wO 2009/014931 A2 |10V OO0 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T O A O

International Bureau

(43) International Publication Date
29 January 2009 (29.01.2009)

(10) International Publication Number

WO 2009/014931 A2

(51) International Patent Classification:
GOG6F 1/32 (2006.01) GOG6F 15/16 (2006.01)

(21) International Application Number:
PCT/US2008/069962

(22) International Filing Date: 14 July 2008 (14.07.2008)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
11/880,357 20 July 2007 (20.07.2007) US
(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-

vard, MS: RNB-4-150, Santa Clara, California 95052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): JAHAGIRDAR,
Sanjeev [IN/US]; 116 Foley Lane, Folsom, California
95630 (US). GEORGE, Varghese [IN/US]; 1113 Halidon
Way, Folsom, California 95630 (US). ALLAREY, Jose
[PH/US]; 3600 Data Drive, Apt#441, Rancho Cordova,
California 95670 (US).

(74)

(81)

(34)

Agent: DRAEGER, Jeftrey, S.; Intel Corporation, 2200
Mission College Blvd., M/S: RNB-4-150, Santa Clara, CA
95054 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

(54) Title: TECHNIQUE FOR PRESERVING CACHED INFORMATION DURING A LOW POWER MODE

100

/J

107] 105

.
s
(&2l

113

FIG. 1

(57) Abstract: A technique to retain cached information during a
low power mode, according to at least one embodiment. In one em-
bodiment, information stored in a processor’s local cache is saved
to a shared cache before the processor is placed into a low power
mode, such that other processors may access information from the
shared cache instead of causing the low power mode processor to
return from the low power mode to service an access to its local

cache.

10

15

20

25

30

WO 2009/014931 PCT/US2008/069962

TECHNIQUE FOR PRESERVING CACHED INFORMATION DURING A LOW
POWER MODE

Field of the Invention

Embodiments of the invention relate generally to the field of information
processing and more specifically, to the field of power management in computing systems
and microprocessors.

Background

Some microprocessors and/or processor cores (referred to generically
herein as “processors”) may include or otherwise have access to a primary cache memory,
such as a level one (“L1”) cache, or other memory structure from which the processor may
retrieve frequently accessed information, such as data or instructions, relatively quickly in
relation to other memory structures in the processor or computing system. In addition,
some processors may include or otherwise have access to a secondary cache memory, such
as a level two (“L2”) cache memory, or other memory structure from which it may
retrieve less frequently accessed information, such as data or instructions, less quickly
than from a primary cache memory but faster than from a system memory, such as
dynamic random access memory (DRAM), hard-drive memory, etc.

Some computer systems may include processors, each including or
otherwise having access to a local cache memory, such as an L1 cache, to store
information that is to be primarily used by the processor to which it corresponds.
Furthermore, some computer systems may include a shared cache memory, such as an .2
cache, that may be used by more than one processor. In computer systems having shared
cache memory, the shared cache memory may store all or some portion of information
stored in each of the local cache memories, such that multiple local cache memories store
a subset of frequently used information stored in the shared cache memory. Information
stored in local cache memories may be updated more frequently than the corresponding
information in the shared cache memory, and therefore, the computer system may
implement a cache coherency scheme to maintain the same information in the shared
cache memory as is stored in one or more local cache memories.

Some computer systems may use power management techniques to place
processors in the system in low power modes, via reducing clock frequency and/or voltage

to one or more processors in the system, when a particular processor isn’t being used or in

10

15

20

25

30

WO 2009/014931 PCT/US2008/069962

response to other algorithms, such as those in which temperature of the processor or
computer system is monitored and prevented from exceeding a threshold temperature.
Processors that are placed in low power modes may retain information stored in their
corresponding local cache memory while in the low power mode by, for example,
maintaining power to the local cache, such that the information will be available when the
processor returns from the low power mode.

One drawback of prior art techniques of retaining cached information
during a low power mode is that processors that may access a cache of a processor in a
low power mode, via a “snoop” cycle, for example, may have to wait until the processor in
the low power mode returns from the low power mode and can respond to the access by
the other processor. The latency between the access to the low power mode processor’s
cache and when the requested data is either retrieved or determined not to exist in the low
power mode processor’s cache can significantly diminish the performance of the
corresponding computer system. The problem may be exacerbated when the number of
processors are increased, as the number of processors that may be in a low power mode
and the number of accesses to these processors may increase. Furthermore, the computer
system may draw unnecessary power, particularly if the requested information is

determined not to exist in the local cache of the processor that’s in a low power mode.

Brief Description of the Drawings

Embodiments of the invention are illustrated by way of example, and not
by way of limitation, in the figures of the accompanying drawings and in which like
reference numerals refer to similar elements and in which:

Figure 1 illustrates a block diagram of a multi-core microprocessor, in
which at least one embodiment of the invention may be used;

Figure 2 illustrates a block diagram of a shared bus computer system, in
which at least one embodiment of the invention may be used;

Figure 3 illustrates a block diagram a point-to-point interconnect computer
system, in which at least one embodiment of the invention may be used;

Figure 4 illustrates a block diagram of a ring-based multi-core
microprocessor, in which at least one embodiment of the invention may be used;

Figure 5 is a flow diagram of operations that may be used for retaining

cached information during a low power mode, according to one embodiment of the

10

15

20

25

30

WO 2009/014931 PCT/US2008/069962

invention;

Detailed Description

At least one technique for retaining cached information during a low power
mode within a computer system is disclosed. In the following description, for purposes of
explanation, numerous specific details are set forth in order to provide a thorough
understanding of embodiments of the present invention. It will be apparent, however, to
one skilled in the art that embodiments of the present invention can be practiced without
these specific details.

In general, embodiments described herein may be applied to any number of
multi-processor systems that include multiple microprocessors, a single microprocessor
having multiple processor cores, or multiple processors each having multiple processor
cores. For simplicity, microprocessors and microprocessor cores will be generically
referred to herein as “processors”. Furthermore, primary caches (i.e., those used to store
most frequently used information by a processor) will be referred to generically herein as
“local caches”, whereas secondary caches (i.c., those used to store less frequently used
information than a local cache, such as L2 caches, 1.3 caches, etc.) that are used to store at
least some information stored in the primary caches of two or more processors shall be
referred to generically herein as “shared caches”. Finally, voltage and/or frequency states,
in which a processor may operate, including those in which one or more processor clocks
are idle, stopped, halted, or reduced below a maximum operating frequency and/or one or
more processor voltages are reduced below a maximum operating voltage, may be
generically referred to herein as “power modes”.

In some embodiments, a processor may save information stored in its local
cache to corresponding locations within a shared cache before being placed into a low
power mode, such that other processors, which may otherwise attempt to access
information from the low power mode processor’s local cache may instead retrieve the
required information from the shared cache, and the low power mode processor may
remain in a low power mode until it’s otherwise needed. Advantageously, at least one
embodiment may improve performance in a computer system, because instead of the
system waiting for a processor in a low power state to return from the low power state to
service an access to its local cache by another processor, the information may instead be

retrieved from the shared cache to which the low power mode processor saved the

10

15

20

25

30

WO 2009/014931 PCT/US2008/069962

information before entering the low power state. In some embodiments, an access to the
shared cache may be serviced faster than an access to a local cache of a processor in a low
power mode. Furthermore, because a processor in a low power mode may not need to
return from the low power mode to service an access to its local cache, at least one
embodiment may help conserve power in a system in which the at least one embodiment is
used.

In one embodiment, a processor to be placed in a low power mode may first
perform a cache flush operation, cache invalidate operation, writeback operation or other
operation that causes the information stored in the processor’s local cache to be saved to a
shared cache. In one embodiment, the low power mode may include turning off one or
more clocks to the processor to be placed in the low power mode. In other embodiments,
the low power mode may include reducing or removing one or more operating voltages
used to power the processor, the local cache, or both. In still other embodiments, a low
power mode may reduce or completely disable both frequency and voltage to a processor.

Figure 1 illustrates a multi-core microprocessor in which at least one
embodiment of the invention may be used. In particular, Figure 1 illustrates
microprocessor 100 having at least two processor cores 105 and 110, each having
associated therewith a local cache 107 and 113, respectively. Also illustrated in Figure 1
is a shared cache memory 115 which may store versions of at least some of the
information stored in each of the local caches 107 and 113. In some embodiments,
microprocessor 100 may also include other logic not shown in Figure 1, such as an
integrated memory controller, integrated graphics controller, as well as other logic to
perform other functions within a computer system, such as I/O control. In one
embodiment, each microprocessor in a multi-processor system or each processor core in a
multi-core processor may include or otherwise be associated with logic 119 to direct an
access to either a local cache or a shared cache, depending upon the power state of the
processor/core at any given time. The logic may include or be associated with a memory,
such as a non-volatile programmable memory, to store the power state of the core or
processor at any time during the operation of the computer system. In such an
embodiment, accesses to a processor or core are made without regard to the power state of
the target processor or core, such that the same type of access, such as a snoop, may be
sent to each processor or core and the target processor or core may either service the snoop

to its local cache or redirect the snoop into an access (snoop or other operation) to the

10

15

20

25

30

WO 2009/014931 PCT/US2008/069962

shared cache, depending on the power state of the processor or core.

In one embodiment, one of the processor cores illustrated in Figure 1 may
store a most recent version of information stored in its local cache to the shared cache
before entering a low power mode. When one of the cores is in a low power mode (“the
low power mode core”), the other core (or cores) may obtain the most recent version of
information stored in the low power mode core’s local cache by accessing the shared
cache, since the low power mode core had saved the most recent information from its local
cache to the shared cache before it went into the low power mode. In one embodiment,
the low power mode core may have performed a cache flush operation, in which some or
all of the information stored in the low power mode core’s local cache is saved to the
shared cache before some or all of the local cached information is invalidated or the low
power mode core enters the low power mode. In other embodiments, other operations
may be performed to save some or all of the information of the low power mode core’s
local cache to the shared cache, depending on the instruction set architecture of the core.

In one embodiment, a processor may, at anytime, be in one of a number of
different power states, including one or more low power modes. For example, a processor
may be in a fully powered component state (“C0”), in which a maximum allowable
amount of power is consumed, a reduced power component state (“C17), defined by a
lower allowable power consumption than the CO state, or other low power states (e.g., C3,
C6, etc.), each being defined by progressively lower allowable power consumption.
Moreover, one or more of a processor’s clocks or power supplies may be adjusted to
accomplish the allowable power consumption associated with each state.

For example, in one embodiment, a fully powered CO state may be
achieved by operating one or more processor clocks within a range of frequencies and
operating one or more power supplies to the processor within a range of voltages so as to
maximize performance of the processor. Such a power state may be useful, for example,
when a large performance demand is placed on the processor by a program running on the
processor. A reduced power state, C1, may be accomplished by putting the processor into
an idle, halt, or other low performance state by stopping or reducing one or more processor
clocks while maintaining one or more power supplies to the processor within a range of
voltages. In such a reduced power state, the processor may be able to draw less power
than in the CO state, but yet still service accesses to its local cache from other processors,

vis-a-vis a snoop operation, for example.

10

15

20

25

30

WO 2009/014931 PCT/US2008/069962

In one embodiment, a processor, such as one of the cores illustrated in
Figure 1, may be placed into a lower power state than CO or C1 by stopping or reducing
one or more clocks to the processor and removing or reducing the voltage of one or more
power supplies supplied to the processor, such that information stored in the processor’s
local cache would not be retained. In Figure 1, for example, one of the cores may be
placed into a low power core component state (“CC3” state), in which all clocks to the
core are halted and all power supply voltages are removed or otherwise lowered to a non-
active level. In a CC3 state, according to one embodiment, a core may draw a minimal
amount of power, and possibly none at all. Therefore, before a processor, or a core
illustrated in Figure 1, can be placed into a CC3 state, at least any modified information
stored in the core’s local cache may be stored to the corresponding location in the shared
cache. In one embodiment, only modified information (i.e., versions of information in the
local cache that are more recent than versions of the same information stored in the shared
cache) is stored to the shared cache before the core enters the CC3 state. In other
embodiments, the entire contents of the local cache is stored to the shared cache before the
core enters the CC3 state, regardless of whether it has been modified from the versions
available in the shared cache.

Advantageously, because the shared cache contains at least the modified
information stored in the local cache of the core to be placed in a CC3 state, in one
embodiment, any other processors, or cores illustrated in Figure 1, that may otherwise
attempt to access the CC3 core’s cache, such as when the core to be accessed is in a
reduced core component state (e.g., “CC17), may instead access the requested information
directly from the shared cache, leaving the CC3 core in a low power mode, thereby saving
power. Furthermore, in one embodiment, since the CC3 core does not have return from its
low power state to service an access to its local cache from another core or processor, vis-
a-vis a snoop operation, for example, the accessing processor or core may not have to wait
as long for the information it requests as it would if it had to wait for the accessed core to
return from its low power state to service the request. The techniques described above in
various embodiments may be further applied to a system having any number of processors
OF Processor cores.

Figure 2, for example, illustrates a front-side-bus (FSB) computer system in
which one embodiment of the invention may be used. Any processor 201, 205, 210, or

215 may access information from any local level one (L1) cache memory 220, 225, 230,

10

15

20

25

30

WO 2009/014931 PCT/US2008/069962

235, 240, 245, 250, 255 within or otherwise associated with one of the processor cores
223,227,233, 237, 243, 247, 253, 257. Furthermore, any processor 201, 205, 210, or 215
may access information from any one of the shared level two (L2) caches 203, 207, 213,
217 or from system memory 260 via chipset 265. One or more of the processors in Figure
2 may include or otherwise be associated with logic 219 to direct an access to either a
local cache or a shared cache, depending upon the power state of the processor/core at any
given time. The logic may include or be associated with a memory, such as a non-volatile
programmable memory, to store the power state of the core or processor at any time
during the operation of the computer system.

In the example illustrated in Figure 2, both cores are in an active core
component state (“CCO” state) in processor 201, whereas in processor 205, both cores are
in a reduced power state, such as CC1, such that each core can service snoops, or similar
operations, from active cores 223 and 227. Processors 210 and 215 each have their cores
in a lower power mode than the cores of processors 201 and 205, such as a CC3 state, such
that the information in local caches 243, 247, 253, and 257 are no longer available. In one
embodiment, if active cores 223 or 227 are to access information that was stored in the
local caches of the cores of processors 210 and 215, then they will have to obtain the
information from the shared caches of processors 210 and 215, respectively. This is
because, in one embodiment, the cores of processors 223 and 227 stored at least modified
versions of the information stored in their local caches to their respective shared caches
213 and 217 before entering the CC3 state. If the information requested from the cores of
processor 201 is not available in the shared caches 213 and 217, nor available in the local
caches 230 or 235, then the cores of processor 201 will have to resort to accessing the
information from system memory 260 via chipset 265 or via a hard drive or other memory
source not shown in Figure 2.

In some embodiments, the cores of each of the processors of Figure 2 may
be in different power modes from one another rather than in the same power mode as
illustrated in Figure 2. In one embodiment, logic may be included in each of the
processors or cores to indicate to a snoop or similar operation whether the core being
accessed is in a CC3 state or other state, such that the requesting core may issue the
appropriate transaction to address the appropriate memory structure (local cache or shared
cache) of the core being accessed. In some embodiments, an indication of core power

state may be recorded and tracked in a software program, such as a table accessible by a

10

15

20

25

30

WO 2009/014931 PCT/US2008/069962

computer system’s BIOS. For example, in one embodiment, whenever a core or processor
changes power state, the change is recorded in table stored in logic or memory that a
system BIOS can read and inform any cores or processors that may attempt to access
another processor’s or core’s local cache. By informing the accessing processor or core
about the power modes of other processors or cores, it can access the appropriate memory
structure, such as a shared cache when the corresponding local cache to be accessed is in a
reduced power state, such as CC3. In other embodiments, power mode information for
each processor or core may be modified and recorded through other means, including
hardware logic or other software besides BIOS.

In some embodiments, a processor or core being accessed may include
logic to control the accessed processor’s/core’s response. For example, in one
embodiment, each processor (or core) in a computer system that is to use techniques
described herein, may include storage, such as a non-volatile programmable memory, that
stores the power state of the processor at any given time such that associated logic may
determine how to respond to a snoop request, or other similar operation, from another
processor/core. In one embodiment, the storage and logic may be used, for example, to
cause an access to a processor or core in a CC3 state to be redirected from the processor’s
or core’s local cache to a shared cache or other L2 cache. Whereas if the processor or core
being accessed was in another state, such as a CCO or CCl state (i.e., a higher power state
than CC3), then logic within the accessed processor or core would allow its local cache to
be snooped or otherwise accessed. In such an embodiment, the accessing processor core
need not be aware of any processor’s power state, but may simply issue an access, such as
a snoop, to the local cache of any other processor and the accessed processor (or core) may
direct the access where it needs to go based on the power state its in at the time.

In addition to the FSB computer system illustrated in Figure 2, other system
configurations may be used in conjunction with various embodiments of the invention,
including point-to-point (P2P) interconnect systems and ring interconnect systems. The
P2P system of Figure 3, for example, may include several processors, of which only two,
processors 370, 380 are shown by example. Processors 370, 380 may each include a local
memory controller hub (MCH) 372, 382 to connect with memory 32, 34. Processors 370,
380 may exchange data via a point-to-point (PtP) interface 350 using PtP interface circuits
378, 388. Processors 370, 380 may each exchange data with a chipset 390 via individual
PtP interfaces 352, 354 using point to point interface circuits 376, 394, 386, 398. Chipset

10

15

20

25

30

WO 2009/014931 PCT/US2008/069962

390 may also exchange data with a high-performance graphics circuit 338 via a high-
performance graphics interface 339. Embodiments of the invention may be located within
any processor having any number of processing cores, or within each of the PtP bus agents
of Figure 3. In one embodiment, any processor core may include or otherwise be
associated with a local cache memory (not shown). Furthermore, a shared cache (not
shown) may be included in either processor outside of both processors, yet connected
with the processors via p2p interconnect, such that either or both processors’ local cache
information may be stored in the shared cache if a processor is placed into a low power
mode. One or more of the processors or cores in Figure 3 may include or otherwise be
associated with logic 319 to direct an access to either a local cache or a shared cache,
depending upon the power state of the processor/core at any given time. The logic may
include or be associated with a memory, such as a non-volatile programmable memory, to
store the power state of the core or processor at any time during the operation of the
computer system.

Figure 4 illustrates a computer system or processor organized in ring
configuration, in which at least one embodiment may be used. The ring system of Figure
1 includes eight processors or processor cores 401, 405, 410, 415, 420, 425, 430, 435
organized along a concentric ring interconnect, in which each processor or core has a
corresponding local cache which may be accessed by another core along the ring
interconnect. The system or processor of Figure 4 also includes a shared last level cache
(LLC) 440, which stores all or some versions of information stored in the local caches
403, 407, 413, 417, 423, 427, 433, 437. In one embodiment if one of the processors or
cores in Figure 4 are in a power mode, in which information is no longer accessible from
the processor’s or core’s local cache, then any other processor or core attempting to access
information that was stored in the low power mode processor’s/core’s local cache, must
instead attempt to access this information from the LLC. In one embodiment, if the
information is not available in the LLC, then the accessing processor or core may need to
access the data from a system memory source (not shown) via memory controller 445,
One or more of the processors in Figure 4 may include or otherwise be associated with
logic 419 to direct an access to either a local cache or a shared cache, depending upon the
power state of the processor/core at any given time. The logic may include or be
associated with a memory, such as a non-volatile programmable memory, to store the

power state of the core or processor at any time during the operation of the computer

10

15

20

25

30

WO 2009/014931 PCT/US2008/069962

system.

Figure 5 illustrates a flow diagram of operations that may be used in
conjunction with at least one embodiment of the invention, regardless of the processor or
system configuration in which the embodiment is used. At operation 501, for example, an
access is made to a processor, such as through a snoop operation or other cache access
operation. If the accessed processor is in a low power mode, such as a CC3 state, at
operation 505, then the processor’s shared cache is accessed at operation 510. The access
may be a snoop to the shared cache or the snoop may be converted into an another
operation to access the shared cache, depending on the protocol used. If the requested
information is not present in the shared cache, at operation 515, then an access is made to
system memory at operation 520 and the information is returned from the system memory
at operation 530, otherwise the information is returned from the shared cache at operation
525.

If the processor was not in a low power mode, such as CC3, at operation
505, then the local cache of the processor is accessed at operation 535. If the information
is available in the local cache, at operation 540, then the information is returned from the
local cache at operation 545. Otherwise, the process returns to operation 510 to access the
information from either the shared cache or system memory as described above. In one
embodiment, an accessing processor sends a snoop to other processors in the system
regardless of the power state they are in and the accessed processor determines whether to
send the access to a local cache or shared cache, based on the power state of the accessed
processor. For example, if the accessed processor is in a CC3 state when accessed, a
snoop operation from another processor would be redirected to the accessed processor’s
shared cache either as a snoop or another operation. Otherwise, the snoop operation may
result in an access to the accessed processor’s local cache if the accessed processor is in a
power state that would allow the local cache to be snooped. In other embodiments, a table
is maintained, such as through BIOS, that an accessing processor may referrence prior to
accessing another processor in order to determine whether the local cache of that processor
should be accessed or its shared cache should be accessed, based on the power state
indicated in the table. In other embodiments, other techniques for managing where an
access should be directed based on the power state of an accessed processor may be used.

Embodiments described herein may be implemented in a number of ways

using a number of technologies. For example, at least one embodiment is implemented in

10

10

15

20

25

WO 2009/014931 PCT/US2008/069962

CMOS logic, whereas other embodiments are implemented in software. Still other
embodiments are implemented through a combination of hardware logic and software.

In an embodiment, the software used to facilitate the routine can be
embedded onto a machine-readable medium. A machine-readable medium includes any
mechanism that provides (i.e., stores and/or transmits) information in a form accessible by
a machine (e.g., a computer, network device, personal digital assistant, manufacturing
tool, any device with a set of one or more processors, etc.). For example, a machine-
readable medium includes recordable/non-recordable media (e.g., read only memory
(ROM) including firmware; random access memory (RAM); magnetic disk storage media;
optical storage media; flash memory devices; etc.), as well as electrical, optical, acoustical
or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals,
etc.); etc.

One or more aspects of at least one embodiment may be implemented by
representative data stored on a machine-readable medium which represents various logic
within the processor, which when read by a machine causes the machine to fabricate logic
to perform the techniques described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium (“tape”) and supplied to various
customers or manufacturing facilities to load into the fabrication machines that actually
make the logic or processor.

Thus, a method and apparatus for directing micro-architectural memory
region accesses has been described. It is to be understood that the above description is
intended to be illustrative and not restrictive. Many other embodiments will be apparent to
those of skill in the art upon reading and understanding the above description. The scope
of the invention should, therefore, be determined with reference to the appended claims,

along with the full scope of equivalents to which such claims are entitled.

11

WO 2009/014931 PCT/US2008/069962

CLAIMS
What is claimed is:

1. An apparatus comprising:

10

15

20

25

30

a first processor core to be placed in a low power mode, in which at least
modified information stored within the first processor core’s local cache
is to be stored in a shared cache;

a second processor core to access the shared cache for information
accessible within the local cache prior to the first processor core
entering the low power mode, the second processor core to access the
shared cache instead of the local cache in response to the first processor
core being placed into the low power mode.

The apparatus of claim 1, wherein the first processor core is to indicate if it is

to enter the low power mode and direct the access accordingly.

The apparatus of claim 2, wherein the first processor core includes logic to
determine whether it is in the low power mode and to attempt to access
information from the first processor core’s local cache, based on whether or not

the first processor is in the low power mode.

The apparatus of claim 1, wherein the share cache is to store at least some
information stored within at least two local caches corresponding to at least

tWO processor cores.

The apparatus of claim 4, wherein the local cache includes a level one (L1)

cache and the shared cache includes a level two (L2) cache.

The apparatus of claim 1, wherein the low power mode includes reducing at
least one clock of the first processor core and disabling power to the first

processor core.
The apparatus of claim 1, wherein the low power mode includes placing the

first processor core into an idle state and reducing an operating voltage of the

first processor core to substantially zero.

12

10

15

20

25

30

WO 2009/014931 PCT/US2008/069962

8. The apparatus of claim 1, wherein the local cache is to be flushed as a result of

entering the low power state.

9. A system comprising:
a first processor having at least two processor cores, wherein at least one of
the
processor cores is to enter a low power mode, in which information
stored
in the at least one processor core’s local cache is no longer
accessible;
a second processor having at least one processor core to access information
from a
shared cache if the at least one processor core is in the low power
mode,
the shared cache to store versions of information stored in each of
the at least two processor core’s local caches;
a system memory to store versions of information stored in the shared
cache;
a memory controller through which the second processor’s at least one
processor

cores are to access the system memory.

10. The system of claim 9, further comprising a non-volatile memory to store the

first processor’s at least one processor core’s power state.

11. The system of claim 10, wherein the second processor’s at least one processor
core is to attempt to access the information from the the first processor’s at
least one processor core regardless what power state the first processor’s at

least one processor core is in.

12. The system of claim 11, wherein if the first processor’s at least one processor

core has not entered the low power mode, the second processor’s at least one

13

10

15

20

25

30

WO 2009/014931 PCT/US2008/069962

processor core is to snoop the first processor’s at least one processor core’s

local cache.

13. The system of claim 9, wherein the first and second processors are coupled via

a front-side bus.

14. The system of claim 9, wherein the first and second processors are coupled via

a point-to-point interconnect.

15. The system of claim 9, wherein the first and second processors are coupled via

a ring interconnect.

16. The system of claim 9, wherein the low power mode includes stopping a clock

and removing power to the first processor’s at least one processor core.

17. The system of claim 9, wherein less time is required to access information from
the shared cache than to wait for the first processor’s at least one processor

core to return from the low power mode and access its local cache.

18. A method comprising:
placing a first processor core into a low power mode, wherein the low
power
mode includes storing at least modified information from the first
processor core’s level one (LL1) cache to a level two (L.2) cache;
accessing the L2 cache instead of the L1 cache in response to the the first
processor core entering the low power mode;
generating an access to system memory if information requested by the
second

processor core is not stored in the L2 cache.

19. The method of claim 18, wherein the first processor core is to route the access

to the L1 or L2 caches based on the low power mode of the first processor core.

14

10

15

20

25

30

WO 2009/014931 PCT/US2008/069962

20.

21.

22.

23.

24.

25.

26.

27.

The method of claim 19, wherein the low power mode is indicated in a non-

volatile programmable memory associated with the first processor core.

The method of claim 18, wherein the first processor includes logic to determine
where to route the access from the second processor based on whether the first

processor is in the low power mode.

The method of claim 18, wherein the low power mode includes placing the first

processor core in an idle state and reducing the operating voltage.

A machine-readable medium having stored thereon a set of instructions, which

if executed by a machine causes the machine to perform a method comprising;:
causing a first processor to access a cache shared between at least a second
and a third processor instead of a local cache corresponding to one of the
second and third processors in response to determining that at least one of
the second and third processors has entered a low power mode, wherein
entering the low power mode causes the at least one of the second and third
processors to store information from its respective local cache to the shared
cache and to gate a clock to the at least one of the second and third
processors and to reduce power to the at least one of the second and third

processors to substantially zero.

The machine-readable medium of claim 23 further comprising determining

whether the at least second and third processors are in the low power mode.
The machine-readable medium of claim 24, wherein determining includes
accessing a storage area containing power state information of the at least

second and third processors.

The machine-readable medium of claim 25, wherein the storage area is to be

maintained by the at least second and third processors.

The machine-readable medium of claim 26, wherein the determining includes

15

10

WO 2009/014931 PCT/US2008/069962

performing a software routine.

28. The machine-readable medium of claim 23 wherein the local cache is a level

one (L1) cache.

29, The machine-readable medium of claim 28, wherein the shared cache is a level

two (L2) cache.

30. The machine-readable medium of claim 23, wherein the low power mode is a

core component three (CC3) power state.

16

PCT/US2008/069962

WO 2009/014931

1/4

Lo

O

100

107

113

~

FIG. 1

215

210

205

,/J

201

fJ

260

LO)|
N

FIG. 2

PCT/US2008/069962

WO 2009/014931

2/4

¢ 9Old

€ | 3000 _ 0€€
| s¥na | 3snow
JOVHOLS VLVA 026 9z¢ WINOD A4 /QYVOIAIN
N |
243 V1€ 31¢
o/10lany S30I1A3Q O/l 390149 Sng

.

< f H >
9le %fm
06¢ 4/l 26€7 4/ 8ce
96¢ SOIHAYHD
d-d[~—86¢ 13SdIHO pge—~]dd 443dHOH
A A
pse ™~ ¢ 256
oge | dd dd [Pdd| |ad| o
A N .
29c 980, 888 Ble 9LE g
2 § S o
iZ3 — — 43
AHO N3N HOW i i HOW AHO NN
3900 3900
00Yd 004d
¥0SSIO0Nd ¥0SS300Yd

WO 2009/014931

400

3/4

PCT/US2008/069962

O
<
~
®|"-‘_" ~ : ®|c'-g‘ S
~— - ~—
<< = || <
] o |
lllllllllllﬂ- [EEREERENNE]
<
o
O (o2l K=
= < : il U A
® ®
L o L
L ® o
®
0o : o
29 |5 = 28 |5
< < < <
e O —_ —
IIIIIIIIIII# EEEEEEERERESR
<
—
mo‘ o ®|O‘ ™
~— ~—[| N
‘r Sr‘ : bl A
O
<
~

FIG. 4

WO 2009/014931

PROCESSOR IS SNOOPED
201

PROCESSOR IN

YES

LOW POWER MODE?
905

ACCESS LOCAL
CACHE
935

NO

REQUESTED
DATA PRESENT?
540

RETURN REQUESTED

4/4
ACCESS SHARED
> CACHE
510

REQUESTED
DATA PRESENT?
540

PCT/US2008/069962

ACCESS SYSTEM
MEMORY
520

A

RETURN REQUESTED
DATA FROM SHARED
MEMORY
525

RETURN REQUESTED
DATA FROM SHARED
MEMORY
525

FIG. 5

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings

