SYNTHETIC WOOD HAVING ELASTIC LAYER

The present invention relates to a synthetic wood having an elastic layer, wherein a synthetic wood layer and the elastic layer formed at one side of the synthetic wood layer are formed integrally. According to the present invention, since the elastic layer formed of a rubber material is provided on the upper surface of the synthetic wood, it is possible to increase the contact surface area upon walking and thus improve the anti-slip performance.

[Fig. 1]
Description

Title of Invention: SYNTHETIC WOOD HAVING ELASTIC LAYER

Technical Field

The present invention relates to a synthetic wood having an elastic layer, and more particularly to a synthetic wood having an elastic layer, which a rubber material is provided thereon to increase surface elasticity thereof and improve its anti-slip function, thereby increasing a contact surface area upon walking and thus improving slip resistance.

Background Art

Recently, the synthetic wood is being recognized as a substitute for a general wooden material due to its excellent exterior effect and environmentally friendly characteristics.

The synthetic wood has been used widely in the United States and Japan from about 15 years ago and it was from about 3 or 4 years ago to be used in earnest in Korea. Due to its harmlessness to human body, recyclability, environmentally friendly characteristics, excellent heat resistance and durability, the future relevant market is expected to be increased. The synthetic wood is being used widely as an alternative construction material which can be used in a public place such as a park, a walk and a school.

Typically, in manufacturing processes for the synthetic wood, a plasticizer, an adhesive, a pigment, an infrared blocker and a stabilizer are mixed at high temperature, and wood flour and rice husks are further mixed in a small amount and then the mixture is extrusion-molded with high pressure.

In other words, to manufacture the synthetic wood, the mixture of the plastic and wood flour is injection-molded into a certain shape. The mixture is extruded with high pressure, thereby injection-molding a product.

A deck product which is used in a footpath and a walk is a flooring material on which many people walk. It is important to prevent negligent accidents due to the slip, and particularly, in case of being moisture on the road surface after the snow or rain, there is a danger of injury due to the slip.

Therefore, there has been proposed various method of improving the anti-slip function. For example, there are a method of forming an uneven pattern on the synthetic wood, a method of forming fine protrusions or projections on the synthetic wood by adding various inorganic materials or using a foaming or etching process, or a brushing method of a surface of the synthetic wood to provide a high surface roughness.
However, in case of the method of forming the uneven pattern on the synthetic wood, since foreign substances such as moisture and sands can be easily accumulated thereon, it becomes further slippery.

And in case of the method of adding the inorganic materials or the brushing method, the anti-slip functions can be maintained at the initiatory stage, but normal wear and tear occurs as times goes by. Thus, there is a problem that the worn portion thereof becomes further slippery.

Further, in case of improving the surface roughness using the inorganic materials, if a pedestrian, particularly a child falls down, body parts such as hands and a face may be scratched or wounded.

Therefore, it has been required to develop new synthetic wood having excellent anti-slip performance while maintaining its own properties and appearance.

Disclosure of Invention

Technical Problem

An embodiment of the present invention is directed to providing a synthetic wood having an elastic layer, on which a rubber material is provided so as to form the surface elastic layer, thereby increasing a contact surface area upon walking and thus improving its anti-slip function.

Solution to Problem

To achieve the object of the present invention, the present invention provides a synthetic wood having an elastic layer, wherein a synthetic wood layer and the elastic layer formed at one side of the synthetic wood layer are formed integrally.

Preferably, the synthetic wood layer is integrally formed with the elastic layer through a dual extruding process.

Preferably, the elastic layer is composed of 15 to 35 parts by weight of a synthetic resin, 5 to 15 parts by weight of a thermoplastic elastomer, 50 to 70 parts by weight of wood flour and 1 to 15 parts by weight of an additive.

Further, the present invention provides a method of manufacturing a synthetic wood having an elastic layer, including extruding a synthetic wood layer through one side of an extrusion mold; extruding an elastic layer through the other side of the extrusion mold; forming a boundary between the synthetic wood layer and the elastic layer; and cooling the synthetic wood, in which the synthetic wood layer and the elastic layer are integrally formed, to a predetermined temperature.

Further, the method may further include cutting the cooled synthetic wood having the elastic layer in a predetermined length.

Advantageous Effects of Invention

According to the present invention as described above, it is possible to provide a
synthetic wood having an elastic layer, on which a rubber material is provided so as to form the surface elastic layer, which maintains the synthetic wood’s own appearance and properties having environmentally friendly characteristics, excellent heat resistance and durability.

[19] And, according to the present invention, it is possible to provide a synthetic wood having an elastic layer, on which a rubber material is provided so as to form the surface elastic layer, thereby increasing a contact surface area upon walking and thus improving its anti-slip function.

Brief Description of Drawings

[20] Fig. 1 is a view of a synthetic wood having an elastic layer according to an embodiment of the present invention.

[21] [Detailed Description of Main Elements]

[22] 10: elastic layer 20: synthetic wood layer

[23] 100: synthetic wood

Mode for the Invention

[24] Hereinafter, the embodiments of the present invention will be described in detail with reference to accompanying drawings.

[25] Herein, the same reference numerals are given to the same or corresponding parts.

[26] Referring to Fig. 1, a synthetic wood 100 having an elastic layer 10 according to an embodiment of the present invention is characterized in that the elastic layer 10 is integrally formed on an upper surface of a synthetic wood layer 20, and particularly, the elastic layer 10 is integrally formed on the upper surface of the synthetic wood layer 20 by a dual extrusion method.

[27] Hereinafter, each construction element of the synthetic wood 100 having the elastic layer 10 will be described detailedy.

[28] In the synthetic wood 100 having the elastic layer 10 according to the present invention, the synthetic wood layer 20 is manufactured by mixing a plasticizer, an adhesive, a pigment, an infrared blocker and a stabilizer at high temperature, further mixing wood flour and rice husks in a small amount and then extruding the mixture with high pressure. A composition and a composition ratio thereof are changed according to its manufacturers.

[29] Further, with respect to the elastic layer 10 composed of 25 parts by weight of a synthetic resin, 10 parts by weight of a thermoplastic elastomer, 60 parts by weight of wood flour and 5 parts by weight of an additive, the slip resistance was measured in the state that a static load of 60kg was applied thereto, on the basis of KS M 3510 (a testing method of a polymer flooring material). That is, the slip resistance was measured by a reciprocating friction test of about 10,000 times using shoes having a
urethane sole, and a result thereof is shown in table 1.

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>Frictional coefficient before wearing</th>
<th>Frictional coefficient after wearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embodiment of the present invention</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>Conventional product (comparative example 1)</td>
<td>0.52</td>
<td>0.46</td>
</tr>
<tr>
<td>Product having high surface roughness (comparative example 2)</td>
<td>0.70</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Therefore, according to the synthetic wood 100 having the elastic layer of the present invention, since the thermoplastic elastomer is added to a surface thereof in order to permanently increase the surface elasticity, it is possible to increase a contact surface area between pedestrian’s shoes (mostly, rubber) and the synthetic wood 100 and thus improve the anti-slip performance.

In other words, when a concentrated load of a pedestrian having an average weight of about 60kg is applied to upper surface of the synthetic wood, i.e., the elastic layer 10, a product of the present invention having high surface elasticity is pushed down in a moment, and the contact surface area between the pedestrian’s shoes and the synthetic wood 100 is increased, thereby providing excellent anti-slip performance.

Generally, the harder and stiffer the surface is, the more the surface is worn. However, since the synthetic wood having the elastic layer according to the embodiment of the present invention has high elasticity, the wearing is reduced, thereby providing excellent anti-slip performance.

Hereinafter, a method of manufacturing the synthetic wood having the elastic layer according to an embodiment of the present invention will be described.

In the method of manufacturing the synthetic wood having the elastic layer according to the embodiment of the present invention includes step S100 of extruding a synthetic wood layer through one side of an extrusion mold; a step S200 of extruding an elastic layer through the other side of the extrusion mold; a step S300 of forming a boundary between the synthetic wood layer and the elastic layer; and a step S400 of cooling the synthetic wood, in which the synthetic wood layer and the elastic layer are integrally formed, to a predetermined temperature.

Herein, the step S100 of extruding the synthetic wood layer and the step S200 of
extruding the elastic layer through the other side of the extrusion mold are performed at a front side of the extrusion mold, and the steps S300 and S400 are performed at a rear side thereof.

[37] The method may further include a step S500 of cutting the synthetic wood having the elastic layer in a predetermined length.

[38] The embodiments of the present invention, as described above, are just examples, and thus the present invention is not limited to them.

[39] According to the present invention, the rubber material is provided on the upper surface of the synthetic wood so as to form the surface elastic layer. Therefore, it is possible to provide the synthetic wood which has the environmentally friendly characteristics, excellent heat resistance and durability while maintaining its own properties and appearance.

[40] Further, according to the synthetic wood of the present invention, since the contact surface area is increased upon the walking, the slip resistance is improved.

[41] While the present invention has been described with respect to the specific embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.
Claims

[Claim 1] A synthetic wood having an elastic layer, wherein a synthetic wood layer and the elastic layer formed at one side of the synthetic wood layer are formed integrally.

[Claim 2] The synthetic wood of claim 1, wherein the synthetic wood layer is integrally formed with the elastic layer through a dual extruding process.

[Claim 3] The synthetic wood of claim 1, wherein the elastic layer is composed of 15 to 35 parts by weight of a synthetic resin, 5 to 15 parts by weight of a thermoplastic elastomer, 50 to 70 parts by weight of wood flour and 1 to 15 parts by weight of an additive.

[Claim 4] A method of manufacturing a synthetic wood having an elastic layer, comprising:

extruding a synthetic wood layer through one side of an extrusion mold;
extruding an elastic layer through the other side of the extrusion mold;
forming the synthetic wood layer and the elastic layer integrally with a boundary therebetween; and
cooling the synthetic wood, in which the synthetic wood layer and the elastic layer are integrally formed, to a predetermined temperature.

[Claim 5] The method of claim 4, further comprising cutting the cooled synthetic wood having the elastic layer in a predetermined length.