
US 20040148595A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0148595 A1

Dutta et al. (43) Pub. Date: Jul. 29, 2004

(54) SYSTEM AND METHOD FOR Publication Classification
TRANSFORMATION OF ASSEMBLY CODE
FOR CONDITIONAL EXECUTION (51) Int. Cl." ... G06F 9/45

(52) U.S. Cl. .. 717/159
(76) Inventors: Sandeep Dutta, Foster City, CA (US);

Paul Beusterien, Alameda, CA (US); (57) ABSTRACT
T E Foster Citv, CA (US Omas Vensen, Foster Ulty, (US) A method and System may be implemented, according to a

Correspondence Address: preferred embodiment of the present invention, to permit
WIND RIVER SYSTEMS transformation of Software to use conditional execution
Legal Department, Attin: Patents instructions. According to the preferred embodiment, a
500 Wind River Way System and method is provided to transform machine
Alameda, CA 94501 (US) instructions (for example, machine instructions generated by

a Source code compiler) to make use of the conditional
(21) Appl. No.: 10/354,898 execution features of a processor. The preferred embodiment

thus reduces code size and better utilizes the instruction
(22) Filed: Jan. 29, 2003 pipeline and cache.

initialize transform processor

310

Parse assembly code,
populate block and control

flow data structures

35

Analyze control flow for
potential optimizations

-
Optimize
Block

325

Apply Optimizing
Transform

Return to Compile

Patent Application Publication Jul. 29, 2004 Sheet 1 of 9 US 2004/0148595 A1

IDE
Host 1

Pogso Compiler
100

Host OS
12

| -

2 3

m

Target
Processor

Target I/O
wer w am - am m u- urs - we as are in am - ur 1

Target

-

Figure 1

Patent Application Publication Jul. 29, 2004 Sheet 2 of 9 US 2004/0148595 A1

100

Block Data
130

Control Data
135

Transform
Processor Compile Processing Assembly Store

115 125 120

.Cpp

elf
105

N.

Figure 2

Patent Application Publication Jul. 29, 2004 Sheet 3 of 9

Figure 3

305

Initialize transform processor

310

Parse assembly code,
populate block and control

flow data structures

315

Analyze control flow for
potential optimizations

Optimize
Block?

Return to Compile

US 2004/0148595 A1

320

325

Apply Optimizing
Transform

Patent Application Publication Jul. 29, 2004 Sheet 4 of 9

Label instruction

ldr ro,-k
ldr r2, rOff-O
cmp 2:0

ldr r 12, 12, iO,
add 12,12:1
str r12, ro, #0

ldr r12, Fi
idi r12, r12,#0)
addr12,r12it 10
str r12, rOi4

ldr r12,j
ldr r12, 12, #0)
add 12,r12,if 13

- a -a -- a-- a-a-a-a- - - - - - - a-- a1- aS.12.98.

ldr r12,-k
ldr r12, 12, #0
addr12,r12.9
str r12, ro, #0
mov pc,lr

410

BlockD StartAddr End Addr

US 2004/0148595 A1

130

El
1000 100C
1010 1014

35

BOCk) DestBlock1 DestBlock2 PredElock

22
23
24

26
27
28
29

1018 101C

1024 1034
1038 1048
104C 1058
105C 106C
.

Figure 4

PredElockList:

P1 P2 P3

... 22 O 230 24 O
P6

220 230 24 o 25

26 27.2so

Patent Application Publication Jul. 29, 2004 Sheet 5 of 9

- 501
Start Analysis with First

BOCk

502

Block ends in Yes
Conditional Branch

504

No

Destination Block
has more than one

Predecessor?

No

Destination Block
ends in Unconditional

Branch?

Yes

No
513

Analyze Next
Block

Yes

506

Oestination Block
larger than pipeline?

US 2004/0148595 A1

508

NO

510

Apply "switch" construct
transform, adjust data

structures

512

More Blocks to
Process?

Figure 5

Patent Application Publication Jul. 29, 2004 Sheet 6 of 9 US 2004/0148595 A1

Block 31

Figure 6

Patent Application Publication Jul. 29, 2004 Sheet 7 of 9

Start Analysis with First
Block

Block ends in
Conditional Branch

713

Analyze Next
Block

More Blocks to
Process?

US 2004/0148595 A1

-1-702
Yes 704

No

Destination BlockN No
has more than one

Predecessor?

Yes -1

Destination Block ends in NO
Conditional Branch? 708

Yes

Destination Block of Yes
Destination Block is 709

destination block of cond.
branch of present block?

- Yes 16lock Size Larger
than Pipeline?

NO

710

Apply "if-then" construct
transform, adjust data

structures

712

Figure 7

Patent Application Publication Jul. 29, 2004 Sheet 8 of 9 US 2004/0148595 A1

Figure 8

Block 41

Patent Application Publication Jul. 29, 2004

Start analysis with first block

Sheet 9 of 9 US 2004/0148595 A1

Block ends in
Conditional Branch

911

Analyze next
block

u-o

904

Any Predecessor blocks end
in conditional branch and have as
destination block the present

block?

Yes

/ 906

Block Size Larger
than Pipeline?

90
8-N- Apply "if-then-else" construct

transform, adjust data
Structures

us
More Blocks to

Process?

-"
Yes/Any changes made

to block data?
Figure 9

US 2004/O148595 A1

SYSTEMAND METHOD FORTRANSFORMATION
OFASSEMBLY CODE FOR CONDITIONAL

EXECUTION

BACKGROUND INFORMATION

0001 One of the issues encountered in computing system
design is dealing with computer program branching and its
impact on processing Speed. Computer programs typically
include a number of “branch' instructions which cause
program execution to transfer to an alternate area of instruc
tions Some distance in memory from the branch instruction.
In many cases these branch instructions are “conditional'-
they only occur if a particular condition is satisfied (e.g., a
Specified register orbit has a Zero value). Thus it is unknown
until the program is executed whether the conditional branch
instruction will actually be executed (requiring a jump to the
new set of instructions) or not (allowing further execution of
the current Set of instructions). This uncertainty has impli
cations for processing throughput, as contemporary proces
Sors attempt to cache and "pre-process” instructions (as part
of an instruction "pipeline') prior to the time for execution,
in order to overcome issueS Such as memory delays and
instruction decoding delayS. If the conditional branch is
taken, the cache and pre-processing may be no longer valid,
requiring a pipeline “flush” and reload, and thus creating
additional processing delay.
0002. In order to overcome the uncertainties posed by
conditional branching in pre-processing, one technique used
in contemporary processor designs allows for the condi
tional execution of instructions, typically through multiple
execution pipelines within the processor (and in Some cases
using branch prediction algorithms to make judgments about
likely branch paths). Each pipeline will pre-process a poten
tial conditional branching situation, and the processor will
only execute the pipeline that includes the instructions that
will actually need to be executed based on the outcome of
the conditional branch. Another technique uses “conditional
execution' instructions, which are instructions that are only
executed when the specified condition is true (the condition
is said to "guard” the instruction from execution). Condi
tional execution instructions can thus be used to reduce the
number of branches needed in a section of Software. Several
processor architectures Support conditional execution
instructions (e.g., ARM processors, Motorola MCORE pro
cessors).
0003) To accommodate conditional execution, software
compilers need to be configured to generate machine
instructions that take advantage of the efficiencies of con
ditional execution. Current compilers attempt to perform
internal tree optimizations on the processed high-level
Source code (for example, C or C++ Source code). Although
tree optimizations can improve execution Speed, tree opti
mizers lack intimate information concerning the block size
and number of machine instruction groupings generated by
the source code when compiled. Without such information,
Situations that are appropriate for optimization (and situa
tions that are not appropriate for optimization) can be
missed, reducing overall System throughput and memory
efficiency.

SUMMARY

0004. According to a preferred embodiment of the
present invention, a System is described, comprising a

Jul. 29, 2004

transform block data Structure, a control flow data structure
and a transform facility. The transform facility is configured
to determine a number of transform blocks associated with
a number of assembly instructions, and Store indications of
the number of transform blocks in the transform block data
Structure, determine a control flow associated with the
number of transform blocks and store indications of the
control flow in the control flow data structure, determine
whether at least one conditional execution optimization
should be applied based on at least one of the number of
transform blockS and the control flow, and transform at least
a portion of the number of assembly instructions into
conditional execution instructions when the at least one
conditional execution optimization should be applied.
0005 Also according to a preferred embodiment of the
present invention, a method is described, comprising deter
mining a number of blocks associated with a number of
assembly instructions, and Storing indications of the number
of blocks in a transform block data Structure, determining a
control flow associated with the number of blocks, and
storing indications of the control flow in the control flow
data Structure, determining whether at least one conditional
execution optimization should be applied based on at least
one of the number of blocks and the control flow, and
transforming at least a portion of the number of assembly
instructions into conditional execution instructions when the
at least one conditional execution optimization should be
applied.

BRIEF DESCRIPTION OF THE DRAWINGS

0006 FIG. 1 shows a block diagram of an exemplary
operating environment according to the present invention.
0007 FIG. 2 shows a block diagram of an exemplary
compiler according to the present invention.
0008 FIG. 3 shows a flow chart of an exemplary logic
flow for transform operations according to the present
invention.

0009 FIG. 4 shows an example of transform block
identification, according to the present invention.
0010 FIG. 5 shows a flow chart of an analysis according
to a first example of transformation to determine if a
transform block is optimizable, according to the present
invention.

0011 FIG. 6 shows an illustration of block control flow
for a Second example of transformation, according to the
present invention.
0012 FIG. 7 shows a flow chart of an analysis according
to the Second example of transformation to determine if a
transform block is optimizable, according to the present
invention.

0013 FIG. 8 shows an illustration of block control flow
for a third example of transformation, according to the
present invention.
0014 FIG. 9 shows a flow chart of an analysis according
to the third example of transformation to determine if a
transform block is optimizable, according to the present
invention.

DETAILED DESCRIPTION

0015 According to a preferred embodiment of the
present invention, a method and System may be imple

US 2004/O148595 A1

mented to permit transformation of Software to use condi
tional execution instructions. According to the preferred
embodiment, a System and method is provided to transform
machine instructions (also referred to herein as “assembly
instructions” or “assembly code”) to make use of the con
ditional execution features of a processor. The preferred
embodiment thus reduces code size and better utilizes the
instruction pipeline and cache.
0016. The examples provided below illustrate implemen
tation of the preferred embodiment in the context of com
piling code for execution on an ARM, Ltd. processor (the
“target processor for compiled code). Compilation for other
processors (e.g., Motorola MCORE) that accommodate con
ditional execution may likewise be implemented. ARM
processors are exemplary in that the ARM architecture
allows for conditional execution of almost all of the avail
able instruction set (through the use of condition prefixes as
part of each machine instruction).
0.017. The preferred embodiment achieves several advan
tages over prior conditional execution optimizers. AS an
initial matter, the assembly code generation phase of com
pilation is simplified, in that optimizations are deferred and
performed on the generated assembly code. Using actual
assembly code (as opposed to Source code) allows for more
insight into the arrangement of the actual machine instruc
tions when performing transforms for conditional execution.
For example, instead of relying on heuristics to determine if
a conditional execution transformation would help or ham
per the processor pipeline (e.g., the Intel XScale architecture
has an instruction pipeline of five, and therefore if a Section
of code contains more than five instructions it may not be
beneficial to transform it to a conditional execution block),
by doing the transformation on compiler generated assembly
code, the present invention has exact knowledge of the
number of instructions in a Section of code and the number
of branch instructions within a Section of code.

0.018. The preferred method and system according to the
present invention may be implemented in the context of
various computing Systems, for example, a traditional com
puter WorkStation having extensive memory, processing
power and input/output (I/O) facilities (displays, keyboards,
etc.). The preferred method and system described herein
may be implemented as a collection of instructions provided
on a computer-readable medium (e.g., CD, DVD, ROM,
magnetic disk or other non-volatile storage), executable by
a computing System to implement the method and System
within the computing System.

0.019 FIG. 1 illustrates an operating environment for
program development, according to the preferred embodi
ment of the present invention. An integrated development
environment (IDE) 1 is implemented on a host computing
System 2. Host computing System 2 may include a host
processor 5, host memory System 6, host user interface
system 7 and host I/O system 8, as is typical in most
WorkStation environments. Host computing environment 2
may also include a host operating System (OS) 12, which
provides a Software interface and control framework for
interactions between hardware components and IDE 1. In
Some environments, host computing System 2 may be con
nected to a target computing System 3 via a communications
medium/protocol (e.g., serial link, Ethernet link, debug
connection, etc.) through, for example, the host I/O System

Jul. 29, 2004

8. The target computing System 3 includes a target processor
9, target memory system 10 and target I/O system 11. In
other environments, the host computing System may be the
target for Software being developed (e.g., native develop
ment), in which case a separate target System 3 may not be
employed (and the host processor is the “target processor
for purposes of development).

0020. As mentioned earlier, in the preferred embodiment,
the target processor is an ARM processor, available through
a number of Sources and licensed by ARM Ltd., Cambridge,
United Kingdom. Host computing System 2 may be a
WorkStation-class computing System, Such as those based on
the Pentium 4 processor (Intel Corp., Santa Clara, Calif.)
and executing the Windows XP operating system (Microsoft
Corp., Redmond, Wash.). IDE 1 may be the Tornado(RIDE
available from Wind River Systems, Inc. (Alameda, Calif.).
Other host System and target System configurations/equip
ment may also be used to implement the embodiments
described below.

0021 IDE 1 includes a compiler 100, as well as other
development tools Such as a debugger (not shown). Com
piler 100 is designed to translate source code of a specified
computing language into code interpretable by the target
processor and Software loaders to be executed on the target
processor (referred to as “object code”). In the preferred
embodiment, the compiler 100 is designed to translate
Source code written in the C or C++ computer languages into
ARM processor object code in the "...elf” object code format.
The compiler could likewise be configured to use other
Source code languages and object code formats.

0022 FIG. 2 illustrates a block diagram of compiler 100.
The exemplary compiler 100 includes compiler processing
unit 115, which performs basic compiling operations, Such
as translating Source code (Such as one or more C/C++
source files 105 identified to compiler 100) into machine
instructions supported by the target processor. Compiler 100
may maintain an assembly instruction Storage area 125, used
as temporary Storage for machine instructions produced
during compilation activities, which may be later exported
and formatted into one or more object code files 110.
Exemplary compiler 100 further includes a transform pro
cessor facility 120, which (as described below) includes
logic to transform assembly instructions to take advantage of
conditional execution capabilities of the target processor.
Transform processor 120 employs block data structure 130
and control data Structure 135 in transform processing, as
will be further described below. Compiler 100 may include
other processing modules/data Structures/storage areas to
Support compilation activities, although Such modules/struc
tures/areas are not depicted in this example as not being
necessary to explain the operation of the embodiments of the
present invention.

0023 Transform processor facility 120 includes logic to
perform transformations of assembly instructions to take
advantage of conditional execution capabilities of the target
processor. FIG. 3 is a flow chart illustrating an exemplary
logic flow for operations of the transform processor 120.
Initially, the transform processor is initialized with certain
characteristics of the target processor, for example, the depth
of the execution pipeline Supported by the target processor,
and the assembly instructions that Support conditional
execution (step 305). The assembly instructions resulting

US 2004/O148595 A1

from compilation (in this embodiment, Stored in the assem
bly store 125) are then parsed to divide the assembly code
into “transform blocks” and populate the block data struc
ture 130 and control flow data structure 135 (step 310). A
transform block (also referred to herein simply as a block)
is a Section of Sequential assembly code that ends on either
a branch instruction or the instruction immediately prior to
an assembly code label, i.e., a set of instructions that are
executed Sequentially without any intervening branches or
entry points. Transform blocks can be mapped to show their
asSociations with each other, i.e., which blocks are “desti
nation” blocks (to which execution will transfer after execu
tion of the branch instruction), and which blocks are “pre
decessor” blocks (from which execution was transferred
prior to execution of the current block). This mapping is
referred to as “control flow.'

0024 FIG. 4 illustrates an example of transform block
identification. As shown, assembly instructions 410 can be
parsed to identify blocks (shown in FIG. 4 with dashed
lines). The block data structure 130, is populated with entries
corresponding to each block. The exemplary block data
structure 130 as shown in FIG. 4 includes an entry for each
identified block, including a block ID field, a start address
for the block, and an end address for the block. The block
size may be included rather than (or in addition to) the block
end address in the block entry. The control data structure 135
is also populated with an entry for each identified block. The
exemplary control data structure 135 as shown in FIG. 4
includes an entry for each identified block, including a block
ID field, two destination block fields (the second destination
field used for conditional branch destinations), and a prede
cessor block list field. The predecessor block list field may
take the form of a pointer to a list of blocks which are
predecessors to the block corresponding to the entry. Alter
nate arrangements for the block data structure and control
flow data Structure are possible while achieving similar
information Storage, e.g., the block data structure and con
trol flow data Structures may be combined into a single block
data Structure containing all of the information provided by
the two preferred data structures.

0.025. Once the block and control flow data structures
have been populated through the parsing process, the trans
form processor may analyze the control flow to determine if
any patterns exist in the assembly code that may warrant
optimization using conditional execution instructions (Step
315). This analysis may be done, for example, by traversing
the control flow data structure and comparing each block to
a number of conditions which, if present, indicate that an
optimization is available (step 320). These conditions may
be “hard-coded” into the transform processor 120, or may be
made available to the transform processor from an external
Source, Such as a data file. Examples of conditions will be
discussed below. Where an optimization is available, the
transform processor applies the optimization to the block(s)
involved (step 325) by transforming the assembly instruc
tions associated with the block(s) using conditional execu
tion instructions, Storing the new code in the assembly Store
125, and modifying the block and control flow data struc
tures. The process continues processing the next block until
all blocks have been processed (step 330).
0026. Once all blocks have been processed for condition
execution transformation, the compiler 100 may generate

Jul. 29, 2004

the one or more object code files 110 corresponding to the
original source code files 105.

0027. The following examples illustrate several of the
control flow patterns that yield more efficient transforma
tions in conditional execution form. In the first example, the
source code (illustrated in Table 1 in C source form)
implements a common “Switch” construct within a function
named “foobar”.

TABLE 1.

C Source Code, Example 1

int ki,j.

void foobar()
{

switch (k) {
case 0:

k+= 1;
break;

case 1:
i += 10;
break;

case 2:
j += 13;
break;

k+= 9:
return;

0028 Table 2 illustrates the assembly instructions gen
erated by compiler 100 prior to conditional execution pro
cessing (with comments inserted to aid in tracking the
original Source code).

TABLE 2

Assembly Instructions before Conditional Execution Processing,
Example 1

foobar:
dr r0,-k

If case 0:

If break;
If case 1:

LS:
If break;
If case 2:

US 2004/O148595 A1

TABLE 2-continued

Assembly Instructions before Conditional Execution Processing,
Example 1

If j += 13;
ldr r12–
ldr r12,r12, #O
add r12,r12,#13
Str r12,IrOff8

.L2:
If break;
If
If k+= 9:

ldr r12=k
ldr r12,r12, #O
add r12,r12,#9
Str r12,IrOff-O

If return;
//

Ow pc.lr

0029 Note that this first example generates assembly
code that, when parsed to identify transform blocks, gener
ates a number of blockS that end in a conditional branch,
where the destination block of the conditional branch ends
in an unconditional branch. This pattern is frequently gen
erated in compilation of “switch” statements. The size of this
example code is 28 instructions (totaling 112 bytes), and
includes six branch instructions (not including the final
function return instruction “mov pc.lr”).
0030 Applying the process as outlined above (and in
reference to FIG.3), the assembly instructions of Table 2 are
parsed by the transform processor 120 to determine the
transform blocks within the assembly instructions. In this
example, eight blocks are identified (as is illustrated in the
block data structure 130 shown in FIG. 4). Control flow for
this first example is also shown in FIG. 4 within the control
flow data structure 135.

0.031) Each block in the “foobar” function is then ana
lyzed to determine if any of the blocks are optimizable. The
particular conditions which each block will be tested against
are shown in the flow chart of FIG. 5. Starting (step 501)
with the first block (the entry point of the function), it is
determined whether the block ends in a conditional branch
instruction (step 502), which can be done by examining the
instruction at the end address of the block. If this end
instruction is not a conditional branch, the optimization does
not apply, and the transform moves to process the next
block. If the block does end with a conditional branch, the
destination block of the conditional branch is the examined
(which can be identified, for example, by reading the con
tents of the second destination block field of the entry in the
control flow data structure 135). If this destination block is
the destination block for more than just this block (step 504),
which can be determined by examining the predecessor
block list within the control flow data structure, then the
optimization does not apply, and the transform moves to
process the next block. If the destination block does not
itself end in an unconditional branch (step 506), the opti
mization does not apply, and the transform moves to proceSS
the next block. If the destination block contains more
instructions than are Supported by the instruction pipeline of
the target processor (step 508), the optimization does not
apply, and the proceSS moves to process the next block.

Jul. 29, 2004

0032 For those blocks which satisfy each of the prior
conditions, the block may be transformed to use conditional
execution instructions (step 510). The transformation is to
convert each instruction in the destination block to a con
ditional execution instruction guarded by the same condition
applicable to the conditional branch of the original block, to
then merge the destination block into the original block, and
then delete the conditional branch instruction of the original
block. The block data structure 130 and the control flow data
structure 135 are modified accordingly. After the transform
is applied, processing passes to the next block Still identified
in the block data structure for the assembly instructions (Step
513), until all blocks identified in the block data structure
have been processed (step 512).

0033) Applying this transform to the assembly instruc
tions originally generated by the compiler 100 for this first
example (see Table 2), the assembly instructions of Table 3
are the result. Block 26 has been merged into block 22 and
block 27 has been merged into block 23. In each case,
conditional execution instructions have been used that are
guarded using the same condition (“eq) as the condition
applicable to the prior branch (“beq”), which has now been
deleted.

TABLE 3

Assembly Instructions with Conditional Execution Optimizations,
Example 1

foobar: COMMENTS:
dr r0,-k block 22 start

If switch (k) {
dr r2, r0,i-O
cmp r2:#0
dreq r12=k block 26 merged into block 22,
dreq r12,r12, #O instructions guarded using eq
addeq r12,r12#1 condition, beq instruction
Streq r12,IrOff-O deleted
beq .L2
cmp r2f1 block 23 start
dreq r12=i block 27 merged into block 23,
dreq r12,r12, #O instructions guarded using eq
addeq r12,r12#10 condition, beq instruction
Streq r12,IrOffa. deleted
beq .L2
cmp r2:#2 block 24 start (no transform)
beq L5
b .L2 block 25 start (no transform)

L3:
If case 0: source code for blocks 26 and
If k+= 1; 27 now merged into blocks 22
.L4: and 23 (respectively) for
If break; conditional execution
If case 1:
If i += 10;
LS: block 28 start (no transform)

If break;
If case 2:
If j += 13;

ldr r12–
ldr r12,r12, #O
add r12,r12,#13
Str r12,IrOff8

.L2: block 29 start (no transform)
If break;
If
If k+= 9:

ldr r12=k
ldr r12,r12, #O

US 2004/O148595 A1

TABLE 3-continued

Assembly Instructions with Conditional Execution Optimizations,
Example 1

add r12,r12,#9
Str r12,IrOff-O

If return;
//

Ow pc,lr

0034. The code generated for the “foobar” function
through the transform uses 26 instructions (104 bytes) which
is actually two instructions (eight bytes) Smaller than the
originally generated assembly instructions, with a shorter
execution path (and therefore a faster execution time).
Furthermore, by merging certain of the blocks, the number
of branches is reduced by two, which provides further
opportunities for instruction Scheduling. For example, a
Scheduling optimization algorithm can be applied to the
transformed code to determine the cycle times of each
instruction and reorder the instructions to optimize for
instructions that require additional clock cycles.

0035. As a second example, source code which imple
ments an "if-true' construct are also typically able to be
transformed into conditional execution instructions that
optimize execution. These constructs typically generate
assembly instruction blocks that end with an unconditional
branch, with destination blocks which also end with an
unconditional branch to the same address as the original
block. Table 4 shows a C source code listing for this second
example, and Table 5 shows an assembly instruction listing
of the compiler output (prior to conditional execution pro
cessing) for the Source code of Table 4.

TABLE 4

C Source Code, Example 2

int i,j,k;

foobar()
{

if (i < 10)
j += i,

0036)

TABLE 5

Assembly Instructions Prior to Conditional Execution Processing,
Example 2

foobar: COMMENTS:
ldr r1=i block 31 start
ldr r0,r1,i-O

If if (i < 10)
cmp rOi10
bge .L2 block 31 end

If j += i,
ldr r12,r1.h4 block 32 start
add r12,r12,rO

Jul. 29, 2004

TABLE 5-continued

Assembly Instructions Prior to Conditional Execution Processing,
Example 2

Str r12,r1.h4 block 32 end
//
.L2: block 33 start

Ow pc.lr block 33 end

0037 Applying the process as outlined above (and in
reference to FIG.3), the assembly instructions of Table 5 are
parsed by the transform processor to determine the trans
form blocks within the assembly instructions. In this
example, three blocks are identified (blocks 31, 32 and 33 as
noted in Table 5), and the control flow for this second
example is shown in FIG. 6.

0038 Each block in the function is then analyzed to
determine if any of the blocks are optimizable. The particu
lar conditions which each block will be tested against are
shown in the flow chart of FIG. 7. Starting with the first
block (step 701), it is determined whether the block ends in
a conditional branch instruction (step 702). If not, the
optimization does not apply, and the transform moves to
process the next block. If the block ends with a conditional
branch, the destination blocks of the block are examined. If
the first destination block (i.e., the destination block to
which flow will transfer if the conditional branch is not
taken) is the destination block for more than just this block,
i.e., it has more than one predecessor block (Step 704), then
the optimization does not apply, and the transform moves to
process the next block. If the first destination block itself
ends in a conditional branch (step 706), the optimization
does not apply, and the transform moves to process the next
block. If the destination block of the first destination block
is not the Second destination block of the present block (i.e.,
the destination block to which flow will transfer if the
conditional branch of the present block is taken), the opti
mization does not apply, and the transform moves to process
the next block (step 708). If the block size is greater than the
pipeline size (step 709), the optimization does not apply, and
the transform moves to process the next block.

0039 For those blocks which satisfy each of the prior
conditions, the block may be transformed to use conditional
execution instructions (step 710). The transformation is to
convert each instruction in the first destination block that
Satisfied the above conditions to a conditional execution
instruction guarded by the reverse condition applicable to
the conditional branch of the original block, to merge the
first destination block into the original block, and then delete
the conditional branch instruction of the original block. The
block data structure 130 and the control flow data structure
135 are modified accordingly. After the transform is applied,
processing passes to the next block Still identified in the
block data structure for the assembly instructions (step 713),
until all blocks identified in the block data structure have
been processed (step 712).
0040. Applying this transform to the assembly instruc
tions originally generated by the compiler 100 for this
Second example (see Table 5), the assembly instructions of
Table 6 are the result. Block 32 has been merged into block
31, and conditional execution instructions have been used

US 2004/O148595 A1

that are guarded using the opposite condition (“It’) as the
condition applicable to the prior branch (“bge”), which has
now been deleted.

TABLE 6

Assembly Instructions After Conditional Execution Transform,
Example 6

foobar: COMMENTS:
.L2: block 31 start

ldr r1=i
ldr r0,r1,i-O

If if (i < 10)
cmp r0,ii.10

If j += i, block 32 merged with block 31:
ldrlt r12,r1.h4 instructions guarded with lt
addlt r12,r12,rO condition (opposite of ge),
strlt r12,r1.h4 bge instruction deleted

//
Ow pc,lr block 33 start?end

0041. The transformed code of the second example yields
a one instruction (four byte) Savings over the unoptimized
code, with no branches.

0.042 A third example of a code construct that may be
optimized through conditional execution transformation is
the "if-then-else' construct, Such as the one illustrated in C
Source code form in Table 7, and resulting compiled assem
bly code form in Table 8.

TABLE 7

C source code, Example 3

int i,j,k;

foobar()
{

if (i < 10)
j += i,

else
k+= j:

0043)

TABLE 8

Assembly Instructions prior to Conditional Execution Transform,
Example 3

foobar: COMMENTS:
ldr r1= block 41
ldr r0,r1.h4

If if (i < 10)
cmp rOi10
bge .L2

If j += i,
ldr r12,r1,i-O block 42
add r12,r12,rO
Str r12,r1,i-O
b L3

.L2: block 43
If else
If k+= j:

ldr r12,r1,i-8
ldr r3,r1,i-O
add r12,r12, r3
Str r12,r1,i-8

Jul. 29, 2004

TABLE 8-continued

Assembly Instructions prior to Conditional Execution Transform,
Example 3

L3: block 44

//
Ow pc.lr

0044) Applying the process as outlined above (and in
reference to FIG.3), the assembly instructions of Table 8 are
parsed by the transform processor to determine the trans
form blocks within the assembly instructions. In this
example, four blocks are identified (blocks 41, 42, 43 and 44
as noted in Table 8), and the control flow for this second
example is shown in FIG. 8.

004.5 Each block in the function is then analyzed to
determine if any of the blocks are optimizable. The particu
lar conditions which each block will be tested against are
shown in the flow chart of FIG. 9. Starting with the first
block (step 901), it is determined whether the block ends in
a conditional branch instruction (step 902). If so, the opti
mization does not apply, and the transform moves to process
the next block. Otherwise, the predecessor blocks of the
present block are examined. If any of the immediate prede
ceSSor blocks to the present block end in a conditional
branch instruction and have as a first destination block the
present block (step 904), then the optimization may apply.
Otherwise, the optimization does not apply to the present
block, and processing proceeds to the next block. If the
present block size is larger than the pipeline size (step 906),
then the optimization does not apply, and processing pro
ceeds to the next block.

0046) The present block may now be transformed to use
conditional execution instructions. The transformation is to
convert each instruction in the present block to a conditional
execution instruction guarded by the reverse condition appli
cable to the conditional branch of the predecessor block, to
merge the present block into the predecessor block, and then
delete the conditional branch instruction of the predecessor
block (step 908). The block data structure 130 and the
control flow data structure 135 are modified accordingly.
The condition testing is performed again for each block (Step
911), and the transform applied accordingly, until all blocks
identified in the block data Structure have been processed
(step 910).
0047. Additionally illustrated in this example, the trans
form may be applied multiple times, in order to catch further
opportunities for optimizations that may be created as a
result of transformations, but are missed due to the flow of
condition testing. As a result, after all blocks have been
processed, it is determined whether any changes have been
made to the block control flow (step 912). This can be done,
for example, by keeping a dedicated indicator for changes to
the block data Structure, which is Set when any change is
made to the block data structure or control flow data
Structure (other means of change detection can also be used).
If no changes have been made to any of the blocks, there is
no need to do further processing. If changes have been made,
then the process may restart at the first block to perform
further optimizations (and the indicator, in this example,
may be reset).

US 2004/O148595 A1

0.048. Applying this transform to the assembly instruc
tions originally generated by the compiler 100 for this third
example (see Table 8), the assembly instructions of Tables 9
and 10 are the result. As shown in Table 9, block 42 has been
merged into block 41, and conditional execution instructions
have been used that are guarded using the opposite condition
(“lt”) as the condition applicable to the prior branch (“bge”),
which has now been deleted.

TABLE 9

Post-Transform Assembly Instructions (First Block Merge),
Example 3

foobar: COMMENTS:
ldr r1= block 41
ldr r0,r1.h4

If if (i < 10)
cmp r0,ii.10

If j += i,
ldrlt r12,r1,i-O block 42 merged with block 41:
addlt r12,r12,rO instructions guarded with
strlt r12,r1,i-O opposite of conditional branch
bIt L3 (lt), bge deleted

.L2: block 43
If else
If k+= j:

ldr r12,r1,i-8
ldr r3,r1,i-O
add r12,r12, r3
Str r12,r1,i-8

L3: block 44

//
Ow pc,lr

0049. Likewise, as shown in Table 10, after block 42 has
been processed, block 43 has been identified as optimizable
(since block 41 post-transform now ends with a conditional
branch and has as a destination block block 43) and has been
merged into block 41, with the instructions in block 43
converted to conditional execution instructions guarded by
the opposite condition (“ge') as in the conditional branch of
block 41 (“bit”), which is now deleted.

TABLE 10

Post-Transform Assembly Instructions (Second Block Merge),
Example 3

foobar: COMMENTS:
.L2:
L3: block 41

ldr r1=
ldr r0,r1.h4

If if (i < 10)
cmp r0,ii.10

If j += i,
ldrlt r12,r1,i-O portion merged from block 42
addlt r12,r12,rO
strlt r12,r1,i-O

If else
If k+= j:

ldrge r12,r1,i-8 block 43 merged into block 41:
ldrge r3,r1,i-O instructions guarded with
addge r12,r12, r3 opposite condition (ge),
strge r12,r1,i-8 blt instruction deleted.

//
Ow pc,lr block 44

0050. The conditional execution code has reduced the
Size of the resulting code by two instructions (eight bytes),
Shortened the execution path and therefore increased the

Jul. 29, 2004

execution speed of the “foobar” function. Note also that the
entire "if-then-else' construct has now been transformed
into a linear code sequence (i.e., no branches) which makes
instruction Scheduling much more flexible.
0051. The three examples of optimizations described
above are exemplary, as other optimizations may also be
possible. Furthermore, the optimization condition compari
Sons can be combined as part of a Single processing of the
block data, So as to determine Simultaneously whether any
of the optimization examples might apply to any particular
block.

0052. In the preceding specification, the invention has
been described with reference to specific exemplary embodi
ments thereof. It will, however, be evident that various
modifications and changes may be made thereunto without
departing from the broader Spirit and Scope of the invention
as set forth in the claims that follow. The specification and
drawings are accordingly to be regarded in an illustrative
rather than restrictive Sense.

What is claimed is:
1. A System, comprising:

a transform block data Structure;

a control flow data Structure; and
a transform facility configured to

(a) determine a number of transform blocks associated
with a number of assembly instructions, and Store
indications of the number of transform blocks in the
transform block data Structure,

(b) determine a control flow associated with the number
of transform blocks and store indications of the
control flow in the control flow data structure,

(c) determine whether at least one conditional execu
tion optimization should be applied based on at least
one of the number of transform blocks and the
control flow,

(d) transform at least a portion of the number of
assembly instructions into conditional execution
instructions when the at least one conditional execu
tion optimization should be applied.

2. The System of claim 1, further comprising:
a compiler processing facility, configured to generate the
number of assembly instructions based on a number of
Source code instructions.

3. The system of claim 1, wherein the transform block
data Structure and the control flow data Structure are part of
a single block data Structure.

4. The system of claim 1, wherein the transform facility
is further configured to, when determining whether the at
least one conditional execution optimization should be
applied, determine whether a present block

ends with a conditional branch instruction,
has a destination block of the conditional branch instruc

tion that does not have more than one predecessor
block and ends with an unconditional branch, and

has a Size that is less than a pipeline size of a target
processor for the assembly instructions,

US 2004/O148595 A1

in which case the at least one conditional execution
optimization should be applied.

5. The system of claim 1, wherein the transform facility
is further configured to, when determining whether the at
least one conditional execution optimization should be
applied, determine whether a present block

ends with a conditional branch instruction,
has a destination block not of the conditional branch

instruction that does not have more than one predeces
Sor block, does not end with a conditional branch, and
has as its own destination block a destination block of
the conditional branch instruction, and

has a Size that is less than a pipeline size of a target
processor for the assembly instructions,

in which case the at least one conditional execution
optimization should be applied.

6. The system of claim 1, wherein the transform facility
is further configured to, when determining whether the at
least one conditional execution optimization should be
applied, determine whether a present block

does not end with a conditional branch instruction,

has a predecessor block that ends in a conditional branch
instruction and has as a destination block the present
block, and

has a size that is less than a pipeline size of a target
processor for the assembly instructions,

in which case the at least one conditional execution
optimization should be applied.

7. The system of claim 1, wherein the transform facility
is further configured to

(e) re-determine whether the at least one conditional
execution optimization should be applied based on at
least one of the number of transform blocks and the
control flow, when at least one of the transform block
data Structure and control flow data Structure are
changed after (c) and (d) have been applied to all of the
number of transform blocks,

(f) transform at least a portion of the number of assembly
instructions into conditional execution instructions
when the at least one conditional execution optimiza
tion should be applied based on the re-determination.

8. A method, comprising:

(a) determining a number of blocks associated with a
number of assembly instructions, and Storing indica
tions of the number of blocks in a transform block data
Structure,

(b) determining a control flow associated with the number
of blocks, and Storing indications of the control flow in
the control flow data Structure;

(c) determining whether at least one conditional execution
optimization should be applied based on at least one of
the number of blocks and the control flow; and

(d) transforming at least a portion of the number of
assembly instructions into conditional execution
instructions when the at least one conditional execution
optimization should be applied.

Jul. 29, 2004

9. The method of claim 8, further comprising:
compiling a number of Source code instructions to gen

erate the number of assembly instructions.
10. The method of claim 8, wherein the transform block

data Structure and the control flow data Structure are part of
a single block data Structure.

11. The method of claim 8, wherein determining whether
the at least one conditional execution optimization should be
applied, includes

determining whether a present block

ends with a conditional branch instruction,
has a destination block of the conditional branch

instruction that does not have more than one prede
ceSSor block and ends with an unconditional branch,
and

has a size that is less than a pipeline size of a target
processor for the assembly instructions.

12. The method of claim 8, wherein determining whether
the at least one conditional execution optimization should be
applied includes

determining whether a present block

ends with a conditional branch instruction,
has a destination block not of the conditional branch

instruction that does not have more than one prede
ceSSor block, does not end with a conditional branch,
and has as its own destination block a destination
block of the conditional branch instruction, and

has a size that is less than a pipeline size of a target
processor for the assembly instructions.

13. The method of claim 8, wherein determining whether
the at least one conditional execution optimization should be
applied includes

determining whether a present block

does not end with a conditional branch instruction,

has a predecessor block that ends in a conditional
branch instruction and has as a destination block the
present block, and

has a size that is less than a pipeline size of a target
processor for the assembly instructions.

14. The method of claim 8, further comprising:

(e) re-determining whether the at least one conditional
execution optimization should be applied based on at
least one of the number of transform blocks and the
control flow, when at least one of the transform block
data Structure and control flow data Structure are
changed after Steps (c) and (d) have been applied to all
of the number of transform blocks,

(f) transforming at least a portion of the number of
assembly instructions into conditional execution
instructions when the at least one conditional execution
optimization should be applied based on the re-deter
mination.

15. An article of manufacture comprising a computer
readable medium having Stored thereon instructions adapted

US 2004/O148595 A1

to be executed by a processor, the instructions which,
when executed, define a method comprising the Steps
of:

determining a number of blocks associated with a number
of assembly instructions, and Storing indications of the
number of blockS in a transform block data Structure;

determining a control flow associated with the number of
blocks, and Storing indications of the control flow in the
control flow data Structure;

Jul. 29, 2004

determining whether at least one conditional execution
optimization should be applied based on at least one of
the number of blocks and the control flow; and

transforming at least a portion of the number of assembly
instructions into conditional execution instructions
when the at least one conditional execution optimiza
tion should be applied.

