE in different clock cycles. For instance, traditionally a logic circuit consisting of n

serially-connected LUTs requires n LUTs. With the temporal logic folding support of the
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present invention, all n LUTs can be potentially mapped to a single LE, via n configuration sets
stored in a respective nanotube random-access memory. The subject logic circuit can then be
executed cycle-by-cycle through run-time on-chip reconfiguration.

[0013] Different folding levels result in different circuit performance and area efficiency. Given
a logic circuit, increasing the folding level leads to a higher clock period, but smaller cycle
count, since a larger number of logic operations need to be performed within a single clock
cycle. Since a constant latency is associated with each run-time reconfiguration, the overall
circuit latency decreases as the folding level increases. On the other hand, increasing the folding
level can result in much higher LE resource requirements. Accordingly, design flexibility is
provided, and balancing performance capabilities with area efficiencies 1s always a
consideration.

[0014] The present invention also provides an integrated design optimization platform for
NATURE, referred to as NanoMap. NanoMap conducts design optimization from the RTL
down to the physical level. Given an input design specified in RTL and/or gate-level VHDL,
NanoMap optimizes and implements the design on NATURE through logic mapping, temporal
clustering, placement, and routing. The design optimization techniques of the present invention
exploit the design flexibilities enabled by fine-grain temporal logic folding. Given user-specified
area and performance constraints, the mapping method and system of NanoMap can
automatically explore and identify the best logic folding configuration, and make appropriate
tradeoffs between performance and area efficiency. The present invention uses a force-directed
scheduling (FDS) technique to balance resource use across different logic folding cycles.
Combining NanoMap with existing commercial architectural synthesis tools provides a complete
design automation flow for NATURE.

[0015] Accordingly, aspects of the present invention will be seen variously to:

e  provide a high-performance non-volatile memory-based reconfigurable architecture
enabling run-time coarse-grain to fine-grain (i.e., cycle-by-cycle) reconfiguration and
temporal logic folding;
be reliably fabricated using CMOS-compatible manufacturing processes;
provide flexibility in achieving different optimization objectives based upon user
specified constraints;

. provide flexibility in selecting best temporal folding levels and to perform area-delay
trade-offs; '
be capable of reaching LE utilization of nearly 100%;

reduce by 50% or more a need for deep interconnect hierarchy when using level-1
folding;



WO 2007/124048 PCT/US2007/009658

. provide an order of magnitude increase in logic density relative to current technologies;

and
. significantly improve area/execution time features of FPGAs.

[0016] In one aspect of the invention, a 'reconﬁgurable computer architecture, or field-
programmable gaté array, is provided that includes a plurality of programmable elements and at
least one, separate random access memory associated with, or physically adjacent and connected
to, each programmable element. The reconfigurable architecture could equally include a
separate random access memory associated with each of a plurality of logic elements, or
reconfigurable blocks. The random access memory i;s a non-volatile memory such as a carbon
nanotube RAM, phase change RAM, magnetoresistive RAM, or ferroelectric RAM (FRAM).
The random access memory can store run-time reconfiguration bits of the respective
programmable element/logic element/reconfigurable block, or could store data on-chip, or could
store both run-time reconfiguration bits and data on-chip. Further, data storage could be
distributed across the respective RAM chip.

[0017] In a further aspect, n-programmable elements and n-random access memories comprise a
macro-block (MB), m-macro-blocks and m-random access memories comprise a super macro-
‘block (SMB), and one SMB and one local switch matrix comprise a logic block (LB). A
plurality of LBs could be included in the architecture. In one embodiment of the invention, the
value of m and n is four (4).

[0018] In another instance, the reconfigurable architecture could include a plurality of logic
elements; and an equal number of random access memories, where one random access memory
is physically adjacent and connected to each logic element. The random access memory stores
run-time reconfiguration bits of the respective logic element. The logic element further includes
two flip-flops, where different computation values are stored in each of the two flip-flops at any
point in time. In an alternative embodiment, switch blocks replace the logic elements.

[0019] The present invention also provides a method of run-time reconfiguration, where
reconfiguration bits are written into a first random access memory at a time of initial
configuration from off-chip storage, and reconfiguration bits are placed into a second random °
access memory during run-time reconfiguration to configure one or more logic elements or
switches to implement different logic functionality or interconnections. In one instance,
~ reconfiguration commences at one edge of clock signal, followed by computation at another edge

of the clock signal. The method could provide that the first random access memory is nanotube
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random access memory, and the second random access memory is a static random access
memory.

[0020] In another method of run-time reconfiguration, a series of n- serially connected look-up
tables (LUT1, LUT2, ., LUTn) are mapped to a logic element (LE), and the LE is configured to
implement LUT]1 in a first cycle, to implement LUT2 in a second cycle, and continuing until
configuring the LE to implement LUTn in nth cycle, wherein n cycles are needed for execution.
Moreover, the LE could be configured to implement LUTT1 in a first cycle, wherein LUT1 is then
executed in the first cycle, the LE is then configured to implement LUT?2 in a second cycle,
wherein the LUT2 is then executed in the second cycle, with the method continuing until the LE
is configured to implement LUTn in nth cycle, and LUTn is executed in the nth cycle. In certain
embodiments, all communications between the LUTs could be local. As a variation to the
method, a second LE could execute a LUT in the first cycle using output from the execution of
the first LUT by the LE in the first cycle. .

[0021] An alternative method maps one or more of a series of look-up tables (LUTSs) to one or
more logic elements (LEs), éach LE is configured to implement a LUT in a first cycle, and after
implementation of two sequential LUT computations, each LE is reconfigured to implement a
LUT in a second cycle. |

[0022] In a method for determining a logic folding configuration, and for balancing resource use
across the logic folding configuration, an input circuit design specified in register-transfer level
or gate-level VHDL is provided, and a folding level us determined by: 1) identifying each plane
of the input circuit design; 2) obtaining circuit parameters within each plane; and 3) and by
obtaining a user optimization objective. The register-transfer level or gate-level VHDL module
is then partitioned into LUTs and LUT clusters, which are then assigned to a folding stage. The
LUTs and LUT clusters are then mapped to a super-macroblock (SMB), and are then placed to
specific macroblocks (MB) and logic elements (LE). Intra-SMB and inter-SMB routing is
determined, then a layout generated for each folding stage and a configuration bitmap for each

folding cycle of the reconfigurable architecture.
BRIEF DESCRIPTION OF THE DRAWINGS

[0023] For the purpose of illustrating the invention, there is shown in the drawing(s) a form that
is presently preferred; it being understood, however, that this invention is not limited to the

precise arrangements and instrumentalities shown.
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Figure 1 illustrates structure of a nanotube random access memory;,

Figure 2 illustrates a high level view of the architecture of the present invention;

Figure 3 illustrates an architecture of a lower level macro-block (MB), in accordance with
the present invention;

Figure 4 illustrates an architecture of a higher level super macro-block (SMB), in
accordance with the present invention;

Figure 5a illustrates a connection block for one input of a MB, and Figure 5b a
connection block for one output from a MB, in accordance with aspects of the present invention;

Figure 6 illustrates a switch block in accordance with the present invention;

Figure 7a illustrates level-1 temporal logic folding, and Figure 7b level-2 temporal logic
folding, in accordance with aspects of the present invention;

Figure 8 illustrates experimental‘ circuit mapping results of one instance of a
reconfigurable architecture of the present invention;

Figure 9 illustrates an alternative architecture of a lower level MB of the present
invention;

Figure 10 illustrates an alternative architecture of a higher level SMB of the present
invention;

Figure 11a illustrates a logic element (LE) architecture of the present invention having
one flip-flop, and Figure 11b illustrates another logic element (LE) architecture having two flip-
flops; '

~ Figure 12 illustrates still another architecture of a lower level MB of the present
invention;

Figure 13a illustrates a high-level view of a logic block (LB) architecture where a SMB
has 4 MBs, and Figure 13b illustrates a high-level view of a logic block (LB) architecture where
the SMB has 6 MBs;

Figure 14 illustrates still another architecture of a higher level SMB of the present
invention; .

Figure 15 illustrates a further architecture of a lower level MB of the present invention,
where the number of inputs vary for any given LUT of each LE;

Figure 16 illustrates a SMB architectufe with one level of tolding in accordance with the
present invention;

Figure 17 illustrates routing about a general SMB structure including from one to n MBs;
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Figure 18a illustrates an example Register Transfer Level (RTL) circuit, Figlire 18 a
module partition, and Figure 18c a mapping result thereof, to demonstrate a design optimization
method and system of the present invention;

Figure 19 is a flow diagram illustrating a design optimization method and system of the
present invention, referred to as NanoMap;

Figure 20 illustrates delay optimization procedure under area constraint, assuming across-
plane resource sharing, to choose folding level;

Figure 21a illustrates an ASAP schedule, and Figure 21b a ALAP schedule, for LUTs and
LUT clusters in a plane, for distribution graph (DG) creation during a force-directed scheduling
(FDS) implementation of the present invention,;

Figure 22a illustrates a storage lifetime for the ASAP schedule of Figure 21a, Figure 22b
illustrates a storage lifetime for the ALAP schedule of Figure 21b, and Figure 22c¢ illustrates a
maximum storage lifetime for source distribution computations during Distribution Graph (DG)
creation;

Figure 23a illustrates a LUT computation Distribution Graph (DG), and Figure 23b
illustrates a register storage DG for the ongoing example of Figure 18, demonstrating a design
optimization method and system of the present invention;

Figure 24a illustrates clustering, and Figure 24b placement,'in an example of temporal
logic folding in accordance with a design optimization method and system of the present
invention; and

Figure 25 illustrates experimental circuit mapping results of instances of the design

optimization method and system of the present invention.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0024] A high-performance run-time reconfigurable architecture is provided, along with a design
optimization method and system to efficiency balance performance and area considerations of
the architecture. A high-density, high-speed non-volatile memory is implemented in the
architecture to enable cycle-by-cycle reconfiguration and logic folding. Choice of different
~ folding levels allows the designer flexibility in performing area-performance trade-offs. The
significant increase in relative logic density (more than an order of magnitude for larger circuits)

made possible by the present invention can allow the use of cheaper reconfigurable architectures
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with smaller logic capacities to implement the same functionality, thus giving a boost to such use
in cost-conscious embedded systems.
[0025] One embodiment of the invention implements a non-volatile nanotube random-access
memory, that is considerably faster and denser than DRAM, has much lower power consumption
than DRAM or flash, has similar speed to SRAM and is highly resistant to environmental forces
(temperature, magnetism). Use of highly-dense nanotube random-access memorics, such as a
NRAM® chip, or of other emerging non-volatile memory technologies, including Phase Change
RAMs, Magnetoresistive RAMs, and Ferroelectric RAMs (FRAMs), allows on-chip multi-
context configuration storage, thereby enabling fine-grain temporal logic folding of a circuit
before mapping to the architecture.
[0026] Reconfigurable architectures do exist in the art. However, their teachings are limited to
allowing later stages of a pipeline to be executed in a same set of logic blocks that executed an
earlier stage of Athe pipeline. This can be regarded as coarse-grain temporal folding. However,
such architectures are largely limited to stream media or DSP applications. The present
invention, on the other hand, supports fine-grain temporal folding, and is without the application
limitations present in current reconfigurable architectures. Current reconfigurable architectures
are described in the following, which is incorporated herein by reference for its useful
background information:

e S.C. Goldstein, H. Schmidt, M. Budiu, S. Cadambi, M. Moe, and R.R. Taylor,

“PipeRench: A Reconfigurable Architecture and Compiler,” Computer, vol. 33, pp 70-
77, Apr. 2000,

Carbon Nanotube & NRAM® Chips

[0027] Carbon nanotubes are hollow cylinders composed of one or more concentric layers of
carbon atoms in a honeycomb lattice arrangement. The diameter of a nanotube is usually a few
nanometers and length up to millimeters. Nanotubes exhibit unique electronic, mechanical and
chemical properties. For example, carrier transport in nanotube is ballistic in the micrometer
range and allows current densities as high as 10° 4/cm?. These properties of nanotubes make
them very attractive building blocks for molecular electronics.

[0028] Carboni nanotube random-access memories are described in the following, which is
incorporated herein by reference for its useful background information:

e J.W. Ward, M. Mecinhold, B.M. Segal, J. Berg, R. Sen, R. Sivarajan, D.K. Brock, and T.
Rueckes, “A Non-Volatile Nanoelectromechanical Memory Element Utilizing a Fabric of

-9-
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Carbon Nanotubes,” in Proc. Non-Volatile Memory Technology Symp., pp 15-17, Nov.
2004.

[0029] FIG. 1 shows a basic structure‘of a carbon nanotube random-access memory 100, such as
a NRAM® chip. Memory cells are fabricated in a two-dimensional array using photo-
lithography. Each memory .cell comprises multiple suspended nanotubes, support and electrode.
The memory state is determined by the state of the suspended nanotubes--whether they are bent
or not leads to well-defined electrostaticall;l switchable ON/OFF states. When opposite voltages
are applied to the support and electrode of a membry cell, the suspended nanotubes are bent due
to VanderWals forces, reducing the resistance between the nanotubes and electrode to as low as
several hundred ohms, corresponding to the “1” state. On the other hand, when the same high
voltage is applied to the support and electrode, the nanotube remains straight or returns from the
“17” state, resulting in a resistance of several Gigaohms, which is defined as the “0” state. Such

ON/OFF states have been shown to be both electrically and mechanically very stable.
Phase Change RAMs, Magnetoresistive RAMs, and Ferroelectric RAMs (FRAMs)

[0030] Phase Change RAMs, Magnetoresistive RAMs, and Ferroelectric RAMs (FRAMs) are
each respectively detailed in the following, each of which are incorporated herein by reference
for their useful background information: .

e S. Lai, “Current status of the phase change memory and its future,” in Proc. Int.
Electron Devices Meeting, Dec. 2003, pp. 10.1.1-10.1.4;

e S. Tehrani, J. M. Slaughter, M. Deherrera, B. N. Engel, and N. D. Rizzo,
“Magnetoresistive random access memory using magnetic tunnel junctions,” Proc.
IEEE, vol. 91, pp. 703—-714, 2003;

e G.R. Fox, F. Chu, and T. Davenport, “Current and future ferroelectric non-volatile
memory technology,” J. Vaccum Science Technology B., vol. 19, pp. 1967-1971,
2001.

NATURE Architecture

[0031] A high-level view of the architecture of the present invention is shown in FIG. 2. In this
embodiment, island-style logic blocks 102 (LBs) are illustrated and are connected by various
levels of interconnect. Several types of wire segments are used to support local and global
_communications among LBs 102. S1 104 and S2 106 refer to switch boxes 108 that connect
wire segments. Connection blocks 110 and switch blocks 112 are as indicated in FIG. 2. An LB
102 contains a super-macroblock (SMB) 114 and a local switch matrix 116. The inputs/outputs
of an SMB 114 are connected to the interconnection network through a switch matrix 116 and

neighboring SMBs 114 are also connected through direct links.

-10-
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. Super-Macroblock (SMB) Architecture

[0032] The embodiment of the invention illustrated in FIGs 2-4 present two levels of logic
clusters in an LB 102 to facilitate temporal logic folding of circuits, and enable most inter-block
communications to be local. The first (i.e., lower) level, called the macroblock (MB) 118 level,

is shown in FIG. 3.
[0033] An MB 118 contains n, m-input reconfigurable logic elements (LEs) 120 (in this figure,

n, =4). In the second level, n, MBs 118 comprise an SMB 114, as shown in FIG. 4 (in this

figure, n, =4). In the embodiments illustrated in FIG. 3 and 4, each LE 120 and MB 118 is
associated with (physically adjacent and connected to) a nanotube RAM 100, perhaps a NRAM®

chip. Alternative embodiments of the invention include other emerging non-volatile universal
memories, such as phase change RAMSs, magnetoresistive RAMs, and/or ferroelectric RAMs.
Any could be implemented instead of an NRAM® chip.

[0034] Within an MB 118 or SMB 114, communications among various components can take
place through a local crossbar 122. In this embodiment, a crossbar 122 is selected instead of a
multiplexer at this level to speed up local communications. Since a crossbar 122 requires more
SRAM 124 control bits, a slight price in area is exchanged for faster speed. However, since
logic folding enables significant area savings, this area penalty is negligible. As shown in FIG.
3, the m inputs of a LE 120 can arrive from the outputs of other LEs 120 in the MB 118 or from
the inputs to the MB 118. Similarly, the inputs of an MB 118 can arrive from the outputs of
other MBs 118 or from the inputs to the SMB 114 through the switch matrix 116. The outputs
(two in this embodiment) from an LE 120 can be used within the MB 118 or can go to the upper
level SMB 114 or go to other SMBs 114 through the routing network. This logic/interconnect
hierarchy maximizes local communications and provides a high level of design flexibility for
mapping circuits to the architecture.

[0035] An LE 120 implements a basic computation. The LE 120 can include an m-input look up
table (LUT) 126 and a flip-flop 128 (see FIG. 11(a), detailed below). The m-input LUT 126 can
implement any m-variable boolean function. The flip-flop 128 stores the intemal results for
future use (when a circuit is temporally folded, the result of a previous stage is often needed by a
subsequent stage). A pass transistor can be used to decide if the internal result will be stored or

not.

-11-
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Run-time Reconfiguration

[0036] Run-time reconfiguration is mainly enabled by the carbon nanotube RAM 100 (or phase
change RAMs, magnetoresistive RAMs, or ferroelectric RAMs) distributed throughout the
architecture. The structure and operation of a carbon nanotube RAM are similar to those of a
traditional memory. One minor difference is that in a carbon nanotube RAM, counters can be
used instead of decoders as periphery circuits since reconfiguration bits for different logic
contexts are read out in order.

[0037] A carbon nanotube RAM 100 is associated with each reconfigurable block (e.g., LE 120
or switch block 112, etc.,) to store its run-time reconfiguration bits. Reconfiguration commences
at one edge of the clock signal CLK, followed by computation at another edge of CLK.
Reconfiguration bits are written into the carbon nanotube RAMs 100 at the time of initial
configuration from off-chip storage. During run-time reconfiguration, reconfiguration bits are
placed into SRAM 124 cells to configure the LE 120 or switch block 112 to implement different
logic functionality or interconnections. For example, if k& configuration sets are stored in a
carbon nanotube RAM 100, then the associatcd components can be reconfigured & tir;les during
execution. As an example, for the MB 118 architecture embodiment shown in FIG. 3, 65
reconfiguration bits are required for a complete configuration set (when m = 4). In this set, 16
bits are required for each 4-input LUT, and one bit for determining whether to store the internal

result or not. Hence, when n, =4, m = 4, and k configuration sets are used, the total number of
carbon nanotube RAM bits required for one MB is 65kn, .

[0038] Inclusion of carbon nanotube RAMs 100 (or phase change RAMSs, magnetoresistive
RAMs, or ferroelectric RAMs) in the LB 102 incurs area overhead. Assuming a 100nm
technology for irﬁplemcnting CMOS logic, 100nm nanotube length, and k=16, the carbon
nanotube RAMs 100 occupy roughly 10.6% of the LB 102 area. However, through carbon
nanotube RAM-enabled logic folding, the number of LBs 102 required to implement a circuit is
reduced nearly k-fold. To account for these facts, the concept of relative logic density 1s
introduced, and is defined as the ratio of the amount of logic that architectures of the present
invention can implement in a given amount of area compared to the amount of logic a traditional
reconfigurable architecture can implement in the same amount of area. When k=16 and
assuming the circuit being implemented can use 16 configurations (as most large circuits would),
the relative logic density can be calculated as 16(1;0.106) = 14.3. This means that in the same

area, architectures of the present invention can implement roughly 14 times more logic than a
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traditional architecture, or equivalently needs 14 times less area to implement the sé.me
* functionality.

[0039] It can be seen that both the carbon nanotube RAM size and relative logic density vary
with the value of k. If k is too small, more global communication may be needed. If &k is too
large, it may not be possible to make use of the extra configurations, thus leading to wasted
carbon nanotube RAM area that could have been put to other use. Since the best & value vanes
with the specific design, the value of k can be obtained through a design optimization technique,
NanoMap, introduced below, or through design space exploration of the architecture with
various values of k£ and mapping a large number of circuits to that instance of the architecture. In
many instances, k= 16 is a preferred value.

[0040] To further improve the performance of the architecture at the expense of increased area,
one can use a shadow reconfiguration SRAM to hide the reconfiguration latency for transferring
bits from the carbon nanotube RAMs to the SRAMs. This allows one group of SRAM bits to
load reconfiguration bits from nanotube NRAMs, while another SRAM group supports the
current computation. The performance improvement due to this feature will depend on the level

of logic folding.
Interconnect Design

[0041] Reconfigurable interconnect resources are provided in reconfigurable architectures to
enable communication between programmable LBs 102. Interconnect design is very important
for reconfigurable architectures because routing delays can be quite large, and most of the chip
area is devoted to programmable routing. Consequently, the routing architecture must be
designed to be both fast and area-efﬁéient, and to aid logic folding and local communication.
[0042] There are primarily two methods for providing both local and global routing resources:
segmented routing and hierarchical routing. One embodiment of the present invention uses a
hybrid of segmented and hierarchical routing. In this embodiment, within the SMB 114, the
interconnect is hierarchical to aid the logic clusters and local communication. To connect SMBs
114, wire segments of various lengths are used. In segmented routing, short wires accommodate
local traffic. Such wires are connected together using switch boxes to emulate long wires.

[0043] The following routing architecture features address an interconnect structurc of the
present invention:

. The length of each routing wire segment (i.e., how many LBs a routing wire spans before
terminating); :
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The number of wires (tracks) in each routing channel;

The type of each routing switch: pass transistor, tri-state buffer or multiplexer (MUX);
Location of routing switches and which routing wires they connect; and

Size of transistors in the switches and the metal width and spacing

of the routing wires.

[0044] For the length of each routing wire segment, since too many short wires decrease circuit
performance, and too many long wires provide little routing flexibility and may waste area, one
embodiment of the present invention implements a mixed wire segment scheme including
length-1 130, length-4 132, and long wires 134. Length-1 130 (length-4 132) wire segments
span one (four) LB(s) 102 before connecting to a switch block 112, while long wires 134
traverse the chip horizontally and vertically, connecting to each LB 102 along the way. Besides
these wire segments, there are also direct links 136 from the outputs of one LB to its four
neighboring LBs, further facilitating local communications. '

[0045] To address the number of wires (tracks) in each routing channel, for the architecture
instance in which m=n,=n,=4, =64, and O=32 (where /O refers to the number of
inputs/outputs of an SMB), one embodiment of the invention implements 128 horizontal and
vertical tracks and assume a 25%, 50%, and 25% distribution for length-1 130, length-4 132, and
long wires 134, respectively, among the 128 tracks in each direction. In addition, 32 tracks are
used for direct links 136 between adjacent SMBs (since O=32). FIG. § illustrates one
embodiment of how the inputs/outputs of an SMB 114 are connected to the routing network.

[0046] Next is a consideration of the design of the connection block 110, characterized by Fc,
and switch block 112, characterized by F, (F, refers to the number of adjacent tracks a pin of an
LB can connect to and F, the number of tracks to which each track entering the switch block can
connect). Higher values of F, and F, result in higher routing flexibility, however, at the

expense of a higher number of switches and hence more routing area. For a cluster of N LUTs,
F,_ can be chosen as 1/N of the total number of tracks and F, should be greater than three in
order to achieve routing completion while maintaining area efficiency. In one embodiment of
the invention, F,=1/N and F,=6 is used. Another related and important issue is whether or not
the internal connection blocks or switch blocks should be populated (such a block is said to be
populated if it is possible to make connections from the middle of the block to LBs or to other
blocks). When both are fully populated, the number of routing tracks required to achieve routing

completion can be reduced, at the expense of a larger number of switches attached to a wire
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. (resulting in more capacitance and, hence, decrease in speed). In one embodiment of the
invention, the connection blocks are depopulated and the switch blocks are populated to provide
the best performance-area advantage. FIG. 6 shows an example connection of disjoint switch
blocks 112.

[0047] The third feature considers the type of switch. There are typically three types of
switches: pass transistor, multiplexer and tri-state buffer. Since a pass transistor has the shortest
switching time, pass transistors are implemented in one embodiment of the invention for the
local crossbars within the MB and SMB. A multiplexer has longer delay, but needs fewer
reconfiguration bits. Therefore, a multiplexer 138 is implemented in one embodiment of the
invention to connect to the inputs of a SMB 114 (e.g., see FIG. 10, detailed below). The outputs
of an SMB can be connected to long interconnects through tri-state buffers in the switch matrix.
[0048] For the last feature, one embodiment of the invention uses pass transistors that are 10
times the size of a minimum-sized transistor and five times the size of a minimum-sized
transistor for tri-state buffers and multiplexers. Minimum width and spacing are used for the

metal wires.
Temporal Logic Folding

[0049] Temporal logic folding provides design flexibility and benefits in the present invention.
The basic idea behind logic folding is that one can use run-time reconfiguration, and in one
embodiment of the invention nanotube RAM-enabled run-time reconfiguration, to realize
different Boolean functions in the same LE every few cycles. For example, suppose a subcircuit
can be realized as a series of n serially connected LUTs. Traditional reconfigurable architectures
will need n» LUTs to implement the subcircuit. However, using run-time reconfiguration, at one
extreme all these LUTs can be mapped to a single LE, which is configured to implement LUT1
in the first cycle, LUT2 in the second cycle, and so on, requiring n cycles for execution.
Traditional reconfigurable architectures only support partial dynamic reconfiguration and do not
allow such fine-grain temporal logic folding. Moreover, all communications between the LUTs
mapped to the same LE are local. Hence, global communication is reduced, and routing delay is
significantly reduced as well.

[0050] Logic folding occurs at the expense of reconfiguration time. However, results reveal that
the time required to output the reconfiguration bits from an carbon nanotube RAM to the SRAM

(i.e., the reconfiguration time to switch from one LUT to another), is only around 160ps. This is
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small compared to routing delay saved. Also, by allowing use of shadow SRAM, the
reconfiguration time can be hidden by overlapping computation.

[0051) Logic folding can be performed at different levels of granularity, providing flexibility to
enable area-performance trade-offs. As an example, consider the LUT graph (in which each
node denotes a LUT) shown in FIG. 7(a), which denotes level-1 folding. Such a folding implies
that the LEs are reconfigured after the execution of each LUT mapped to it. On the other hand,
FIG. 7(b) shows level-2 folding, implying reconfiguration of the LE after execution of two LUT
computations. A level-p folding can be similarly defined. The case of no folding correspdnds to
mapping of circuits to a traditional reconfigurable architecture in which spatial partitioning of the
LUT graph is feasible, but not temporal folding.

[0052] There are various trade-offs involved in the choice of the folding level. First, when the
folding level is large, the cycle period increases because a larger amount of computation is
executed in one cycle. The number of LEs needed also increases since they are not fully time-
shared. However, the total number of cycles decreases. This fact coupled with the reduction in
_ reconfiguration time may reduce total circuit delay. However, this would generally be true when
communications between LEs are still local in the folded circuit, usually within the range of
several SMBs. If the area required for implementing the subcircuit is out of this range and long
global communication is required in one cycle, then a small folding level may give better
performance.

[0053] Another important advantage of logic folding occurs when the circuit is too large to fit
into a traditional reconfigurable architecture; it could then be mapped into the architecture of the
present invention with logic folding. In a situation where the number of available LEs is limited,
factors considered for obtaining the best folding level may differ from those mentioned above.
In such a case, the number of cycles required to execute the whole computation will be
dependent on the number of computation nodes in the LUT graph divided by the number of
available LEs. Hence, the best folding level might be one that best uses the available LEs. A
smaller folding level will use LEs less efficiently, and require more cycles, while a larger folding

level will increase the cycle period and result in time inefficiencies.
Experimental Results-NATURE

[0054] Various MCNC benchmarks and arithmetic circuits illustrate the benefits of the run-time
reconfiguration and logic folding features of the present invention. Architectures of the present

invention present a family of carbon nanotube RAM-based (and phase change RAM-based,
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magnetoresistive RAM-based, and ferroelectric RAM-based) reconfigurable architectures at

different levels of granularity in terms of the number of LEs in an MB (r,), number of MBs in

an SMB (n, ), number of inputs per LE (m), number of configuration sets stored in the NRAM

(k), etc. Accordingly, different architecture instances may be best suited for different circuit
types. Since it appears that a cluster of four 4-input LUTs provides one of the best area-delay
trade-offs, one embodiment of the present invention (for experimental purposes) uses an

architecture instance corresponding to n,=4, n,=4, and m=4. Parameter k is varied in order to

compare implementations corresponding to selected folding levels: level-1, level-2, level-4 and
no logic folding (note that the number of carbon nanotube RAM bits increases as we go from no
folding to level-4 folding and towards level-1 folding since the number of LE configurations
increases).

[0055] Several small/middle sized benchmarks were manually mapped to the underlying
architecture instance. The depth of the circuit LUT graph, number of LEs, circuit delay, product
of number of LEs and delay (this is a proxy for the area-time product, which is reasonable since
the present invention is a regular architecture), and frequency are shown, for different levels of
folding, in Table I of FIG. 8. These results are based on 100nm CMOS technology parameters.
[0056] Area/performance trade-offs that become possible Bccausc of use of logic folding are
observed. Consider the 64-bit ripple-carry adder. Its LUT graph has 64 LUTs on the critical
path. Using level-1 logic folding, the complete adder can be mapped to only two LEs. This, of
course, requires reconfiguration of the LEs from the local carbon nanotube RAMs at each cycle.
If more LEs are allowed (as in level-2, level-4 and no folding cases), the execution time goes
down because fewer reconfigurations are required (note that, in this instance, the presence of a
shadow SRAM is not assumed to overlap the reconfiguration and computation times of an LE --
if assumned, the execution time for level-1 folding would go down by roughly 1.6X at the expense
of a doubling of SRAM area). Traditional reconfigurable architectures will require 128 LEs for
such an adder (some architectures incorporate a carry generation circuit with each LE; in such a
case, they will require 64 LEs although each LE will be larger due to the carry generation circuit
overhead) because they cannot perform any temporal logic folding. As the number of required
LEs increases, the need for using higher-level (i.e., more global) interconnects to connect them
also increases. This is one of the reasons traditional reconfigurable architectures are not

competitive with ASICs in terms of performance.
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[0057] Next, consider the area-time product. For larger, more serially-connected circuits of
larger depth, the area-time product advantage of level-1 folding relative to no folding is typically
larger. For example, for the 64-bit ripple-carry adder, it is observed that the advantage is about
34X. This results from a large saving in area while maintaining competitive performance.

[0058] Table I of FIG. 8 also illustrates that the present invention can operate at high frequency.
Peak frequency is around 3.3GHz. From level-1 folding to no-folding, the frequency decreases
because increasingly more computation is included in one cycle period.

[0059] In spite of the fact that traditional reconfigurable architectures devote a vast majority of
their area to interconnects, their LE utilization may not be high (an extremely large number of
routing tracks may be needed to approach 100% LE utilization). Because of the cycle-by-cycle
reconfiguration features of the architecture of the present invention, the LE utilization and
relative logic density can be very high, with a reduced need for a deep interconnect hierarchy.
Thus, architectures of the present invention suggest an evolutionary path for existing
reconfigurable architectures, where fewer levels of interconnect hierarchy will be used and the
area saved can provide for distribution of emerging non-volatile universal memories, such as

carbon nanotube RAMs, throughout the chip. -
A Discussion of Some Alternative NATURE Architectures

[0060] As discussed, NATURE can be characterized along a large number of varying
dimensions, all of which are contemplated in the present invention. A non-exclusive list of
exemplary characterizations are: 1) number of logic elements (LEs) per logic block; 2) number
of inputs per LE; 3) size of carbon nanotube RAMs supporting each LE (this determines the
granularity of reconfiguration); 4) depth of the FPGA interconnect hierarchy (localized
communications can help drastically reduce this depth); 5) mix of different types of
interconnects (much fewer longer interconnects are necessary); 6) number of registers per LE
(because of the success of logic folding in reducing the number of LEs required for
implementing the combinational logic by an order of magnitude, implementing sequential blocks
now becomes the bottleneck for further area reduction); etc.

[0061] For instance, as an extension of the high level architecture view of FIG. 2, consider an
alternative embodiment SMB 114 architecture, as illustrated in FIGs. 9 and 10. The alternative
SMB 114, in this embodiment, again includes two levels of logic. The first (i.e., lower) level,
called the macroblock (MB) 118, is shown in FIG 9. The MB 118 contains n; reconfigurable -
LEs 120 (in this embodiment, n; = 4). A 13 to 5 crossbar 122 is used to speed up the local
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communication. In the second (i.e, higher) level, n, MBs 118 comprise an SMB 114, as shown
in FIG. 10 (in this embodiment, n, = 4). In this SMB 114, since many reconfiguration bits are
necessary to configure a full crossbar 122, a multiplexer 138 is instead used for local
communication. This architecture facilitates temporal logic folding of circuits and enables most
inter-block communications to be local.

[0062] In the FIG. 9 and 10 embodiments, the inputs of an MB 118 can arnve from other MBs
118 or the switch matrix 116. Similarly, the inputs of an LE 120 can arrive from other LEs 120
or MBs 118 or the switch matrix 116. The outputs from an LE 120 can be used within the MB
118 or go to the upper level SMB 114 or go to other SMBs 114 through the switch matrix 116.
[0063] The inputs to the LE 120 include m inputs to a look-up table (LUT) 126 and one to a flip-
flop 128, as shown in FIG. 11(a). In this embodiment, m = 4. The flip-flop 128 can store the
computation result from the LUT 126 (when a circuit is temporally folded, the result of a
previous stage is often needed by a subsequent stage), or the value of a primary input. This gives
the flexibility of storing a LUT computation result in the flip-flops 128 of other LEs 120. The m-
input LUT 126 can implement any m-variable Boolean function.

[0064] To realize cycle-by-cycle logic reconfiguration capability, an carbon nanotube RAM 100
is again associated with each reconfigurable block (i.e., LE 120 or crossbar 122), to store the run-
time reconfiguration bits. During reconfiguration, the reconfiguration bits are placed in the
SRAM 124 cells to reconfigure the LE 120 or crossbar 122 to implement different logic
functionality and interconnections. For example, if £ configuration sets are stored in the carbon
nanotube RAM 100, then & different logic functions can be realized within the same hardware
resource without the need to access off-chip storage. For the MB 118 architecture shown in FIG.
9, 82 reconfiguration bits are required for a complete configuration set (when m = 4). In this set,
16 bits are required for each 4-input LUT, and one bit for determining whether to store the
internal result or not. Hence, when ny =4, m = 4,‘and k configuration sets are used, the total
number of carbon nanotube RAM bits required for one MB 118 is 82kn,. A detailed layout and
SPICE simulation show that a 16-set carbon nanotube RAM storage (i.e., &k = 16) introduces
10.6% area overhead with 160ps on-chip reconfiguration time (i.c., the access latency of on-chip
carbon nanotube RAM). Using this setup, the logic density is improved by 14x on average. In
addition, logic folding constrains most communication to be local, which greatly reduces the

need for global interconnect.

-19 -



WO 2007/124048 PCT/US2007/009658

[0065] As a basis for relative discussions concerning other alternative NATURE architectures,
the embodiment of FIGs 9, 10 and 11(a) will be hereinafter referred to as the baseline design.
That is, as detailed below, the baseline design describes an FPGA instance where the number of
inputs per LE m = 4, number of LEs per MB »n, = 4, and number of MBs per SMB n, = 4, one
LUT and one flip-flop per LE, and number of reconfiguration sets & = 16.

[0066] Number of LEs n; per MB: Changing the value of n; leads to area-delay trade-offs. For
example, consider »n; = 6, as shown in the exemplary embodiment of FIG. 12. This configuration
leads to larger crossbars 122 within the MB 118, and a larger carbon nanotube RAM 100 to
reconfigure it since more LE 120 outputs need to be connected to the crossbars 122. At the same
time, more LEs 120 in an MB 118 increases the number of outputs from the MB 118. This also
results in increases to both the size of the input multiplexers 138 to the MB 118, and the amount
of interconnects associated with the MB 118, as shown in FIG. 13(a). In all, the area of an SMB
increases by 1.9X for n; = 6, compared with n; = 4. Thus, relative area per LE goes up by 1.9/1.5
= 1.27X. The level of folding desired in a given application, and other area-delay constraints,
will determine whether the increase in relative area per LE is advantageous.

[0067}] Number of MBs n; per SMB: Varying n; will also result in area/delay trade-offs.
Increasing n; allows more logic to be implemented in an SMB 114, and more local
communications between MBs 118 within the SMB 114. Hence, circuit delay may be reduced.
However, the area of the SMB 114 will increase correspondingly. Consider the case of n; = 6, as
shown in the exemplary embodiment of FIG. 14, and for which the high-level LB 102 view is
shown in FIG. 13(b). Since there are 1.5X more MBs, and the MB architecture is unchanged, the
number of outputs of the SMB increases by 1.5X, in turn resulting in a 1.5X increase in the
number of interconnect tracks necessary to connect all the SMB outputs while maintaining the
same F, as the baseline design. Consequently, the size of the switch matrix will also increase
since the inputs of the SMB will be selected from more interconnect tracks. When n, increases
from four to six, the area of the LB again increases to 1.9.X, and relative area per LE increases by
1.9/1.5 = 1.27X. Depending on the particular application, and respective level of folding, the
corresponding reduction in circuit delay would need to be evaluated against the above-identified
increase in relative area to determine if this embodiment is desirable.

[0068] Number of inputs m per LUT: The number of inputs m for each LUT is a very
important consideration for any FPGA architecture. If m is too large, and the application cannot

always make use of all the inputs of each LUT, area is wasted. If m is too small, a larger number
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of LUTs are required and, therefore, more MBs, SMBs and more interconnect communications.
For example, if m = 5, the SMB area increases to 1.25X. In an instance where most LUTs only
require four inputs, the mapped number of SMBs remains nearly the same. Hence, the mapped
area increases by 1.25X. However, random logic (such as a controller) may benefit from a larger
m. Because of the ability of FPGAs in the present invention to implement temporal logic
folding, the value of m most suitable to conventional FPGAs may not be the same as in the
present invention. Further, depending on the application, and desired folding level, the present
invention contemplates that different inputs can exist for any given LUT 126 for each LE 120 of
a MB 118. An exemplary embodiment is shown in FIG. 15.

[0069] Number of flip-flops per LE: Since temporal logic folding may reduce the
combinational logic by more than an order of magnitude, the number of registers in the circuit
may now become the bottleneck of further area reduction. Thus, as opposed to traditional LEs
that include only one flip-flop, the present invention includes embodiments having more flip-
flops per LE to further reduce the number of LEs required. However, if the inputs to the flip-
flops are separately accessed, the number of inputs/outputs of an LE will increase as the number
of flip-flops in an LE increases. Then, as discussed above, the communication network within
and outside the SMB may grow very fast due to the increase in the number of inputs/outputs per
LE, MB and SMB. Hence, the SMB size may increase significantly. If flip-flops in each LE are
not used efficiently, area may be wasted.

[0070] For example, assume two flip-flops 128 per LE 120 as shown in FIG. 11(b). The input
for each flip-flop 128 is distinct in this embodiment, providing that different values are stored in
each of the two flip-flops 128 at the same time. This arrangement results in an increase: 1) in the
size of the crossbar 2 in an MB 118; in the size of the input multiplexer 138 in an SMB 114; and
3) in the number of inputs to each SMB 114. The area of the SMB thereby increases by 1.5X.
[0071] In an instance of level-1 folding with configuration sets & = 16, significant area savings
were realized (i.e., reduced number of LEs). However, increasing the number of flip-flops to
three per LE could result, in the same instance, in an area increase. Since area saving depends on
the value of &, simultaneously consideration of these two parameters are necessary.

[0072] Number of reconfiguration sets k: The value of k& determines the amount of logic
folding possible. If k is too small, more LEs are needed to perforrm a mapping. If & is too large,

use of the extra configurations may not be possible, thus resulting in wasted carbon nanotube
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RAM area that could have been put to other use. Complicating this fact is that the best value of &
varies with a change in the optimization objective (e.g., area, delay or area-delay product).

[0073] Number of logic levels per SMB: In the baseline design, two levels of logic are used in
an SMB (i.e., SMB—MB and MB—LE) to facilitate local communication. However, since any
communication between two LEs in different SMBs has to traverse two levels of interconnect,
the communication delay is larger compared with that within just one level of logic. In addition,
a two-level logic structure requires more implementation area than a one-level logic structure.
Hence, a one-level structure has an advantage in area and inter-SMB delay, but a disadvantage in
intra-SMB delay. FIG. 16 shows the structure of a flattened SMB 114 with one level of logic.
An input of an LE 120 is now directly selected from the inputs from the switch matrix 116 and
the outputs of other LEs 120. In the FIG. 16 embodiment, area is reduced by 1.1.X.

[0074] Interconnect parameters: In the carbon nanotube RAM-based FPGAs of the present
invention, inter-LE communications become much more local. Hence, the interconnect
hierarchy can be sharply reduced. Currently, the baseline sets Fc = W/N and Fs = 6, where N is
the number of LEs in an SMB and W is the number of interconnect tracks per channel. A larger
Fc and Fs can provide more routing flexibility, but at the cost of more routing area. The values
for Fc and Fs can also be varied to achieve an optimal trade-off between routability and area
efficiency.

[0075] Moreover, in most embodiments of the present invention, every input in the SMB 114 is
accessible from the interconnect, with full routability within an SMB 114. However, complete
routability within an SMB 114 may not be necessary. Both / and M (see FIG. 17) could
potentially be reduced while keeping LE usage high, to thereby reduce the size of input
multiplexers 138 in an SMB 114. Since multiplexers 138 contribute most to the area of an SMB
114, multiplexer size could result in a reduction in the size of an LB 102. For example, if /= 0.6
and M =1 (i.e., full routability assumed within the SMB), the size of the LB 102 reduces to 76%.

NanoMap Design Optimization

[0076] The present invention also provides an integrated design optimization platform for
NATURE, referred to as NanoMap. NanoMap conducts design optimization from the RTL
down to the physical level. Given an input design specified in RTL and/or gate-level VHDL,
NanoMap optimizes and implements the design on NATURE through logic mapping, temporal
clustering, placement, and routing. The design optimization techniques of the present invention

exploit the design flexibilities enabled by fine-grain temporal logic folding. Given user-specified
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area and performance constraints, the mapping method and system of NanoMap can
automatically explore and identify the best logic folding configuration, and make appropriate
tradeoffs between performance and area efficiency. The methods of the present invention can be
implemented as software running on a general-purpose computer, such as an INTEL®
PENTIUM® based personal computer running a MICROSOFT® WINDOWS® opecrating
system, although the invention is not limited to that particular implementation.

[0077] To demonstrate the design optimization flow of NanoMap, an example RTL circuit 140
will be provided, and concepts associated therewith are first introduced for ease of exposition.
Given an RTL circuit 140, the registers contained therein are first levelized. The logic between
two levels of registers is referred to as a plane. The registers associated with the plane are called
plane registers. The propagation cycle of a plane is called plane cycle. Using temporal logic
folding, each plane is further partitioned into folding stages. Resources can be shared among
different folding stages within a plane or across planes. The propagation cycle of a single
folding stage is defined as folding cycle. Note that different planes should consist of the same
number of folding stages to guarantee global synchronization. Thus, the key issue is to
determine how many planes are folded together and to determine the appropriate folding level
(i.e., the number of folding stages in one plane necessary to achieve the best area-performance
tradeoff under specified design constraints).

[0078] FIG. 18(a) shows an example comprising a four-bit controller-datapath consisting of a
single plane. The controller consists of flip-flops sO and s1, and LUTs LUT1-LUT4. The
datapath consists of registers regl-reg3, a ripple-carry adder and parallel multiplier module,
requiring in all 100 LUTs and 14 flip-flops. The ripple-carry adder consists of eight LUTs with a
logic depth (i.e., the number of LUTs along the critical path) of four. The parallel multiplier
consists of 38 LUTs with a logic depth of seven. The control logic consists of four LUTs.
Suppose the optimization objective is to minimize circuit delay under a total area constraint of 20
LEs. We assume each LE contains one LUT and two flip-flops. Hence, 20 LEs equal 20 LUTs
along with 40 flip-flops. Since the number of available flip-flops is more than required, we
concentrate on the LUT constfaint.

[0079] The present invention uses an iterative optimization flow. As a smaller number of
folding stages leads to better performance, NanoMap starts with a guessed folding level,
resulting in a minimal number of folding stages under the given area constraint, and gradually

refines it. In the FIG. 18 example, the minimal number of folding stages is equal to the total
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number of LUTs divided by the LUT constraint, '5%0 |= 3 (i.e., at least three folding stages are

required to meet the LUT constraint). The folding level is obtained by the maximum logic depth

divided by the number of folding stages, which equals |4 +% |= 4.

[0080] Next, based on the chosen folding level, the adder and multiplier modules are partitioned
into a series of connected LUT clusters in a way that if the folding level is p, then all the LUTs at
a depth less than or equal to p in the module are grouped into the first cluster, all the LUTs at a
depth larger than p but less than or equal to 2p are grouped into the second cluster, and so on.
The LUT cluster can be considered in its entirety with its logic depth being less than or equal to
the folding level. This implies that one LUT cluster can be executed within one folding cycle,
thereby being contained in one folding stage. By dealing with LUT clusters instead of a group of
single LUTs, the logic mapping procedure can be greatly sped up. FIG. 18(b) shows the
partition for the multiplier module 142 with level-4 folding. However, note that the first LUT
cluster of the multiplier already needs 32 LUTs, exceeding the area constraint. Thus, the folding
level has to be further decreased to level-2 to guarantee that each LUT cluster can be
accommodated within the available LEs. Correspondingly, the number of folding stages
increases to six.

[0081] Next, after choosing a suitable folding level, Force Directive Scheduling (FDS) is used to
determine the folding cycle assignment of each LUT and LUT cluster to balance the resource
usage across the six folding stages. If the number of LUTs and flip-flops required by every
folding stage is below the area constraint (i.e., 20 LEs) the solution is valid and offers the best
possible performance. Otherwise, the folding level is reduced by one, folléwed by another round
of optimization. This process continues until the area constraint is met, assuming the area
constraint can be satisfied.

[0082] FIG. 18(c) illustrates the mapping result 144 for level-2 folding for the first three folding
stages of the total of six folding stages. Note that plane registers, which provide inputs to the
plane, need to exist through all the folding stages in the plane. The first folding cycle requires 14
LEs. Four LEs are required for mapping LUT cluster 1 of the adder, which is depicted as add: c/
in FIG. 18(c). Flip-flops sO and s1 are mapped to the available flip-flops inside the LEs assigned
to adder cluster 1. Four LEs are also required for LUT1-LUT4 computation, and to store the
respective computation results. The four-bit registers, regl, reg2 and reg3; need two LEs each to
accommodate their four flip-flops. Similarly, in folding cycle 2, four LEs are needed for adder

cluster 2 computation and resulting storage. Four LEs are required for maintaining the LUT1-
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LUT4 computation results, which need to be preserved until folding cycle 6 to control the
loading of registers, and six LEs for regl-reg3. Folding cycle 3 requires the maximum number
of LEs, since multiplier cluster 1 needs 16 LUTs, which occupy 16 LEs. The number of LEs
needed by the last three folding levels (not shown), are 16, 12 and 12, respectively. Hence, the
number of LEs for mapping this RTL circuit is the maximum required across all the folding
cycles (i.e., 16). This is within the area constraint.

[0083] Next, clustering, which groups LEs into SMBs, placement and routing are performed to
produce the final layout of the implementation and obtain the best possible circuit delay under
the given constraint. When performing clustering, inter-stage relationships are honored, since
some computation results need to be preserved through several folding cycles. Once the results
are assigned to some flip-flops in an SMB, they are not assigned to other SMBs in other folding
cycles. In the FIG. 18 example, assume there are four LEs in an MB and four MBs in an SMB.
Thus, the 14 LEs in folding cycle 1 can be accommodated into one SMB. Suppose LUT1-LUT4
are assigned to MB1. Then their computation results storagel-4 will be present in MB1 through

all the folding cycles before being overwritten by new results.
Automated Optimization Flow of NanoMap

[0084] FIG. 19 illustrates an integrated design optimization flow for NATURE. Given an input
design 201 specified in mixed RTL and gate-level VHDL, NanoMap conducts logic mapping,
temporal clustering, temporal placement and routing, and produces a configuration bitmap for
NATURE.

- [0085] Logic Mapping: (Steps 202-206) Steps 202-206 of FIG. 19 use an iterative approach to
identify the best folding level based on user-specified design constraints, optimization objectives,
and input circuit structure. FDS techniques, detailed below, are used to assign LUTs and LUT
clusters to folding stages and balance inter-folding stage resource usage, and to produce the LUT
network of each temporal folding stage.

[0086] Temporal Clustering: (Steps 207-208) Steps 207-208 of FIG. 19 take the flattened LUT
network as input, and cluster the LUTs into MBs and SMBs to minimize the need for global
interconnect, and to simplify placement and routing. As opposed to the traditional clustering
problem, each hardware resource (i.e., LE, MB, or SMB) is temporally shared by logic from
different temporal folding stages. Temporal folding necessitates that both intrastage and inter-
stage data dependencies be jointly considered during LUT clustering. Folding stages need not be

limited to one plane; temporal clustering can span planes. After clustering, verifying satisfaction
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of the area constraint is performed. If the area constraint is satisfied, placement is invoked.
Otherwise, NanoMap returns to logic mapping.

[0087] Temporal Placement: (Steps 209-214) Steps 209-214 of FIG. 19 perform physical
placement and minimize the average length of inter-SMB interconnects. Physical placement and
interconnect minimization is implemented on top of VPR, an FPGA place-and-route tool,
detailed and referenced below, to provide inter-folding stage resource sharing. Placement is
performed in two steps. First, a fast placement is used to derive an initial placement. A low-
precision routability and delay analysis is then performed. If the analysis indicates success, a
detailed placement is invoked to derive the final placement. Otherwise, several attempts are
made to refine the placement and if the analysis still does not indicate success, NanoMap returns
to logic mapping.

[0088] Routing: (Step 215) Step 215 of FIG. 19 uses the VPR router to generate intra-SMB and
inter-SMB routing. After routing, the layout for each folding stage is obtained and the
configuration bitmap generated 216 for each folding cycle.

[0089] The following details the above steps. For logic mapping, focus is provided on folding

level determination and FDS technique.

Choosing the Folding Level

[0090] The folding level choice is critical to achieving the best area-performance tradeoff. As
previously noted, the best folding level depends on input circuit structure, obtained by
identifying each plane and obtaining the circuit parameters within each plane. The following
outlines the necessary circuit parameters:
* Number of planes in input circuit:.num_ plane
» Number of LUTs in plane i: num_LUT,
» Logic depth of plane i: depth;
* Maximum number of LUTs among all the planes:
LUT_max = max{num_ LUT;} fori =1, ..., num_plane
* Maximum logic depth among all the planes:
Depth _max = max{depth;} fori =1, ..., num_plane
* Area constraint, e.g., the available number of LEs: available LE
» Number of reconfiguration copies in each carbon nanotube RAM: num_reconf
[0091] Given the specified optimization objective and constraint (e.g., circuit delay minimization

under area constraint or area minimization under delay constraint, etc.), the best folding level is
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computed using above parameters. The following details a targeting of one of the design
objectives. Similar procedures can target other objectives.

[0092] Suppose the optimization goal is to minimize circuit delay. If there is no area constraint,
we can use no-folding to obtain the shortest delay. If an area constraint is given, it is satisfied
first, then the best possible delay obtained. There are two scenarios considered:

[0093] 1) Multiple planes are allowed to share resources: Since circuit delay is equal to plane
cycle times the number of planes in the circuit, plane cycle has to be minimized under the area
constfaint. First, all the planes together are stacked (i.e., resources are shared across all planes,
since this does not increase circuit delay but reduces area). Suppose the area used up at this
point is LUT max. If LUT max is larger than available_LE, logic folding is required to reduce
the area within each plane. The minimum required number of folding stages within each plane 1s

given by:

1

# folding stages = " LUT _max ]

available LE

Since the number of folding cycles should be kept the same in each plane, maximum logic depth

is used to compute the folding level:

(2)

folding _level = [ depth_ max 1

# folding _stages

Using the chosen folding level, the present invention uses FDS and temporal clustering to obtain
the area required. If the area constraint is not satisfied, the folding level is decreased by one.
NanoMap then iterates until the area constraint is met or the folding level reduces to the

minimum allowed, min_level, which is limited by num_reconf:

&)

*
min_level = |(depth _max™ num _ plane.\

num _reconf

FIG. 20 illustrates the optimization procedure.

[0094] 2) Multiple planes are not allowed to share resources: Such a scenario is possible if the
RTL circuit is pipelined and, hence, the different pipeline stages need to be resident in the FPGA
simultaneously. In this scenario, temporal logic folding can only be pcrformcd within each

plane. Then the folding level requested can be directly computed by the following equation:

depth _max*available _ LE
> num _LUT,

folding level = 4)
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Afier an appropriate folding level is chosen, the RTL module is partitioned into LUT clusters
accordingly. The original mixed module/LUT network is transformed to an equivalent

LUT/(LUT cluster) network which is fed to FDS.

Force-Directed Scheduling (FDS)

[0095] Different folding stages share the same set of LEs temporally. Overall LE use is then
determined by the folding stage using the maximum number of LEs. To optimize overall
resource use in each plane, a modified Force-Deflected Scheduling (FDS) method 1s
implemented to assign the LUT or LUT cluster to folding stages and balance the resource use of
the folding stages.

[0096] Force-Deflected Scheduling (FDS) is described in the following, whicil is incorporated
herein by reference for its useful background information:

e P.G. Paulin and J.P. Knight, “Force-Directed Scheduling for the Behavioral Synthesis of
ASIC’s,” IEEE Trans. Computer-Aided Design, vol. 8, pp. 661-679, June 1989.

[0097] FDS is a popular scheduling technique in high-level synthesis. However, the present
invention uses FDS in another scenario. FDS uses an iterative approach to determine the
schedule of operations, to minimize overall resource use. The resource use is modeled as a
force. The scheduling of an operation to some time slot, which results in the minimum force,
indicates a minimum increase in resource use. The force is calculated based on distribution
graphs (DGs), which describe the probability of resource use for a type of operation in each time
slot.

[0098] In the present invention, since the LE use in each folding cycle is dependent on both the
LUT computations and register storage operations conducted in parallel, two DGs must be
assembled: one describing the resource use of the LUT computation; and another for register
storage use. The following details: 1) how DGs are created; and 2) how forces are calculated
based on the two created DGs.

[0099] 1) Creation of DGs: First, to build the LUT computation DG, the time frame of each
LUT or LUT cluster needs to be determined. For a LUT or LUT cluster i, its time frame time_
frame;, or feasible time interval, is defined as the span from the folding cycle it is assigned to in
the ASAP schedule to the folding cycle it is assigned to in the ALAP schedule. From the
ASAP/ALAP- schedules shown in FIG. 21 for the ongoing example, we can see that time

frameryr; spans folding cycles 1 to 3. Here, clus; denotes LUT cluster i. If a uniform probability
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distribution is assumed, the probability that this computation is assigned to a feasible folding
cycle j within its time frame equals 1 /|[time_frame;| for j € time _ frame,.

[00100] Following a definition similar to that given by P.G. Paulin and J.P. Knight, above, a
LUT computation DG models the aggregated probability distribution of the potential
concurrency of N LUT/(LUT cluster) computations within each folding cycle j, whose value
LUT DG(j) is the sum of the probabilities of all the computations assigned to this folding cycle,

as follows:

N

LUT_DG(j)=).

i | time_ frame, |

*weight,, j € time_ frame

where weight; is one for a LUT and equal to the number of LUTs in a LUT cluster.
[00101] To build the register storage DG, which models the distribution of register storage
usage, a procedure similar to that of P.G. Paulin and J.P. Knight, above, is adopted. A storage
operation is created at the output of every source computation that transfers a value to one or
more destination computations in a later folding cycle. If both the source and destinations of a
storage operation are scheduled, the distribution of the storage operation equals its lifetime,
which begins from the folding cycle of the source and ends at the folding cycle of the last
destination. Here, it is assumed the results are stored at the begining of each folding cycle. If
one or more of the source or destinations are not scheduled, a probabilistic distribution is
obtained. . .
[00102] The following heuristic is used to quickly estimate the resulting storage distribution.
First, ASAP_life and ALAP _life of a storage operation are defined as its lifetime in the ASAP and
ALAP schedules, respectively. For example, in FIG. 22, thf: output of source computation LUT2
is denoted as storage S. S transfers the value to destination computation LUT3 and LUT4. In
the ASAP schedule, S begins at folding cycle 2 and ends at folding cycle 3. Hence, ASAP_lifes
=[2, 3] and the length of ASAP_life: |JASAP lifes| = 2. Similarly, in the ALAP schedule, S begins
at folding cycle 4 and ends at folding cycle 4, which results in |[ALAP_lifes| = 1.
[00103] The longest possible lifetime max_life for the storage operation is the union of its
ASAP _life and ALAP_life, whose length is obtained as:

|max_life| = (ALAP_life end — ASAP_life_begin + 1) (6)
For the ongoing example, S begins in folding cycle 2 in the ASAP schedule (i.e,
ASAP life begins = 2). lIts lifetime ends in cycle 4 in the ALAP schedule (i.e., ALAP_life_ends
= 4). Thus, the length of the maximum lifetime for S (e.g., Imax_lifes| = 3).
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[00104] If ASAP_life overlaps with ALAP_life, the overlap time, overlap, is the intersection of
ASAP_life and ALAP _life, whose length is similarly obtained as:
loverlap| = (ASAP life end — ALAP life begin + 1) (7

Within the overlap time, a storage operation must exist with probability 1. For the example,
there is no overlap time for S. Then an estimate of the average length of all possible lifetimes
can be obtained by:

| ASAP _life|+| ALAP _life|+ | max_life|

3

Next, the probability of a storage operation performed for a LUT or LUT cluster computation i in

avg life = (8)

folding cyclej can be calculated as follows:

e when is outside of overlap;and j € max_ life;:

avg _life,—|overlap; |

storage,(j) = * weight, 9)

| max_life; | — | overlap, |
e when is within overlap;, which means a storage operation must be performed:
storage,(j) = weight, (10)
The process is carried out for all the storage operations, and the separate probabilities due to N
LUTs and LUT clusters in folding cycle j are added to obtain a single storage DG as follows:
storage _DG(j) = istorage,. (J) Jjemax_life, (11)
i=l
The two DGs obtained for the example in FIG. 21 are shown in FIG. 23.
[00105] 2) Calculation of Forces: In the FDS algorithm, force is used to model the impact of
scheduling operations on resource use. A higher force implies higher concurrency of run-time
operations, which requires more resources in parallel. The force is calculated based on DGs,
which present the probability of resource usage concurrency. For a given computation with time
frame spanning folding cycles a to b, the force in cyclej is calculated by:
Jorce(j) = DG(j)* x(j) (12)
where DG(j) is either LUT DG(j) or storage DG(j) in our case, and x(j) is the increase (or
decrease) in the probability of cbmputation in cycle j due to the scheduling of the computation.
For example, before scheduling, the computation has a unifbrm probability of being scheduled in
each folding cycle in its time frame. If in a scheduling attempt, the computation is scheduled in
folding cycle a, the probability of the computation being scheduled in folding cycle a will

increase to 1 and the probability of the computation being scheduled in other folding cycles will
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decrease to 0. The self-force associated with the assignment of a computation ¢/, whose time
frame spans folding cycles a to b, to folding cycle j is defined as the sum of all the resulting
forces in each folding cycle in its time frame:
b b
self _ force,(j) = D, force(k) = DG(j)*x(j}+ D | DG(k)*x(k)| ,jela,b|
k=a k=a k= j

x(j) =(|time _ frame, | —1)/ | time _ frame, |

x(k)=—1/|time_ frame, | (13)
[00106] In the approach of the present invention, the resource use can be dictated by either LUT
computations or storage operations. Assume there are 2 LUTs and / flipflops in one LE, then the
self-force for scheduling a LUT or LUT cluster i in folding cyclej is determined by

LUT _self _ force,(j) storage _self _ force,(j)

max ,
¢ h l

}

where LUT self force;(j ) and storage_self force;(j ) are computed using Equation (13) based on
the LUT computation and storage DGs.

[00107] Assigning a LUT computation to a specific folding cycle will often affect the time
frame of its predecessors and successors, which in turn creates additional forces affecting the
"original move. Equation (13) is used to compute the force exerted by each predecessor or
successor. The overall force is then the sum of the self-force and the forces of predecessors and
successors. Then the total forces under each schedule for a computation are compared and the
computation is scheduled into the folding cycle with the lowest force, which will result in the
least concurrency.

[00108) 3) Summary of the FDS algorithm: The pseudo-code of the proposed FDS technique is
shown in Algorithm 1. Algorithm 1 uses an iterative approach to schedule one computation in
each iteration. In each iteration, the LUT computation and register storage DGs are obtained.
The LUT or LUT cluster with the minimum force is chosen, and assigned to the folding cycle
with the minimum force. This procedure continues until all the LUT or LUT cluster
computations are scheduled.

Algorithm 1 - Force-Directed Scheduling (FDS)
1: for LUT/(LUT cluster) computations to be scheduled do

2: evaluate its time frame using ASAP and ALAP scheduling

3: create the LUT computation distribution graph and storage operation distribution
graph

4: for each unscheduled LUT/(LUT cluster) computation i do

5: for each feasible clock cycle j it can be assigned to do
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6: calculate the self-force of assigning node i to cycle j

7: ~ add predecessor and successor forces to self-forces to get the total force
for node i in cycle j

8: end for

9: select the cycle with the lowest total force for node i

10: end for

11: Pick the node with the lowest total force and schedule it in the selected cycle

12: end for

Temporal Clustering

-

[00109] After scheduling, a network of LUTs is assigned to each folding stage. For each
folding stage, we use a constructive algorithm to assign LUTs to LEs and pack LEs into MBs
and SMBs. To construct each SMB, an unpacked LUT with the maximal number of inputs is
first selected as an initial seed. Then, new LUTs with high attractions to the seed LUT are
chosen and assigned to the SMB. The attraction between a LUT i and the seed LUT,
Attraction; se.q, depends on timing criticality and input pin sharing [17], as follows:

Nets

Attraction, =a¥* Criticality, +(-a) * Gi.seed (15)

i,seed

and as described in the following, which is incorporated herein by reference for its useful
background information:
e A.S. Marquardt, V. Betz, and J. Rose, “Using Cluster-Based Logic Blocks and Timing-

Driven Packing to Improve FPGA Speed and Density,” in Proc. Int. Symp. FPGA, Feb.
1999, pp. 37-46.

In Equation 15, Criticality; models the timing criticality of LUT i (e.g., the number of critical
paths that this LUT is on), Nets; seeq is the number of shared I/Os between these two LUTs, and G
is the number of I/Os per LE. a is a parameter that allows a tradeoff between timing criticality
and interconnect demand.

[00110] To support temporal logic folding, inter-folding stage resource sharing needs to be
considered during clustering. Since due to logic folding, several folding stages may be mapped
to a set of LEs, some of the LEs may be used to store the internal results and transfer them to
another folding cycle. Such LEs may perform this job over several cycles and feed other LEs in
each folding cycle. As illustrated in FIG. 24(a), in an carlier folding cycle, two LUTs may have
very few attractions between them (C and D in FIG. 24(a)), but may have a large number of

attractions in a later cycle. When performing temporal clustering, the attractions of two LUTs
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over all the cycles need to be accounted for. Thus, the attraction of such a LUT is set to the

maximum of its attractions over all the cycles.

Placement and Routing
[00111)] In the present invention, placement and routing is performed by a modified VPR. VPR
refers to the techniques of the following, which is incorporated herein by reference for its useful
background information:

e V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA
Research,” Proc. Int. Wkshp. FPGA, Aug. 1997, pp. 213-222.

Placement uses a two-step simulated annealing approach. Placement starts with a fast low-
precision placement. Routability analysis and delay estimation are then used to evaluate the
quality of the initial placement. For routability analysis, a highly-efficient empirical estimation
technique is used, as described in the following, which is incorporated herein by reference for its
useful background information:

e C.L.E. Chang, “VRISA: Accurate and Efficient Placement Routability Modeling,” in
Proc. Int. Conf. Computer-Aided Design, Nov. 1994, pp. 690-695.

The routing demand for the interconnect resources for horizontal and vertical channels,

Djtersenal ang D' | of each net k is estimated as:

D ;.hori.ronml =q *_l]_,_ : Dl:;.verlicnl =q * % (]6)

where (X, Y ) are the dimensions of the net bounding box for net &, and g is a pin-count
dependent net-weight, as detailed in C.L.E. Chang. The sum of the demands of all the nets is
then compared to the per-channel routing resources of NATURE to make sure the resources are
adequate. Delay estimation is based on the timing analysis step of VPR. Routability analysis
and delay estimation results are then used to evaluate the feasibility of the initial placement,
which determines whether a high-precision placement or another round of logic folding should
be invoked.

[00112] VPR placer was modified in the present invention to support temporal logic folding.
Such temporal folding introduces inter-folding stage dependencies. Consider the example in
FIG. 24(b). In folding cycle 1, since there are few connections between C and D, they may be
placed far apart. However, such a placement would not be good for folding cycle 2 in which C

and D communicate a lot. The Manhattan distance is computed between each pair of SMBs
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belonging to different temporal folding stages. The net bounding box in other unplaced cycles
are estimated using this Manhattan distance and added to the cost function for the current cycle
to guide placement. Routing is conducted in a hierarchical fashion, first using length-1, then
length-4 and finally global interconnects (i.e., the three types of interconnects in NATURE,

above). Note that a length-i interconnect spans i SMBs.
Experimental Results-An instance of NATURE using NanoMap

[00113] Presented here are experimental results for the mapping of seven RTL/gate-level
benchmarks to an instance of NATURE using NanoMap to illustrate the benefits of run-time
reconfiguration and logic folding. NATURE is a family of architectures, which may vary in the
number of inputs and registers in an LE, number of LEs in an MB, number of MBs in an SMB,
etc. In this experimental instance, an architecture having one four-input LUT in an LE, four LEs
in an MB, and four MBs in an SMB, are selected to obtain good area-delay trade-offs.
Observations show that temporal logic folding greatly reduces the area for implementing logic,
so much so that the number of registers in the design becomes the bottleneck for area reduction.
Thus, as opposed to traditional LEs that include only one register, the present invention, in this
example, includes two registers per LE, which increases an SMB’s area to 1.5X (all experiments
are based on a 100nm technology). However, the LE area increase is more than offset by the
significant reduction in overall area. To fully explore the potential of logic folding, we assume
that a varying number of reconfiguration sets, %k, is available in carbon nanotube RAMs
depending on the application. We also show the tradeoffs when the size of carbon nanotube
RAM is instead fixed to 16.

[00114] Amoﬁg the seven benchmarks targeted, ex1 is the circuit shown in Fig. 18, but with a
bit-width of 16. Paulin is a differential-equation solver, and FIR and Biquad are two types of
digital filters. ASPP4 is an application-specific programmable processor. ¢5315 is a gate-level
ALU implementation from the ISCAS’85 benchmark suite. NanoMap was run on a 2GHz PC
with 1GB of DRAM under RedHat Linux 9. The mapping CPU times were less than a minute
for all the benchmarks.

[00115] First, all benchmarks were mapped under the area-time (AT) product minimization
objective to show the logic density benefits of temporal logic folding against the traditional no-
folding case. Table II of FIG. 25 shows the mapping results. The first five columns describe the
benchmark name and structure. Columns 6 and 7 of Table II of FIG. 25 show the number of LEs

required and circuit delay for the no-folding case. Columns 8 and 12 show the best folding level
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established by the present invention, NanoMap, for AT product optimization without and with
limitations on k. AT product optimization is achieved with folding level-1 in all the cases when
there is no restriction on &, since an increase in circuit delay is more than overcome by the
dramatic reduction in area when using level-1 folding.

[00116] The corresponding area (where the number of LEs is used as a proxy for area due to the
regular architecture), circuit delay and AT product improvement with respect to the no-folding
case for examples without and with limitations on & are shown in Table II - Columns 9-11 and
13-15, respectively. The average reduction in the number of LEs is 14.8X (9.2X) and in the AT
product 11.0.X (7.8X), at the price of a 31.8% (19.4%) increase in circuit delay for large enough &
(with & limited to 16).

[00117] Accordingly, the present invention can target many different optimization objectives:
(i) minimization of circuit delay with or without an area constraint; (ii) minimization of area with
or without a delay constraint; (iii) minimization of the AT product; and (iv) finding a feasible
implementation under both area and delay constraints.

[00118] Different optimization objectives for different benchmarks are selected, with results
presented in Table III. Objectives are noted in Column 2 of Table III of FIG. 25, and the
constraint (i.c., area or delay) is noted in Columns 3 and 4 of Table III. Table III of FIG. 25
illustrates the versatility of NATURE and NanoMap. Further, a significant side-benefit of area
reductions made possible by logic folding is the associated reduction for a deep interconnection
hierarchy in NATURE. Since cycle-by-cycle reconfiguration makes LE utilization very high, the
need for global communication greatly reduces. Global interconnect use was reduced by more
than 50% when using level-1 folding as opposed to no-folding, due to trading interconnect area

for increased carbon nanotube RAM area in NATURE.
Conclusion

[00119] The present invention presents a hybrid nanotube/CMOS dynamically reconfigurable
architecture, NATURE, and an RTL/gate-level automatic design optimization flow, NanoMap,
for the NATURE reconfigurable architecture. NATURE supports run-time fine-grain
reconfiguration and, hence, enables temporal logic folding. Through logic folding, significant
logic density improvement and flexibility in performing area-delay tradeoffs are possible.

[00120] NanoMap incorporates temporal logic folding during the logic mapping, temporal
clustering and placement steps. NanoMap provides for automatic selection of a best folding

level, and uses force-direct scheduling to balance resources across the different folding stages.

-35-



WO 2007/124048 PCT/US2007/009658

Mapping, as provided by the present invention, can target various optimization objectives and
user constraints. With NanoMap, the potential of NATURE can be effectively realized.

[00121] These and other advantages of the present invention will be apparent to those skilled in
the art from the foregoing specification. Accordingly, it will be recognized by those skilled in
the art that changes or modifications may be made to the above-described embodiments without
departing from the broad inventive concepts of the invention. It should therefore be understood
that this invention is not limited to the particular embodiments described herein, but is intended

to include all changes and modifications that are within the scope and spirit of the invention.
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What is Claimed:

1. A reconfigurable computer architecture, comprising:
a plurality of logic elements; and
an equal number of random access memories, one random access memory being

associated with each logic element.

2. The architecture of claim 1, further comprising a crossbar with each logic element

and respective random access memory to provide communication between components.

3. The architecture of claim 1, wherein four logic elements and four respective

random access memories comprise a macroblock (MB).

4, The architecture of claim 3, wherein inputs for each logic element arrive from

outputs of logic elements in the macroblock or the inputs to the macroblock.

S. The architecture of claim 3, wherein four macroblocks are arranged to comprise a
super-macroblock (SMB), wherein each of the four macroblocks is associated with a respective

random access memory.

6. The architecture of claim 5, further comprising a crossbar with each macroblock
and respective random access memory to provide communication between components of the

super-macroblock.

7. The architecture of claim 5, wherein inputs of a macroblock arrive from outputs

of other macroblocks or inputs to the super-macroblock.

8. The architecture of claim 5, wherein outputs from a logic element are used within
the respective macroblock, are transmitted to the super-macroblock, or are transmitted to other

super-macroblocks through a routing network.

9. The architecture of claim 1, wherein the random access memory is a carbon

nanotube random access memory.

10. The architecture of claim 1, wherein the random access memory is selected from
the group consisting of phase change random access memory, magnetoresistive random access

memory, and ferroelectric random access memory.
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11. The architecture of claim 1, wherein the random access memory stores run-time

reconfiguration bits of the respective logic element.

12. The architecture of claim 1, wherein each logic element includes two flip-flops.

13. The architecture of claim 12, wherein different computation values are stored in

each of the two flip-flops at any point in time.

14, A field programmable gate array, comprising:
a plurality of reconfigurable blocks; and
an equal number of nanotube random access memories, one nanotube random
access memory being associated each reconfigurable block to store run-time reconfiguration bits

of the respective block.

15. The gate array of claim 14, wherein the reconfigurable blocks are logic elements

or switch blocks.

16. A reconfigurable computer architecture, comprising:
a plurality of programmable elements; and
a random access memory physically adjacent and connected to each

programmable element.

17. The architecture of claim 16, wherein the random access memory stores run-time

reconfiguration bits of the respective programmable element.

18. The architecture of claim 16, wherein n- programmable elements and n- random
access memories comprise a macro-block (MB), and wherein m- macro-blocks and m-random
access memories comprise a super macro-block (SMB), and wherein one SMB and one local

switch matrix comprise a logic block (LB), and wherein a plurality of LBs are included in the

architecture.
19. The architecture of clé.im 18, wherein the value of m and n is four.
20. The architecture of claim 18, wherein inputs/outputs of the SMB are connected to

neighboring logic blocks through an interconnection network through the local switch matrix and
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SMBs of the neighboring logic blocks are also direct link connected to the inputs/outputs of the
SMB.

21. The architecture of claim 18, further comprising wire routing segments of length-
1, length-2 and long wires, wherein length-1 wire segments span one logic block before
connecting to a switch block, length-2 wire segments span four logic blocks before connecting to
a switch block, and long wire segments traverse and are connected to all logic blocks in a

respective horizontal and vertical path.

22. The architecture of claim 21, further comprising direct link connections from

outputs of each logic block to each of four immediately neighboring logic blocks.

23. The architecture of claim 18, Wherein the value of m and n is four, wherein each
SMB has 64 inputs and 32 outputs, and wherein 128 horizontal and vertical wires are included in

each routing channel.

24, The architecture of claim 23, wherein a 25%, 50%, and 25% distribution of
length-1, length-2, and long wires, respectively, exists among the 128 horizontal and vertical

wires.

25. The architecture of claim 23, wherein 32 wires are provided for direct link

connection between adjacent SMBs.

26. The architecture of claim 18, wherein F, represents a number of adjacent tracks a
pin of a logic block connects to, wherein F; represents a number of tracks to which each track
entering a switch block connects to, wherein F.= 1/N for a cluster of N look-up tables, and

wherein Fs= 6.

27. The architecture of claim 18, further comprising a connection block and a switch
block associated with each LB, wherein each connection block is depopulated and each switch

block is populated.

28. The architecture of claim 18, wherein each MB and SMB further comprises a
crossbar to provide communication between components of the respective MB and SMB,

wherein the crossbar includes a pass transistor.

-39 -



WO 2007/124048 PCT/US2007/009658

29. The architecture of claim 18, wherein a multiplexer is used in each switch matrix

to connect to inputs of each SMB.

30. The architecture of claim 18, wherein outputs of each SMB are connected through

long interconnects through tri-state buffers in the respective switch matrix.

31. The architecture of claim 16, wherein each programmable element includes two
flip-flops.
32. The architecture of claim 31, wherein different computation values are stored in

each of the two flip-flops at any point in time.

33. A method of run-time reconfiguration, comprising the steps of:
writing reconfiguration bits into a first random access memory at a time of initial
configuration from off-chip storage; and
placing reconfiguration bits into a second random access memory during run-time
reconfiguration to configure one or more logic elements or switches to implement different logic

functionality or interconnections.

34. The method of claim 33, wherein reconfiguration commences at one edge of

clock signal, followed by computation at another edge of the clock signal.

3s. The method of claim 33, wherein the first random access memory is nanotube

random access memory.

36. The method of claim 33, wherein the second random access memory is static

random access memory (SRAM).

37. A method of run-time reconfiguration, comprising the steps of:
mapping a series of n- serially connected look-up tables (LUTI, LUT2, ...,
LUTn) to a logic element (LE); and
configuring the LE to implement LUT]1 in a first cycle, to implement LUT2 in a
second cycle, and continuing until configuring the LE to implement LUTn in nth cycle, wherein

n cycles are needed for execution.

38. The method of claim 37, wherein all communications between the LUTs are local.
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39. A method of run-time reconfiguration, comprising the steps of:

mapping a series of n- serially connected look-up tables (LUT1, LUTZ2, ...,
LUTn) to one logic element (LE);

configuring the LE to implement LUT]1 in a first cycle;

executing LUT]1 in the first cycle;

configuring the LE to implement LUT2 in a second cycle;

executing LUT2 in the second cycle; and continuing until:

configuring the LE to implement LUTn in nth cycle; and

executing LUTn in the nth cycle.‘

40. A method of run-time reconfiguration, comprising the steps of:
mapping one or more of a series of look-up tables (LUTs) to one or more logic
elements (LEs);
configuring the LE to implement a first LUT in a first cycle;
executing the first LUT by the LE in the first cycle;
configuring the LE to implement a second LUT in a second cycle; and

executing the second LUT in the second cycle.

41. The method of claim 40, wherein a second LE executes a LUT in the first cycle

using output from the execution of the first LUT by the LE in the first cycle.

42. A method of run-time reconfiguration, comprising the steps of:
mapping one or more of a series of look-up tables (LUTs) to one or more logic
elements (LEs);
configuring each LE to implement a LUT in a first cycle;
reconfiguring each LE, after the implementation of two sequential LUT

computations, to implement a LUT in a second cycle.

43, A computer architecture, comprising:
a plurality of logic blocks, including:
a) a super macroblock (SMB) including:
1) at least one macroblock (MB) including:

i) at least one logic element; and
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ii) at least one random access memory, wherein one
random access memory is associated with each logic element, and at least as many random
access memories as logic elements are included in the MB; and

2) at least one random access memory, wherein one random access
memory is associated with each MB, and at least as many random access memories as MBs are
included in the SMB; and

b) a switch matrix;
a plurality of switch blocks; and

a plurality of connection blocks.

44. The architecture of claim 43, wherein each connection block is depopulated and

each switch block is populated.

45. The architecture of claim 43, wherein each MB and SMB further comprises a
crossbar to provide communication between components of the respective MB and SMB,

wherein the crossbar includes a pass transistor.

46. The architecture of claim 43, wherein a multiplexer is used in each switch matrix

to connect to inputs of each SMB.

47. The architecture of claim 43, wherein outputs of each SMB are connected through

long interconnects through tri-state buffers in the respective switch matrix.

48. The architecture of claim 43, further comprising wire routing segments of length-
1, length-2 and long wires, wherein length-1 wire segments span one logic block before
connecting to a switch block, length-2 wire segments span four logic blocks before connecting to
a switch block, and long wire segments traverse and are connected to all logic blocks in a

respective horizontal and vertical path.

49. The architecture of claim 43, further comprising direct link connections from

outputs of each logic block to each of four immediately neighboring logic blocks.

50. A reconfigurable computer architecture, comprising:
a plurality of logic elements, each logic element including at least two flip-flops;

and
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at least an equal number of random access memories, wherein one random access
memory is associated with each logic element to store run-time reconfiguration bits for the logic

" element.

51 A method implemented at least in part by machine for determining an efficient
logic folding configuration for a reconfigurable architecture, and for balancing resource use
across the logic folding configuration, the method comprising the steps of:

determining a folding level based upon user specified design constraints,
optimization objectives, and input circuit structure, wherein force-directed scheduling is used to
assign LUTs and LUT clusters to folding stages, to balance inter-folding stage resource usage,
and to produce a LUT network of each temporal folding stage;

assigning the LUTs and LUT clusters to each folding stage using the LUT
network as input, wherein the LUTs are assigned to LEs, and the LEs are assigned to MBs and
SMBs, all to minimize global interconnects and to simplify placement and routing;

performing LUT placement, wherein inter-folding stage dependencies are
considered;

generating intra-SMB and inter-SMB routing; and

generating a layout for each folding stage and a configuration bitmap for each

folding cycle of the reconfigurable architecture.

52. A method implemented at least in part by machine for determining an efficient
logic folding configuration for a reconfigurable architecture, and for balancing resource use
across the logic folding configuration, the method comprising the steps of:

entering an input circuit design specified in register-transfer level or gate-level
VHDL;

determining a folding level by identifying each plane of the input circuit design,
obtaining circuit parameters within each plane, and obtaining a user optimization objective;

partitioning the register-transfer level or gate-level VHDL module into LUTs and
LUT clusters;

scheduling each LUT and LUT cluster to a folding stage;

mapping each LUT and LUT cluster to a super-macroblock (SMB);,

performing temporal placement;

generating intra-SMB and inter-SMB routing; and
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generating a layout for each folding stage and a configuration bitmap for each

folding cycle of the reconfigurable architecture.

53. The method of claim 52, wherein the user optimization objective includes circuit

delay minimization under area constraint or area minimization under delay constraint.

54. The method of claim 53, wherein if an area constraint is obtained, the area

constraint is satisfied first, then best possible delay determined.

55. The method of claim 52, wherein the partitioning into LUT clusters considers

each of intra-folding stage and inter-folding stage data dependencies.
56. The method of claim 52, wherein a folding stage is not limited to one plane.

57. The method of claim 52, wherein the scheduling of each LUT and LUT cluster to

a folding stage is implemented by force-directed scheduling, wherein force-directed scheduling
comprises the steps of:

constructing a distribution graph describing resource use of LUT
computations;

constructing a distribution graph describing register storage use; and

calculating a force based on both distribution graphs, wherein the force
represents a probability of resource use concurrency, and a higher force calculated implies higher
concurrency of run-time operations, thereby requiring more resources in parallel, wherein a LUT

computation is scheduled into a folding cycle having a lowest force.

58. The method of claim 52, wherein the circuit parameters obtained are selected
from the group consisting of number of planes in the input circuit design, number of LUTs in a
plane, logic depth of a plane, maximum number of LUTs among all of the planes, maximum
logic depth among all of the planes, area constraint and number of reconﬁguratién copies in each

random access memory.

59. The method of claim 58, wherein the area constraint is defined as an available

number of LEs.

60. The method of claim 52, wherein performing temporal placement is directed to

minimizing an average length of inter-SMB interconnects.
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61. The method of claim 52, wherein performing temporal placement comprises the
steps of : |
performing a fast placement to derive an initial placement; and
performing a low-precision routability and delay analysis; wherein, if pre-
determined constraints of the delay analysis are satisfied, a detailed placement is invoked to
derive a final placement, and if the pre-determined constraints of the delay analysis are not
satisfied, the initial placement is refined, the pre-determined constraints of the delay analysis are

verified for satisfaction, or the method step of determining a folding level is revisited.
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TABLE I

CIRCUIT MAPPING RESULTS

PCT/US2007/009658

Level-1 folding

Level-2 folding

LUT
graph Delay LEsx Freq. ‘Delay LEsx Freq.
Circuit depth LEs (ns) Delay (GHz)} LEs (ns) Delay (GHz
pml 3 9 1.08 9.72 2.78 11 1.00 11.00 2.00
sct 4 9 1.64 14.76 2.86 16 1.10 17.60 1.82
cml63a 4 4 1.40 5.60 2.86 8 1.10 8.80 1.82
z4ml} 5 2 1.75 3.5 2.86 3 1.47 4.41 2.04
cc 5 13 2.05 26.65 244 14 2.03 28.35 1.48
poler8 7 9 2.87 25.83 2.44 10 2.20 220 1.82
cordic 7 7 2.87 20.09 2.44 12 2.20 26.40 1.82
Jal 7 24 2.52 60.48 2.78 32 2.00 64.00 2.00
idd 7 10 2.94 29.40 2.38 17 2.48 42.16 1.61
9symml 18 10 10.36 103.60 1.72 30 7.45 223.50 1.20
alu2 31 12 12.71 152.52 2.68 24 11.76 282.24 1.36
16-bit ripple-carry adder 16 2 4.80 9.60 3.33 4 3.52 14.08 2.27
32-bit ripple-carry adder 32 2 9.60 19.20 3.33 4 7.04 28.16 2.27
64-bit ripple-carry adder 64 2 19.20 38.40 3.33 4 14.08 56.32 2.27
16-bit carry-lookahead 10 13 3.60 46.80 2.78 26 3.43 89.13 1.46
adder
32-bit carry-lookahead 18 13 6.48 84.24 2.78 26 6.17 160.42 1.46
adder
64-bit carry-lookahead 34 13 12.24 159.12 2.78 26 11.65 302.90 1.46
adder
16-bit carry-select adder 8 30 2.88 86.4 2.78 55 2.76 151.80 1.46
32-bit carry-select adder 14 30 5.04 150.12 2.78 55 4.80 264.00 1.46
64-bit carry-select adder 26 30 9.36 280.80 2.78 55 8.91 490.05 1.46
8-bit multiplier 8 16 3.88 62.08 2.06 32 3.24 103.68 1.23
16-bit multiplier 16 32 7.76 248.32 2.06 64 6.48 414.72 1.23
32-bit multiplier 32 64 15.52 993.28 2.06 128 12.96 1658.88 1.23
Level-4 folding No folding
LUT
graph Delay LEs x Freq. Detay LEsx Freq.
Circuit depth LEs (ns) Delay (GHz) LEs (ns) Delay (GHz)
pml 3 22 0.61 13.42 1.64 22 0.61 13.42 1.64
sct 4 32 0.62 19.84 1.61 32 0.62 19.84 1.61
cml63a 4 14 0.59 8.26 1.69 14 0.59 8.26 1.69
24ml 5 5 1.25 6.25 1.60 9 0.73 6.57 1.37
cc 5 24 1.91 45.84 1.05 28 1.14 31.78 0.88
poler8 7 16 1.54 24.64 1.30 35 1.01 35.35 0.99
cordic 7 14 1.60 22.40 1.25 28 1.07 29.96 0.93
1al 7 56 1.56 87.36 2.56 73 1.07 78.11 0.93
Idd 7 31 2.05 63.55 0.98 44 1.38 60.72 0.72
9symm! 18 54 6.85 369.90 0.73 124 3.83 474.92 0.26
alu2 31 44 9.36 411.84 0.85 211 6.14 1295.54 0.16
16-bit ripple-carry adder 16 8 2.88 23.04 1.39 32 2.39 76.48 042
32-bit npple-carry adder 32 8 5.76 46.08 1.39 64 5.00 320.00 0.20
64-bit npple-carry adder 64 8 11.52 92.16 1.39 128 10.21 1306.88 0.10
16-bit carry-lookahead 10 52 3.63 163.35 0.83 104 2.35 244.40 043
adder
32-bit carry-lookahead 18 52 6.05 272.25 0.83 208 445 925.60 023
adder
64-bit carry-lookahead 34 52 10.89 490.05 0.83 416 8.65 3598.4 0.12
adder
16-bit carry-select adder 8 93 242 225.06 0.83 134 2.21 296.14 0.45
32-bit carry-select adder 14 93 4.84 450.12 0.83 268 4.31 1155.08 0.23
64-bit carry-select adder 26 93 8.47 787.71 0.83 536 8.51 4561.36 0.12
8-bit multiplier 8 64 2.92 186.88 0.68 128 2.39 305.92 042
} 6-bit multiplier 16 128 5.84 747.52 0.68 512 498 2549.76 0.20
32-bit multiplier 32 256 11.68 2990.08 0.68 2048 9.54 19537.92 0.10
FIG. 8
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