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SYSTEMAND METHOD FORTRANSFORMATION 
OFASSEMBLY CODE FOR CONDITIONAL 

EXECUTION 

BACKGROUND INFORMATION 

0001 One of the issues encountered in computing system 
design is dealing with computer program branching and its 
impact on processing Speed. Computer programs typically 
include a number of “branch' instructions which cause 
program execution to transfer to an alternate area of instruc 
tions Some distance in memory from the branch instruction. 
In many cases these branch instructions are “conditional'- 
they only occur if a particular condition is satisfied (e.g., a 
Specified register orbit has a Zero value). Thus it is unknown 
until the program is executed whether the conditional branch 
instruction will actually be executed (requiring a jump to the 
new set of instructions) or not (allowing further execution of 
the current Set of instructions). This uncertainty has impli 
cations for processing throughput, as contemporary proces 
Sors attempt to cache and "pre-process” instructions (as part 
of an instruction "pipeline') prior to the time for execution, 
in order to overcome issueS Such as memory delays and 
instruction decoding delayS. If the conditional branch is 
taken, the cache and pre-processing may be no longer valid, 
requiring a pipeline “flush” and reload, and thus creating 
additional processing delay. 
0002. In order to overcome the uncertainties posed by 
conditional branching in pre-processing, one technique used 
in contemporary processor designs allows for the condi 
tional execution of instructions, typically through multiple 
execution pipelines within the processor (and in Some cases 
using branch prediction algorithms to make judgments about 
likely branch paths). Each pipeline will pre-process a poten 
tial conditional branching situation, and the processor will 
only execute the pipeline that includes the instructions that 
will actually need to be executed based on the outcome of 
the conditional branch. Another technique uses “conditional 
execution' instructions, which are instructions that are only 
executed when the specified condition is true (the condition 
is said to "guard” the instruction from execution). Condi 
tional execution instructions can thus be used to reduce the 
number of branches needed in a section of Software. Several 
processor architectures Support conditional execution 
instructions (e.g., ARM processors, Motorola MCORE pro 
cessors). 
0003) To accommodate conditional execution, software 
compilers need to be configured to generate machine 
instructions that take advantage of the efficiencies of con 
ditional execution. Current compilers attempt to perform 
internal tree optimizations on the processed high-level 
Source code (for example, C or C++ Source code). Although 
tree optimizations can improve execution Speed, tree opti 
mizers lack intimate information concerning the block size 
and number of machine instruction groupings generated by 
the source code when compiled. Without such information, 
Situations that are appropriate for optimization (and situa 
tions that are not appropriate for optimization) can be 
missed, reducing overall System throughput and memory 
efficiency. 

SUMMARY 

0004. According to a preferred embodiment of the 
present invention, a System is described, comprising a 
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transform block data Structure, a control flow data structure 
and a transform facility. The transform facility is configured 
to determine a number of transform blocks associated with 
a number of assembly instructions, and Store indications of 
the number of transform blocks in the transform block data 
Structure, determine a control flow associated with the 
number of transform blocks and store indications of the 
control flow in the control flow data structure, determine 
whether at least one conditional execution optimization 
should be applied based on at least one of the number of 
transform blockS and the control flow, and transform at least 
a portion of the number of assembly instructions into 
conditional execution instructions when the at least one 
conditional execution optimization should be applied. 
0005 Also according to a preferred embodiment of the 
present invention, a method is described, comprising deter 
mining a number of blocks associated with a number of 
assembly instructions, and Storing indications of the number 
of blocks in a transform block data Structure, determining a 
control flow associated with the number of blocks, and 
storing indications of the control flow in the control flow 
data Structure, determining whether at least one conditional 
execution optimization should be applied based on at least 
one of the number of blocks and the control flow, and 
transforming at least a portion of the number of assembly 
instructions into conditional execution instructions when the 
at least one conditional execution optimization should be 
applied. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0006 FIG. 1 shows a block diagram of an exemplary 
operating environment according to the present invention. 
0007 FIG. 2 shows a block diagram of an exemplary 
compiler according to the present invention. 
0008 FIG. 3 shows a flow chart of an exemplary logic 
flow for transform operations according to the present 
invention. 

0009 FIG. 4 shows an example of transform block 
identification, according to the present invention. 
0010 FIG. 5 shows a flow chart of an analysis according 
to a first example of transformation to determine if a 
transform block is optimizable, according to the present 
invention. 

0011 FIG. 6 shows an illustration of block control flow 
for a Second example of transformation, according to the 
present invention. 
0012 FIG. 7 shows a flow chart of an analysis according 
to the Second example of transformation to determine if a 
transform block is optimizable, according to the present 
invention. 

0013 FIG. 8 shows an illustration of block control flow 
for a third example of transformation, according to the 
present invention. 
0014 FIG. 9 shows a flow chart of an analysis according 
to the third example of transformation to determine if a 
transform block is optimizable, according to the present 
invention. 

DETAILED DESCRIPTION 

0015 According to a preferred embodiment of the 
present invention, a method and System may be imple 
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mented to permit transformation of Software to use condi 
tional execution instructions. According to the preferred 
embodiment, a System and method is provided to transform 
machine instructions (also referred to herein as “assembly 
instructions” or “assembly code”) to make use of the con 
ditional execution features of a processor. The preferred 
embodiment thus reduces code size and better utilizes the 
instruction pipeline and cache. 
0016. The examples provided below illustrate implemen 
tation of the preferred embodiment in the context of com 
piling code for execution on an ARM, Ltd. processor (the 
“target processor for compiled code). Compilation for other 
processors (e.g., Motorola MCORE) that accommodate con 
ditional execution may likewise be implemented. ARM 
processors are exemplary in that the ARM architecture 
allows for conditional execution of almost all of the avail 
able instruction set (through the use of condition prefixes as 
part of each machine instruction). 
0.017. The preferred embodiment achieves several advan 
tages over prior conditional execution optimizers. AS an 
initial matter, the assembly code generation phase of com 
pilation is simplified, in that optimizations are deferred and 
performed on the generated assembly code. Using actual 
assembly code (as opposed to Source code) allows for more 
insight into the arrangement of the actual machine instruc 
tions when performing transforms for conditional execution. 
For example, instead of relying on heuristics to determine if 
a conditional execution transformation would help or ham 
per the processor pipeline (e.g., the Intel XScale architecture 
has an instruction pipeline of five, and therefore if a Section 
of code contains more than five instructions it may not be 
beneficial to transform it to a conditional execution block), 
by doing the transformation on compiler generated assembly 
code, the present invention has exact knowledge of the 
number of instructions in a Section of code and the number 
of branch instructions within a Section of code. 

0.018. The preferred method and system according to the 
present invention may be implemented in the context of 
various computing Systems, for example, a traditional com 
puter WorkStation having extensive memory, processing 
power and input/output (I/O) facilities (displays, keyboards, 
etc.). The preferred method and system described herein 
may be implemented as a collection of instructions provided 
on a computer-readable medium (e.g., CD, DVD, ROM, 
magnetic disk or other non-volatile storage), executable by 
a computing System to implement the method and System 
within the computing System. 

0.019 FIG. 1 illustrates an operating environment for 
program development, according to the preferred embodi 
ment of the present invention. An integrated development 
environment (IDE) 1 is implemented on a host computing 
System 2. Host computing System 2 may include a host 
processor 5, host memory System 6, host user interface 
system 7 and host I/O system 8, as is typical in most 
WorkStation environments. Host computing environment 2 
may also include a host operating System (OS) 12, which 
provides a Software interface and control framework for 
interactions between hardware components and IDE 1. In 
Some environments, host computing System 2 may be con 
nected to a target computing System 3 via a communications 
medium/protocol (e.g., serial link, Ethernet link, debug 
connection, etc.) through, for example, the host I/O System 

Jul. 29, 2004 

8. The target computing System 3 includes a target processor 
9, target memory system 10 and target I/O system 11. In 
other environments, the host computing System may be the 
target for Software being developed (e.g., native develop 
ment), in which case a separate target System 3 may not be 
employed (and the host processor is the “target processor 
for purposes of development). 

0020. As mentioned earlier, in the preferred embodiment, 
the target processor is an ARM processor, available through 
a number of Sources and licensed by ARM Ltd., Cambridge, 
United Kingdom. Host computing System 2 may be a 
WorkStation-class computing System, Such as those based on 
the Pentium 4 processor (Intel Corp., Santa Clara, Calif.) 
and executing the Windows XP operating system (Microsoft 
Corp., Redmond, Wash.). IDE 1 may be the Tornado(RIDE 
available from Wind River Systems, Inc. (Alameda, Calif.). 
Other host System and target System configurations/equip 
ment may also be used to implement the embodiments 
described below. 

0021 IDE 1 includes a compiler 100, as well as other 
development tools Such as a debugger (not shown). Com 
piler 100 is designed to translate source code of a specified 
computing language into code interpretable by the target 
processor and Software loaders to be executed on the target 
processor (referred to as “object code”). In the preferred 
embodiment, the compiler 100 is designed to translate 
Source code written in the C or C++ computer languages into 
ARM processor object code in the "...elf” object code format. 
The compiler could likewise be configured to use other 
Source code languages and object code formats. 

0022 FIG. 2 illustrates a block diagram of compiler 100. 
The exemplary compiler 100 includes compiler processing 
unit 115, which performs basic compiling operations, Such 
as translating Source code (Such as one or more C/C++ 
source files 105 identified to compiler 100) into machine 
instructions supported by the target processor. Compiler 100 
may maintain an assembly instruction Storage area 125, used 
as temporary Storage for machine instructions produced 
during compilation activities, which may be later exported 
and formatted into one or more object code files 110. 
Exemplary compiler 100 further includes a transform pro 
cessor facility 120, which (as described below) includes 
logic to transform assembly instructions to take advantage of 
conditional execution capabilities of the target processor. 
Transform processor 120 employs block data structure 130 
and control data Structure 135 in transform processing, as 
will be further described below. Compiler 100 may include 
other processing modules/data Structures/storage areas to 
Support compilation activities, although Such modules/struc 
tures/areas are not depicted in this example as not being 
necessary to explain the operation of the embodiments of the 
present invention. 

0023 Transform processor facility 120 includes logic to 
perform transformations of assembly instructions to take 
advantage of conditional execution capabilities of the target 
processor. FIG. 3 is a flow chart illustrating an exemplary 
logic flow for operations of the transform processor 120. 
Initially, the transform processor is initialized with certain 
characteristics of the target processor, for example, the depth 
of the execution pipeline Supported by the target processor, 
and the assembly instructions that Support conditional 
execution (step 305). The assembly instructions resulting 
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from compilation (in this embodiment, Stored in the assem 
bly store 125) are then parsed to divide the assembly code 
into “transform blocks” and populate the block data struc 
ture 130 and control flow data structure 135 (step 310). A 
transform block (also referred to herein simply as a block) 
is a Section of Sequential assembly code that ends on either 
a branch instruction or the instruction immediately prior to 
an assembly code label, i.e., a set of instructions that are 
executed Sequentially without any intervening branches or 
entry points. Transform blocks can be mapped to show their 
asSociations with each other, i.e., which blocks are “desti 
nation” blocks (to which execution will transfer after execu 
tion of the branch instruction), and which blocks are “pre 
decessor” blocks (from which execution was transferred 
prior to execution of the current block). This mapping is 
referred to as “control flow.' 

0024 FIG. 4 illustrates an example of transform block 
identification. As shown, assembly instructions 410 can be 
parsed to identify blocks (shown in FIG. 4 with dashed 
lines). The block data structure 130, is populated with entries 
corresponding to each block. The exemplary block data 
structure 130 as shown in FIG. 4 includes an entry for each 
identified block, including a block ID field, a start address 
for the block, and an end address for the block. The block 
size may be included rather than (or in addition to) the block 
end address in the block entry. The control data structure 135 
is also populated with an entry for each identified block. The 
exemplary control data structure 135 as shown in FIG. 4 
includes an entry for each identified block, including a block 
ID field, two destination block fields (the second destination 
field used for conditional branch destinations), and a prede 
cessor block list field. The predecessor block list field may 
take the form of a pointer to a list of blocks which are 
predecessors to the block corresponding to the entry. Alter 
nate arrangements for the block data structure and control 
flow data Structure are possible while achieving similar 
information Storage, e.g., the block data structure and con 
trol flow data Structures may be combined into a single block 
data Structure containing all of the information provided by 
the two preferred data structures. 

0.025. Once the block and control flow data structures 
have been populated through the parsing process, the trans 
form processor may analyze the control flow to determine if 
any patterns exist in the assembly code that may warrant 
optimization using conditional execution instructions (Step 
315). This analysis may be done, for example, by traversing 
the control flow data structure and comparing each block to 
a number of conditions which, if present, indicate that an 
optimization is available (step 320). These conditions may 
be “hard-coded” into the transform processor 120, or may be 
made available to the transform processor from an external 
Source, Such as a data file. Examples of conditions will be 
discussed below. Where an optimization is available, the 
transform processor applies the optimization to the block(s) 
involved (step 325) by transforming the assembly instruc 
tions associated with the block(s) using conditional execu 
tion instructions, Storing the new code in the assembly Store 
125, and modifying the block and control flow data struc 
tures. The process continues processing the next block until 
all blocks have been processed (step 330). 
0026. Once all blocks have been processed for condition 
execution transformation, the compiler 100 may generate 
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the one or more object code files 110 corresponding to the 
original source code files 105. 

0027. The following examples illustrate several of the 
control flow patterns that yield more efficient transforma 
tions in conditional execution form. In the first example, the 
source code (illustrated in Table 1 in C source form) 
implements a common “Switch” construct within a function 
named “foobar”. 

TABLE 1. 

C Source Code, Example 1 

int ki,j. 

void foobar() 
{ 

switch (k) { 
case 0: 

k+= 1; 
break; 

case 1: 
i += 10; 
break; 

case 2: 
j += 13; 
break; 

k+= 9: 
return; 

0028 Table 2 illustrates the assembly instructions gen 
erated by compiler 100 prior to conditional execution pro 
cessing (with comments inserted to aid in tracking the 
original Source code). 

TABLE 2 

Assembly Instructions before Conditional Execution Processing, 
Example 1 

foobar: 
dr r0,-k 

If case 0: 

If break; 
If case 1: 

LS: 
If break; 
If case 2: 
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TABLE 2-continued 

Assembly Instructions before Conditional Execution Processing, 
Example 1 

If j += 13; 
ldr r12– 
ldr r12,r12, #O 
add r12,r12,#13 
Str r12,IrOff8 

.L2: 
If break; 
If 
If k+= 9: 

ldr r12=k 
ldr r12,r12, #O 
add r12,r12,#9 
Str r12,IrOff-O 

If return; 
// 

Ow pc.lr 

0029 Note that this first example generates assembly 
code that, when parsed to identify transform blocks, gener 
ates a number of blockS that end in a conditional branch, 
where the destination block of the conditional branch ends 
in an unconditional branch. This pattern is frequently gen 
erated in compilation of “switch” statements. The size of this 
example code is 28 instructions (totaling 112 bytes), and 
includes six branch instructions (not including the final 
function return instruction “mov pc.lr”). 
0030 Applying the process as outlined above (and in 
reference to FIG.3), the assembly instructions of Table 2 are 
parsed by the transform processor 120 to determine the 
transform blocks within the assembly instructions. In this 
example, eight blocks are identified (as is illustrated in the 
block data structure 130 shown in FIG. 4). Control flow for 
this first example is also shown in FIG. 4 within the control 
flow data structure 135. 

0.031) Each block in the “foobar” function is then ana 
lyzed to determine if any of the blocks are optimizable. The 
particular conditions which each block will be tested against 
are shown in the flow chart of FIG. 5. Starting (step 501) 
with the first block (the entry point of the function), it is 
determined whether the block ends in a conditional branch 
instruction (step 502), which can be done by examining the 
instruction at the end address of the block. If this end 
instruction is not a conditional branch, the optimization does 
not apply, and the transform moves to process the next 
block. If the block does end with a conditional branch, the 
destination block of the conditional branch is the examined 
(which can be identified, for example, by reading the con 
tents of the second destination block field of the entry in the 
control flow data structure 135). If this destination block is 
the destination block for more than just this block (step 504), 
which can be determined by examining the predecessor 
block list within the control flow data structure, then the 
optimization does not apply, and the transform moves to 
process the next block. If the destination block does not 
itself end in an unconditional branch (step 506), the opti 
mization does not apply, and the transform moves to proceSS 
the next block. If the destination block contains more 
instructions than are Supported by the instruction pipeline of 
the target processor (step 508), the optimization does not 
apply, and the proceSS moves to process the next block. 
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0032 For those blocks which satisfy each of the prior 
conditions, the block may be transformed to use conditional 
execution instructions (step 510). The transformation is to 
convert each instruction in the destination block to a con 
ditional execution instruction guarded by the same condition 
applicable to the conditional branch of the original block, to 
then merge the destination block into the original block, and 
then delete the conditional branch instruction of the original 
block. The block data structure 130 and the control flow data 
structure 135 are modified accordingly. After the transform 
is applied, processing passes to the next block Still identified 
in the block data structure for the assembly instructions (Step 
513), until all blocks identified in the block data structure 
have been processed (step 512). 

0033) Applying this transform to the assembly instruc 
tions originally generated by the compiler 100 for this first 
example (see Table 2), the assembly instructions of Table 3 
are the result. Block 26 has been merged into block 22 and 
block 27 has been merged into block 23. In each case, 
conditional execution instructions have been used that are 
guarded using the same condition (“eq) as the condition 
applicable to the prior branch (“beq”), which has now been 
deleted. 

TABLE 3 

Assembly Instructions with Conditional Execution Optimizations, 
Example 1 

foobar: COMMENTS: 
dr r0,-k block 22 start 

If switch (k) { 
dr r2, r0,i-O 
cmp r2:#0 
dreq r12=k block 26 merged into block 22, 
dreq r12,r12, #O instructions guarded using eq 
addeq r12,r12#1 condition, beq instruction 
Streq r12,IrOff-O deleted 
beq .L2 
cmp r2f1 block 23 start 
dreq r12=i block 27 merged into block 23, 
dreq r12,r12, #O instructions guarded using eq 
addeq r12,r12#10 condition, beq instruction 
Streq r12,IrOffa. deleted 
beq .L2 
cmp r2:#2 block 24 start (no transform) 
beq L5 
b .L2 block 25 start (no transform) 

L3: 
If case 0: source code for blocks 26 and 
If k+= 1; 27 now merged into blocks 22 
.L4: and 23 (respectively) for 
If break; conditional execution 
If case 1: 
If i += 10; 
LS: block 28 start (no transform) 

If break; 
If case 2: 
If j += 13; 

ldr r12– 
ldr r12,r12, #O 
add r12,r12,#13 
Str r12,IrOff8 

.L2: block 29 start (no transform) 
If break; 
If 
If k+= 9: 

ldr r12=k 
ldr r12,r12, #O 
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TABLE 3-continued 

Assembly Instructions with Conditional Execution Optimizations, 
Example 1 

add r12,r12,#9 
Str r12,IrOff-O 

If return; 
// 

Ow pc,lr 

0034. The code generated for the “foobar” function 
through the transform uses 26 instructions (104 bytes) which 
is actually two instructions (eight bytes) Smaller than the 
originally generated assembly instructions, with a shorter 
execution path (and therefore a faster execution time). 
Furthermore, by merging certain of the blocks, the number 
of branches is reduced by two, which provides further 
opportunities for instruction Scheduling. For example, a 
Scheduling optimization algorithm can be applied to the 
transformed code to determine the cycle times of each 
instruction and reorder the instructions to optimize for 
instructions that require additional clock cycles. 

0035. As a second example, source code which imple 
ments an "if-true' construct are also typically able to be 
transformed into conditional execution instructions that 
optimize execution. These constructs typically generate 
assembly instruction blocks that end with an unconditional 
branch, with destination blocks which also end with an 
unconditional branch to the same address as the original 
block. Table 4 shows a C source code listing for this second 
example, and Table 5 shows an assembly instruction listing 
of the compiler output (prior to conditional execution pro 
cessing) for the Source code of Table 4. 

TABLE 4 

C Source Code, Example 2 

int i,j,k; 

foobar() 
{ 

if (i < 10) 
j += i, 

0036) 

TABLE 5 

Assembly Instructions Prior to Conditional Execution Processing, 
Example 2 

foobar: COMMENTS: 
ldr r1=i block 31 start 
ldr r0,r1,i-O 

If if (i < 10) 
cmp rOi10 
bge .L2 block 31 end 

If j += i, 
ldr r12,r1.h4 block 32 start 
add r12,r12,rO 
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TABLE 5-continued 

Assembly Instructions Prior to Conditional Execution Processing, 
Example 2 

Str r12,r1.h4 block 32 end 
// 
.L2: block 33 start 

Ow pc.lr block 33 end 

0037 Applying the process as outlined above (and in 
reference to FIG.3), the assembly instructions of Table 5 are 
parsed by the transform processor to determine the trans 
form blocks within the assembly instructions. In this 
example, three blocks are identified (blocks 31, 32 and 33 as 
noted in Table 5), and the control flow for this second 
example is shown in FIG. 6. 

0038 Each block in the function is then analyzed to 
determine if any of the blocks are optimizable. The particu 
lar conditions which each block will be tested against are 
shown in the flow chart of FIG. 7. Starting with the first 
block (step 701), it is determined whether the block ends in 
a conditional branch instruction (step 702). If not, the 
optimization does not apply, and the transform moves to 
process the next block. If the block ends with a conditional 
branch, the destination blocks of the block are examined. If 
the first destination block (i.e., the destination block to 
which flow will transfer if the conditional branch is not 
taken) is the destination block for more than just this block, 
i.e., it has more than one predecessor block (Step 704), then 
the optimization does not apply, and the transform moves to 
process the next block. If the first destination block itself 
ends in a conditional branch (step 706), the optimization 
does not apply, and the transform moves to process the next 
block. If the destination block of the first destination block 
is not the Second destination block of the present block (i.e., 
the destination block to which flow will transfer if the 
conditional branch of the present block is taken), the opti 
mization does not apply, and the transform moves to process 
the next block (step 708). If the block size is greater than the 
pipeline size (step 709), the optimization does not apply, and 
the transform moves to process the next block. 

0039 For those blocks which satisfy each of the prior 
conditions, the block may be transformed to use conditional 
execution instructions (step 710). The transformation is to 
convert each instruction in the first destination block that 
Satisfied the above conditions to a conditional execution 
instruction guarded by the reverse condition applicable to 
the conditional branch of the original block, to merge the 
first destination block into the original block, and then delete 
the conditional branch instruction of the original block. The 
block data structure 130 and the control flow data structure 
135 are modified accordingly. After the transform is applied, 
processing passes to the next block Still identified in the 
block data structure for the assembly instructions (step 713), 
until all blocks identified in the block data structure have 
been processed (step 712). 
0040. Applying this transform to the assembly instruc 
tions originally generated by the compiler 100 for this 
Second example (see Table 5), the assembly instructions of 
Table 6 are the result. Block 32 has been merged into block 
31, and conditional execution instructions have been used 
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that are guarded using the opposite condition (“It’) as the 
condition applicable to the prior branch (“bge”), which has 
now been deleted. 

TABLE 6 

Assembly Instructions After Conditional Execution Transform, 
Example 6 

foobar: COMMENTS: 
.L2: block 31 start 

ldr r1=i 
ldr r0,r1,i-O 

If if (i < 10) 
cmp r0,ii.10 

If j += i, block 32 merged with block 31: 
ldrlt r12,r1.h4 instructions guarded with lt 
addlt r12,r12,rO condition (opposite of ge), 
strlt r12,r1.h4 bge instruction deleted 

// 
Ow pc,lr block 33 start?end 

0041. The transformed code of the second example yields 
a one instruction (four byte) Savings over the unoptimized 
code, with no branches. 

0.042 A third example of a code construct that may be 
optimized through conditional execution transformation is 
the "if-then-else' construct, Such as the one illustrated in C 
Source code form in Table 7, and resulting compiled assem 
bly code form in Table 8. 

TABLE 7 

C source code, Example 3 

int i,j,k; 

foobar() 
{ 

if (i < 10) 
j += i, 

else 
k+= j: 

0043) 

TABLE 8 

Assembly Instructions prior to Conditional Execution Transform, 
Example 3 

foobar: COMMENTS: 
ldr r1= block 41 
ldr r0,r1.h4 

If if (i < 10) 
cmp rOi10 
bge .L2 

If j += i, 
ldr r12,r1,i-O block 42 
add r12,r12,rO 
Str r12,r1,i-O 
b L3 

.L2: block 43 
If else 
If k+= j: 

ldr r12,r1,i-8 
ldr r3,r1,i-O 
add r12,r12, r3 
Str r12,r1,i-8 
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TABLE 8-continued 

Assembly Instructions prior to Conditional Execution Transform, 
Example 3 

L3: block 44 

// 
Ow pc.lr 

0044) Applying the process as outlined above (and in 
reference to FIG.3), the assembly instructions of Table 8 are 
parsed by the transform processor to determine the trans 
form blocks within the assembly instructions. In this 
example, four blocks are identified (blocks 41, 42, 43 and 44 
as noted in Table 8), and the control flow for this second 
example is shown in FIG. 8. 

004.5 Each block in the function is then analyzed to 
determine if any of the blocks are optimizable. The particu 
lar conditions which each block will be tested against are 
shown in the flow chart of FIG. 9. Starting with the first 
block (step 901), it is determined whether the block ends in 
a conditional branch instruction (step 902). If so, the opti 
mization does not apply, and the transform moves to process 
the next block. Otherwise, the predecessor blocks of the 
present block are examined. If any of the immediate prede 
ceSSor blocks to the present block end in a conditional 
branch instruction and have as a first destination block the 
present block (step 904), then the optimization may apply. 
Otherwise, the optimization does not apply to the present 
block, and processing proceeds to the next block. If the 
present block size is larger than the pipeline size (step 906), 
then the optimization does not apply, and processing pro 
ceeds to the next block. 

0046) The present block may now be transformed to use 
conditional execution instructions. The transformation is to 
convert each instruction in the present block to a conditional 
execution instruction guarded by the reverse condition appli 
cable to the conditional branch of the predecessor block, to 
merge the present block into the predecessor block, and then 
delete the conditional branch instruction of the predecessor 
block (step 908). The block data structure 130 and the 
control flow data structure 135 are modified accordingly. 
The condition testing is performed again for each block (Step 
911), and the transform applied accordingly, until all blocks 
identified in the block data Structure have been processed 
(step 910). 
0047. Additionally illustrated in this example, the trans 
form may be applied multiple times, in order to catch further 
opportunities for optimizations that may be created as a 
result of transformations, but are missed due to the flow of 
condition testing. As a result, after all blocks have been 
processed, it is determined whether any changes have been 
made to the block control flow (step 912). This can be done, 
for example, by keeping a dedicated indicator for changes to 
the block data Structure, which is Set when any change is 
made to the block data structure or control flow data 
Structure (other means of change detection can also be used). 
If no changes have been made to any of the blocks, there is 
no need to do further processing. If changes have been made, 
then the process may restart at the first block to perform 
further optimizations (and the indicator, in this example, 
may be reset). 
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0.048. Applying this transform to the assembly instruc 
tions originally generated by the compiler 100 for this third 
example (see Table 8), the assembly instructions of Tables 9 
and 10 are the result. As shown in Table 9, block 42 has been 
merged into block 41, and conditional execution instructions 
have been used that are guarded using the opposite condition 
(“lt”) as the condition applicable to the prior branch (“bge”), 
which has now been deleted. 

TABLE 9 

Post-Transform Assembly Instructions (First Block Merge), 
Example 3 

foobar: COMMENTS: 
ldr r1= block 41 
ldr r0,r1.h4 

If if (i < 10) 
cmp r0,ii.10 

If j += i, 
ldrlt r12,r1,i-O block 42 merged with block 41: 
addlt r12,r12,rO instructions guarded with 
strlt r12,r1,i-O opposite of conditional branch 
bIt L3 (lt), bge deleted 

.L2: block 43 
If else 
If k+= j: 

ldr r12,r1,i-8 
ldr r3,r1,i-O 
add r12,r12, r3 
Str r12,r1,i-8 

L3: block 44 

// 
Ow pc,lr 

0049. Likewise, as shown in Table 10, after block 42 has 
been processed, block 43 has been identified as optimizable 
(since block 41 post-transform now ends with a conditional 
branch and has as a destination block block 43) and has been 
merged into block 41, with the instructions in block 43 
converted to conditional execution instructions guarded by 
the opposite condition (“ge') as in the conditional branch of 
block 41 (“bit”), which is now deleted. 

TABLE 10 

Post-Transform Assembly Instructions (Second Block Merge), 
Example 3 

foobar: COMMENTS: 
.L2: 
L3: block 41 

ldr r1= 
ldr r0,r1.h4 

If if (i < 10) 
cmp r0,ii.10 

If j += i, 
ldrlt r12,r1,i-O portion merged from block 42 
addlt r12,r12,rO 
strlt r12,r1,i-O 

If else 
If k+= j: 

ldrge r12,r1,i-8 block 43 merged into block 41: 
ldrge r3,r1,i-O instructions guarded with 
addge r12,r12, r3 opposite condition (ge), 
strge r12,r1,i-8 blt instruction deleted. 

// 
Ow pc,lr block 44 

0050. The conditional execution code has reduced the 
Size of the resulting code by two instructions (eight bytes), 
Shortened the execution path and therefore increased the 
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execution speed of the “foobar” function. Note also that the 
entire "if-then-else' construct has now been transformed 
into a linear code sequence (i.e., no branches) which makes 
instruction Scheduling much more flexible. 
0051. The three examples of optimizations described 
above are exemplary, as other optimizations may also be 
possible. Furthermore, the optimization condition compari 
Sons can be combined as part of a Single processing of the 
block data, So as to determine Simultaneously whether any 
of the optimization examples might apply to any particular 
block. 

0052. In the preceding specification, the invention has 
been described with reference to specific exemplary embodi 
ments thereof. It will, however, be evident that various 
modifications and changes may be made thereunto without 
departing from the broader Spirit and Scope of the invention 
as set forth in the claims that follow. The specification and 
drawings are accordingly to be regarded in an illustrative 
rather than restrictive Sense. 

What is claimed is: 
1. A System, comprising: 

a transform block data Structure; 

a control flow data Structure; and 
a transform facility configured to 

(a) determine a number of transform blocks associated 
with a number of assembly instructions, and Store 
indications of the number of transform blocks in the 
transform block data Structure, 

(b) determine a control flow associated with the number 
of transform blocks and store indications of the 
control flow in the control flow data structure, 

(c) determine whether at least one conditional execu 
tion optimization should be applied based on at least 
one of the number of transform blocks and the 
control flow, 

(d) transform at least a portion of the number of 
assembly instructions into conditional execution 
instructions when the at least one conditional execu 
tion optimization should be applied. 

2. The System of claim 1, further comprising: 
a compiler processing facility, configured to generate the 
number of assembly instructions based on a number of 
Source code instructions. 

3. The system of claim 1, wherein the transform block 
data Structure and the control flow data Structure are part of 
a single block data Structure. 

4. The system of claim 1, wherein the transform facility 
is further configured to, when determining whether the at 
least one conditional execution optimization should be 
applied, determine whether a present block 

ends with a conditional branch instruction, 
has a destination block of the conditional branch instruc 

tion that does not have more than one predecessor 
block and ends with an unconditional branch, and 

has a Size that is less than a pipeline size of a target 
processor for the assembly instructions, 
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in which case the at least one conditional execution 
optimization should be applied. 

5. The system of claim 1, wherein the transform facility 
is further configured to, when determining whether the at 
least one conditional execution optimization should be 
applied, determine whether a present block 

ends with a conditional branch instruction, 
has a destination block not of the conditional branch 

instruction that does not have more than one predeces 
Sor block, does not end with a conditional branch, and 
has as its own destination block a destination block of 
the conditional branch instruction, and 

has a Size that is less than a pipeline size of a target 
processor for the assembly instructions, 

in which case the at least one conditional execution 
optimization should be applied. 

6. The system of claim 1, wherein the transform facility 
is further configured to, when determining whether the at 
least one conditional execution optimization should be 
applied, determine whether a present block 

does not end with a conditional branch instruction, 

has a predecessor block that ends in a conditional branch 
instruction and has as a destination block the present 
block, and 

has a size that is less than a pipeline size of a target 
processor for the assembly instructions, 

in which case the at least one conditional execution 
optimization should be applied. 

7. The system of claim 1, wherein the transform facility 
is further configured to 

(e) re-determine whether the at least one conditional 
execution optimization should be applied based on at 
least one of the number of transform blocks and the 
control flow, when at least one of the transform block 
data Structure and control flow data Structure are 
changed after (c) and (d) have been applied to all of the 
number of transform blocks, 

(f) transform at least a portion of the number of assembly 
instructions into conditional execution instructions 
when the at least one conditional execution optimiza 
tion should be applied based on the re-determination. 

8. A method, comprising: 

(a) determining a number of blocks associated with a 
number of assembly instructions, and Storing indica 
tions of the number of blocks in a transform block data 
Structure, 

(b) determining a control flow associated with the number 
of blocks, and Storing indications of the control flow in 
the control flow data Structure; 

(c) determining whether at least one conditional execution 
optimization should be applied based on at least one of 
the number of blocks and the control flow; and 

(d) transforming at least a portion of the number of 
assembly instructions into conditional execution 
instructions when the at least one conditional execution 
optimization should be applied. 
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9. The method of claim 8, further comprising: 
compiling a number of Source code instructions to gen 

erate the number of assembly instructions. 
10. The method of claim 8, wherein the transform block 

data Structure and the control flow data Structure are part of 
a single block data Structure. 

11. The method of claim 8, wherein determining whether 
the at least one conditional execution optimization should be 
applied, includes 

determining whether a present block 

ends with a conditional branch instruction, 
has a destination block of the conditional branch 

instruction that does not have more than one prede 
ceSSor block and ends with an unconditional branch, 
and 

has a size that is less than a pipeline size of a target 
processor for the assembly instructions. 

12. The method of claim 8, wherein determining whether 
the at least one conditional execution optimization should be 
applied includes 

determining whether a present block 

ends with a conditional branch instruction, 
has a destination block not of the conditional branch 

instruction that does not have more than one prede 
ceSSor block, does not end with a conditional branch, 
and has as its own destination block a destination 
block of the conditional branch instruction, and 

has a size that is less than a pipeline size of a target 
processor for the assembly instructions. 

13. The method of claim 8, wherein determining whether 
the at least one conditional execution optimization should be 
applied includes 

determining whether a present block 

does not end with a conditional branch instruction, 

has a predecessor block that ends in a conditional 
branch instruction and has as a destination block the 
present block, and 

has a size that is less than a pipeline size of a target 
processor for the assembly instructions. 

14. The method of claim 8, further comprising: 

(e) re-determining whether the at least one conditional 
execution optimization should be applied based on at 
least one of the number of transform blocks and the 
control flow, when at least one of the transform block 
data Structure and control flow data Structure are 
changed after Steps (c) and (d) have been applied to all 
of the number of transform blocks, 

(f) transforming at least a portion of the number of 
assembly instructions into conditional execution 
instructions when the at least one conditional execution 
optimization should be applied based on the re-deter 
mination. 

15. An article of manufacture comprising a computer 
readable medium having Stored thereon instructions adapted 
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to be executed by a processor, the instructions which, 
when executed, define a method comprising the Steps 
of: 

determining a number of blocks associated with a number 
of assembly instructions, and Storing indications of the 
number of blockS in a transform block data Structure; 

determining a control flow associated with the number of 
blocks, and Storing indications of the control flow in the 
control flow data Structure; 
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determining whether at least one conditional execution 
optimization should be applied based on at least one of 
the number of blocks and the control flow; and 

transforming at least a portion of the number of assembly 
instructions into conditional execution instructions 
when the at least one conditional execution optimiza 
tion should be applied. 


