
US 2011 0087640A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/008764.0 A1

DOdd et al. (43) Pub. Date: Apr. 14, 2011

(54) DATA COMPRESSION AND STORAGE Publication Classification
TECHNIQUES (51) Int. Cl.

G06F 7/30 (2006.01)
(76) Inventors: Brian Dodd, Longmont, CO (US); (52) U.S. Cl. 707/693; 707/E17.005

Michael Moore, Lafayette, CO (57) ABSTRACT
Provided are systems and methods for use in data archiving.

(21) Appl. No.: 12/970,699 In one arrangement, compression techniques are provided
wherein an earlier version of a data set (e.g., file folder, etc) is

(22) Filed: Dec. 16, 2010 utilized as a dictionary of a compression engine to compress
e J. V.9 a Subsequent version of the data set. This compression iden

O O tifies changes between data sets and allows for storing these
Related U.S. Application Data differences without duplicating many common portions of

(63) Continuation of application No. 1 1/733,086, filed on the data sets. For a given version of a data set, new informa
Apr. 9, 2007, now Pat. No. 7,860,843. tion is stored along with metadata used to reconstruct the

s s v - Vs version from each individual segment saved at different
points in time. In this regard, the earlier data set and one or

(60) Provisional application No. 60/744,477, filed on Apr. more references to stored segments of a Subsequent data set
7, 2006. may be utilized to reconstruct the Subsequent data set.

OC

N
OBTANAN INITIAL

AASE

covPRESS THE INTIAL
DAASE TO GENERATE
A CIPRESSE i !

104. s

IZ NiAAASE
C ENFY CHANGESN
AS 3SEQENVERSION

OF THERSIA SE
CONDON

COMPRESSION ENGIN
TNA. AASE

8.

COMRESS SUBSEQENT
DAASEW
CONDONED

COMPREssign ENGINE

GENERATECOPRESSED
FILE NCAWEE
FFERENCES BE WEEN

DATASETS

STORE COMPRESSEDFILE
i.

Patent Application Publication

(1) IOvidio

Patent Application Publication Apr. 14, 2011 Sheet 2 of 10 US 2011/0087640 A1

Patent Application Publication

100

N

Apr. 14, 2011 Sheet 3 of 10

OBTANAN INITIAL
DAASE

COMPRESS THE INITIAL
DAASO GENERATE
A COfPRESSED FE

04.

Urize NADATASET
O DENFY CANGESN
A SUBSEQUENVERSION

OF THE BAA SE
coNDITION

108

AASE WH
CONDONED

0.

FE NOCAVE OF

OAA SES
12

COMPESSION ENGINE
| WITH INITIALDATASET

COMPRESSSUBSEQUENT
| COMFRESSION ENGINE

GENERATEMPRESSED
DIFFERENESBETWEEN

44

FG.3

STORE COMPRESSEDFILE

US 2011/0087640 A1

Patent Application Publication

HASHCOMPONENTsoF

Apr. 14, 2011 Sheet 4 of 10

NTA DAASEO
CREATESIGNATURE
AVNGA EAS ONE
DENTEFEER HASH AND
ONE CONTENT HASH

WERSON OF AASE

124

SUBSEQUENT DATASET

HAshconTENT

OBANSBSEQUEN

FOR BACK-UP

HASH IDENTIFIER
COMPONENS OF SUSSELENVERSION
OF NEW DATASE

DENFY NACE)
ASHES FOR

28

ASSOCATED WITH
NACHED ASHES

30

HASHES OF SUBSEQUENT
DATATCONTENASHES

COMPARE CONTEN

OF NAAASE

SORE UNMACE)
CONTEN

134

US 2011/0087640 A1

Patent Application Publication Apr. 14, 2011 Sheet 5 of 10 US 2011/008764.0 A1

SCANDATA
SORCE

WRef : g

... CO.ON
CONTEN
OBEC

STORE (OS) M3
(DeltaStore)

10 COMPUTE LF
BRef 12

FINATES
BRef OFIND
WReHA

RESOLVESO
BASELNE

RSS
OEERMNE
FREBASES
REQUIRE
14a

xRef=hash add {timestamp
BLOB:hash add

"RECYCLE"
ODEST -o-
WERSONS

US 2011/008764.0 A1 Apr. 14, 2011 Sheet 6 of 10 Patent Application Publication

9

'el

?@ : «GÐ |

Patent Application Publication Apr. 14, 2011 Sheet 7 of 10 US 2011/0087640 A1

Y OPENSTREAM -
- EASE
- AN ARCW

NiOS
RECENWRef
FORARSHIVE

OPENM3
EA 808 <35ETA)

Salem:
OEEC

STORE (OS)

10BJECN
SHAS BASELENE-> "SOS"

(DICTIONARY

REspy. To FE OPEN FILESRCT)

Patent Application Publication Apr. 14, 2011 Sheet 8 of 10 US 2011/008764.0 A1

upsta /
- BLOB ". N/ 5

READ - S-9
M3 FEE OBEC

RCTIONARY2>

| BASELNET
(DICTIONARY

READ ||
FILE (DIRECT)

US 2011/008764.0 A1 Apr. 14, 2011 Sheet 9 of 10 Patent Application Publication

#ffff}}{}}:$ ÅBYWidd

„CJ?

Patent Application Publication

) ORIGINALBKF 2) REMAP: FILESTREAM
LE SHOWING

FE SEGiENS

FEA MEA+
BOBADDRESSCO
000000000000000
000000000000000

FEE SES BOBADDRESS CO2
00000000000000

FEC Es: BOS ARESS 03
000000000000000
00000000000000
FED E. BOBARESS004
00000000000000
000000000000000
OOOOOOOOOOOOOO
000000000000000

Apr. 14, 2011 Sheet 10 of 10

3.
AAREPLACE) WH SEGMENS ARE
808 ADRESS AND
AERO FEDARRAY

COMPRESSED

FEA (MEA) 00 L
(One
FILEB (METAL

FILED (META)004

F.G. 1 O

g

US 2011/0087640 A1

4) RESULIANT
BKF FES

200X S.A.R

US 2011/008764.0 A1

DATA COMPRESSION AND STORAGE
TECHNIQUES

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 11/733,086 entitled, “Data Compression
and Storage Techniques', having a filing date of Apr. 9, 2007,
and which claims priority to U.S. Provisional Application No.
60/744,477, entitled “Content Factoring for Long Term Digi
tal Archiving having a filing date of Apr. 7, 2006, the entire
contents of which are incorporated by reference herein.

FIELD

0002 The present application is directed to storing digital
data. More specifically, the present application is directed to
utilities for use in more efficient storage of digital data
wherein certain aspects have application in data archiving.

BACKGROUND

0003 Organizations are facing new challenges in meeting
long-term data retention requirements and IT professionals
have responsibility for maintaining compliance with a myriad
of new state and federal regulations and guidelines. These
regulations exist because organizations, in the past, have
struggled with keeping necessary information available in a
useable fashion. Compounding this problem is the continued
explosive growth in digital information. Documents are
richer in content, and often reference related works, resulting
in a tremendous amount of information to manage.
0004. In order to better understand underlying access pat

terns, it's helpful to first briefly describe the classification of
digital information. The collection of all digital information
can be generally classified as either structured or unstruc
tured. Structured information refers to data kept within a
relational database. Unstructured information is everything
else: documents, images, movies, etc. Both structured and
unstructured data can be actively referenced by users or appli
cations or kept unmodified for future reference or compli
ance. Of the structured and unstructured information, active
information is routinely referenced or modified, whereas
Inactive information is only occasionally referenced or may
only have the potential of being referenced at Some point in
the future. The specific timeframe between when information
is active or inactive is purely Subjective.
0005. A sub-classification of digital information describes
the mutability of the data as either dynamic or fixed. Dynamic
content changes often or continuously, Such as the records
within a transactional database. Fixed content is static read
only information; created and never changed. Such as Scanned
check images or e-mail messages. With regard to long-term
archiving inactive information, either structured or unstruc
tured, is always considered to have fixed-content and does not
change.
0006 Over time, information tends to be less frequently
accessed and access patterns tend to become more read-only.
Fixed-content read-only information is relatively straightfor
ward to manage from an archiving perspective. Of course,
even at the sub-file level dynamic information, either struc
tured or unstructured, may contain large segments of content
which are static. Examples of this type of information include
database files where content is being added, and documents
which are edited.

Apr. 14, 2011

0007 Irrespective of the type of digital information, fixed
or dynamic, many organizations back up their digital data on
a fixed basis. For instance, many organizations perform a
weekly backup where all digital data is duplicated. In addi
tion, many of these organizations perform a daily incremental
backup Such that changes to the digital data from day-to-day
may be stored. However, traditional backup systems have
several drawbacks and inefficiencies. For instance, during
weekly backups, where all digital data is duplicated, fixed
files, which have not been altered, are duplicated. As may be
appreciated, this results in an unnecessary redundancy of
digital information as well as increased processing and/or
bandwidth requirements. Another problem, for both weekly
as well as incremental backups is that minor changes to
dynamic files may result in inefficient duplication of digital
data. For instance, a one-character edit of a 10 MB file
requires that the entire contents of the file to be backed up and
cataloged. The situation is far worse for larger files such as
Outlook Personal Folders (pst files), whereby the very act of
opening these files causes them to be modified which then
requires another backup.
0008. The typical result of these drawbacks and inefficien
cies is the generation of large amounts of back up data and in
the most common back-up systems, the generation of mul
tiple data storage tapes. In this regard, the inefficient backups
result in the generation of multiple backup tapes, which then
have to be stored. Typically, such tapes are stored off-line.
That is, the tapes may be stored where computerized access is
not immediately available. Accordingly, to recover informa
tion from a backup tape may require contacting an archiving
facility, identifying a tape and waiting for the facility to locate
and load the tape.
0009. As the price of disk storage has come down, there
have been attempts to alleviate the issues of tape backups
utilizing disk backups. However, these disk backups still
require large amounts storage to account for the inefficient
duplication of data. Accordingly, there have been attempts to
identify the dynamic changes that have occurred between a
previous backup of digital data and current set of digital data.
In this regard, the goal is to only create a backup of data that
has changed (i.e., dynamic data) in relation to a previous set of
digital data.
0010. One attempt to identify dynamic changes between
data backups and store only the dynamic changes is repre
sented by Capacity Optimized Storage (COS). The goal of
COS is to de-duplicate the redundancy between backup sets.
That is, the goal of COS is to try to compare the current data
set with a previously stored data set and only save the new
data. Generally, COS processing divides an entire set of digi
tal data (e.g., of a first backup copy) into data chunks (e.g.,
256 kB) and applies a hashing algorithm to those data chunks.
As will be appreciated by those skilled in the art, this results
in a key address that represents the data according to the hash
code/algorithm. When a new data set (e.g., a second back up
copy) is received for backup, the data set is again divided into
data chunks and the hashing algorithm is applied. In theory, if
corresponding data chunks between the first and second data
sets are identical, it is assumed that there has been no change
between backups. Accordingly, only those chunks which are
different from the first backup set are saved, thereby reducing
the storage requirements for Subsequent backups. The main
drawback to COS is that to significantly reduce the redun
dancy between backup sets, it is desirable to utilize ever
Smaller data chunks. However, as the size of the data chunks

US 2011/008764.0 A1

is reduced, the number of key addresses increases. Accord
ingly, the storage and indexing of the increased number of key
address works to eliminate the benefits of the reduced amount
of duplicate data.
0011 Use of COS processing allows for the creation of
disk accessible data back up thereby allowing for more ready
access to backed up data sets. In this regard, COS may be
incorporated into a virtual tape library VTL such that it emu
lates a tape storage device. The system allows the user to send
data to an off-site disk storage center for back up. However,
this requires that an entire data set be the transmitted to the
VTL, where the entire data set may be optimized (e.g., COS)
for storage. Further, for each Subsequent backup, the entire
data set must again be transferred to the offsite storage center.
As may be appreciated, for large organizations having large
data sets requiring backup. Such an off-site storage system
that requires transmission of the entire data set may involve
large bandwidth requirements to transfer the data the as well
as high processing requirements to optimize and compare the
data. Finally, organizations utilizing off-site VTL's are 100%
reliant on the backup application for restoration of their data
again leaving the user potentially exposed to the unavailabil
ity of information in the case of accidental deletion or disk
corruption.

SUMMARY

0012 Existing short-term data protection solutions are
cost prohibitive and do little to enable improved access to
archived information. The archive techniques described
herein provides a long-term solution to managing informa
tion as well as providing a solution that may be utilized in
disk-based archives. The techniques use existing disk
resources, and provides transparent access to collections of
archived information. The technique in conjunction with an
open architecture object based content store allows for large
increases (e.g., 20:1) in effective capacity of disk-based sys
tems with no changes to existing short-term data protection
procedures.
0013. In addition, to better optimize the long term storage
of content, the new techniques reduce the redundant informa
tion stored for a given data set. Adaptive content factoring is
a technique, developed by the inventors, in which unique data
is keyed and stored once. Unlike traditional content factoring
or adaptive differencing techniques, adaptive content factor
ing uses a heuristic method to optimize the size of each
quantum of data stored. It is related to data compression, but
is not limited to localized content. For a given version of a
data set, new information is stored along with metadata used
to reconstruct the version from each individual segment saved
at different points in time. The metadata and reconstruction
phase is similar to what a typical file system does when
servicing I/O requests.
0014. According to a first aspect of one invention, a
method and system (utility) is provided for storing data. The
utility entails receiving a first data set and compressing the
first data set using a dictionary based compression engine.
Such compression generates a first compressed file that rep
resents the first data set. This first compressed file is then
stored. This first compressed file may then be utilized to
identify changes in a Subsequent version of the first data set.
As utilized herein, it will be appreciated that data set is
meant to include, without limitation, individual data files as
well as folders that include a plurality of data files and/or
drives that may include a plurality of folders. In such

Apr. 14, 2011

instances, compressing the first data set may generate a cor
responding plurality of first compressed files.
0015. In one arrangement, using the first compressed file
to identify changes includes preloading a dictionary-based
compression engine with the first compressed file to define a
conditioned compression engine. That is, the first compressed
file may be loaded into the compression engine to define a
dictionary for the compression engine. If the first data set and
Subsequent data set are Substantially similar, use of the first
data set as a dictionary for the compression engine will result
in a highly compressed second data set. Accordingly, the
utility includes compressing the Subsequent version of the
first data set using the conditioned compression engine. In
this regard, a second compressed file is generated that is
indicative of the subsequent version of the first data set. This
second compressed file may also be indicative of changes
between the subsequent data set and the first data set. Further,
the second compression file may include one or more refer
ences to the first compressed file. The second compressed file
may be considerably smaller than the first compressed file. It
will be appreciated that multiple Subsequent sets of data may
be compressed utilizing one or more earlier data sets as a
dictionary for a dictionary based compression engine.
0016. In order to identify corresponding portions of the

first data set with corresponding portions of the second data
set (e.g., corresponding files) the utility may further entail
generating identifier information for one or more individual
portions of the data sets. For instance, hash code information
(also referred to herein as “hash information” and a “hash” or
“hashes') may be generated for individual portions of the data
sets. Further, Such hash information may be generated for
individual components of each individual portion of the data
sets. In one arrangement, one or more hash codes may be
associated with the metadata associate with a given file and
another hash code may be generated for the content of the file.
Accordingly, such hash codes may be utilized to identify
corresponding portions of the first data set and the Subsequent
data set for compression purposes. If no corresponding hash
codes exist for portions of the Subsequent data set, normal
compression methods may be utilized on those portions of the
Subsequent data set.
0017. According to another aspect, a system and method
(utility) is provided for compressing data. The utility includes
receiving a file and determining that a previous version of the
file has been previously stored. Once such a determination is
made, the file may be compressed using compression dictio
nary terms generated from the previous version of the file.
Accordingly, a compressed file is generated for the received
file. This compressed file may then be stored. The compres
sion dictionary terms may be generated from the previous
version of the file or a compressed version of the previous
version of the file. In either arrangement, the utility may
include preloading a compression engine with the previous
version of the file and buffering the received file in portions
with the compression engine. This may allow for Substan
tially matching the buffered portions of the received file with
like sized portions of the previous file.
0018. The determination that a previous version of the file
has been previously stored may be made in any appropriate
manner. For instance, files may be saved on a file by file basis
wherein a user selects the previously stored version of the file
during a back-up procedure. In another arrangement, hashes
associated with the version references (e.g., associated with
metadata of the files) may be utilized to determine relation

US 2011/008764.0 A1

ships between the files. In one arrangement, first and second
hashes are associated with the metadata of the previously
stored file and the received file. In such an arrangement a
corresponding first hash of the files may match (e.g., corre
sponding to a storage location) while a second corresponding
hash (e.g., a version reference) of the files may not match. In
this regard, it may be determined that the files are related but
have changes there between. Accordingly, it may be desirable
to compress the Subsequent file utilizing the previous file in
order to reduce Volume for back-up purposes.
0019. According to another inventive aspect, a system and
method (utility) is provided for use in archiving and/or storing
data. The utility entails generating an individual signature for
a data set such that the signature may be compared to Subse
quent data sets to identify corresponding or like portions and,
hence, differences between those data sets. Accordingly, like
portions of the data sets need not be copied in a back-up
procedure. Rather, only new portions (e.g., differences) of the
Subsequent data set need be copied for archiving/back-up
purposes.
0020. One aspect, the utility includes generating a first
signature associated with the first data set. Wherein generat
ing the first signature includes generating a first set of hashes
(e.g., hash codes) associated with metadata of the first data
set. In addition, a set of content hashes is generated for the
first data set that is associated with the content of the first data
set. For instance each individual file in a data set may include
a first hash associated with metadata (e.g. an identifier hash)
and a second hash associated with its content (e.g., a content
hash). Once generated, the signature including the first hashes
and the content hashes may be utilized individually and/or in
combination to identify changes between first data set and a
subsequent data set. For instance, an identifier hash of the first
data set may be compared with corresponding hashes of a
Subsequent data set. Based on Such comparison, it may be
determined that changes exist between one or more portions
of the first data set and the Subsequent data set. That is, it may
be determined if changes exist between one or multiple por
tions of the first and second data sets.
0021. In one arrangement, if an identifier hash of the sec
ond data set does not match an identifier hash of the first data
set, content associated with the unmatched identifier hash
may be compared to content of the first data set. More par
ticularly, that content may behashed and the resulting content
hash code may be compared to content hash codes associated
with the first data set. In this regard, even if the identifier of the
content does not match an identifier in the first data set, a
second check may be performed to determine if the content
already exists in the first data set. If the content hash code
exits, the content may not be transmitted to a storage location
or otherwise stored. If the contenthash code of the unmatched
identifier hash does not match a content hash code within the
first data set, that content may be stored at a storage location.
0022. In one arrangement, the identifier hash, which is
associated with metadata, may include first and second iden
tifier hashes. Each of these hashes may be associated with
portions of metadata. For instance, one of theses hashes may
be a sub-portion of the other hash. In this regard, finer com
parisons may be made between data sets to identify changes
there between.

0023. In a further inventive aspect, systems and methods
(utilities) are provided for allowing distributed processing for
archiving purposes. In this regard, rather than transferring an
entire data set to an archive location, the identification of

Apr. 14, 2011

changes between an archive data set and a current data set
may be performed at the location of the current data set (e.g.,
a data origination location). Accordingly, the only informa
tion that may be sent to the archive location may be differ
ences between a previously stored data set and the current
data set.
0024. According to one aspect, a first data set is received
for storage (e.g., at an archive/back-up location). Accord
ingly, a set of identifier hashes may be generated that are
associated with metadata of the first data set. Likewise, a set
of content hashes associated with the content of the first data
set are also generated. When it becomes necessary to back-up
a current set of data associated with the first data set, the
identifier hashes and contenthashes may be provided to a data
origination location associated with the first data set. These
hashes may be utilized at the data origination location to
determine changes between the first data set and the Subse
quent data set such that the changes may be forwarded to the
storage location. In this regard, the utility also entails receiv
ing data from the Subsequent data set that fails to match one or
both of the provided identifier hashes and/or the content
hashes. At Such time, newly received data may be hashed and
that hash information may be added to the existing hash
information for Subsequent back-up purposes.
0025. According to another aspect, a utility is provided
wherein a set of identifier hashes associated with metadata of
a previously stored data set are received. These identifier
hashes are compared to identifier hashes of a current data set.
At least a portion of this data set may form a subsequent
version of the previously stored dataset. Comparing of the
identifier hashes allows for identifying unmatched identifier
hashes of the current data set. Accordingly, a portion or all of
the content associated with the unmatched identifier hashes
may be sent to a storage location.
0026. In a further arrangement, the utility further includes
receiving a set of content hashes associated with content of
the previously stored data set. In Such an arrangement, con
tent hashes associated with the content of the unmatched
hashes of a current data set may be compared with the content
hashes of the previously stored data set. Accordingly, in Such
an arrangement, if neither the identifier hash nor the content
hash corresponds to a hash of the previously stored data set,
the unmatched content may be sent to a storage location.
0027. In the proceeding two aspects, the steps of sending/
providing and/or receiving may be performed by a direct
connection between, for example, a computer and a storage
location (e.g., direct attached storage, a removable hard drive
or other portable storage device) or may be performed by a
network connection. In the later regard, such network con
nection may include a wide area network, the internet, direct
attached storage network and/or peer computer.
0028. In a further aspect, a system and method are provid
ing for storing and providing access to a plurality of different
versions (e.g., sequential versions) of a data set. The utility
includes generating a catalog of the different data sets at
different points in time. Each catalog includes information
needed to reconstruct an associated data set at a particular
point in time. That is, rather than generating a full copy of a
particular data set for a point in time, the present utility
generates a catalog having references to the location of data
required to reconstruct a given data set.
0029. In one arrangement, the catalog may include various
hash codes for different streams of data (e.g., components of
a file). These hash codes may allow for identifying and locat

US 2011/008764.0 A1

ing the components of a given file within the catalog. Accord
ingly, these components may be reconstructed to form the file
in the form it existed when the catalog was generated. Stated
otherwise, rather than storing the data of a given file, the
catalog stores references to the location of the data associated
with the file such that duplicating components of the file is not
always necessary. Further, it will be appreciated that the
stored references of a given catalog may reference different
segments of a given file that may be saved at different times.

BRIEF DESCRIPTION OF THE DRAWINGS

0030 Exemplary embodiments are illustrated in refer
enced figures of the drawings. It is intended that the embodi
ments and figures disclosed herein be considered illustrative
rather than limiting.
0031 FIG. 1 illustrates long term storage requirements for
a data set.
0032 FIG. 2 illustrates changes to a data set between
versions.
0033 FIG. 3 illustrates a process for identifying differ
ences between related data sets.
0034 FIG. 4 illustrates a process for generating a signa
ture for a data set.

0035 FIG. 5 illustrates a process for storing data.
0036 FIG. 6 illustrates an accessible catalog of multiple
archive catalogs.
0037 FIG. 7 illustrates a process for retrieving data.
0038 FIG. 8 illustrates a process for reconstructing data.
0039 FIG. 9 illustrates storage of data over a network.
0040 FIG. 10 illustrates one embodiment of storing meta
data with content data.

DETAILED DESCRIPTION

0041 Reference will now be made to the accompanying
drawings, which assist in illustrating the various pertinent
features of the present invention. Although the present inven
tion will now be described primarily in conjunction with
archiving/back-up storage of electronic data, it should be
expressly understood that the present invention may be appli
cable to other applications where it is desired to achieve the
objectives of the inventions contained herein. That is, aspects
of the presented inventions may be utilized in any data storage
environment. In this regard, the following description of use
for archiving is presented for purposes of illustration and
description. Furthermore, the description is not intended to
limit the invention to the form disclosed herein. Conse
quently, variations and modifications commensurate with the
following teachings, and skill and knowledge of the relevant
art, are within the scope of the present invention. The embodi
ments described herein are further intended to explain modes
known of practicing the invention and to enable others skilled
in the art to utilize the invention in such, or other embodi
ments and with various modifications required by the particu
lar application(s) or use(s) of the present invention.
0042 Strict use of backup and restore processes alone for
the purpose of archiving are unacceptable for most regulated
environments. With regard to disk-based backup environ
ments using traditional methods are generally cost prohibi
tive. Two common methods to address increased availability
and minimize cost of disk storage are to incorporate either
Hardware Based Disk Libraries (HBDL), or Virtual Tape

Apr. 14, 2011

Libraries (VTL). Neither solution deals with data redundancy
issues and these solutions do little to reduce overall Total Cost
of Ownership (TCO).
0043. An alternate approach adopted by IT organizations

is to employ block level Snap-shot technologies, such as a
Volume shadow copy service, or similar hardware vendor
provided Snap-shot technology. In this scenario changed
blocks are recorded for a given recovery point. However,
these systems typically reset (roll-over) after a specified num
ber of Snap-shots or when a Volume capacity threshold is
reached. In all cases, after blocks are reused deleted informa
tion is no longer available. Furthermore, Snap-shot technolo
gies lack any capability to organize data suitable for long
term archiving.
0044 FIG. 1 shows the capacity required to manage a one
terabyte Volume for two years using a typical 4-week rotation
scheme that includes keeping monthly volume images to
address archiving requirements. This example models a 50%
compound annual growth rate of data. While the overall vol
ume of data to be backed up increases 50%, the data resources
required to back-up this data over a year's time based on
existing back-up techniques is nearly twenty times that of the
original content/data. Also shown is the near-linear Scaling,
with respect to the original content/data, which can be
achieved by using a disk-based archiving method based on
techniques (e.g., adaptive content factoring techniques) pro
vided herein. Note that the backend storage requirements are
reduced by nearly 20 fold (see axis labeled Effective Capacity
Ratio) while providing an increased number of recovery
points and improved near-line access to archived information.
The TCO approaches that of traditional tape-based backup
systems when deployed on low to mid-range disk storage.
0045. The archive technique disclosed herein is character
ized as a long-term data retention strategy that may also allow
for on-line/dynamic access to reference/stored information.
The technique utilizes adaptive content factoring to increase
the effective capacity of disk-based storage systems signifi
cantly reducing the TCO for digital archiving. Unlike tradi
tional backup and recovery, all the data managed can be
on-line and available. Further all the data within the archive
remains accessible until it expires. Integrated search and
archive collection management features improve the overall
organization and management of archived information.
0046. To better optimize the long term storage of content,
the new archiving techniques reduce the redundant informa
tion stored for a given data set. As redundant information is
reduced, fewer storage resources are required to store sequen
tial versions of data. In this regard, adaptive content factoring
is a technique in which unique data is keyed and stored once.
Unlike traditional content factoring or adaptive differencing
techniques, adaptive content factoring uses a heuristic
method to optimize the size of each quantum of data stored. It
is related to data compression, but is not limited to localized
content. For a given version of a data set, new information is
stored along with metadata used to reconstruct the version
from each individual segment saved at different points in
time. The metadata and reconstruction phase is similar to
what a typical file system does when servicing I/O requests.
0047 FIG. 2 shows the basic concept behind adaptive
content factoring. At To a data set Vo (a file, Volume, or
database) is segmented and the individual elements are keyed
and stored along with the metadata that describes the seg
ments and process used to reconstruct the data set. At T and
T the data set is updated Such that the data sets become V

US 2011/008764.0 A1

and V, respectively. However, rather than storing the entire
new versions of the data sets V and V only the changes that
represent the update portions of the data sets are stored along
with the metadata used to reconstruct versions V and V.
0.048. As will be further discussed herein, a novel method

is providing for identifying changes (e.g., data blocks 3' and
10) between an initial data set Vo and a subsequent data set V
Such that large sets of data chunks (e.g., files, directories etc)
may be compared to a prior version of the file or directory
Such that only the changes in a Subsequent version are
archived. In this regard, portions of the original data set Vo
(e.g., a baseline version) which have not changed (e.g., data
blocks 1.2 and 4-9) are not unnecessarily duplicated. Rather,
when recreating a file or directory that includes a set of
changes, the baseline version of the file/directory is utilized,
and recorded changes (e.g., 3' and 10) or delta are incorpo
rated into the recovered Subsequent version. In this regard,
when backing up the data set V at time T, only the changes
to the initial data set Vo need to be saved to effectively backup
the data set V.
0049. In order to identify the changes between subsequent
versions of a data set (e.g., Vo and V), the present invention
utilizes a novel compression technique. As will be appreci
ated, data compression works by the identification of patterns
in a stream of data. Data compression algorithms choose a
more efficient method to represent the same information.
Essentially, an algorithm is applied to the data in order to
remove as much redundancy as possible. The efficiency and
effectiveness of a compression scheme is measured by its
compression ratio, the ratio of the size of uncompressed data
to compressed data. A compression ratio of 2 to 1 (which is
relatively common in standard compression algorithms)
means the compressed data is half the size of the original data.
0050. Various compression algorithms/engines utilize dif
ferent methodologies for compressing data. However, certain
lossless compression algorithms are dictionary-based com
pression algorithms. Dictionary based algorithms are built
around the insight that it is possible to automatically build a
dictionary of previously seen strings in the text that is being
compressed. In this regard, the dictionary (e.g., resulting
compressed file) generated during compression does not have
to be transmitted with compressed text since a decompressor
can build it in the same manner of the compressor and, if
coded correctly, will have exactly the same strings the com
pressor dictionary had at the same point in the text. In Such an
arrangement, the dictionary is generated in conjunction with
an initial compression.
0051. The present inventors have recognized that a dictio
nary may, instead of being generated during compression, be
provided to a compressor for the purpose of compressing a
data set. In particular, the inventors have recognized that an
original data set Vo associated with a first time To as shown in
FIG. 2, may be utilized as a dictionary to compress a Subse
quent corresponding data set V at a Subsequent time T. In
this regard, the compressor utilizes the original data set Vo as
the dictionary and large Strings of data in the Subsequent data
set V may be entirely duplicative of strings in the first set. For
instance, as illustrated in FIG. 2, the actual storage of V at
time T may incorporate a number of blocks that correspond
to the data blocks of V at time T.That is, some of the blocks
in the second data set V are unchanged between data sets.
Therefore, rather than storing the unchanged data block (e.g.,
duplicating the data block) an identifier referencing the cor
responding data block from VO may be stored. Accordingly,

Apr. 14, 2011

Suchanidentifier may be very Small, for example, on the order
of 10 bytes. For instance, the identifier may references a
dictionary block of the baseline. In instances where there has
been a change to a block of data, for example, 3', the com
pressor may be operative to compress the changes of 3' into an
entry that includes differences to the baseline V, as well as
any changes in block 3. In addition, if additional text is added
to the subsequent version (e.g., block 10'), this may be saved
in the subsequent version T.
0052. In instances where very minor changes are made
between Subsequent versions of a data set, very large com
pression ratios may be achieved. These compression ratios
may be on the order of 50 to 1,100 to 1,200 to 1 or even larger.
That is, in instances where a single character is changed
within a 10-page text document, the compression between the
original version and the Subsequent version may be almost
complete, except for the one minor change. As will be appre
ciated, utilization of the original data set as the originating
dictionary for a compression algorithm allows for readily
identifying changes between Subsequent data sets such that
very little storage is required to store Subsequent changes
form the baseline data set Vo. Accordingly, when it is time to
recreate a Subsequent version of a data set, the dictionary
identifiers for the desired version of the data set may be
identified. In this regard, when there is no change, the dictio
nary identifiers may point back to the original block of the
baseline data set Vo. In instances when there is a change (e.g.,
3' or 6'), the identifier may point back to the original baseline
data set and a delta data set. Such an arrangement allows for
saving multiple Subsequent versions of data sets utilizing
limited Storage resources.
0053. The method works especially well when there are
minor changes between back-ups of Subsequent versions of
data sets. However, even in instances where significant
changes occur to a data set in relation to a previously backed
up data set, a significant reduction in the size of the data is still
achieved. For instance, if an original data set corresponds
with a 10-page text document and the Subsequent correspond
ing document incorporates 15 new pages (i.e., for a combined
total of 25 pages), the first 10 pages may achieve near perfect
compression (e.g., 200 to 1), whereas the 15 pages of new text
may be compressed on a more normal order of compression
of for example, 2 to 1. However, further subsequent back-ups
(e.g., a third version) may utilize the new text of versions 1
and 2 as the baseline references. Alternatively, when com
pression fails to achieve certain predetermined compression
ratio threshold, it may be determined that changes are signifi
cant enough to warrant replacing the original version of the
data with the subsequent version of data, which then becomes
the baseline value.

0054 FIG. 3 illustrates a process 100 where a baseline
data set is utilized to compress Subsequent versions of the data
set. As shown, an initial data set is obtained 102. This may
entail receiving and storing the initial data set and/or com
pressing 104 the initial data set utilizing, for example, a
standard compression technique. In this regard, a compressed
file may be generated that represents the initial data set. A
subsequent time, the initial data set may be utilized 106 to
identify differences in a subsequent date set. Such utilization
may include conditioning 108 a dictionary based compres
sion engine with the original data the (compressed or uncom
pressed) and compressing 110 the Subsequent data set utiliz
ing the compression engine that utilizes the original data set
as a dictionary. This generates 112 a compressed file that is

US 2011/008764.0 A1

indicative of the changes between the initial data set and the
Subsequent data set. Further, such compressed file may
include references to the compression dictionary (e.g., the
original data set and/or the initial compressed file). Accord
ingly, the compressed file, which indicative of the Subsequent
data set may be stored 114 as a point in time archive, which
may be subsequently accessed to enable, for example, data
restoration. The use of the baseline data set as a dictionary for
compression of Subsequent corresponding data sets facili
tates, in part, a number of the following applications. How
ever, it will be appreciated that aspects of the following appli
cation are novel in and of themselves.
0055 To provide archiving services that may take advan
tage, at least in part, of the compression technique discussed
above, an initial data set must be originally cataloged. Such a
catalog forms a map of the location of the various components
of a data set and allows the reconstruction of a data set at a
later time. In this regard, the first time a set of data is originally
backed up to generate a baseline version of that data, the data
may be hashed using one or more known hashing algorithms.
In this regard, the initial cataloging process is at its core
similar to existing processes. However, as opposed to other
archiving processes that utilize hashing, the present applica
tion utilizes multiple hashes for different portions of the data
sets. Further, the present application may use two or more
hashes for a common component.
0056. For instance, a data set may be broken into three
different data streams, which may each behashed. These data
streams may include baseline references that include Drive/
Folder/File Name and/or server identifications for different
files, folders and/or data sets. That is, the baseline references
relates to the identification of larger sets/blocks of data. A
second hash is performed on the metadata (e.g., version ref
erences) for each of the baseline references. In the present
embodiment, the first hash relating to the baseline reference
(e.g., storage location) may be a sub-set of the meta-data
utilized to form the second hash. In this regard, it will be
appreciated that metadata associated with each file of a data
set may include a number of different properties. For
instance, there are between 12 and 15 properties for each such
version reference. These properties include name, path,
server & volume, last modified time, file reference id, file
size, file attributes, objectid, security id, and last archive time.
Finally, for each baseline reference, there is raw data or Blobs
(Binary large objects) of data. Generally, such Blobs of data
may include file content and/or security information. By
separating the data set into these three components and hash
ing each of these components, multiple checks may be per
formed on each data set to identify changes for Subsequent
versions.

0.057
0.058
0059

1st Hash
Baseline Reference—Bref

Primary Fields
0060 PathVFolder\Rilename
0061 Volume Context

0062 Qualifier
0063 Last Archive Time

0064. 2nd Hash
0065. Version Reference Vref (12-15 properties)

0.066 Primary Fields (change indicators)
0067 PathVFolder\Rilename
0068 Reference Context (one or three fields)
0069. File Last Modification Time (two fields)

Apr. 14, 2011

File Reference ID
File Size (two fields)

Secondary Fields (change indicators)
File Attributes
File ObjectID
File SecuritylD

Qualifier
Last Archive Time
3rd Hash (majority of the data)
Blobs (individual data streams)

Primary Data Stream
I0081. Security Data Stream
0082 Remaining Data Streams (except Object ID
Stream)

I0083. In another arrangement, a compound hash is made
of two or more hash codes. That is, the VRef, BRef, and Blob
identifiers may be made up of two hash codes. For instance, a
high-frequency (strong) hash algorithm may be utilized,
alongside a low-frequency (weaker) hash algorithm. The
weak hash code indicates how good the strong hash is and is
a first order indicator for a probable hash code collision (i.e.
matching hash). Alternately, an even stronger (more bytes)
hash code could be utilized, however, the processing time
required to generate yet stronger hash codes may become
problematic. A compound hash code may be represented as:

0070
0071

0072
0073
0.074
0075)

0076
0.077
0078
0079

0080

strong hash component weak
high-frequency low

In this regard, two hash codes, which require lees combined
processing resources than a single larger hash code are
stacked. The resulting code allows for providing additional
information regarding a portion/file of a data set.
I0084 Generally, as illustrated by FIG. 4, an initial set of
data is hashed into different properties in order to create a
signature 122 associated with that data set. This signature
may include a number of different hash codes for individual
portions (e.g. files) of the data set. Further each portion of the
data set may include multiple hashes (e.g., hashes 1-3), which
may be indexed to one another. For instance, the hashes for
each portion of the data set may include identifier hashes
associated with the metadata (e.g., baseline references and/or
version references) as well as a content hash associated with
the content of that portion of the data set. When a subsequent
data set is obtained 124 Such that a back-up may be per
formed, the Subsequent data set may be hashed to generate
hash codes for comparison with the signature hash codes.
I0085. However, as opposed to hashing all the data, the
meta data and the baseline references, or identifier compo
nents of the Subsequent data set, which generally comprise a
Small Volume of data in comparison to the data Blobs, may
initially be hashed 126 in order identify files 128 (e.g.,
unmatched hashes) that have changed or been added since the
initial baseline storage. In this regard, content of the
unmatched hashes (e.g., Blobs of files) that are identified as
having been changed may then be hashed 130 and compared
132 to stored versions of the baseline data set. As will be
appreciated, in some instances a name of a file may change
between first and second backups. However, it is not uncom
mon for no changes to be made to the text of the file. In such
an instance, hashes between the version references may indi

US 2011/008764.0 A1

cate a change in the modification time between the first and
second backups. Accordingly, it may be desirable to identify
content hashes associated with the initial data set and com
pare them with the content hashes of the Subsequent data set.
As will be appreciated, if no changes occurred to the text of
the document between backups, the content hashes and their
associated data (e.g., Blobs) may be identical. In this regard,
there is no need to save data associated with the renamed file
(e.g., duplicate previously saved data). Accordingly, a new
file name may share a reference to the baseline Blob of the
original file. Similarly, a file with identical content may reside
on different volumes of the same server or on different serv
ers. For example, many systems within a workgroup contain
the same copy of application files for Microsoft Word(R), or the
files that make up the Microsoft Windows.(R) operating sys
tems. Accordingly, the file contents of each of these files may
be identical. In this regard, there is no need to resave data
associated with the identical file found on another server.
Accordingly, the file will share a reference to the baseline
Blob of the original file from another volume or server. In
instances where there is unmatched content in the Subsequent
version of the data set from the baseline version of the data
set, a subsequent Blob may be stored 134 and/or compressed
and stored 134.

I0086 Importantly, the process 120 of FIG. 4 may be dis
tributed. In this regard, the hash codes associated with the
stored data may be provided to the origination location of the
data. That is, the initial data set may be stored at an off-site
location. By providing the hash codes to data origination
location, the determination of what is new content may be
made at the origination location of the data. Accordingly, only
new data may need to be transferred to a storage location. As
will be appreciated, this reduces the bandwidth requirements
for transferring backup data to an off-site storage location.
I0087 FIG. 5 illustrates one embodiment of a process for
archiving data in accordance with certain aspects of the
present invention. Initially, an original set of data is received
1. This data set may include, without limitation, data received
from a server, database or file system. This data is typically
received for the purpose of backing-up or archiving the data.
Each item/object (e.g., file, folder, or arbitrary blocks of data)
within the received data is processed 2 and a version reference
(“Vref) is computed 3. As noted above, the Vref includes
numerous fields relating to the meta-data 3a of the objects.
These fields may include Primary fields and Secondary fields.
These fields may be utilized to identify changes between
archiving (i.e., backing-up) of first and Subsequent instances
of data sets.

0088. This initially allows for determining if the object
data already exists within the archive system. Once the Vref is
computed 3, it is assigned to an object store 4, 4a. Once the
assignment is made, a comparison 5 is performed with the
common content object store to determine 6 if the object
associated with the Vrefalready exists (i.e., from a previous
archive operation). This determination is performed utilizing
the Reference Lookaside Table 7. The Reference Lookaside
Table 7 is a table that includes Vref and Bref hash codes. In
any case, if the Vrefof an object from the newly received data
is equivalent to a Vref of a previously archived object, a
determination is made that the object may already exist. If no
match is located, processing proceeds as discussed herein. In
the event no match is located within the Reference Lookaside
Table 7, the existence of the object is further determined by

Apr. 14, 2011

searching the Object Store. If a match is found the Vref is
loaded into the Reference Lookaside Table.
I0089. If no match is identified (e.g., the object represents
new data or data that has been modified since an earlier
back-up), a storage policy is selected 8 for archiving the data.
In the illustrated embodiment, a general purpose policy may
be selected. As may be appreciated, different policies may be
selected for different data types. For instance, a general pur
pose policy may be selected for data that is unknown. In
contrast, for data sets where one or more components of the
data is known, it may be preferable to select policies that
better match the needs of the particular data set. Once a policy
is selected 9, the process continues and a baseline reference
(“Bref) 9 is computed for each previously unmatched object
10a of the data source. A subset of the Vref data is utilized to
compute the baseline or Bref data. Specifically, the metadata
that is outlined above is utilized to compute a hash for the
baseline reference objects.
0090. Once Bref 9 is computed for an object, it is assigned
11 to a store. This assignment 11 is based on the same assign
ment 11 made for the corresponding Vref. Typically, the Bref
computed is the latest Bref. However, in some instances, the
metadata, while being identical for first and second points in
time (e.g., first and second archiving processes), the object
data may change. In Such instances, a determination 12 is
made if the current Bref is the latest Bref by a comparison
with other Brefdata in the object store using the Last Archive
Time qualifier. This allows for a redundancy check to assure
there have been or have not been changes between corre
sponding objects of different archiving processes.
0091. A determination 13 is then made if the current Bref
already exists within the object store. Again, the Reference
Lookaside Table 7 is utilized for this determination. In this
regard, the hash of the current Bref data is compared to
existing hashes within the Reference Lookaside Table 7.
0092. If the object already exists, it is resolved to a Blob 14
(i.e. a binary large object) comprising a series of binary data
Zeros and ones. The Bref is utilized to look up the Vref, which
is then utilized to look up the associated Blob of data. In some
instances, the Blob of data may reference a further Blob,
which is a root baseline Blob. In some instances, Blobs of
common data exist for many objects. For instance, the oper
ating system of numerous separate computers may be Sub
stantially identical having many of the same files. Accord
ingly, when the backup of Such separate computers is
performed, the resulting Blobs for the common files may be
identical. Therefore the Vref and Brefs of different objects
may reference the same Blobs.
0093. Once a baseline Blob is located, it is loaded 15 as a
dictionary for the compression algorithm. When the Blob is
loaded 15 into the dictionary, it may be broken into individual
chunks of data. For instance, the baseline Blob may be broken
into 30 KB data chunks or into other arbitrary sized data
chunks based on operator selection. These individual chunks
may be loaded into the compressor to precondition a com
pressing algorithm.
0094. It will be noted that any of a plurality of known
compression techniques can be utilized so long as it may be
preconditioned. In the present case, the compression algo
rithm is preconditioned with portions or entirety of the Blob
data. Up to this point, all data that has been processed has
been metadata. However, at this point, the received object is
hashed as it is being compressed 16 using the compressing
algorithm preconditioned with the baseline Blob. If the object

US 2011/008764.0 A1

has a Bref the changes between the new object and the base
line object are determined by the resultant compression of the
item, called a delta Blob 17. If the object has a Bref the
corresponding delta Blob is often only a fraction of the size of
baseline Blob and compression ratios of 100:1 are not uncom
O

0095. The process to identify changes is referred to as the
delta Blob process. The output of the delta Blob process is a
binary set of data that may represent either the difference
between a baseline data set and a new data set or, in the case
where no baseline exists, the output may become the baseline
for future reference purposes. In either case, the delta or
baseline Blob is represented by the hash of the received data
and is copied/stored 18 to the object store 5, if it does not
currently exist. Optionally, older versions, as determined by
the Last Archive Time qualifier, of Brefs and their corre
sponding Vref, and baseline or delta Blob data may be
recycled to free space within the object store.
0096. As will be appreciated the archiving system
described above is fully self contained and has no external
storage requirements. AS Such the entire object store 5 may be
hosted on a single removable unit of media for the purpose of
offsite storage. Because all indexes and references and con
tent are maintained within a single file structure as individual
items, and since none of the item stored are not required to be
updated, any facility to replicate the object store to an alter
nate or remote location may be employed. The unique storage
layout provides a fault tolerant structure that isolates the
impact of any given disk corruption. Furthermore the refer
ential integrity of items may be verified and any faults iso
lated. Subsequent archiving jobs may be used to auto-heal
detected corruptions. With regard to removable media, once
the base object store layout and tree depth is defined, the
identical structure may be duplicated on any number of
removable media in Such a manner that provides for continu
ous rotation of media across independent points-in-time. The
process is similar to tape media rotation, though far more
efficient since common content is factored. The structure
facilitates the requirements for equivalent media units by 20:1
O. O.

0097 FIGS. 7 and 8 illustrate reconstruction of data from
an object store. As noted, the process allows for real-time
reconstruction of data, that is, dynamic or “on-the-fly. To
provide Such dynamic reconstruction, the archived data is
represented in a virtual file system that is accessible by a user
attempting to reconstruct data. To reconstruct data, the
address of a desired object or file must be known. How that
address comes to be known is discussed below.

0098. Initially, all the data within the system is stored
within the object store and may be represented in a virtual file
system as illustrated in FIG. 6, which illustrates accessing
archived data using the virtual file system, and in the present
embodiment, a web client network. However, it will be appre
ciated that access to archived data can be via a standalone unit
attached to a system for which archiving is desired. Certain
aspects of the virtual file system (VFS) are applicable to both
systems. In the case of web client network, access to the
archived data can be achieved via WebDAV using the Win
dows WebClient service redirector. This redirector allows for
access to archived data using a universal name convention
(UNC) path. With this instance the entry point to viewing
archived data is through the UNC path \\voyager\ObjectStore.
In addition, the WebClient redirector supports mapping a
drive letter to a UNC path. For instance, the drive letter L:

Apr. 14, 2011

could be assigned to \\voyager\ObjectStore. It should be
noted that a drive letter mapping can be assigned to any level
of the hierarchy. For instance, X: could be mapped to
\\voyager\ObjectStore\Important Documents directly.
(0099 FIG. 6 shows the object store entry in the VFS hier
archy. In this example the object store instance is called
ObjectStore. Object stores contain both archived data pooled
from multiple resources, (e.g., common content from mul
tiple sources) and archives that more tightly define a particu
lar/individual data set or catalog. That is, individual data sets
are indexed within their own archive (e.g., important docu
ments). In this regard, when attempting to reconstruct data
associated with a known data set, that data sets archive may
be searched rather than searching the entire index of the
object store. This allows searching the individual archive
instead of searching the global index for desired information.
This reduces storage requirements for index, computation
requirements for searching, as well as core memory require
mentS.

0100 Each time a data set is moved into the system, the
current state of that data set or a point-in-time catalog is
created and is recorded within the system. As may be appre
ciated, this may only entail storing information (e.g., meta
data) associated with the data set as opposed to storing the raw
data of the data set (e.g., assuming that data already exists
within the system). In any case, the point in time that the data
set is stored within the system will be saved. This results in the
generation of a point in time catalog (e.g., the Archived UTC
entries of FIG. 6). Each catalog, which represents a data set
for a particular point in time, contains an exact representation
of all the metadata for a particular dataset. However, not all
the raw data associated with the data set for a particular point
in time has to be copied. Only files that have changed between
a previous point in time and the current point in time are
copied into the system as previously described above. For
files that have not changed, the metadata for the point in time
catalog may be stored with appropriate references to data of
previous catalogs.
0101. As not all information a point in time need be stored,
numerous catalogs may be generated and saved for numerous
points in time. That is, rather that a system that provides, for
example, a limited number of complete back-up sets of data
(e.g., which periodically are replaced by newer back-up data
sets) and each of which contains redundant copies of common
data, the use of the comparatively small catalogs allows for
increasing the amount of points in time for which data may be
reconstructed. That is, the catalogs allow for greatly increas
ing the granularity of the back up data sets that are available
to a user.

0102 That is, rather than saving data for each point in
time, the catalogs save codes for recreating data for a given
point in time. Specifically, a catalog for a point in time con
tains one or more hash codes for each record (file), which is
used by the virtual file system to recreate a replica of the data
set for given point in time. Below is an exemplary sample of
a single record in the catalog, where the entries for ca, sa, oa,
ba, and aa are hash codes representing different streams of
data. For instance, <ca is the VRef for the record and incor
porates all the metadata used to identify a particular version.
<sad is a Blob address (hash) to a security stream.<oad is the
Blob address to an optional object identified stream. <bad is
the primary Blob address.<aad is the alternate (or secondary)
blob address.

US 2011/008764.0 A1

As shown, this portion of the catalog forms a record that
allows for locating and recreating the meta-data and content
of a given file.
0103 Referring again to FIG. 6, the catalog represents the
original data set and is in a hierarchal form that may include
volumes, folders and files. Each of the entries in the hierarchy
includes metadata that described their properties. Further,
folder records and file records include Vref addresses and
archive time stamps. The hierarchy mimics the hierarchy of
the data set that is backed up. For instance, the hierarchy may
include individual users. For a particular user is selected, for
example Mike, the contents of that user's computer, server,
etc., may be stored in a manner that is identical to that user's
computer, server, etc.
0104. This hierarchy is presented as a portion of the virtual

file system (VFS), which as noted above may be used to
remotely access any set of stored data and has application
outside of the archiving system described herein. The user
may access the VFS hierarchy to reconstruct data from the
appropriate archive of the object store. In this regard, the user
may on their screen see a representation as illustrated in FIG.
6. A user may navigate the VFS to a particular archive and
select a desired point-in-time catalog to expand that folder. At
that time, the hierarchy beneath that point-in-time catalog
may be provided to allow the user to navigate to a desired
document within that point-in-time catalog. That is, the user
may navigate the VFS, which mimics the user's standard
storage interface, until they locate the desired document they
want to reconstruct. Of note, no particular point-in-time need
be selected by the user. For instance, a search engine may
have the ability to search each point in time archive for
desired data therein. Importantly, no specialized client appli
cation is required to access the VFS. In this regard, the autho
rized user may utilize their standard operating systems in
order to access the archived datasets as would access the
desired file on their own computer.
0105. As noted, FIG. 6 is a representation of archived data.
In this case, the data is from a Windows file system where
multiple archiving runs are keeping full viewable versions of
the file system available to a user. Of note, a transition in the
VFS occurs in the VFS hierarchy where the archiving point
in-time hierarchy stops and the representation of the data
from the source starts. In this example, the transition or pivot
is named “Archived UTC-2006.04.03-23.57.01.125'. The
folder(s) below this point in the hierarchy represent root file
systems specified as file/folder criteria for an archiving task.
“Users (US) on voyager' is a file volume with a label Users,
a drive letter U and from a system named Voyager. However,
it will be appreciated that other file systems (e.g., non-Win
dow systems) may also be represented. Once a file level is
reached within the archive for a particular point-in-time, the
user may select a particular file. This selection then provides
a version reference address (Vref), and archive time may be
utilized to begin reconstruction of that particular file.

Apr. 14, 2011

0106 The importance of storing the Blob address with the
Vref is that it allows the Vref to reference the actual content
within the object store 5, regardless of whether it is a Blob or
a delta Blob. In the case where it is a delta Blob, that delta
Blob may further reference a baseline Blob. Accordingly, the
information may be obtained in an attempt to reconstruct the
desired data. At this point, the baseline Blob and, if in exist
ence, a delta Blob have been identified; the data may be
reconstructed at this point.
0107. A user may specify the archive time 32 in order to
reconstruct data (e.g., for a specific Vref) from a particular
time period. As will be appreciated, the actual archive times
may not be identical to the desired time period provided by a
user. In any case, the system determines 34 the most relevant
reconstruction time (e.g. data from a back up performed
before or shortly after the desired time). An initial determi
nation 36 is made as to whether the initial Vref has a delta
Blob. If a delta Blob exists for the Vref, that delta Blob is
obtained 38 from the object store. The corresponding baseline
Blob is also obtained 40 from the object store. If there is no
delta Blob, only the baseline Blob is obtained. If a Vref
references a non-compressed object (e.g. an individual file),
that non-compressed object may be obtained for Subsequent
reading 44.
0108. Once the Blob(s) (or a non-compressed object) are
obtained, they may be reconstructed to generate an output of
the uncompressed data. See FIG.8. In the present process, the
Vrefs (i.e., which references delta or baseline Blobs) are
reconstructed in individual chunks or buffers from the
obtained Blobs. The length of such buffers may be of a fixed
length or of a variable length, which may be user specified. In
the instance where the Vrefreferences a delta Blob, which has
been obtained as discussed above, the delta Blob may then be
decompressed to reconstruct the Vref data. The object (e.g.,
delta Blob) is read 52 and decompressed until the buffer 54 is
filled. This may be repeated iteratively until the entire object
is decompressed. For each decompression of a delta Blob a
portion of the delta Blob may require a referenced portion of
the baseline to fill the buffer. In this regard, a determination 56
is made as to whether a new dictionary (i.e., portion of the
baseline Blob) is required to provide the decompression
information to decompress the particular portion of the delta
Blob. That is, if necessary the system will obtain 58 a portion
of the opened baseline Blob to precondition 60 the decom
pression algorithm to decompress 62 the current portion of
the delta Blob.

0109 Given the two pieces of data, the Vref address and
the archive time, these two pieces of data are taken and
utilized to search the object store for an exactVrefand archive
time match or for the next earliest Vref archive time. See FIG.
7. For instance, if the desired file to be reconstructed had not
been changed since an earlier backup, the Vref address may
reference earlier Vreftime that represents the actual time that
the data for that file was stored. Once resolved to this level, the
attributes of the Vrefare to be read to determine if it is a delta
Vrefor a baseline.

0110. If no delta Blob exists but rather only a baseline
Blob 64, the process obtains 66 the baseline Blob based on the
Vref from the object store and decompresses 68 the baseline
Blob to fill the buffer. Once a buffer is filled with decom
pressed data, this buffer of data is returned to the requesting
user. In one arrangement, the object may be non-compressed
data. In this instance, a data set may existina non-compressed
form. In such instances, the buffer may be filled 70 without

US 2011/008764.0 A1

requiring a decompression step. The filling and returning of
buffers may be repeated until, for instance, an end of a file is
reached. It will be appreciated that multiple files (e.g., mul
tiple Vrefs) from a data set may be retrieved. Further, an entire
data set may be retrieved.
0111. One application for the adaptive content factoring
technique is to harvest information from traditional disk
based backups. In most cases, significant quantities of infor
mation are common between two full backup data sets. By
factoring out the common data, the effective capacity of a
given storage device can be significantly increased without
loss of functionality and with increased performance of the
archiving system. This makes long term disk-based archiving
economically feasible. Such archiving may be performed
locally or over a network. See for example FIG. 9. As will be
appreciated by those skilled in the art, as network bandwidth
decreases it is advantageous to identify the common content
of a given dataset and only send changes from a remote server
to a central archive. In this regard the novel approach
described above works exceptionally well given the index
used to determine if content is already stored can be effi
ciently stored and distributed across the network 80. By cre
ating and maintaining content indexes specific to a given data
set or like data sets, the corresponding size of the index is
reduced to localized content. For example, if an entry in the
index is 8 bytes per item, and data set contains 50,000 items.
The corresponding size of the index is only 400,000 bytes.
This is in contrast of other systems that use monolithic
indexes to millions of discrete items archived. As such the
smaller distributed index may be stored locally or in the
network. In some cases it may be preferable to store the index
locally. If the index is stored within the network, by its small
size, it can be efficiently loaded into the local program
memory to facilitate local content factoring.
0112 The techniques described provide for a locally
cacheable network of indexes to common content. That is,
multiple servers/computers 82 may share a common storage
facility 84. This content may be processed by an archiving
appliance 88 Such that common content is shared to reduce
storage requirements. The necessary catalogs may be stored
at the common storage facility 84 or at a secondary storage 86.
To allow backing up the individual servers/computers, the
present technique uses a distributed index per data set. That is,
specific sets of identifier and content hashes may be provided
to specific server/computers. Generally, the information
within the index corresponds to a hash (e.g., a Vref) to a given
item within the data set. However, as will be appreciated it is
also desirable to store highly referenced content or Blob
indices, such as file or object security information that may be
common to items within a dataset of between different data
sets even if the data sets correspond to items from different
host systems to quickly identify that these Blobs have already
been Stored. In this regard the present technique uses an
alternate index to Blobs by replacing the original data set
content with a series of Blob addresses followed by a zero

Apr. 14, 2011

filled array of bytes. The Blob address plus zero filled array is
Such that it exactly matches the logical size of each segment
of the original content. As will be appreciated by one skilled
in the art the Zero filled array is highly compressible by any
number of data compression algorithms. The present inven
tion works with any known file format by first dividing the
data set into discrete object data streams, replacing each
object data stream with a stream address to the content (or
Blob) that was previously or concurrently archived using the
M3 or similar process described below, then filling the
remainder of the remapped data stream with Zero. Finally, the
remapped stream is compressed, which essentially removes
redundancy in the Zero filled array. It is desirable for resultant
file to be indistinguishable from the original except for the
remapping of data stream content. In this regard, a bit-flag
may be used within the original file metadata to indicate that
the stream data has been replaced to allow the original pro
gram that created the original data set to determine that the
data stream has been remapped. The present invention sets a
reserved flag in a stream header without regard to the header
checksum. The originating program can catalog the data set,
but when the data stream is read the checksum is checked.
Because the reserved flag is set, the checksum test will fail
preventing the application from inadvertently reading the
remapped stream. FIG. 10 depicts the process. The determi
nation of the stream address may employ the full process
using metadata stored internal to the data set and include a
reverse lookup to determine the stream Blob address, or use a
hash algorithm on the stream data to compute the unique
stream Blob address. The unmap process simply reverses the
order of operations such that for each Blob address and Zero
filled array is replaced with the original content and the
reserved flag is unset. The result of the unmap reconstruction
process is an identical copy of the original data set.
0113. The foregoing description has been presented for
purposes of illustration and description. Furthermore, the
description is not intended to limit the invention to the form
disclosed herein. While a number of exemplary aspects and
embodiments have been discussed above, those of skill in the
art will recognize certain variations, modifications, permuta
tions, additions, and sub-combinations thereof. It is therefore
intended that the following appended claims and claims here
after introduced are interpreted to include all such variations,
modifications, permutations, additions, and Sub-combina
tions as are within their true spirit and scope.
What is claimed is:
1. A method for use in archiving/storing data, comprising:
receiving a first data set;
compressing the first data set using a dictionary-based

compression engine, wherein a first compressed file rep
resenting the first data set is generated;

storing the first compressed file; and
using the first compressed file to identify changes in a

Subsequent data set associated with the first data set.
c c c c c

