C1pO (12) (19) (CA) Demande-Application

(CANADIAN INTELLECTUAL

" - - "‘::4::.\ \\:‘
. ‘; ;‘. \:.\1.\' ‘v‘s:a,‘ » R
. L ’
N l:‘\'ﬁ:;’ﬂt‘:':l‘ R e :.\ h
- a e LEE W | S v i - N
,0. \"0“0'0‘
-\ - f\.c"h LR | : . . - -\ '\
\ 2 2

INTELLECTUELLE DU CANADA * PROPERTY OFFICE
(86) 1999/06/09
(87)1999/12/16

OPIC

OFFICE DE LA PROPRIETE

(72) DIXON, MICHAEL D., US

(71) PLACEWARE, INC., US

(51) Int.CL.° GO6F 13/00

(30) 1998/06/09 (09/094,388) US

54) PROTOCOLES BIDIRECTIONNELS DE MULTIPLETS
PROCESSUS-A-PROCESSUS

(54) BI-DIRECTIONAL PROCESS-TO-PROCESS BYTE STREAM
PROTOCOL

BEGIN

STORE MESSAGES, IF ANY
710

YES

DELETE INDICATED MESSAGES, IF ANY,
AND PROVIOE INCOMING MESSAGES,
g

BUNDLE \NO [STORE MESSAGES,

2 IF ANY
741 49
YES
DELETE. INOICATED .

SEND HITP

oo ome . | BN e

INCOMI s I‘N%SSAGES- AND INDICATCR

750 e

SEND HTIP
RESPONSE INCLUDING
BUNDLED WESSAGES,

TIF ANY, AND

INDICATOR
760

(57) Un systeme client mémorise des messages (710) et
les envoie a un systeme serveur. Ces messages sont
compris dans une demande dont le format (720) est
¢tabli en fonction d'un protocole pouvant traverser un
pare-feu. Le systeme serveur meémorise ¢galement des
messages et envole ces messages au systeme client. Le
systeme serveur attend une premicre demande et une
deuxiecme demande du systeme client (740). S1 la

I*I Industrie Canada Industry Canada

(57) A client system stores messages (710) and sends the
messages to a server system. The messages are included
in a request formatted (720) according to a protocol that
can traverse a firewall. The server system also stores
messages and sends the messages to the client system.
The server system waits for a first request and a second
request from the client system (740). If the first request
has been recerved and a particular number of messages

OFFICE DE LA PROPRIETE SR "*.-E:}.f:?:::

INTELLECTUELLE DU CANADA

a:;‘\
AR . .
PR s """
A P
S '\ K] :I-

) .-‘ .‘ ‘..'. :\‘.C:‘: :] L]

k‘:‘:"‘a’o‘}"ﬁ ~\“:“l \.4 l.l

e :

‘l .I c.c." a », .C‘ ", " t
P I . X _ \.q q. AR
O SR
I.. " \‘l~ \\
\ " \

CIPO

PROPERTY OFFICE

premicre demande a €te€ recue et s1 un nombre particulier
de messages s'est accumulé¢ au niveau du systeme
serveur, ce dernier enverra une reponse correspondant a
la premiere demande. S1 la deuxieme demande est recue
(740), le systeme serveur enverra la réponse (760)
correspondant a la premiere demande méme si
I'accumulation de messages est imnexistante. La prochaine
fois que le systeme client envoie une demande, cette
dernicre comprendra une indication des messages que le
systeme client a recu du systeme serveur dans la dernicre
reponse.

I*I Industrie Canada Industry Canada

(CANADIAN INTELLECTUAL

(21) (A1) 2,334,971

(86) 1999/06/09
(87)1999/12/16

have accumulated at the server system, then the server
system will send a response corresponding to the first
request. If the second request 1s recerved (740), the
server system will send the response (760)
corresponding to the first request even if no messages
have accumulated. The next time the client system sends
a request, the request will include an indication of which
messages the client system received from the server
system 1n the last response.

CA 02334971 2000-12-06

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
WO 99/64958]

(11) International Publication Number:

_(51) International Patent Classification 6 .

(22) International Filing Date: 9 June 1999 (09.06.99)

(30) Priority Data:

09/094,388 9 June 1998 (09.06.98) US

(71) Applicant: PLACEWARE, INC. [US/US]; 201 Ravendale
Drive, Mountain View, CA 94043 (US).

(72) Inventor: DIXON, Michael, D.; 1523 Portola Avenue, Palo
Alto, CA 94306 (US).

(74) Agents: MENDONSA, Paul, A. et al.; Blakely, Sokoloff,
Taylor & Zafman, 7th floor, 12400 Wilshire Boulevard, Los
Angeles, CA 90025-1026 (US).

(Utility model), DE, DE (Utility model), DK, DK (Utility
model), EE, EE (Utility model), ES, FI, FI (Utility model),
GB. GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG,
MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE,
SG, SI, SK, SL, TJ, T™M, TR, TT, UA, UG, UZ, VN, YU,
ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL,
SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR,
NE, SN, TD, TG).

Published |
With international search report.

(54) Title: BI-DIRECTIONAL PROCESS-TO-PROCESS BYTE STREAM PROTOCOL

(87) Abstract

A client system stores messages (710) and sends the
messages to a server system. The messages are included
in a request formatted (720) according to a protocol that
can traverse a firewall. The server system also stores
messages and sends the messages to the client system.
The server system waits for a first request and a second
request from the client system (740), If the first request
has been received and a particular number of messages

| have accumulated at the server system, then the server
system will send a response corresponding to the first
request. If the second request is received (740), the server
system will send the response. (760) corresponding to the
first request even if no messages have accumulated. The
next time the client system sends a request, the request will
| include an indication of which messages the client system
received from the server system in the last response.

BEGIN

STORE MESSAGES, If ANY
710

NO

YES

DELETE INDICATED MESSAGES, IF ANY,
AND PROVIOE INCOMING MESSAGES,
IF7§31Y |

STORE MESSAGES.
IF ANY
745

GO6F 13/00 Al
(43) International Publication Date: 16 December 1999 (16.12.99)
(21) International Application Number: PCT/US99/13068 | (81) Designated States: AE, AL, AM, AT, AT (Utility model), AU, I
| AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ

T ARaadn

DELETE INDICATED
MESSAGES, IF ANY,
AND PROVIDE
INCOMING MESSAGES,
IF ANY
750

1

SEND HTIP
RESPONSE INCLUDING
BUNDLED MESSAGES,

IF ANY, AND
INDICATOR
760

S - - . R LT C ep el A e e e e —
Nt L R TR S T DT T R T T s

SEND HITP
RESPONSE INCLUDING
BUNDLED MESSAGES

AND I;JE‘ICATOR

CA 02334971 2000-12-06

WO 99/64958 ' PCT/US99/13068 -

BI-DIRECTIONAL PROCESS-TO-—PROCESS BYTE STREAM
PROTOCOL

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention pertains to the field of distributed computer
programs. More particularly, this invention relates to the art of bi-

directional, process-to-process byte stream protocols.

Background

Advances in computer technology and the advent of the internet
have enabled computer users to collectively execute co'mputer programs
from points distributed around the world. Examples of distributed programs
include computer chat roors, conferencing programs, and gaming programs
wherein multiple computer users can interactively exchange information in
real time. For instance, a c:omputer chat room may allow a number of

‘distributed users to view conversational text as it is typed by any one of the
individual distributed users, a conferencing application may allow
distributed users to collectively draft and edit a single text document, and
gaming programs may allow distributed users to compete or collaborate in a
virtual gaming environment.

In order to perform distributed programming, it is necessary for two
individual processes to maintain a bi-directional byte stream. A process

- refers to an active execution of .a computation, and is also commonly referred

to as a task, job, or thread. Distributed programming is freciuently based on
the client-server paradigm, wherein a process executing on a client system

must communicate with a process executing on a server system.

CA 02334971 2000-12-06

WO 99/64958 v PCT/US99/13068 -

In the client-server paradigm, a client process makes requests for
access to and information from a server process. A client process and server
process may be exécuting on the same computer system or they may be
executing on separate, communicatively cdupled systems. Where a server
system 1s accessible by a network, like the internet, a huge number of client
systems from around the world may make requests on a server system.

Communications between clients and servers often involve
transmitting data over various media within or among various networks.
These communications media are often unreliable. The internet, for instance,
1s global 1n scale and relies on countless individual computers and
connections. The failure of any one part of the internet cannot be predicted
or prevented, making the internet inherently unreliable. Transmission
Control Protocol/ Intemet Protocol (TCP/IP) comprises a number of
communications protocols designed to reliably transmit data in spite of the
inherent unreliability of the internet. In very general terms, TCP/IP verifies
that data arrives, and automatically re-transmits segments that do not. Most
distributed programs that communicate over the internet use TCP/IP
formatted messages to insure reliability.

In addition to reliability, security is a major concern for network
users. Many systems use firewalls to selectively block certain kinds of
network communications. For instance, most firewalls prevent TCP/IP
communications, blocking the bi-directional byte streams commonly used
for distributed pro gramming.

Therefore, in order to utilize distributed programming, a need exits
for a bi-directional, process-to-process byte stream protocol that can '
traverse a firewall, maintain the level of security provided by the firewall,

and provide reliable communications over inherently unreliable media.

CA 02334971 2000-12-06

WO 99/64958 7 . PCT/US99/13068 -

SUMMARY OF THE INVENTION

A client system stores messages and sends the meésages to a server
system. The messages are included in a request formatted according to a
protocol that can traverse a firewall. Then the client system waits for a
reéponse from the server system. The response will also be formatted
according to the protocol that can traverse the firewall. The response will
include an indication of which messages the server system received from the
client system 1n the last request. If a certain number of messages accumulate
at the client system, or a certain amount of time passes before the response
is received, the client system will send a second request.

The server system also stores messages and sends the messages to
the clie.nt system. The server system waits for a first request and a second
request from the client system. If the first request has been received and a
partlcular number of messages have accumulated at the server system, then
the server system will send a response corresponding to the first request. If
the second request is receiized, the server system will send the response
corresponding td the first request even if no messages have accumulated.
The response will include any accumulated messages. The next time the .
client system sends a request, the request will include an indication of which
messages the client system received from the server system in the last

response.

BRIEF DESCRIPTION OF THE DRAWINGS

Examples of the present invention are 1llustrated in the
accompanying drawings. The accompanying drawings, however, do not
limit the scope of the present invention whatsoever. Like references in the
drawings indicate similar elements.

Figure 1 illustrates one embodiment of a computer network.

CA 02334971 2000-12-06

WO 99/64958 4 _ ~ PCT/US99/13068.

Figure 2 illustrates one embodimeni of a client system.
Figure 3 illustrates one embodiment of a server systeni.
Figure 4 illustrates one embodiment of an HTTP formatted request.
Figure 5 illustrates one embodiment of an HTTP formatted response.
Figure 6 illustrates the process of one embodiment of a client
system.
Figure 7 illustrates the process of one embodiment of a server
- system. '
Figure 8 illustrates on embodiment of a hardware system operative

to perform the functions of a client system or a server system.

DETAILED DESCRIPTION

In the following detailed description, numerous specific details are
set forth 1in order to provide a thorough understanding of the preéent
invention. However, it will be understood by those skilled in the art that the
present invention may be practiced without these specific details and that
the present invention may be practiced in a variety of alternate
embodiments. In other instances, well known methods, procedures,
components, and circuits have not been described in detail.

Figure 1 illustrates one embodiment of a computer network in which
a firewall interferes with the execution of a distributed computer program.
A process executing on client system 110 is prevented from communicating
with a process executing on server system 120 using Transmission Control
Protocol/ Internet Protoco! (TCP/IP) .160 formatted communications. As
discussed more fully below, however, the present invention takes advantage
of a common loop-hole in most firewalls to create TCP/IP-type

communications that can traverse firewalls.

CA 02334971 2000-12-06

WO 99/64958 s ‘ PCT/US99/13068

Distributed programming includes virtually any kind of client-server
interaction. For example, a process may be executed on a client system
which communicates with another process that is executed on a server
system. [n certain applications, the client process is referred to as an applet
and the server process 1s referred to as a servlet. Communications between
the two processes comprise the distributed programming. Several client
processes may concurrently interact with a single server process.

In the illustrated embodiment, client system 110 and client systems
145 are coupled to internet 130. 'Intemet 130 includes server system 120.
In one embodiment, client system 110, client systems 145, and server
system 120 collectively execute a distributed compuiter program wherein
part of the program is executed on server system 120 and part of the
program is executed on each of the client systems. Except for the teachings
of the present invention, client system 110, server system 120, and client
systems 145 represent any of a number distributed systems known in the
art.

Messages are sent to and from each of the client systems and server
system 120 over a variety of connections through internet 130. Except for
the teaches of the present invention, communications through internet 130
are conducted 1n any of a number of manners known in the art. The
distributed program can be any of a number of distributed programs,
including computer chat i'()oms, conferencing programs, and gaming
programs.

Client system 110 is protected by firewall 140 which selectively
blocks communications, including TCP/IP 160 formatted communications,
making the execution of ‘nr'lost distributed programs impossible. As is
frequently the case, however, firewall 140 allows users of client system 110

to browse web pages on internet 130. Loop-hole 150 is provided for this

CA 02334971 2000-12-06

WO 99/64958 _ 6 PCT/US99/13068 -

purpose, and it allows HyperText Transfer Protocol (HTTP) formatted
transactions to pass through firewall 140. HTTP transactions are used to
access web pages on internet 130. A single HTTP transaction has two
parts. The first part of :th.e transaction 1s an HTTP request, and it can only
be initiated by a client. The client system sends out an HTTP request to
request access to a web page. The second part of the transaction is an
HTTP response. A web page located on a server system sends back the
HTTP response. '

Even with loop-hole 150, firewall 140 provides a certain amdunt of
security for client system 110. That is, since HTTP transactions can only
be initiated by client systems, firewall 140 can be designed to only allow
out-going HTTP requests and only allow in-coming HTTP responses that
correspond to the out-going HTTP requests. Any of a number of known
firewall security systems with HTTP loop-holes can be traversed using the
present invention.

As discussed in more detail below, the present invention utilizes
loop-hole 150 to create a TCP/IP like connection between client system 110
and server system 120 by sending messages out as HTTP formatted
requeSts and recelving messages back as HTTP formatted responses. In this
manner, the present invention maintains the level of security provided by

firewall 140 while providing a TCP/IP-type connection.

Figure 2 shows one embodiment of client systern 110 and firewall
140. Client system 110 includes client process 210, buffer 220, and HTTP
gateway 230 coupled as shown. HTTP gateway 230 represents any of a
number of HTTP gateways known in the art, and is used by client system
110 for internet web browsing. Client process 210 is the portion of a
distributed program that is executed on client system 110. If it were not for

firewall 140, client process 210 could communicate with server system 120

CA 02334971 2000-12-06

WO 99/649358 7 PCT/US99/13068 -

using TCP/IP 160. For instance, the distributed program described in the
above referenced patent application uses an asynchronous TCP/IP protocol
in which messages can be initiated from client system 110 or server system
120. In the illustrated example however, firewall 140 prevents TCP/IP
communications. In which case, client system 110 can switch to
communications through HTTP loop-hole 150.

Client system 110 can automatically recognize firewall 140 in any of
several different ways. For instance, client sysiem 110 could send a TCP/IP
formatted request to server system 120 asking for a response from server
system 120. If no response were received within a certain time frame, client
system 110 could time out and try an HTTP formatted request sent through
loop-hole 150. '

Figure 3 1llustrates one embodiment of server system 120. Server
~ system 120 includes server process 310, buffer 320, and HTTP server 330
coupled as shown. In one embodiment, HTTP server 330 comprises
dedicated software to play the role of an HTTP server, but is specially
designed to include messages in transmissions without the overhead of
HTTP servers known 1in the art. Alternately, HTTP server 330 can -
represent any of a number of HTTP servers known in the art having a
Common Gatewdy Interface (CGI). Soﬁware can use a CGI to modify
HTTP transactions according the teachings of the present invention.

Server process 310 1s the portion of the distributed program
executing on server system 120. Server process 310 can communicate with
any number of client systems 145 using TCP/IP communications. Firewall
140, however, prevents server process 310 from communicating with client
system 110 using TCP/IP 160. Like client system 110, server system 120

could detect firewall 140 in any of several different ways. Server system

CA 02334971 2000-12-06

WO 99/64958 | e PCT/US99/13068 -

120 cannot initiate an HT TP transaction though, so 1t waits for an HTTP
request from client system 110.

Since HTTP transactions are necessarily two part transactions that
are initiated by a client, HTTP communications tend to be somewhat slower
and more cumbersome than most TCP/IP formatted communications.
Therefore, distributed programs will most likely attempt a TCP/IP
connection first. If that fails, client system 110 and server system 120
buffer TCP/IP messages and send groups of messages in bundles to reduce
the frequency of HT TP transactions, thereby increasing throughput to
approximate that of TCP/IP connections. Also, since internet connections
are inherently unreliable, client system 110 and server system 120 continue
to store the messages even after they are sent in order to ensure reliability.
Messages are only removed from their respective buffers upon notification
from the other system that the messages were received correétly.

In Figure 2, client system 110 performs these ﬁ.lncﬁons by buffering
messages from client process 210 in buffer 220. From there, the messages
are grouped into a bundle and sent out through HTTP gateway 230, through
HTTP loop-hole 150 in firewall 140, and on to server system 120. When a
corresponding HTTP response 1s received from server system 120, the
response comes back through.loop-hole 150 to HTTP gateway 230, and on
to client process 210. -

In Figure 3, server system 120 buffers messages from server process
310 in buffer 320. After a request comes in, server system 120 groups
messages stored in buffer 320 into a bundle and includes them in an HTTP
formatted response through HTTP server 330. Any messages that arrive
with the request are provided to server process 310.

Since each HT TP transaction consists of a request and a

- corresponding response, and an HTTP transaction is initiated by a client

CA 02334971 2000-12-06

WO 99/64958 ~ 9 PCT/US99/13068 -

system, both systems rely on the other system to keep the lines of
communications open. That is, server system 120 can only respond after it
has received a request. For the HTTP connection to operate like a bi-
directional TCP/IP connection, wherein both client system 110 and server
system 120 may be able to.nitiate transmissions, client system 110 and
server system 120 must work together to keep a request outstanding.

In one embodiment, client system 110 sends a first request including
any messages stored in buffer 220 up to 2 maximum bundle size. Client
system 110, however, will not- sit idle waiting for a response from server
system 120. Instead, client system 110 continues to store additional
messages, if any, and will send another request upon the occurrence of one
of three events.

First, if a certain number of additional messages accumulate in buffer
220, then client system 110 will send a second request including the
additional messages. For instance, a maximum bundle size may be ten

. messages, and as soon as ten additional messages accumulate, client system
110 will send a second request including the 10 additional messages.

Second, if a certain amount of time passes without receiving a
response, client system 110 will send a second request, even if no additional
messages have accmhulaie:d, including any stored messages. For instance, if

“arequest is lost in an unreﬁiiabie network, a response may never be received.
Client system 110 may time out in, for instance, one second and assume that
an error occurred. Where the first request included five messages, and three
additional messages have accumulated before client system 110 timed out,
then client system 110 will send a second request including all eight
messages.

Third, if client system 110 recelves a response from server system

120, client system 110 will send a second request. In this third case,

CA 02334971 2000-12-06

WO 99/64958 10 PCT/US99/13068 -

depending on factors such as the available bandwidth and the number of
accumulated additional messages, client system 110 may send the second
request immediately upon receiving the response from server system 120, or
chient system 110 may delay for a short period of time to allow more
messages to accumulate.

On the server side of the transaction, server system 120 must wait to
receive a first request. While server system 120 waits, it stores out-going
messages. When server system 120 does receive a first request, server
system 120 may not respond immediately. First, if a certain number of
messages have accumulated, or if at any point after the first request is
received the certain number of messages accumulate, then server sys'tem 120
will send a response. For instance, if a maximum bundle size is 10 messages,
and server system 120 has 10 messages stored when the first request is
received, server system 120 will respond immediately. If, however, the
number of messages is less than the certain number of messages, server
system 120 will wait for more messages to accumulate or for a second
request to arrive. When a second request 1s received, server system 120 will
send a response corresponding to the first request, and include any messages
that have accumulated, up to the maximum bundle size, even if no messages
have accumulated. As with client system 110, depending on factors such as
available bandwidth and the number of accumulated messages, server system
120 may immediately respohd upon receiving the second request, or server
system 120 may delay for a short period of time to allow more messages to
accumulate. ' .

In operation, a series of error-free transfers may proceed as follows.
Clhient system 110 sends a first request. Server system 120 receives the first
request but does not respond. A short time later, client system 110 sends a

second request. Server system 120 responds to the first request after the

CA 02334971 2000-12-06

WO 99/64958 11 PCT/US99/13068 -

second request is received. Client system 110 continues to send more
requests and, for each new request, server system 120 responds to the

. previbus request. In this fashion, client system 110 and server system 120
work together to keep one request outstanding at server sy stem 120 so that
server system 120 can always respond.

In various embodiments, the delay and the maximum number of
messages 1n a bundle can be optimized to achieve increased throughput and
to approximate the throughput of a TCP/IP connection. The
implementation can be transparent to higher level applications such as client
process 210 and server process 310. For example, an application written
assuming a direct TCP/IP connection between client system 110 and server
system 120 can be switched to using the HTTP protoéol with no changes to
the application code or behavior, and for many applications, with only
negligible degradatibn in performance.

In alternate embodiments, server system 120 may hold more than
one outstanding request so that, for instance, server system 120 can send
several .responses in close succession to handle a large data block. The
numbér of requests held outstanding by server system 120 is limited,
however, by factors such as the size of buffer 220 1n client system 110, the
time duration before client system 110 times out, and the maximum bundie
size. For instance, since meésages are only removed from buffers upon
notification that the messages were received, messages accumulate in buffer
220 1f no responses are received. Also, client system 120 times out and re-
sends messages when it assumes an error has occurred. If the number of
accumulated messages exceeds the maximum bundle s1ze, the number of

requests client system 110 sends could rapidly increase, needlessly wasting

bandwidth.

- ——— ¢ A e A A —— 1 —p

CA 02334971 2000-12-06

WO 99/64958 1 PCT/US99/13068 -

Figure 4 illustrates one embodiment of an HTTP request in more
detail. An HTTP request includes header information which identifies it as
an HTTP request, specifies the destination of the request, and specifies
various additional characteristics. The header can be followed by data in any
format. In the illustrated embodiment, the data includes a prefix indicating
which messages, if any, client system 110 received in the last response from
server system 120.' Here, the prefix indicates that client system 110
received messages 1 through N in the last response. After the prefix, the
request also includes copies of all the messages’. I through M stored in buffer
220. When the request is received by server system 120, server system 120
will provide messages 1 through M to server process 310. Server system
120 will also remove messages 1 through N from the messages stored in
‘buffer 320 and send only the remaining messages, if any, in the next
response. -

Figure 5 illustrates one embodiment of an HTTP response. Like the
request, the response includes header information which identifies it as an
HTTP response corresponding to a particular HTTP request, specifies the
destination, and specifies various additional characteristics of the response.
The header can be followed by data in any format. In the illustrated
embodiment, the data includes a prefix indicating which messages, if any,
server system 120 received in the last request. Here, the prefix indicates
that server system 120 received messages 1 through M in the last request.
After the prefix, the response also includes copies of the messages 1 through
N stored 1n buffer 320. When the response is received by client system 110,
client system 110 will provide messages 1 through N to client process 210,
remove messages 1 through M from the messages stored in buffer 220, and

send only the remaining messages, if any, in the next request.

CA 02334971 2000-12-06

WO 99/64958 3 ' PCT/US99/13068 -

‘Neither system removes a message from its buffer before receiving an
indication that the message was received. Also, as discussed above, client
system 110 will send a request if a response is not received within a certain
amount of time. For example, if a request never reaches server system 120
for whatever reason, client,system 110 will send another request including
the same messages and any additional messages that may have accumulated.

- Similarly, if a response never arrives, client system 110 will' send another
request and server system 120 will send another response including the same
~messages and any additional messages that may have accumulated. '
Furthermore, if a request or 2 response 1S received, but the messages are
unreadable, the corresponding returned prefix will indicate that the messages
were unreadable and the messages will be resent. In this rhanner, the present
invention provides reliable message transmission over inherently unreliable
' communications media.

Figure 6 illustrates the procedure executed by one embodiment of
client system 110. In block 610, client system 110 sends out an HTTP
request, including copies of any messages stored in buffer 220, as well as an
indicator of which messages, if any, client system 110 received in the last
response. If a request is a first request, the last response did not include any
messages, or the messages from the last response were unreadable, the
indicator will indicate that zero messages were received. While client system
1 10 walits to receive a response, additional out-going messages, if any, are
stored in buffer 220, in blocks 620 and 630. If a certain number of messages

' accumulate, client system 110 will proceed to block 640. Since no response
was received, no action will be taken in block 640, and client system 110
will return to block 610 and send out another request including the additional

messages. For instance, if the maximum bundle size is ten messages, and ten

CA 02334971 2000-12-06

WO 99/64958 14 PCT/US99/13068 .

additional messages accurnulate, another request including the ten messages
will be sent.

If, in block 630, a response is received before the certain number of
messages accumulate, the process will again proceed to block 640. When a
response is received, the response will include a prefix and any messages
sent from server system 120. The prefix will indicate which messages, if
any, server system 120 received in the last request. If the request contained
no messages, or there was an error and no messages were feadable, the prefix
will indicate zero messages. Client system 110 will remove any indicated
' messages from bufter 220 in block 640. Any messages included in the
- response will also be provided to client process 210. Then, the procedure
loops back to block 610 and a new request is sent including a prefix and any
stored messages. ‘

As discussed above, depending on factors such as the available
-~ bandwidth and the number of stored messages, client system 110 may send
a request immediately upon receiving a response, or it may delay for a
period of time to allow more messages to accumulate.

Client system 110 may time out in block 630 before a response is
received or a bundle of additional messages accumulate. For instance, even if
the maximum bundle size 1s ten messages and only three have accumulated,
client system 110 will time out after a certain amount of time . An error
may have occurred or server system 120 may be waiting for a second
request. In either case, client system 110 will proceed to block 640. Since
no response was received, no action will be taken in block 640 because no
messages have been designated and no messages have been recetved. Instead,
client system 110 will proceed to block 610 and send out any stored

messages, including the messages sent in the first request, up to a maximum

bundle size. If the number of accumulated messages exceeds the maximum

. P s A 1 s e WY P ——— W) s =g A AU A YA IRl p s, s L S AT I ST IR t:!.'\'.‘.:lf'.j'f‘—"’,- LCRRCL LT b Cl s L

CA 02334971 2000-12-06

WO 99/64958 15 PCT/US99/13068 -

bundle size, client system 110 may send more than one request.

Furthermore, client system 110 may indicate that a connection has failed
after a certain number of requests have been sent without receiving a
response.

Figure 7 illustrates the pi'ocedure executed by one embodiment of
server system 120. In block 710, server system 120 stores out-going
messages, 1f any, and waits for a first request in block 720. If a first request
is received, the request will include a prefix indicating which messages, if
any, the client system recetved in the last response. If the last response did
" not include any messages or there was an error and no messages were

readable, the preﬁx will indicate that zero messages were received. The
request will also include any messages sent from client system 110. In block
730, server system 120 will remove any indicated messages from those
stored in buffer 320 and provide any incoming messages to server process
310. Then, server systern 120 will hold the first request until a second
request is received 1n block 740 or until a certain number of messages have
accumulated in blocks 741 and 745. For instance, if the maximum bundle
size 1s ten messages and ten messages have accumulated, then server system
120 will proceed from block 741 to block 744 even though a second request
has not been received. .In block 744, server system 120 will send a response
corresponding to the first request including the stored messages, and return
to block 710 to wait for another first request.

If, in block 740, a second request is received, server system 120 will
proceed to block 750 even if no messages have accumulated. In block 750,
any indicated messages will be deleted from buffer 320 and any incoming

‘messages will be provided to server process 310. In block 760, a response
corresponding to the first request will be sent out including any stored

messages. Server system 120 will return to block 740 to wait for another

CA 02334971 2000-12-06

WO 99/64958 | 16 ' PCT/US99/13068 -

request or a full bundle of messages. If another request is received, client
system 120 is already holding one request, so the new request will be treated
like a second request and client system 120 will proceed through block 750

- and send out another response in block 760. Furthermore, as long as one
request is held at block 740, any time a bundle of messages accumulate,
server system 120 can i1ssue a response corresponding to the held request.

As discussed above, depending on factors such as the available
bandwidth and the number of stored messages, server system 120 may send
a response immediateiy upon receiving a second request, or it may delay for
a period of time to allow more messages to accumulate. Also, 1n certain
embodiments, server system 120 will time out if a request is not received
within a certain time frame, in which case server system 120 may indicate
that a connection has failed.

Once the HTTP conneétion i1s established between client system 110
and server system 120, either system can terminate the connection in any of
a number of ways. For instance, a request or a response could include a
predetermined termination message.

In alternate embodiments, the indications of which mességes were
received in the last transmission can be provided in any manner as long as
the appropriate information is provided and the information can be
identified by the appropriate system. For example, a suffix could be used,
or messages could be individually number rather than specified in a range so
that individually lost messages could be identified.

Any number of hardware systems can be used to perform the
functions of client system 110 or server system 120. For example, each
system may be represented by a broad category of computer systems
known in the art, such as a computer system equipped with a high

performance microprocessor(s), such as the Pentium® processor, Pentium®

CA 02334971 2000-12-06

WO 99/64958 o 17 | PCT/US99/13068 -

Pro processor, or Pentium® II processor manufactured by and commonly
available from Intel Corporation of Santa Clara, California, or the Alpha®
processor manufactured by Digital Equipment Corporation of Maynard,
Massachusetts.

Figure 8 illustrates one embodiment of a suitable hardware system
800.' In the illustrated embodiment, hardware system 800 includes
microprocessor 810 coupled to high performance bus 805, which is coupled
to input/output (I/0O) bus 815 through bus bridge 830. Temporary memory
820 is coupled to bus 805. Permanent memory 840 is coupled to bus 815.
Display device 870, keyboard 880, communications interface 850, and
general purpose 1/0 860 are all coupled to bus 815. Communications
interface 850 can couple hardware system 800 to internet 130. General
purpose [/O 860 can couple hardware system 800 to any of a numbér of
external devices.

Certain embodiments may include additional components, may not

require all of the above components, or may combine one or more
components. For instance, temporary memory 820 may be on-chip with
microprocessor 810. Alternatively, permanent memory 840 may be
‘ eliminated and temporary memory 820 may be repiaced with an electrically

erasable programmable read only memory (EEPROM), such as a Flash
memory, wherein software routines are executed in place from the
EEPROM. Some implementations may employ a single bus, to which all of
the components are coupled, or a number of additional buses. Additional
components may also be included in the hardware system, such as additional
processors, storage devices like a CD ROM, memories, and other peripheral
components known 1n the art.

In one embodiment, the procedures of client system 110 or server

system 120, as discussed above, are implemented as a series of software

CA 02334971 2000-12-06

WO 99/64958 18 PCT/US99/13068 -

routines run by hardware system 800. These software routines comprise a
plurality or series of instructions to be executed by a microprocessor in a
hardware system, such as microprocessor 810. Initially, the series of
instructions can be stored on a storage device, such as permanent memory
840. It is to be appreciated, however, that the series of instructions can be
stored using any conventional storage medium, such as a diskette, CD-
ROM, magnetib tape, digital video or versatile disk (DVD), laser disk,
ROM, Flash memory, etc. It is also to be appreciated that the series of
instructions need not be stored locally, and can be received from a remote
storage device, such as another server system on any of a number of
networks, a CD ROM device, a floppy disk, etc. The instructions may be
copied from the storage device into temporary memory 820 and then
accessed and executed 'by microprocessor 810. t In one implementation, these
software routines are written in the JAVA'™ programming language. It is to
be appreciated, however, that these routines may be implemented in any of
a wide variety of programming languages.

In alternate embodiments, client system 110 or server system 120
are implemented in discrete hardware or firmware. For example, one or more
application specific integrated circuits (ASICs) could be programmed with
the above described functions of client system 110 or server system 120. In
another exampile, client system 110 or server system 120 could be
implemented in one or more ASICs on an additional circuit board and the
circuit board could be inserted into hardware system 800.

' The present invention has a wide range of uses. For instance, it can
be used by virtually any distributed program to traverse virtually any
firewall which allows HTTP formatted transactions. Furthermore, the

present invention can use any protocol format which is permitted to initiate

W, T s S A WA Y

CA 02334971 2000-12-06

WO 99/64958 19 PCT/US99/13068 -

bi-directional communications from behind a firewall. HTTP/1.0 is just one
such format. HTTP/1.1 and other such formats can also be used.

Thé present invention may be applied to a variety of distributed
programs executing on a variety of networks including intranets.
Furthermore, the present invention can be used by multiple client systems
concurrently to access one or more servers through multiple firewalls.
Therefore, for the purposes of this patent, clieni system refers to any
system which makes requests on any other system. Similarly, server
system refers to any system to which requests are made. A system can be
both a client system and a server system concurrently.

Thus, a method and apparatus for allowing distributed programs to
traverse firewalls is described. Whereas many alterations and modifications
of the present invention will be comprehended by a person skilled in the art
after having read the fore gbing description, it 1s to be understood that the
particular embodiments shown and described by way of illustration are in no
way intended to be considered limiting. Therefore, references to details of

particular embodiments are not intended to limit the scope of the claims.

e — - —— . . . ——— -
.. C e sime e AN RPAANETYE W ot e e AT S PR e A el ih WY ATy iy b B Rl el el ot T e bt et -
e e e e m g =} o Yeee Al es A e ¢ mr mm § =MLV MWNRM S 2wty tswaep fee s AT T A AT Y I T T e R T

CA 02334971 2000-12-06

WO 99/64958 0 PCT/US99/13068 -
CLAIMS
What is claimed is:

1. A method comprising:
' storing a first set _of: at least one message at a client system;
sending a first request to a server system, said first request including
a copy of the first set of messages; and
waiting to receive a first response at the client system from the
server system, said first response including a first indication of which
messages of the first set of messages were received from the client system in

the first request, wherein requests and responses are formatted according to

a first protocol, said first protocol operative to traverse a firewall.

2. The method of claim 1 further comprising:

storing from zero to N first additional messages at the client system;

sending a second request to the server system if a particular number
of the first additional messages accumulate, said second request including a
copy of the first additional messages stored at the client system:;

sending the second request to the server system if a particular time
passes before receiving the first response, said second request including a
copy of the first set of messages and a copy of the first additional messages

stored at the client system;

- removing the first indicated messages from the client system if the
first response is received; and
sending the second request to the server system if the first response

is received, said second request including a copy of any messages stored at

the client system.

3. The method of claim 2 further comprising:

CA 02334971 2000-12-06

WO 99/64958 71 PCT/US99/13068 -

sto'ring a second set of at least one message at the server system:;

waiting to receive the first request and the second request from the
client system;

sending the first response to the client system if the first request is
received and if a particular number of the second set of messages accumulate
at the server system, said first response further including a copy of the
second set of messages; and

sending the first response to the client system if the second request
is received, said first response further including a copy of the second set of

messages, and said first response corresponding to the first request.

4. The method of claim 3 further comprising:

sending a third request to the server system in response to receiving
the first response, said third request including a secbnd indication of which
messages of the second set of messages were received from the server

system.

J. The method of claim 4 further comprising:

storing from zero to M second additional messages at the server
system;

watting to receive the third request from the client system:;

removing the second indicated messages from the server system in
response to recerving the third request; and

sending a second response to the client system in response to
receiving the third request, said second response including a copy of any
messages stored at the server system, and said second responSe . -

corresponding to the second request.

A A B VPSR, B e e e o ¢ M Y ey e Ay et g i T NS A YT S Py AR, AN SA Y

I T Loy i R g e e e et S iet s o T o LSS T P PRIV & w'e manse's .
¢ s R T L e - A AL A =CL T A 4 TN .

CA 02334971 2000-12-06

WO 99/64958 79 PCT/US99/13068 -

6. The method of claim 1 wherein the firewall prevents communications
formatted according to a second protocol between the client system and the

server system.

7. The method of claim 6 wherein the first protocol is a HyperText
Transfer Protocol (HTTP) and the second protocol is a Transmission

Control Protocol/ Internet Protocol (TCP/IP).

8. The method of claim 6 wherein the storing, sending, and waiting are

performed automatically in response to detection of the firewall.

9. A method comprising:

storing a first set of one or more messages at a server system;

waiting to receive a first request and a second request from a client
system;

sending a first response to the client system if the first request is
received and a particular number of messages accumulate at the server
system, said first response including a copy of the first set of messages; and

sending the first response to the client system if the second request
1s received, said first response including a copy of the first set of messages,
and said first response corresponding to the first request;

wherein requests and responses are formatted according to a

protocol, said protocol operative to traverse a firewall.

10. The method of claim 9 wherein the first request includes a copy of a
second set of one or more messages stored at the client system, and the first
response includes an indication of which messages of the second set of

messages were received from the client system in the first request.

CA 02334971 2000-12-06

WO 99/64958 73 | . PCT/US99/13068 -

11. The method of claim 9 further comprising:

storing additional messages at the server system:;

waiting to receive a third request from the client system, said third
request including an indication of which messages of the first set of messages
were received by the client.system;

removing the indicated messages from the server system in response
to receiving the third request; and

sending a second response to the client system in response to
receiving the third requeS‘st, said second response including a copy of any
messages stored at the server system, and said second response

corresponding to the second request.

12. An apparatus comprising:

a client system to store messages, to send a request to a server
system, said request including a copy of the messages, and to receive a
response at the client system from the server system, said response
including an indication of which messages of the included messages were
received from the client system in the request, wherein the request and the
response are formatted according a protocol, said protocol operative to

traverse a firewall.

13. The apparatus of claim 12 wherein the client system includes:
a buffer to store the messages; and
a client process to send the request and receive the response over a

HyperText Transfer Protocol (HTTP) gateway.

14. An apparatus comprising:
a server system to store messages, to receive a first request and a

second request from a client system, and to send a response corresponding,

CA 02334971 2000-12-06

WO 99/64958 94 'PCT/US99/13068 -

to the first request to the client system in response to receiving the second
request, said response including a copy of the first set of messages, wherein
the first and second requests and the response are formatted according to a

protocol, said protocol operative to traverse a firewall.

»

15. The apparatus of claim 14 wherein the server system includes:
a buffer to store the messages; and
a server process to receive the first and second requests and to send

the response over a HyperText Transfer Protocol (HTTP) server.

16. A machine-readable storage medium having stored thereon machine
executable instructions, the execution of said instructions implements a
method comprising:

storing a set of at least one message at a client system;

sending a request 10 a server system, said request including a copy of
the set of messages; and

waiting to receive a response at the client system from the server
system, said response including an indication of which messages of the set
of messages were received from the client system in the request, wherein the
request and the response are formatted according to a protocol, said protocol

~operative to traverse a firewall.

17. A machine-readable storage medium having stored thereon machine
executable instructions, the execution of said instructions implements a
method comprising:

storing a set of one or more messages at a server system;

waiting to receive a first request and a second request from a client

system;

CA 02334971 2000-12-06

WO 99/64958 75 PCT/US99/13068 -

sending a response to the client system if the first request is received
and a particular number of messages accumulate at the server system, said
response including a copy of the set of messages;

sending the response to the client system if the second request is

received, said response including a copy of the set of messages, and said

response corresponding to the first request;
wherein the first and second requests and the response are formatted

according to a protocol, said protocol operative to traverse a firewall.

CA 02334971 2000-12-06

PCTAUS99/13068 _

WO 99/64958

/6

]

Svl

(N) W3LSAS
CIN3MD

_ . S¥L _

(1) W3ILISAS
IN3D

| Ol

0zl

WALSAS
S ENY-E N

oy
JINY3INI

_ 0Gl
'310H~d001 d1H

\

Oyl
TIVMAAL

\

091
dI/dOlL

NJLSAS
INAIO

SUBSTITUTE SHEET (ruie 26)

A T N PYRNEL R A P LR Y AL ¢ S A MR, e e e s

Mt s & T U T

e e e e e e L R ;/V AN TN Sl AT

CA 02334971 2000-12-06

WO 99/64958

TCP/IP
160 FIREWALL
140
CLIENT ' |
PROCESS BUFFER
' 220 .
2.2 —— HTTP
LOOP—HOLE
150
HTTP
GATEWAY T0/FROM
230 1__] SERVER
CLIENT SYSTEM 110 SYSTEM
= - 120
TCP/IP
160
-

TO/FROM
CLIENT
SYSTEM

110

SUBSTITUTE SHEET (rule 26)

PCT/US99/13068 .

2/6

SERVER

BUFFER PROCESS

320

310

HTTP
SERVER

330

SERVER SYSTEM 120

FIG. &

..............

CA 02334971 2000-12-06

WO 99/64958 PCT/US99/13068
3/6

HTTP FORMATTED HTTP FORMATTED

REQUEST RESPONSE
HTTP HEADER HTTP HEADER

MESSAGES 1-N MESSAGES 1—M
RECEIVED RECEIVED
MESSAGE 1 - MESSAGE 1

MESSAGE M MESSAGE N

FIG. 4 ’ FIG. S

SUBSTITUTE SHEET (rule 26)

apeime - . [A — -e - .. —r—-- - NN - wiuvy cwasee RS el VAN YL B 8 WY e — 4+
- e g ._..:,._..:.’.'.. . .,'..'...,..,_1.....'. T TNt mieas i Dt SRR, R y——— R -y W r e —— e, Y — ‘.-.—:-‘ ‘.-?;.a‘mym": "\-’v.'f":l. suw L TN LR

CA 02334971 2000-12-06

WO 99/649358 PCT/US99/13068

64/ 6

SEND HTTP REQUEST

INCLUDING BUNDLED

MESSAGES, IF ANY,

AND INDICATOR
610

STORE MESSAGES

IF ANY
620

FULL
BUNDLE,
RESPONSE RECEIVED,~_ _NO

. OR ERROR TIME OUT
?
630

YES

DELETE DESIGNATED
MESSAGES, IF ANY,
AND PROVIDE INCOMING
MESSAGES, IF ANY
6540

FIG. ©

SUBSTITUTE SHEET (rule 26)

A BN i e gt e e m ks Gk d A e L 4 L RAR Y) S e A by = A TN AT g eccm e P
s 2 K RGN Pere, teas se se eams TR e e A WIS Y h;;rl“-v\\ :_,w'... _Az-l_'::'p';'_vncw' -..w’-\.\'_‘A!V xll Anrr . - - —— - ——— b . b oy SN AN Tk o sl AR ATV P B ETAS T L AT - — Ay -
' .

CA 02334971 2000-12-06

WO 99/64958 | PCT/US99/13068

5/ 6

STORE MESSAGES, IF ANY
710

FIRST
REQUEST
RECEIVED

N\ ?
720

YES

NO
I DELETE INDICATED MESSAGES, IF ANY,
AND PROVIDE INCOMING MESSAGES,

IF ANY

730
e

SECOND UL
REQUEST NO / gunpDLE \NO STORE MESSAGES,
RECEIVED ” IF ANY
? 41 745
740 '-7--‘-’-’-‘- —
YES YES
DELETE INDICATED '
MESSAGES, IF ANY, SERD e
RESPONSE INCLUDING
AND PROVIDE
INCOMING MESSAGES BUNDLED MESSMlacs
> AND INDICATOR
IF ANY by
750 =
SEND HTTP e .
RESPONSE INCLUD
BUNDLED MESSAGES, - FIG. 7
IF ANY, AND
INDICATOR
760

1

SUBSTITUTE SHEET (ruie 26)

T R T b ar B T e R e B L e U R b i e e o A e LA el PENEING RS A Y Gt e w4 SR NIES M W v AR AL AT T AR e
"N . 0 ‘. R L ..I-'.'. J

CA 02334971 2000-12-06

PCT/US99/13068 -

WO 99/64938

6/6

088

QaVO8AINA

0.8
3013
AV1dSIA

008

G98
S30IA3A
LCEREINER

098

0/1 3S0d¥Nd

B\-ELER,

go8
)

o¢l
1INYALNI

0S8

JOV4431INI
SNOLLVOINNWNNOD

G 18

0z8
AHOW3N
AUVHOdN3L

0£8
390R48
sng

0v8
AHOWIN
ININVANY3d

0i8

d0SS300dd

OdOIN

SUBSTITUTE SHEET (RULE 26)

— . ee ee - ————

(BEGIN)

'

STORE MESSAGES, If ANY |
710 ‘

NO

DELETE INDICATED MESSAGES, IF ANY,
AND PROVIOQE }ngNG MESSAGES,

BoRer £ \NO STORE | Mf'%’ﬁci
741 745

DELETE_INDICATED SEND

| MESSAGES, X ANY, Rggsg&sé .I‘NCLUDING

INCOMING MESSAGES.| 1™ AND INDICATOR
750 ™

' -

SEND HTTP
RESPONSE INCLUDING
BUNDLED MESSAGES,

IF ANY, AND
INDICATOR
760

fOm

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - abstract drawing

