0 03/021375 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
13 March 2003 (13.03.2003)

PCT

(10) International Publication Number

WO 03/021375 A2

GO6F

(51) International Patent Classification’:

(21) International Application Number: PCT/SE02/01594

(22) International Filing Date:
5 September 2002 (05.09.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/317,296 5 September 2001 (05.09.2001) US

(71) Applicants and

(72) Inventors: BELIN, Sven, Johan [SE/SE]; Orvar Odds
vig 2, S-112 54 Stockholm (SE). BLOMBERG, Mats,
Goran [SE/SE]; Karl Gerhardsvdg 23, S-133 35 Salt-
sjobaden (SE). FLYG, Pernilla, Rut, Charlotte [SE/SE];
Sjotorpsvigen 14, S-131 34 Nacka (SE). AGREN, Nils,
Martin [SE/SE]; Friherregatan 98, S-165 58 Hisselby
(SE).

(74) Agents: ALBIHNS STOCKHOLM AB et al.; Linné-
gatan 2, S-114 85 Stockholm (SE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SL, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BF, BJ, CE, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: TECHNOLOGY INDEPENDENT INFORMATION MANAGEMENT

220

i 221 |

4
|

r

)

] 204 T(

(57) Abstract: A method, system and computer program for processing data objects in a distributed data processing system, said
distributed data processing system having a plurality of software and/or hardware nodes being communicatively connectable. The
method comprises the steps of defining first and second environments for processing objects at differ levels of abstraction, namely
a first platform independen level and a second platform dependent level operating with different categories of object aspects. Each
object is defined according to two object models, one for the platform independent environment and one for the platform dependent
environment. The two object models are syncronized and object instances generated on the basis of said models are processed in the
respective environments dependent on the aspects of the current object instance.

w0 03/021375 A2 NI 00 0RO

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

WO 03/021375 PCT/SE02/01594

TECHNOLOGY INDEPENDENT INFORMATION MANAGEMENT

Technical Field

The present invention relates generally to management and access of

information. More specifically, the present invention relates to technology or platform
independent management and access of information, computer implemented services and

computerized functionality.

Background

As a consequence of the continuous development of computers and the
increasing use of computers in a wide variety of applications, different branches of human

activities such as telecommunications, business or work related tasks and entertainment are

" merging into a common mainstream of information technology. Whereas the concepts for

15

20

the handling of information, services and computerized tools has come far ahead, the
practical use of information technology is often hampered by the wide variety of different
technical solutions and platforms for storing, displaying, executing and transferring
information or data. There is thus a need for simpler access and handling of the different

kinds and realizations of information technology.

Prior Art

There is prior art addressing the mentioned need. In for example the technical
report Current Technologies for Device Independence, Mark H. Butler, Publishing Systems
and Solutions Laboratory, HP Laboratories Bristol, HPL-2001-83, April 4th, 2001 ‘there isa

‘ survey of current technologies related to the creation of device independent web content and

25

web applications. This piece of prior art is mainly concerned with the access to internet web
sites by means of different kinds of devises. ;

The patent documents EP1126681 and EP1130510 show different aspects of
prior art object oriented technology.

10

15

20

25

WO 03/021375 PCT/SE02/01594

Object of the Invention

The overall object of the present invention is to solve the problem of
achieving a technological platform where objects for example in the shape of information,
executable software code or apparatuses with possibly heterogeneous properties can interact
and collaborate in manner that is perceived to be homogeneous. -

Different aspects of the problem are:

- To enable availability and accessability of information as well as logic in the form of
processing rules or executable program code for different types of processing and
interfacing software or hardware devices independent of their basic technology or
platform.

- To enable collaboration between different logic components, i.e. pieces of executable
software code, independent of hardware configuration, network topology, program
language semantics, transaction protocols, logic implementation language, physical
differentiation and the like.

- To enable a more economic software development in terms of possibility to optimize the
size of software modules.

- To provide a seamless transition between software objects and software components.

- To provide homogenous access to external resources, such as data sources, executable
software code or hardware devices.

- To provide an environment for rapidly creating powerful, truly distributed systems in a
manner that is simple and time efficient as well as production cost efficient.

- To enable implementation of objects, in the sense of object oriented programming
technology, in one or more programming languages in order to allow for selectability of

language dependent on the current purpose or task.

Summary of the Invention

The above mentioned object and the different problem aspects are in

accordance with the invention addressed by means of an improved object oriented concept

WO 03/021375 PCT/SE02/01594

10

15

20

25

thinking realized in a distributed object oriented architecture (in short herein also called
object architecture). The inventive distributed object oriented architecture comprises an
object definition language, which is a subset of the eXtensible Markup Language.
The Object Definition Language enables object developers to define objects, independent of
hardware -technology, -configuration, network -topology, -semantics, -protocols, logic
implementation language and physical differentiation. It provides the developer with an
abstraction, enabling the developer to focus on the object's interface and functionality. This
enables the developer to isolate the native/technology-dependent aspects of the object.

More generally, the objects of the invention is achieved by means of the
below method for processing data objects in a distributed data processing system, and
realizations in the form of a system or a computer program product. The distributed data
processing system has a plurality of software and/or hardware nodes that are mutually
communicatively connectable or couplable.

An embodiments of the method comprises the steps of:

defining a first environment, called object runtime environment, for
processing objects at a first level of abstraction that is independent of the software/hardware
platform of said nodes;

defining a second environment, called native environment, for processing
objects at a second level of abstraction that is dependent on the software/hardware platform
of said nodes;

defining in said first environment a first object model with a first category of
object aspects, i.e. generic or platform independent aspects;

defining in said second environment a second object model with a second
category of object aspects, i.e. native or platform dependent aspects;

synchronizing said first object model of said first environment with said
second object model of said second environment;

defining an object in accordance with said first and second models

associating a selectable set of object aspects from said first and second object aspect

WO 03/021375 PCT/SE02/01594

10

15

20

25

categories;

generating an instance of said object;

processing said object instance in said first and second environments
dependent on said associated set of object aspects.

In a data processing system comprising hardware and software nodes in
which the inventive environments are established objects are thus managed and processed in
a manner that fulfills the objects of the present invention.

In a further development of the invention, predefined object connectivity
means, in the shape of software code portions and protocols communicatively coupled to
said first, platform independent environment, are devised to interface with and execute data
communications between an internal entity situated within and an external entity situated
without said defined first and second environments.

In one embodiment, an instance of said first, platform independent
environment is configured together with an instance of said second, platform dependent
environment and object connectivity means to constitute a service provider functionality.
Preferably also an instance of said first, platform independent environment is configured
together with an instance of said second, platform dependent environment to constitute an
object consumer functionality.

Further, a object provider functionality is preferably configured together with
and a service consumer functionality constituting a consumer/provider subset of the
distributed system, also called a federation (explained below) within which the processing of
objects or object instances is performed.

Seamless transition between software objects and software components is
achieved by providing a common development model for objects and for software
components.

According to the invention information is preferably stored in a common
format, heresometimes called the eXtensible Document Format (below also referred to as

XDF format) which is the single document format of the system. The XDF format is used to

10

15

20

25

WO 03/021375 PCT/SE02/01594

describe any type of functionality or content. There is no type attribute connected to an XDF
document, and therefore there is no difference between a data file, such as a document or an
image, and an application of executable program code, in the way the information is
structured and stored. From the user’s point of view, there is no difference between for
example a document and a data communications service.

A result and an important feature of the present invention is that a user that
operates and interfaces with a data processing system or a data base designed in accordance
with the inventive concept may conveniently gain access to the same information with any
connectable data communication device independent of its technical platform. That is, the
information is accessible whether the user operates from for example a conventional
computer, a WAP device, a mobile phone or any other communication device that is
connectable to the system via the for example the Internet without the need for any
cumbersome conversion or synchronization routines.

The system in accordance with the invention automatically performs any
required adaptation or profiling of the format of data for the user to gain access to an object
e.g. in the shape of information or a service, such as the processing of data in a user-centric
service. Thereby objects according to the invention are made platform independent. A user
may thus start working with an object such as a document by means of a service, such as a
word processor, by using one type of communication device or processing device, e.g. a
desktop computer. Then the user can continue working with the same document using a
different type of communication or processing device such as a PDA or WAP phone.

The invention makes it possible to make available upon request different
services, for example a word processing service provided at remote site or apparatus, e.g. a
central site or another node in a distributed system. A user may thus gain access to the
requested word processing service without having a word processing program installed on
the communication device that is used by the user to communicate with the system. More
generally, a user may gain access to very powerful services, functionalities and resources

provided at a remote site or apparatus, e.g. a central site or another node in a distributed

10

15

20

25

WO 03/021375 PCT/SE02/01594

system, although the communication device itself is relatively primitive because it is not
necessary for the communication device to have any powerful programs installed.

In order to enable a more economic software development in terms of
possibility to optimize the size of software modules, the inventive concept comprises
functionality to treat objects and components alike. That is, the inventive object architecture
does not make any semantic or programmatic difference between an object and a component.
When an object becomes more complex, the complexity is delegated for example by means
of compositions or aggregations. Objects that delegate functionality then seamlessly transfer
to behave like or perhaps even be an entity that in prior art often is referred to as a
component. In the invention an object can therefore be developed and treated either as a
software component or an object, but the inventive object architecture makes no difference
between the two and therefore a program developer is freed to develop a program solution

that is neither larger nor smaller than necessary.

Definitions

In this section terms used in the description text are defined and explained. Some
terms are also defined and explained in description text itself.
Object An enti;cy that encapsulates information,
processes and behaviors as specified by the accepted principles of Object Orientation. The
word is in this text used to define an object built and based on the technology according to
the invention, which in some respects differs from prior art definitions. Also the word object

is used to identify a non-instantiated object.

Instance or object instance An instantiated object.

External actor From the point of view of a current first object,
a second object interacting with the first object is an external actor.

ODL Abbreviation of Object Definition
Language.

The Object Definition Language is used within the technology according to the present

10

15

20

25

WO 03/021375 PCT/SE02/01594

invention to define objects and in this text refers to a specifically developed language.
Federation A system according to the invention in which a
Provider functionality and a Consumer functionality (explained below) are available.
Deployed object When an object is instantiated within an Object
Runtime Environment (explained below) for the first time, some additional steps are
required; decoding object definition, merging object definitions, decoding runtime
descriptor, cache object definition etc. These additional steps are referred to as deploying an
object, object deployment or a deployed object throughout this description. In contrast with
prior definition of deployment, here deployment refers to a process that is performed

autonomously and not by a system administrator or a developer.

Brief Description of the Drawings

Fig. 1 is a schematic collaboration diagram of the operating system of the
present invention;

Fig 2 is a schematic block diagram of illustrating components in
embodiments of the invention; and

Fig 3-5 show exemplifying scenarios of signal communication between

different components in embodiments of the invention.

Detailed Description of Embodiments of the Invention

The invention is dependent on the application realized as a method, an
apparatus or system, or as a computer program product. An apparatus or system would
typically comprise data processing means having a central processing unit (CPU), data
storage means, an input/output interface and data communication means. The apparatus or
system would then be set up to execute steps of the inventive method by means of
specifically designed computer program code. The invention, when realized as a computer
program product, would typically comprise computer program code portions that are devised

to direct a data processing system to perform steps and functionality of the inventive method

10

15

20

25

WO 03/021375 PCT/SE02/01594

or apparatus. The invention is explained with reference to schematic drawings that depict
functional units that in different embodiments may be realized as method steps, hardware
units or computer program code portions. For the sake of simplicity the distinction between
different realizations is not always mentioned in the below description of embodiments.

The invention is preferably implemented in terms of an object oriented
concept. Objects are created, that is defined and established, exist and operate in an object
runtime environment constituted by a possibly distributed system of data processing devices
provided with software for realizing a platform independent data processing method in
accordance with the invention. Possibly, a plurality of different object runtime environments
exists side by side, and may also communicate. There is also a platform dependent layer or
environment called native environment in each of the devises in the system. Objects can also
exist in the native environment and it is proper to define different aspects of an object,
namely the generic, platform independent aspect and the native, platform dependent aspect.

If an object contains one or more native aspects, the object is also defined
native as such. Objects that are defined native have two object models, namely one in the
Object Runtime Environment and one in the Native Environment. The model existing in the
Native Environment is populated with all native aspects of the object. Both object models
can interact with each other. For example, native methods can invoke non-native methods
within the same object and vice versa (with the extension that objects can invoke native
methods in other objects also). Also, any attributes defined native are always kept coherent
in the two object models. For example, if the attribute value is changed in one object model,
the change is propagated to the other object model.

Prefe;ably, the majority of all objects that are created should be totally
platform independent. Only a small number of objects will contain any native
representations. Such objects (e.g. Image object, Text object, AudioPlayback object etc.)
implement functionality that is futile to support as platform independent, without a
devastating amount of development and administrative implementation work. Instead these

native objects, i.e. objects containing native aspects, will be the most atomic building blocks

10

15

20

25

WO 03/021375 PCT/SE02/01594

for other objects to use.

An effect of the platform independent generic aspect of objects in accordance
with the invention is that each object only has to be defined once, and can thereafter be
delivered to all different types of devices for which there an object consumer runtime

environment (further explained below).

Defining Objects

This section describes preferred embodiments of the object structure of the
invention.
Uniqueness:

In operation a number of objects are defined and established as object
instances. All object instances are globally unique within the distributed system of nodes and
devises that are involved in an implementation of the invention. When an object is
instantiated, it is given a globally unique identification number (GUID/UUID). In
accordance with the invention a globally unique identification number GUID must be
guaranteed uniqueness on all involved software devices within the implementation. The
effect of this is that the objects of the invention are or can be truly and entirely distributed in
the sense that they can exist on an arbitrary number of clients and communicate with an

arbitrary number of servers.

Attributes:

Information (data) is encapsulated in an object by means of attributes associated with
the object. An attribute can hold or store basic entities called primitives, more specifically a
primitive, a runtime primitive, a custom primitive, or it can hold a reference to another
object. An attribute can be declared native, which means that it operates in an environment,
called native environment, that is dependent on a specific technical platform at a level below
the platform independent level. This is further explained below. In one embodiment of the

invention, an attribute is unable to be exposed directly to other objects, instead attributes

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 10 -
must be accessed through accessor and mutator methods defined in the invention.

Primitives:

Data of different kinds is accessed or stored through a set of primitives that is used to
contain data. Data can also be stored in other objects or object instances that a first object
has a reference to, in which case the reference is stored as an attribute. For example, a mail
object can have a reference to a recipient object. The storage of more complex data can be
realized as a mixture of primitives and objects, and example a mail object can have a
collection of attachment objects.

Different embodiments comprise one or more among the following primitives. It is
also possible to define other primitives within the inventive concept.

Number A primitive that can contain any type of numerical value, for example integer,
decimal (floating point) or big decimal. The type is determined by the value inputted by the
developer of the implementation.

String A string primitive contains a universal character set transformation
format UTF. There are for example an UTF-8 or an UTF-16 string value.

Boolean A boolean primitive contains a boolean value, for example expressed as a
single bit dependent on the implementation.

Collection A collection primitive is able to contain primitives (including collection
primitives), runtime primitives, custom primitives and object references. In a preferred
embodiment of the invention the data contained in the collection primitive should be
contained in a structure independent way. The collection can then be treated as any type of
collection, such as map, vector, array, list, linked list or the like.

Transaction A transaction resource contains a reference to a globally unique transaction

that has been performed or executed.

Runtime primitives:

Runtime primitives are primitives that are local for the Object Runtime Environment

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 11 -

in which they were created and populated. Runtime primitives are transient by nature, and
they are not allowed to be serialized and/or distributed to another Object Runtime
Environment. When an object is serialized it is stored in a format that can be transmitted
over a network or it is stored on a persistent medium, such as a hard disk. In an alternative
wording the complex format of an object is stored for example as a binary stream or as an
XML-document. In contrast to serialization, when an object is transferred as binary data, an
object is distributed by sending an object reference to certain recipients.

Embodiments of the invention comprises:

Container A native container is a runtime primitive that represents a graphical user
interface container (e.g. a window) that is used to project presentation objects.
Custom primitives:

Custom primitives are custom defined primitives, defined by an object vendor or an
object developer. An example usage of custom primitives is a primitive pertaining to a Java
Technology Object. A custom primitive is by default not transient, but may be declared
transient by the object vendor.

Object References:
An attribute can contain a reference to an instance of another object. Such a reference

is used to invoke methods that operate on the current object instance.

Obiject operation methods

An object is accessed or activated by means of an object operation method,
which is a portion of executable software code designed to perform a specific task of the
object. In a preferred embodiment of the invention, the object operation methods is the only
part of the object that is directly exposed to other objects and is available in order on one
hand to execute functionality or operations and on the other hand to access or manipulate
data that is encapsulated in the object. Each object operation method has a definition that
defines its name and its return value. For each object operation method an unlimited number

of unique method implementations can be declared. The uniqueness of an object operation

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 12 -

method implementation, or an object operation method signature, is based on the number of
arguments, argument names, and argument types it requires. In one embodiment, in the case
that two implementations have the same number of arguments, they are differentiated by the
argument names; and if the number of arguments and the argument names are identical they
are differentiated by the argument value types. An object operation method can be
implemented in any programming language that is supported by the current embodiment.

An object operation method can be invoked synchronously or asynchronously. When
invoked synchronously, the execution will block until the method invocation is coniplete,
optionally resulting in a return value. If invoked asynchronously, the execution will not
block. Instead, the external actor specifies an object instance that will be interfaced by the
Object Runtime Environment when the method invocation is complete, attaching any return
value as an argument. Also, an external actor such as a user, device or another object can
specify a specific object instance to be used to monitor or observe the invocation of the
object operation method.

As mentioned above, an object that is defined as native have two object
models, i.e. one in the runtime environment and one in the native environment. Both object
models can interact with each other. For example, native methods can invoke non-native
object operation methods within the same object and vice versa. Furthermore, objects can
invoke native object operating methods in other objects too. Also, any attributes defined as
native are always kept coherent in the two object models. For example, if the attribute value

is changed in one object model, the change is propagated to the other object model.

Aspects of objects

An object exists in different aspects, in one embodiment comprising the following five
aspects.

Object Definition: ~ An object is defined by its Object Definition. It defines the object's
attributes, methods, presentation, inheritance, concurrency, transaction isolation etc.

Object Blueprint: An object blueprint defines an interface of an object, or blueprint, that

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 13 -

is exposed to external actors. The blueprint is created automatically from the Object
Definition.

Object Deployment Descriptor: An object deployment descriptor declares the usage and the
level of usage of Object Runtime and Native Environment built-in services such as
transactions, concurrency, garbage collection, secure communication, etc. Two Deployment
Descriptors can exist for any object; one that is a part of the object and one that can be
supplied by other functionalities of the system.

Object Instance: When an object is instantiated or an object reference is de-serialized,
i.e. when an object represented with binary data or XML is transformed to its proper format,
an object instance is created. An object instance can exist in two different modes, viz. active
or inactive. An active instance is an object instance currently deployed in an Object Runtime
Environment and its inactive counterpart is an object instance currently serialized. An active
instance is always local for an Object Runtime Environment and is unable to be directly
accessed or interfaced by an external actor. An object instance is always interfaced using an
object reference.

Object Reference: External actors never interact with an object instance directly. Instead
there is always an object reference that references the object instance. So for example: If an
object instance A (that is located in Object Runtime Environment A) wishes to interact with
an object instance B (that is located in Object Runtime Environment B), the object instance
A must first acquire a reference to instance B. The acquired object reference is then located
in Object Runtime Environment A, whilst the actual object instance is located in Object

Runtime Environment B.

Obijects in the Form of ODL Documents

Objects are preferably defined in the Object Definition Language, which is a
subset of the eXtensible Markup Language. The Object Definition Language enables object
developers to define objects, independent of hardware -technology, -configuration, network -

topology, -semantics, -protocols, logic implementation language, physical differentiation . It

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 14 -~

provides the developer with an abstraction, enabling the developer to focus on the object's
interface and functionality. This enables the developer to isolate the native/technology-
dependent aspects of the object. The object definition language provides a syntax for

inheritance, abstraction and encapsulation.

Obijects in the Form of XDF Documents

An important feature of the present invention is that all information is
preferably stored in the eXtensible Document Format (below referred to as XDF format)
which is the single document format of the system 10. The XDF format can be used to
describe any type of functionality or content. Since there is no type attribute connected to an
XDF document,there is no difference between, for example, an image and an advanced e-
commerce deployment service in the way that the information is structured and stored. From
the user's point of view, there is no difference between a layout document and a mail
Service.

Several XDF documents may be merged together and form a new XDF
document that contains the merged documents, i.e. the new XDF document inherits content
and properties from the merged documents. In the architecture according to the invention
there is devised inheritance from a single abstract or concrete definition of an object and
from an unlimited number of object interfaces. In the invention polymorphism of the objects
is devised through interfaces and an object inheriting content or properties from several
interfaces can be morphed or transformed to any of these interfaces.

The XDF documents contain both the data, the presentation of the data and
logic. Instead of opening the XDF document in different applications, the XDF documents
may carry the information on how to present the XDF documents themselves so that the
XDF documents may be adapted to any suitable format before the documents are sent to the
requesting user.

An XDF document is, preferably, constituted of objects which represent the
smallest piece of functionality in the system. For example, an object may be a button, an

image editor or a shopping cart. An object has a clearly defined functionality. For example,

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 15 -

an image object has, as its only purpose, to show the user an image. A controller object
connects interface objects with server side logic. An object could be a derived object, i.e.
constructed of a number of other objects, or an atomic object. An atomic object is a basic
building block and is essential in the adaptation process. An object contains a number of
properties. Some of these properties are general for all objects such as name, x-position, y-
position, z-depth, width and height. Other properties are specific for the object type. In

general, all services made available by the system 10 are a combination of objects.

Physical Objects

According to embodiments of the invention an object can represent physical
entities as well as software entities. For example, the physical entity can be a robot, a lamp
or a dishwasher, and a software entity can be a user focused service such as a word processor
or a control service in a physical device. In the case of a robot, a robot object instance would
represent an actual robot, for example used in a production facility. The object instance
would then represent an interface to the robot and other objects can be arranged to interface
with the robot object to control the associated actual physical robot device. Common for
physical entities that are represented by objects, is that the Object Runtime Environment and
the object instances representing the robots would be deployed on a central location in the
production facility. Meanwhile, the actual robot would only host the native aspects of the

object representing it, thus in a Native Environment.

Platform overview — Embodiment of Architecture

The technology architecture of the invention is based on three major components,
viz. the Object Runtime Environment, the Native Environment and Object Connectivity.
These components are preferably implemented in software code and are in different
embodiments available or located distributed in different possible configurations in different
hardware nodes or are located together in a common hardware node. These components also

represent three different perspectives from which any object can be viewed. The platform

10

15

20

WO 03/021375 PCT/SE02/01594

- 16 -

independent part of an object is deployed and managed by the Object Runtime Environment.
The platform dependent or native part or parts of an object is deployed and managed by the
Native Environment. The connectivity of an object to external systems, such as Enterprise
Information Systems or databases, is handled by the Object Connectivity component. Inside
the Object Connectivity component, this connectivity is handled by Connectors, which are
not a part of an object but are global for the Technology Provider they are deployed on. The
Connectors are predefined software code portions and protocols that are devised to interface
and execute data communications between an internal and an external entity. An internal
entity is situated within and an external entity is situated without the defined runtime and
native environments.

When combined together in different constellations and when certain extensions,
such as routing are made, the three components Object Runtime Environment, Native
Environment and Object Connectivity form two actors in the technology architecture of the
invention, viz. a provider and a consumer. These actors build and constitute technology
federations (mentioned above.

Fig 2 shows a schematic block diagram of the technology architecture, thus
comprising a predefined object runtime environment 202, a predefined native environment
220 and a predefined object connectivity component 230 in its turn comprising a connector
232. These components are mutually communicatively coupled or couplable in order to

communicate control data or information when operating on objects.

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 17 -

Object Runtime Environment

The primary function of the Object Runtime Environment 202 is to manage
objects and to facilitate any request from the objects that are within its management. It also
provides a number of predefined standard services to users and objects as well as
implements a comprised security model. In Fig 2 an object 203 that is dwelling in the Object
Runtime Environment 202 is symbolically depicted as a circle. The object runtime
environment 202 comprises in different embodiments optional configurations of the
following components.

An object model 204 is comprised in the object runtime environment to
enable instantiation and managing of object instances. All object instances instantiated
within a certain Object Runtime Environment is aggregated in the object model of this
Object Runtime Environment.

A security module 206 is comprised to define a specific security enclosure for
each object dependent on a predefined object specific security level or security clearance
with regard to accessability and communication. Thus all objects deployed in an Object
Runtime Environment are placed in such a security enclosure that can be more or less
restrictive to an object, depending on its security level or clearance. For example, the
security clearance is higher if an object is certified.

| A number of execution modules 208 are comprised in the Object Runtime
Environment 202 in order to support different programming languages (e.g. Java) that
require support for code execution platforms (e.g. JVM). Preferably, the Object Runtime
Environment 202 utilizes pluggable execution modules to execute object logic, i.e. modules
that are simple to add or remove by means of a common predefined connection interface.
Each execution module 208 defines which code execution platform it handles. The Object
Runtime Environment 202 then delegates the execution of object logic to the different
execution modules at runtime. In presently preferred embodiments, a JavaScript execution
module is comprised in all deployments of the Object Runtime Environment 202.

In order to dispose with used up data the object runtime environment 202

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 18 -

preferably comprises a garbage collector module 210 that is devised to support distributed
garbage collection. The distributed garbage collection is devised to remove an object
instance that is no longer used by any other local or distributed (remote) object instance.
Preferably, the use of or interaction of objects and/or deployments of objects with the
garbage collector 210 at runtime is optional.

A Transaction Processing Monitor (TP Monitor) 212 is comprised for
managing distributed transactions and interacts with all transaction participants. These
participants can be objects as well as connectors. Distributed transactions are transactions
that involve or runs on a plurality of nodes in a distributed data processing system, thus a
plurality of transactional operations that all have to be successfully performed or all
cancelled and rolled back. Preferably, only one monitor is engaged in a transaction, and that
monitor is the one deployed in the Object Runtime Environment where the transaction was
initiated. Preferably, the support of a TP monitor should be present in every Object Runtime
Environment deployed. A TP monitor is used indirectly by objects in the sense that the TP
monitor is activated to operate in transactions involving an object without being actuated or
called by the object itself.

A Concurrency Monitor 214 is comprised in the Object Runtime
Environment 202 to monitor access to object operation methods, i.e. invocations of object
operation methods, and enforces the concurrency integrity that is specified by the object in
its object definition. Preferably, a concurrency monitor should be comprised in every Object

Runtime Environment 202 deployed.

Native Environment

Fig 2 thus further shows a Native Environment 220 communicatively coupled
to the Object Runtime Environment 202. The Native Environment is used to deploy any
native aspects of an object in a distributed data processing system, that is the native aspects
of an object are those that are platform dependent. A Native Environment is typically

deployed in a device or any other type of leaf node in a federation according to the invention.

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 19 -

The Native Environment 220 comprises an object model 221, that should always be
synchronized with the object model 204 of the Object Runtime Environment 202. There are
two types of entities comprised in and managed by the Native Environment, viz. native
elements 222 and native containers 224.

A native element 222 represents an object in the Native Environment 220.
The native element contains all the native aspects of the object it represents. It can contain
attributes, object operation methods and/or presentation. In a native element, the presentation
is not a composition of attributes; instead it is a native logic (i.e. software code) interacting
directly with the Graphical User Interface (GUI) Application Programming Interfaces (APIs)
of the device.

According to the invention, a native element must preferably be coherent with
the object is represents. If the value of an attribute that is defined native in an object's object
definition is changed in the native element, the value must be also be updated in the object
that the native element represents and vice verse. Moreover, a native object operation
method that is comprised in a native element, can be invoked by the object it represents. A
native object operation method can also be invoked by external actors, if it has been declared
in the public scope. A native object operation method can, correspondingly, invoke object
operation methods in the object it represents, but invocations of object operation methods in
an object from a native element are restricted only to the object, which the native element
represents.

A Native Container 224 represents a graphical container, e.g. a window, in a
Native Environment 220. Native containers are optional in different embodiments because
not all Native Environments will be deployed in environments where a Graphical User
Interface is applicable or available.

The Native Environment 220 and the Object Runtime Environment 202 are in
different embodiments deployed on different or on the same hardware node. In both cases
the Native Environment and the Object Runtime Environment are devised such that they are

capable to communicate, in order to the meet the requirement concerning coherency in data.

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 20 -

Consumer Functionality

A consumer functionality is established by configuring (again referring to Fig
2) an object runtime environment 202 associated with a native environment 220. Possibly,
the native environment 220 is also associated with one or more input/output interfaces (not
shown), for example a drawing API or audio playback device, dependent on the specific
application. The consumer functionality enables objects to be autonomously deployed and
instantiated at runtime and to collaborate with other, local as well as remotely situated,
object instances. The consumer functionality is often deployed in the leaf (outmost) nodes of
a federation, and are often positioned in network devices (e.g. internet appliances) where
direct bi-directional user input and output is required.

Optionally a consumer functionality can also comprise an object connectivity
function. The connectivity function is primarily used for interoperability with external data
sources and systems, which however is seldom done in the outer or outmost nodes of a
system. In presently preferred embodiments, the consumer functionality comprises the
availability of a JavaScript Execution Module. Optionally, there may also be comprised

availability of an additional execution module such as the Java Execution Module.

Provider Functionality

A provider functionality is established by configuring (again referring to Fig
2) all the three major components, i.e. an object runtime environment 202, a native
environment 220 and an object connectivity functionality 230, and additional provider
specific components. The additional provider specific components comprise optional
configurations of a routing component, a security (or authentication) component and a
provisioning component (not shown), that all are communicatively coupled to the object
runtime environment 202. Thus, the provider functionality provides all the functionality that
a consumer functionality provides together additional functionality of said added

components. Presently preferred embodiments of the provider functionality comprise the

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 21 -

availability of JavaScript and Java execution modules, whereas availability of additional
execution modules is optional.

The routing component enables routing of input data, output data and calls
(stimuli) within a federation. This is described in more detail below.

The authentication component provides authentication facilities for instances
of consumer functionality that request to become a part of a federation. In presently preferred
embodiments the activation of this component is optional. The responsibility for this
component is primarily to authenticate a consumer establishing contact or participation in a
federation, whereas the task to authenticate an actual user to the system is handled at another
level.

The provisioning component enables provisioning of objects to consumers. It
manages object inheritance as well as device profiling, thus relieving the consumer
functionality from those, rather processing and I/O intensive tasks. For example, the

provisioning component can be devised to provisioning objects over HTTP.

Federations

A federation in accordance with the invention comprises a provider
functionality (also called provider) and one or more instances of consumer functionality
(also called consumers). The provider functionality serves as a central hub in a federation
and consumers are nodes. In a federation all the consumers are devised to have a direct
communication channel with the provider functionality. Consumers can also have a certain
level of awareness of or information about each other and can optionally even have direct
communication channels between them. Between consumers where direct communication
channels exist communication is performed using the communication channels. If direct
communication channels does not exist, the provider is used to route communication
between consumers.

Within a federation, objects can seamlessly collaborate and interact. When an

object that is deployed within a first consumer wants to interact with another object that is

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 22 -

deployed within another, second consumer, the stimuli in the shape of calls can normally be
communicated in two different ways. If a direct communication channel exists between the
two consumers, the action stimuli and, if applicable, re-action stimuli are sent using that
direct communication channel. If no such direct channel exist, the action stimuli and the re-
action stimuli is routed by the provider. When routing, the provider utilizes its direct
communication channel with each of the two involved consumers to send and receive the
stimuli.

If an object that is deployed within a consumer wants to interact with another object
that is deployed within a provider within the same federation, there is always a direct

communication channel and no routing is required.

Scenarios

Exemplifying scenarios of signal patterns according to embodiments of the
invention are shown in overview séquence flow diagrams in Fig 3 ~Fig 5.

Fig 3 shows a scenario of a user requesting an object for utilizing an image
editing service. Thus a user 302 signals by means of a signal (1:request Image Editing
Service Object) to a consumer functionality 304 (corresponding to a client in a client/server-
architecture) that it wishes to use an image editing service accessed through a dedicated
object. The consumer functionality 304 comprises a native environment 306 and an object
runtime environment 308. The object runtime environment 308 has a device or technology
profile that is dependent on the currently active user, for example specifying a user access
device such as a mobile WAP browser or an stationary computer web browser.

The object runtime environment 308 of the consumer 304 (i.e. the client) then
sends a request for the image editing service (2: request Image Editing Service with device
profile) to the provider functionality 310. The provider 310 (corresponding to a server in a
client/server-architecture) then profiles or adapts the requested object for the device or
technology profile specified by the consumer object runtime environment 304 (3: profile

object for specified device). Thereafter, the provider 310 returns or provisions (4:

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 23 =

return/provision object) the requested and by now profiled object to the object runtime
environment 308. When the object is received by runtime environment 308 of the consumer
304, the object is instantiated (5: instantiate object), i.e. an object instance is created. If the
object contains any native aspects, these are propagated to the native environment 306 of the
consumer 304 (6: propagate native aspects) and a return signal (7: return) is sent back to the
object runtime environment 308 as a confirmation. Thereafter, the thus profiled image
editing service is made available to the user 302.

Fig 4 shows a scenario of a user invoking a local object operation method. A
user 402 operates on an image by means of a user interface, for example a grafical user
interface (GUI) that in this example is assumed to comprise a native aspect in the shape of a
field representing a control button for activating a service for sharpening the image. First, the
user 402 clicks on the sharpen image button and thereby sends a signal (1: click on location
x,y in GUI). The user interface is normally a part of the native environment and therefore
the user click event is handled by the consumer native environment 404. The consumer
native environment 404 resolves on which native aspect in the GUI the user has clicked
(2:resolved click to be on sharpen image button). In this case the click was performed on the
x and y coordinates of the GUI, which is predefined to be within the sharpen image button.
The native environment 404 then sends an on-click event signal (3:send onclick event) to a
sharpen image button native aspect 406. The sharpen image button native aspect 406 then
invokes an object operation method in the object it is associated to by means of a signal (4:
invoke on-action operation method in object logic) to the consumer object runtime
environment 408. The object operation method is dispatched by the object runtime
environment 408 (5:resolve implementation for on-action operation method in button
object), which resolves the adequate method implementation for the on-action object
operation method (6:resolve implementation language). When the adequate object operation
method implementation is found, the the object runtime environment 408 activates |
(7:execute object logic for on-action object method) an execution module 410 to execute

(8:execute) in a sharpen image button object 411 the object logic for the object operation

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 24 -

method implementation dependent on the operation method implementation language (e.g.
Java or Javascript) and returns (9:return). When the execution model returns (10:return) also
the object runtime environment returns (11:return) and the sharpen image button native
aspect 406 becomes active again. In this scenario the button native aspect has accomplished
everything that it was designed to do and a current execution session in the button native
aspect 406 terminates in a return (12:return) to the native environment 404. The aspect itself
remains in an existing waiting state in order to respond to possible sequential events from
the native environment 404.

Fig 5 shows a scenario of a consumer invoking a remote object operation
method and is based on the previously described scenario of Fig 4 with a user invoking a
local object operation method for manipulating an image. In Fig 5 a consumer object runtime
environment 502 (1:) resolves the implementation for an on-action object operation method
in the button object and (2:) resolves the implementation language. Thereafter, (3:) object
logic for on-action object operation method is executed by means of an execution module
504 that (4: execute) invokes execution of a sharpen image button logic 506. When the
button object logic 506 is executed it interfaces a sharpen filter object reference 508, which
is a reference to a remotely available / distributed sharpen filter object 512 that performs the
actual sharpening of the manipulated image. The sharpen filter object 512 is deployed and is
dwelling on a second, remotely situated object runtime environment 510 that in this
configuration constitutes a provider functionality.

When the button object logic 506 invokes the apply filter operation method
(5: invoke applyFilter method) on the sharpen filter object reference 508, the latter
communicates via the consumer object runtime environment 502 (6:invoke remote operation
method apply filter) with the object 512 that it references to. The consumer object runtime
environment 502 sends an (7: invoke method request) invoke object operation method
request to the remote provider object runtime environment 510. Thereafter a local object
operation invokation procedure as described in the scenario of Fig 4 takes place within the

remote provider object runtime environment 510. That is, the remote provider object runtime

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 25 -

environment 510 (8: invoke local object method) invokes a local object operation method,
whereupon (9: execute object logic) execution of object logic in the sharpen filter object 512
takes place. When the local object operation method returns (10: return) to the remote
provider object runtime environment 510, the latter sends (11: invoke method response) an
invoke object operation method response to the consumer object runtime environment 502,
The consumer object runtime environment 502 (12: return) returns to the object reference
508, which returns (13: return) to the button object logic 506, and the returns goes on from
the object logic 506 (14: return) to the execution module 504 and back (15: return) to the
consumer object runtime environment 502.

In fully functional scenarios some of the calls and signal communications
would involve a number of arguments or parameters, but for the sake of simplicity in

explanation this is not shown in the figures.

Embodiment Realizing an Data Network Based Operating System

One embodiment of the invention is shown in F ig. 1, and comprises an
operating system 10 designed in accordance with the present invention. This operating
system 10 is a network based, such as an Internet based, platform that enables a user 11 to
gain access to a wide range of services. In general, the user 11 may log into a web site and
use the powerful resources of a content distribution and an object connecvtivity component
in the shape of a synchronization server 12 and other functionalities connected to the system
10. For example, the user 11 may purchase, subscribe or lease services as they are required.
The user 11 may conveniently gain access to the same information whether the user
operates from a conventional computer, a WAP device, a mobile phone or any other
communication device that is connectable to the system 10 via the Internet without the need
for any cumbersome conversion or synchronization routines.

The system 10 has a provider object runtime environment in the shape of a
behave server 14, a provider provision extension in the shape of a service delivery server 16

and a file delivery server 18 that may communicate with the user 11. The behave server 14

10

15

20

WO 03/021375 PCT/SE02/01594

- 26 -

may directly be used by external actors to interact with services and to perform certain
behave scripts such as data manipulation or execution of logic. The service delivery server
16 acts upon external requests for services, loads the service, adapts it and then delivers it to
the external user 11 who requested it. The file delivery server 18 acts upon external requests
for a certain file, loads the file, adapts it and then delivers it to the requesting user 11. For
example, the user 11 may request access to a service, such as a word processing service or
any other functionality or service made available by the system, by sending a request service
signal 36, i.e. a request object signal, to the service delivery system 16.

The behave server 14 may be used when the user 11 needs to manipulate the
information, such as documents, delivered by the service delivery system 16 and file delivery
system 18, as described in detail below.

Upon proper authentication of the user 11, the user may send the request
service signal 36 to the system 16 that receives the signal 36 and sends a session lookup
signal 38 to a session server 40 to determine if there is a pre-existing session associated with
the user's request. If there is a session stored in the session server 40, the server 40 sends
back a deliver session signal 42 to the system 16 that in turn sends a deliver service signal
44, including the requested service, back to the user 11. If there is no session in the session
server 40 then a new session may be set up.

The user 11 may start working with a document by using one type of
communication device, such as a desktop computer, and then continue working with the
same document using a different type of communication device such as a PDA or WAP
phone. The system 10 automatically takes care of any required adaptation of the format for

the user to gain access to a service.

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 27 -

The user 11 may also request access to a previously stored file, such as a
JPEG picture, sound clip or video file, by sending a request signal 22 to the system 18. A
new file may be created by a service using a behave script using logic executed by the SPU.
Upon receipt of the signal 22, the file delivery system 18 sends a load and adapt file signal
24 to a file adaptation unit 26. The unit 26 receives the signal 24 and sends a load signal 28
to the server 12. The server 12 receives the signal 28 and finds the requested file and sends
back a deliver file signal 30 including the requested file information to the unit 26. As
mentioned above a single document format (XDF or ODL) is used to describe any type of
functionality or content.

The user 11 may just open any document or start with an empty document.
Since there is no type attribute connected to an XDF document,there is no difference
between, for example, an image and an advanced e-commerce deployment service in the way
that the information is structured and stored. From the user's point of view, there is no
difference between a layout document and a mail Service. New documents may be named at
the time of creation and saved continuously and automatically.

The unit 26 receives the signal 30 and converts the file information to a
format, such as JPEG, WBMP etc., that is suitable for the communication device used by the
user 11. For example, if the user 11 is using a PDA when communicating with the system
18 then the unit 26 sends back a deliver adapted file signal 32 in a format that is suitable for
the PDA. If the user is using a conventional computer, the signal 32 is in a format that is
suitable for the computer and so on. In this way, the format is always adapted to the
communication device the user 11 is using when communicating with the delivery system
18. The delivery system 18 receives the signal 32 and forwards the information in a deliver
file signal 34 back to the user 11.

As indicated above, the user 11 may also request a service by sending a
request service signal 36 to the service delivery system 16. Preferably, a Service must be
requested before files are requested. In general, a user 11 may always request a service

before the file delivery system 18 and the behave server 14 are used. The service may

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 28 -

provide access to a word processing service or any other type of service such as picture or
video related services. Thus the user 11 may gain access to the requested word processing
service without having a word processing program installed on the communication device
that is used by the user 11 to communicate with the system 16.

As mentioned above, the behave server 14 may be used when the retrieved
services or documents require manipulation. For example, when the user 11 would like to
make a picture sharper that is downloaded from the file delivery system 18, the user 11 may
broadcast an object operation method invokation in the shape of a behave event signal 46 to
the behave server 14 to inform the server 14 about the required event that the picture should
be made sharper. The server 14 sends a session lookup signal 48 to the session server 40 to
find out if there is a previously stored session in the session server 40 and to identify the user
11. Similarly, it should be noted that the system 18 also sends a session lookup signal 49 to
the session server 40 when a file is requested, as described above. The system 18 then
receives a deliver session 51 in response to the signal 49.

If there is a previously stored session in the server 40, the server 40 sends
back a deliver session signal 50 to the server 14 that receives the signal 50 and the server 14
sends a signal for executing an object operation method implementation in the shape of a
execute behave script signal 52 to a behave runtime device 54, the latter being an objcet
runtime environment core. The signal 52 may include object operation implementation logic,
i.e. software code, in the shape of the script commands that are required to accomplish the
requested event. The signal 52 may be in the XDF format or any other suitable format. The
device 54 receives the signal 52 for the event of the behave script, i.e. the object operation
method invokation, such as making a picture sharper, and obtains the required logic in the
shape of a script. The device 54 then reads or interprets the script that constitutes the object
operation method implementation and may, depending upon the type of event, execute logic
or manipulate binding data. The latter is in principle mutation of attributes in an object by
the object itself indirectly through the object runtime environment.

More particularly, the device 54 receives the signal 52 and loads the script,

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 29 -

i.e. implementation logic for the object operations method related to the sharpness of the
picture from a service runtime device 56 by sending a load behave script signal 58 thereto.
Preferably, the signal 58 is always sent to the device 56 to obtain the required script. The
device 56 receivés the signal 58 and sends a prepare service signal 68 to a XDF runtime
device 70, which is an object model that is a part of the object runtime environment. The
device 56 may also receive an invoke service signal 82 from the service delivery system 16.

The device 70 receives the signal 68 and sends a load service resources signal
72 to the server 12. The server 12 responds by sending back a deliver resources signal 74,
including the requested resources, to the XDF runtime device 70. The device 70 may load
one XDF document from the device 12 and then propagate data in the document to the
current session binding pool. The device 56 may be designed to handle the request and
response administration for the device 70. More particularly, the device 70 may then send a
deliver service signal 76 to the service runtime device 56. The device receives the signal 76
and sends a deliver behave script signal 60 back to the device 54. If the device 56 activated
the device 70 as a result of the invoke service signal 82, then the device 56 may send back an
adapt service signal 84 to the service adaptation device 43, which is a part of the provision
extension to the provider, that may forward the information in a deliver adapted service
signal 86 to the service delivery system 16. However, before the signal 84 is sent to the
system 16, the device 43 may send a load bindings signal 41 to the service adaptation unit 43
that sends back a deliver bindings signal 45 including the required bindings.

When the device 54 has received the script signal 60, the device 54
determines the next steps which may include sending an execute logic signal 62 to a service
processing unit 64, i.e. an execution module, or a manipulate bindings signal 66 to the
session server 40. The first time a service is loaded, one or more behave scripts may be
executed even before the service has reached the requesting user 11. For example, if a credit
card transaction service is to be delivered, it may be necessary to prepare the request by
executing logic when the request is sent to the credit card company but before the service is

delivered to the client.

WO 03/021375 PCT/SE02/01594

- 30 -

With reference to the above example of making a picture sharper, the device
54 sends the execute logic signal 62 to the device 64. Because the sharpness of the picture is
a mathematical calculation that is applied to the picture, it is necessary for the device 54 to
send the execute logic signal 62 to the processing unit 64. The unit 64 receives the signal 62

5 and sends a load logic and content signal 78 to the server 12. It should be noted that the
device 64 may communicate with some external systems without using the device 12. The
server may send a transaction signal 88 to an external content adaptation unit 90 that
communicates with an external actor 92, such as a database. When the requested transaction
is carried out by the server 12, the server 12 responds to the unit 64 by delivering a

10 transaction state by using the deliver signal 80. When the unit 64 receives the signal 80, it
sends a deliver resources signal 94 to the device 54 that, in turn, sends a deliver resource
signal 96 to the behave server 14. The server 14 then sends a deliver response signal 98
back to the user 11. In this way, the unit 64 carries out at least two steps including up-
loading logic, for making a picture sharper, and loading the picture itself from a cache

15 location.

As mentioned above, the behave runtime device 54 may send the manipulate
bindings signal 66 to the server 40. For example, the signal 66 may manipulate stored
bindings in the session server 40 to make the picture sharper so that future service requests
will operate with the manipulated sharper picture. The signal 66 is related to a binding pool

20 that is created whenever a new session is created in the session server 40. For example, the
binding pool includes all the data that is required to describe all the variables that are active
depending upon the services that are currently loaded. Regarding the picture example, the
binding pool may, for example, include the width, height and location of the picture. If the
session concerns a word processing document, the signal 66 may include instructions to

25 make a text segment bold by manipulating the bindings, such as adding tags for bold text,
that are related to the text segment. In general, the signal 66 does not involve any logic and
requests less complicated changes of the picture compared to changes that require the

execution of logic in the device 64. It should be noted that the information to actually make

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 31 -

the actual display of the picture sharper for the user 11 is sent via the behave server 14 and
the deliver response signals 96 and 98.

The system 10 may import information from a large number of databases and
assemble and present the information in one document because all the external information
is adapted to the XDF format by the external content adaptation unit 90, which is an object
connectivity component, before it is stored in the server 12. For example, the system 10 may
import hundreds of databases for film reviews in many formats and merge all the database
information into one database in one format that includes the film reviews from all the
external databases. In conventional systems, imported databases must be kept separate
within the system.

The user may gain access to very powerful services, functionalities and
resources provided at the server although the communication device itself is relatively
primitive because it is not necessary for the communication device to have any powerful
programs installed. It is sufficient for the user to gain access to the resources of the system
10 and utilize the processing power of the system 10 which substantially reduce the
processing power required of the computer device used by the user 11. When the user 11
logs out from the system 10, all sessions in the session server 40 are, preferably, saved in the
server 12,

When a user edits the document, changes are broadcast to the other
users. More than one user may edit the same document simultaneously provided they work
on different parts of the same document.

Preferably, each behave server 14, service delivery system 16 and file
delivery system 18 has a core module that may include the service runtime device, the
behave runtime device, the XDF runtime device and the service processing unit.

The invention has been explained above by means of exemplifying
embodiments, and it can be implemented in various other ways within the framework of the

accompanying claims.

10

15

20

25

WO 03/021375 PCT/SE02/01594

- 32 -

Claims

A method for processing data objects in a distributed data processing system,
said distributed data processing system having a plurality of software and/or hardware
nodes being communicatively connectable,
the method comprising the steps of:

defining a first environment for processing objects at a first level of
abstraction that is independent of the software/hardware platform of said nodes;

defining a second environment for processing objects at a second level of
abstraction that is dependent on the software/hardware platform of said nodes;

defining in said first environment a first object model with a first category of
object aspects;

defining in said second environment a second object model with a second
category of object aspects;

synchronizing said first object model of said first environment with said
second object model of said second environment;

defining an object in accordance with said first and second models
associating a selectable set of object aspects from said first and second object aspect
categories;

generating an instance of said object;

processing said object instance in said first and second environments

dependent on said associated set of object aspects.

The method as recited in any of the preceding claim, wherein predefined
object connectivity means, in the shape of software code portions and protocols,
communicatively coupled to said first, platform independent environment, are devised to
interface with and execute data communications between an internal entity situated

within and an external entity situated without said defined first and second environments.

WO 03/021375 PCT/SE02/01594

10

15 6.

20

25

- 33 -

The method as recited in the preceding claim, wherein an instance of said
first, platform independent environment is configured together with an instance of said
second, platform dependent environment and object connectivity means to constitute a

object provider functionality.

The method as recited in any of the preceding claim, wherein an instance of
said first, platform independent environment is configured together with an instance of

said second, platform dependent environment to constitute a service object functionality.

The method as recited in the preceding claim, wherein a service provider
functionality is configured together with and a service consumer functionality

constituting a consumer/provider subset of the distributed system.

The method as recited in the preceding claim, wherein routing means enables
routing of data and control signals within said consumer/provider subset of the

distributed system.

The method as recited in the preceding claim, wherein authentication means
provides authentication functionality in accessing said consumet/provider subset of the

distributed system.

The method as recited in the preceding claim, wherein provisioning means
enables provisioning of objects to a consumer within said consumer/provider subset of
the distributed system and adapts said objects to the technical configuration of the

consumer apparatus.

The method as recited in any of the preceding claim, wherein said object

10

15

20

25

WO 03/021375 PCT/SE02/01594

10.

11

12.

13.

14.

15.

- 34 -

instance when it is generated is associated with an identification indication that is unique

within said distributed system.

The method as recited in any of the preceding claim, wherein an object is
defined by means of a plurality of aspects comprising an object property definition, an

interface definition, an object instance aspect and an object instance reference aspect.

The method as recited in any of the preceding claim, wherein data is
encapsulated in an object instance by means of an attribute devised to store a selectable
predetermined type of basic entity for containing data, said type of basic entity being

dependent on the type of data to be stored.

The method as recited in the preceding claim, wherein an attribute of a first
object instance is devised to contain a reference to a second object instance for accessing

or activating a selectable content of said second object instance.

The method as recited in any of the preceding claim, wherein an object
instance is accessed or activated by means of a portion of executable code associated

with said object and devised to perform a predefined task of said object.

The method as recited in the preceding claim, wherein said portion of
executable software code is available and devised to activate execution of functionality
or operations of said object instance, or to access or manipulate data that is encapsulated

in the object.

The method as recited in any of the preceding claim, wherein information is
encapsulated in an object instance at a first node in said distributed system and is

accessible, dependent on predetermined access parameters, from an arbitrary second

WO 03/021375 PCT/SE02/01594

17.

10

18.

15

19.

20 20.

25 21.

- 35 -

node in said distributed system.

The method as recited in any of the preceding claim, wherein a service,
possibly involving software logic, is encapsulated in an object instance at a first node in
said distributed system and is accessible, dependent on predetermined access parameters,

from an arbitrary second node in said distributed system.

The method as recited in any of the preceding claim, wherein an object is
devised to represent a physical entity, an object instance thus being defined to access,

interface with or control said physical entity.

The method as recited in any of the preceding claim, wherein all information
within the distributed system is stored in common and single format and structured in a

common way independent of the type of said information.

The method as recited in any of the preceding claim, wherein an object and a
software component within said distributed system are expressed in a common

predetermined language and with a common predetermined set of language rules.

A system for processing data objects in a distributed data processing system,
said distributed data processing system having a plurality of software and/or hardware
nodes being communicatively connectable, comprising means for realizing the steps and

functions of any of the preceding claims.

A computer program product for processing data objects in a distributed data
processing system, said distributed data processing system having a plurality of software
and/or hardware nodes being communicatively connectable, comprising computer

program code portions devised to direct a data processing system to perform the steps

WO 03/021375 PCT/SE02/01594

- 36 -

and functions of any of the preceding claims.

22. A network based system for enabling a user to gain access to services and
files, with steps and functions according to any of the preceding claims, further
5 comprising:

a distribution and synchronization server 12 devised for distribution and
synchronization of service and file data;

a behave server 14 devised to be used by external actors to interact with
services and to perform scripts defining a predetermined behavior such as data

10 manipulation or execution of logic;

a service delivery server 16 that is devised to act upon requests for services,
loads the service, adapts it and then delivers it to a requesting user 11;

a file delivery server 18 that is devised to act in response to a request service
signal for a certain file, loads the file, adapts it and then delivers it to a requesting user

15 11.

23. The system of any of the preceding claims, wherein the access to information
is independent of the user access device, which may be a conventional computer, a WAP
device, a mobile phone or any other communication device that is connectable to the

20 system.

24, The system of the preceding claim, wherein the behave server 14 is used by a

user 11 to manipulate information or a service.

25 25. The system of any of the preceding claims, wherein each behave server 14,
service delivery system 16 and file delivery system 18 has a core module that includes a
service runtime device, a behave runtime device, a document format (XDF) runtime

device and a service processing unit.

WO 03/021375 PCT/SE02/01594

- 37 -

26. The system of any of the preceding claims, wherein the system is devised to
give access to different functionality dependent on the technical capabilities of the user

communication device.

27. The system of any of the preceding claims, wherein a service is requested by
auser 11 by sending a request service signal 36 to the service delivery system 16,
whereupon any possibly needed software code is executed in the server system and the
service is delivered by presenting the resulting information on the communication device

10 of the user.

28. The system of any of the preceding claims, wherein the system constitutes an

Internet based operating system enabling a user to gain access to services and files.

WO 03/021375 / PCT/SE02/01594
1/5
11
— SN —
\ T \
46\l 98 46] 44 5, |- 22
"""""""""""""""""""" 16\18
PE— 1 8 []
/ 48 4238 49 1—32
14 \ k/ <’ .
50 ‘EE—‘J‘I, ‘51 24+
1/96 45\11-41 | —
| N 1 30__T \26
-84 43 1-66
1/52 10
82~ 60 v

68-. L—62
70 =" 164
72~\M};74 80-_1lf’78 l/’28
38 — 12
] ——90
o2—[1
FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 03/021375 PCT/SE02/01594
2/5

220

Q 224
59‘ 222

221
202 230
E% 208 210
212 214 FIG.2
204 206

SUBSTITUTE SHEET (RULE 26)

PCT/SE02/01594

WO 03/021375

3/5

~ Mdnldd L

ey

S103d5%¥ IAILVN 31¥9v¥d0Odd-9

INYLSNIG T

Lsanbh3d: g

_
|
_
_
_
_
|
_
_
|
|

123rgo 301AW3AS DNILIAT IDVIWI L53IN0ILT

0

o0E

3

FIG.

SUBSTITUTE SHEET (RULE 26)

PCT/SE02/01594

WO 03/021375

4/5

Ndnil3d et

\ ~
1NIAT HAOITONO AN35E

NOL1Ng 3991 NIdd¥HS

|
I
| MO 38 01 ADIMD d3AT0S53d 8
_
l

—

— -

IND NI A'X NOILYD01 NO S32I12:T

o0

FO¥

FIG. 4

SUBSTITUTE SHEET (RULE 26)

PCT/SE02/01594

WO 03/021375

5/5

] — —

NaNL3d+1

NJNL3d: ST

NanL3d: 21

WL

14A7dd¥Y QOHL3W FLOWId INOANII9

3LNO3XI i+

ot

QOHL3W 133rg0 NOILJIYNO do4d

20907 193080 3LND3AXIE
IDVNDONYT NOLLY LNIWI1dWI AT0S3d 8

—

123r90 NOLLNd NI AOHL3W

MY

NOLLDYNO ¥Od NOILY LNIWFTdWI IATOSTA:T |

!
!
|
i
|
1
!
|
on%

FOT

5

FIG.

F4i14

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

