
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0119440 A1

US 2011 0119440A1

Pandya (43) Pub. Date: May 19, 2011

(54) DYNAMIC PROGRAMMABLE INTELLIGENT cation No. 60/873,632, filed on Dec. 8, 2006, provi
SEARCH MEMORY sional application No. 60/873,889, filed on Dec. 8,

2006.
(76) Inventor: Ashish A. Pandya, El Dorado Hills,

CA (US) Publication Classification

(51) Int. Cl.
(21) Appl. No.: 13/011,692 G06F 12/00 (2006.01)

(22) Filed: Jan. 21, 2011 (52) U.S. Cl. 711/105: 711/E12.001

Related U.S. Application Data (57) ABSTRACT

(63) Continuation of application No. 11/952,117, filed on Memory architecture provides capabilities for high perfor
Dec. 6, 2007, now Pat. No. 7899,978. mance content search. The architecture creates an innovative

s s sy- - - s memory derived using randomly accessible dynamic

(60) Provisional application No. 60/965,267, filed on Aug. memory circuits that can be programmed with content search

RSXCA ach x is

17, 2007, provisional application No. 60/965,170,
filed on Aug. 17, 2007, provisional application No.
60/963,059, filed on Aug. 1, 2007, provisional appli
cation No. 60/961,596, filed on Jul. 23, 2007, provi
sional application No. 60/933,313, filed on Jun. 6,
2007, provisional application No. 60/933,332, filed on
Jun. 6, 2007, provisional application No. 60/930,607,
filed on May 17, 2007, provisional application No.
60/928,883, filed on May 10, 2007, provisional appli

rules which are used by the memory to evaluate presented
content for matching with the programmed rules. When the
content being searched matches any of the rules programmed
in the dynamic Programmable Intelligent Search Memory
(PRISM) action(s) associated with the matched rule(s) are
taken. Content search rules comprise of regular expressions
which are converted to finite state automata and then pro
grammed in dynamic PRISM for evaluating content with the
search rules.

– 729 rrrrrr. -----&-

1: Symbol Memory Block (bit) is
C mmy-wr-s-s-rmammamma-----------------

Mws -ms-W--------mammamma serra a.m. ---
09. 723 30 ; :

f3 ----- s Y- myry-summa -

s 79. Mask Memory Block (bit) -
~- 710 s 74 ------ ya,

Symologic Mask Circuit

2 3-y-...--
a

Partial state logic
/ w w ^ C. 3/V.

7(6
.

"7 stxy"

76 - y

| Partial State Eva Circuit Blain Cin Qy

State 3k 3i KS

US 2011/01 19440 A1 May 19, 2011 Sheet 1 of 28 Patent Application Publication

US 2011/01 19440 A1 May 19, 2011 Sheet 2 of 28 Patent Application Publication

US 2011/01 19440 A1 May 19, 2011 Sheet 3 of 28 Patent Application Publication

US 2011/01 19440 A1 May 19, 2011 Sheet 4 of 28 Patent Application Publication

US 2011/01 19440 A1 May 19, 2011 Sheet 5 of 28 Patent Application Publication

US 2011/01 19440 A1 May 19, 2011 Sheet 6 of 28 Patent Application Publication

US 2011/01 19440 A1 May 19, 2011 Sheet 7 of 28 Patent Application Publication

u qoyew, Wºffo

US 2011/01 19440 A1 May 19, 2011 Sheet 8 of 28 Patent Application Publication

zug wsrad u xoola e?na vsa pe66eu pese?q-?on a9 614

4-.

US 2011/01 19440 A1 May 19, 2011 Sheet 9 of 28 Patent Application Publication

Ko uºlo tri

wunal ?inou o ?ena ºmens le?uea

------------(>
| Tuuria no i º
) /

US 2011/01 19440 A1 May 19, 2011 Sheet 10 of 28 Patent Application Publication

US 2011/01 19440 A1 May 19, 2011 Sheet 11 of 28 Patent Application Publication

| |

US 2011/01 19440 A1 May 19, 2011 Sheet 12 of 28 Patent Application Publication

<!-- zim

US 2011/01 19440 A1 May 19, 2011 Sheet 13 of 28 Patent Application Publication

s

3

-------------~~~~* ŽºlÃÂ8

US 2011/01 19440 A1 May 19, 2011 Sheet 14 of 28 Patent Application Publication

|

!!!!!

US 2011/01 19440 A1 May 19, 2011 Sheet 15 of 28

----33A

(~~~~----

Patent Application Publication

US 2011/01 19440 A1 May 19, 2011 Sheet 16 of 28 Patent Application Publication

US 2011/01 19440 A1 May 19, 2011 Sheet 17 of 28 Patent Application Publication

|

-i------

~~~~-+--------------------*

US 2011/01 19440 A1 May 19, 2011 Sheet 18 of 28 Patent Application Publication

----+------------------
| 1

US 2011/01 19440 A1 May 19, 2011 Sheet 19 of 28 Patent Application Publication

--~!). Y.
1.~~~~~~~~~------------~~~~~ ~~~~~ ~~~~*~~~~--~--~---+-------------

s
- X - : y 2 <

US 2011/01 19440 A1 May 19, 2011 Sheet 20 of 28 Patent Application Publication

sv?,

US 2011/01 19440 A1 May 19, 2011 Sheet 21 of 28 Patent Application Publication

sna dossºgowa?

,

road
g

o
O

Patent Application Publication May 19, 2011 Sheet 22 of 28 US 2011/01 19440 A1

1514 1515
ammummumm-mm s --------- --- enry w --

rigor. At -r---- invention
. 1593 ^ Search each email ...

505 S. against each Fifter
3 y ---...-- 613
Y- mm. -----------
d Fier
z 52 m

Filter n-1
n-m M

| -- ne ?rcPHP consumes } AntiSpam
& ringst of the P} s Not y riterg

63 W-...-wr ; ::::: :

St E::::::::::::::::::: -:

Fier 2 i? so - is
. SO * ks ::::::::::::::::::f. (offloadrcPip stack

C Filter 1 Antis, Fires N from host processor
-----------l------------------- -- :::: : ... ce.

--"r-
- Performance \

(drops inearly with)
i m -- - - \ Fiter cont

| | TCP/IP C fo s---
WWW

Levice rise'8 Dawice) :::::::

4500T iso 15: it s: ::::::::::::: -. Y- starticuare Aigeierate: inhanced eggaging:
Email Appliance Stack AntiSpain. Agagliarce Artisgar Appliance

8tack Stack.

Fig. 5 Exarpie Ati-span Performance" Bottleneck arc 3cystic

Appliance stack.

* Perfora: note scale

Patent Application Publication May 19, 2011 Sheet 23 of 28

|
1610 161
\ --- ------------------

-- " - - - 1 search emails serially Y. Prior Art
^ against each ASIAW Filter -/

--------. ---------- S3

1604 |A tiVi. us Fite rmi -
is Filters 1666. A

AntiSpam
riters

VA ---"----
OS 1 Performance
--rear-er-rea--- (drops linearly with

: Sitkr court ; Cfb/ N Filter countu
bovice privers"

600 i801 - AntiSpain ar.
arias sta A3/AW Appliance

Appliance stack w
Fig. 6 Ati-spam with Anti-virus Performance” Bottleneck

US 2011/01 19440 A1

* -erfc}race note scale

Patent Application Publication

|
--------- - Y- ---

Prior Art

73

App. 1 :
Cote:It
Search

App 1 -
Other Cocis:

Device rivers

Other CS Fictions

73

App N
... Content

“...Search

is ...G &

-Y App N
1706 other Code

CA

Stasia
Couting evice

C

May 19, 2011 Sheet 24 of 28

17

App
ther Code

Fig. 7 Aplication Content Search Performance" 3ottleneck and Solution

US 2011/01 19440 A1

* citt sa:

US 2011/01 19440 A1 May 19, 2011 Sheet 25 of 28 Patent Application Publication

§ ?.8 ?,š ----^-------+---+--------------------------

US 2011/01 19440 A1 May 19, 2011 Sheet 26 of 28 Patent Application Publication

z~~~~~~~~~~~--~~~~~~--~~~~~~ ~~~~--~~~~

|----9uQC) º

|

US 2011/01 19440 A1

$ 3,0%Jº??d?JOO
----------------- ${}{}?

May 19, 2011 Sheet 27 of 28

US 2011/01 19440 A1 May 19, 2011 Sheet 28 of 28 Patent Application Publication

* —--------------30 ?3. T??IÊUEŒŒ)

US 2011/01 19440 A1

DYNAMIC PROGRAMMABLE INTELLIGENT
SEARCH MEMORY

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 11/952,117, filed Dec. 6, 2007, which
claims priority to Provisional Application Ser. No. 60/965,
267 filed on Aug. 17, 2007 entitled “Embedded program
mable intelligent search memory”. Provisional Application
Ser. No. 60/965,170 filed on Aug. 117, 2007 entitled “100
Gbps security and search architecture using programmable
intelligent search memory”. Provisional Application Ser. No.
60/963,059 filed on Aug. 1, 2007 entitled “Signature search
architecture for programmable intelligent search memory'.
Provisional Application Ser. No. 60/961,596 filed on Jul. 23,
2007 entitled “Interval symbol architecture for program
mable intelligent search memory”. Provisional Application
Ser. No. 60/933,313 filed on Jun. 6, 2007 entitled “FSA
context Switch architecture for programmable intelligent
search memory”. Provisional Application Ser. No. 60/933,
332 filed on Jun. 6, 2007 entitled “FSA extensionarchitecture
for programmable intelligent search memory”. Provisional
Application Ser. No. 60/930,607 filed on May 17, 2007
entitled “Compiler for programmable intelligent search
memory”, Provisional Application Ser. No. 60/928,883 filed
on May 10, 2007 entitled “Complex symbol evaluation for
programmable intelligent search memory. Provisional
Application Ser. No. 60/873,632 filedon Dec. 8, 2006 entitled
“Programmable intelligent search memory”. Provisional
Application Ser. No. 60/873,889 filedon Dec. 8, 2006 entitled
"Dynamic programmable intelligent search memory’, which
are all incorporated herein by reference in their entirety as if
fully set forth herein.
0002 U.S. patent application Ser. No. 11/952,117, filed
Dec. 6, 2007 also claims priority to U.S. patent application
Ser. No. 11/952,028 filed on Dec. 6, 2007 entitled “Embedded
programmable intelligent search memory, U.S. patent appli
cation Ser. No. 11/952,043 filed on Dec. 6, 2007 entitled “100
Gbps security and search architecture using programmable
intelligent search memory’, U.S. patent application Ser. No.
11/952,103 filed on Dec. 6, 2007 entitled “Signature search
architecture for programmable intelligent search memory'.
U.S. patent application Ser. No. 11/952,104 filed on Dec. 6,
2007 entitled “Interval symbol architecture for program
mable intelligent search memory’, U.S. patent application
Ser. No. 11/952,108 on Dec. 6, 2007 entitled “FSA context
Switch architecture for programmable intelligent search
memory, U.S. patent application Ser. No. 11/952,110 filed
on Dec. 6, 2007 entitled “FSA extension architecture for
programmable intelligent search memory, U.S. patent appli
cation Ser. No. 11/952,111 filed on Dec. 6, 2007 entitled
“Compiler for programmable intelligent search memory'.
U.S. patent application Ser. No. 11/952,112 filed on Dec. 6,
2007 entitled “Complex symbol evaluation for program
mable intelligent search memory'. U.S. patent application
Ser. No. 11/952,114 filed on Dec. 6, 2007 entitled “Program
mable intelligent search memory’ which are all co-pending
U.S. patent applications of common ownership.

BACKGROUND OF THE INVENTION

0003. This invention relates generally to memory technol
ogy and in particular to high performance intelligent content
search memory.

May 19, 2011

0004. Many modern applications depend on fast informa
tion search and retrieval. With the advent of the world-wide
web and the phenomenal growth in its usage, content search
has become a critical capability. A large number of servers get
deployed in web search applications due to the performance
limitations of the State of the art microprocessors for regular
expression driven search.
0005. There have been significant research and develop
ment resources devoted to the topic of searching of lexical
information or patterns in Strings. Regular expressions have
been used extensively since the mid 1950s to describe the
patterns in Strings for content search, lexical analysis, infor
mation retrieval systems and the like. Regular expressions
were first studied by S. C. Kleene in mid-1950s to describe the
events of nervous activity. It is well understood in the industry
that regular expression (RE) can also be represented using
finite state automata (FSA). Non-deterministic FSA (NFA)
and deterministic FSA (DFA) are two types of FSAs that have
been used extensively over the history of computing. Rabin
and Scott were the first to show the equivalence of DFA and
NFA as far as their ability to recognize languages in 1959. In
general a significant body of research exists on regular
expressions. Theory of regular expressions can be found in
“Introduction to Automata Theory. Languages and Compu
tation” by Hoperoft and Ullman and a significant discussion
of the topics can also be found in book “Compilers: Prin
ciples, Techniques and Tools” by Aho, Sethi and Ullman.
0006 Computers are increasingly networked within enter
prises and around the world. These networked computers are
changing the paradigm of information management and Secu
rity. Vast amount of information, including highly confiden
tial, personal and sensitive information is now being gener
ated, accessed and stored over the network. This information
needs to be protected from unauthorized access. Further,
there is a continuous onslaught of spam, viruses, and other
inappropriate content on the users through email, web access,
instant messaging, web download and other means, resulting
in significant loss of productivity and resources.
0007 Enterprise and service provider networks are rap
idly evolving from 10/100Mbps line rates to 1Gbps, 10Gbps
and higher line rates. Traditional model of perimeter security
to protect information systems pose many issues due to the
blurring boundary of an organization's perimeter. Today as
employees, contractors, remote users, partners and customers
require access to enterprise networks from outside, a perim
eter security model is inadequate. This usage model poses
serious security vulnerabilities to critical information and
computing resources for these organizations. Thus the tradi
tional model of perimeter security has to be bolstered with
security at the core of the network. Further, the convergence
of new Sources of threats and high line rate networks is
making Software based perimetersecurity to stop the external
and internal attacks inadequate. There is a clear need for
enabling security processing in hardware inside core or end
systems beside a perimeter security as one of the prominent
means of security to thwart ever increasing security breaches
and attacks.

0008 FBI and other leading research institutions have
reported in recent years that over 70% of intrusions in orga
nizations have been internal. Hence a perimeter defense rely
ing on protecting an organization from external attacks is not
Sufficient as discussed above. Organizations are also required
to screen outbound traffic to prevent accidental or malicious
disclosure of proprietary and confidential information as well

US 2011/01 19440 A1

as to prevent its network resources from being used to prolif
erate spam, viruses, worms and other malware. There is a
clear need to inspect the data payloads of the network traffic
to protect and secure an organization's network for inbound
and outbound security.
0009 Data transported using TCP/IP or other protocols is
processed at the source, the destination or intermediate sys
tems in the network or a combination thereof to provide data
security or other services like secure sockets layer (SSL) for
Socket layer security, Transport layer security, encryption/
decryption, RDMA, RDMA security, application layer secu
rity, Virtualization or higher application layer processing,
which may further involve application level protocol process
ing (for example, protocol processing for HTTP, HTTPS,
XML, SGML, Secure XML, other XML derivatives, Telnet,
FTP, IP Storage, NFS, CIFS, DAFS, and the like). Many of
these processing tasks put a significant burden on the host
processor that can have a direct impact on the performance of
applications and the hardware system. Hence, Some of these
tasks need to be accelerated using dedicated hardware for
example SSL, or TLS acceleration. As the usage of XML
increases for web applications, it is creating a significant
performance burden on the host processor and can also ben
efit significantly from hardware acceleration. Detection of
spam, viruses and other inappropriate content require deep
packet inspection and analysis. Such tasks can put huge pro
cessing burden on the host processor and can Substantially
lower network line rate. Hence, deep packet content search
and analysis hardware is also required.
0010 Internet has become an essential tool for doing busi
ness at Small to large organizations. HTML based Static web
is being transformed into a dynamic environment over last
several years with deployment of XML based services. XML
is becoming the lingua-franca of the web and its usage is
expected to increase substantially. XML is a descriptive lan
guage that offers many advantages by making the documents
self-describing for automated processing but is also known to
cause huge performance overhead for best of class server
processors. Decisions can be made by processing the intelli
gence embedded in XML documents to enable business to
business transactions as well as other information exchange.
However, due to the performance overload on the best of class
server processors from analyzing XML documents, they can
not be used in systems that require network line rate XML
processing to provide intelligent networking. There is a clear
need for acceleration Solutions for XML document parsing
and content inspection at network line rates which are
approaching 1 Gbps and 10Gbps, to realize the benefits of a
dynamic web based on XML services.
0011 Regular expressions can be used to represent the
content search Strings for a variety of applications like those
discussed above. A set of regular expressions can then form a
rule set for searching for a specific application and can be
applied to any document, file, message, packet or stream of
data for examination of the same. Regular expressions are
used in describing anti-spam rules, anti-virus rules, anti-spy
ware rules, anti-phishing rules, intrusion detection rules,
extrusion detection rules, digital rights management rules,
legal compliance rules, worm detection rules, instant mes
sage inspection rules, VOIP security rules, XML document
security and search constructs, genetics, proteomics, XML
based protocols like XMPP web search, database search,
bioinformatics, signature recognition, speech recognition,
web indexing and the like. These expressions get converted

May 19, 2011

into NFAS or DFAs for evaluation on a general purpose pro
cessor. However, significant performance and storage limita
tions arise for each type of the representation. For example an
Ncharacter regular expression can take up to the order of 2^
memory for the states of a DFA, while the same for an NFA is
in the order of N. On the other hand the performance for the
DFA evaluation for an M byte input data stream is in the order
of M memory accesses and the order of (NM) processor
cycles for the NFA representation on modern microproces
SOS.

0012. When the number of regular expressions increases,
the impact on the performance deteriorates as well. For
example, in an application like anti-spam, there may be hun
dreds of regular expression rules. These regular expressions
can be evaluated on the server processors using individual
NFAS or DFAs. It may also be possible to create a composite
DFA to represent the rules. Assuming that there are XREs for
an application, then a DFA based representation of each indi
vidual RE would result up to the order of (X*2') states
however the evaluation time would grow up to the order of
(X*N) memory cycles. Generally, due to the potential expan
sion in the number of states for a DFA they would need to be
stored in off chip memories. Using a typical access time
latency of main memory systems of 60 ns, it would require
about (X*60 ns N*M) time to process an XRE DFA with N
states over an M byte data stream. This can result in tens of
Mbps performance for modest size of X, N & M. Such per
formance is obviously significantly below the needs of
today's network line rates of 1 Gbps to 10Gbps. On the other
hand, if a composite DFA is created, it can result in an upper
bound of storage in the order of2' which may not be within
physical limits of memory size for typical commercial com
puting systems even for a few hundred REs. Thus the upper
bound in memory expansion for DFAS can be a significant
issue. Then on the other hand NFAS are non-deterministic in
nature and can result in multiple state transitions that can
happen simultaneously. NFAS can only be processed on a
state of the art microprocessor in a scalar fashion, resulting in
multiple executions of the NFA for each of the enabled paths.
XREs with Ncharacters on average can be represented in the
upper bound of (X*N) states as NFAS. However, each NFA
would require Miterations for an M-byte stream, causing an
upper bound of (X*N*M* processor cycles per loop). Assum
ing the number of processing cycles are in the order of 10
cycles, then for a best of class processor at 4 GHz, the pro
cessing time can be around (X*N*M*2.5 ns), which for a
nominal N of 8 and X in tens can result in below 100 Mbps
performance. There is a clear need to create high performance
regular expression based content search acceleration which
can provide the performance in line with the network rates
which are going to 1 Gbps and 10Gbps.
0013 The methods for converting a regular expression to
Thompson's NFA and DFA are well known. The resulting
automata are able to distinguish whether a string belongs to
the language defined by the regular expression however it is
not very efficient to figure out if a specific sub-expression of
a regular expression is in a matching string or the extent of the
string. Tagged NFAS enable such queries to be conducted
efficiently without having to scan the matching string again.
For a discussion on Tagged NFA refer to the paper "NFAs
with Tagged Transitions, their Conversion to Deterministic
Automata and Application to Regular Expressions”, by Ville
Laurikari, Helsinki University of Technology, Finland.

US 2011/01 19440 A1

0014 US Patent Applications, 20040059443 and
200500 12521, describe a method and apparatus for efficient
implementation and evaluation of state machines and pro
grammable finite state automata using programmable regis
ters, and associated logic. These applications describe single
chip regular expression processor that can Support 1000 to
2000 finite state machines implemented in the state of the art
(0.13 um to 90 nm) process technology. These applications
describe a state machine architecture where nodes of the state
machine architecture are interconnected with each other
using an interconnection network which forms an AND-OR
logic based on the current state, received symbol and state
transition connectivity control. However, for basic operations
the apparatus and the method described in these applications
becomes virtually inoperable in the event of input stream
containing a symbol not recognized by the regular expres
Sion. For instance, if the finite state machine receives a sym
bol which is not in the set of symbols that are programmed for
it to recognize, the finite state machine can enter into a con
dition where all the states are inactive or disabled and from
that point forward the state machine stays in that state and
does not recognize any symbols that are even part of the
defined symbols. For example if a finite state machine is
programmed to search for a string sequence "help', then the
machine may get programmed with “h”, “e'. “1”, “p’ as the
symbols of the state machine. The state machine gets initial
ized in a start state that may optionally be provided using the
start state control. However, if the input stream being
searched includes a symbol other than those programmed, the
state machine described in these applications reach a state
where all nodes of the state machine become inactive and stay
inactive until they are re-initialized at startup of the finite state
machine apparatus. For example, if the input string received is
“henk will help you then the finite state machine of these
applications will reach an inactive state on processing the
symbol “n” (third character of the phrase “henk will help
you') and then will not recognize the help' string that follows
later. Thus these applications are virtually inoperable for
regular expression matching as described. Beside this, the
number of regular expressions that can be implemented and
Supported in the state of the art process technology using
these methods are small compared to the needs of the appli
cations as described below.

0015 There is a class of applications like routing, access
control, policy based processing and the like in the field of
networking that require a special class of content search
which amounts to looking up a set of data stored in the
memory and detecting whether the data set contains data
being searched. The data being searched may be an Internet
Protocol (IP) address in a router or switch's forwarding data
base which can be hundreds of thousand entries. Since the
speeds at which these searches have to be done to Support high
line rates like 1 Gbps, 10 Gbps and beyond, the traditional
method of trie based searches is very time inefficient. For
these types of applications that require rapid lookup of data
among a large database a class of memory called Content
Addressable Memory (CAM) has been used. CAMs have
been used in high speed networking for alongtime. The CAM
architectures essentially compare incoming data with all data
that is stored in the CAM simultaneously and deliver an
indication of match or no match and the location of the match.
However, these devices can only search for a fixed set of
string of characters and are not well Suited for regular expres
sion searches. For example a regular expression like “ab”

May 19, 2011

which states to find a string of Zero or more occurrences of
character'a' followed by character “b' cannot be adequately
represented in a CAM or would occupy a large number of
entries and it becomes impractical for a set of regular expres
sions with any more complexity. Thus CAMs generally get
used for searching for fixed patterns, typically network packet
headers, and are not Suited for regular expressions search.
However, the systems that use CAMs, like unified threat
management devices or routers or Switches orgateways or the
like that provide content based intelligent applications like
upper layer security, have a clear need for high speed deep
packet inspection or content search which involves a large
number of rich regular expressions.

SUMMARY OF THE INVENTION

0016. I describe a high performance Programmable Intel
ligent Search MemoryTM (PRISMTM) for searching content
with regular expressions as well as other pattern searches. The
high performance programmable intelligent content search
memory can have myriad of uses wherever any type of con
tent needs to be searched for example in networking, storage,
security, web search applications, XML processing, bioinfor
matics, signature recognition, genetics, proteomics, speech
recognition, database search, enterprise search and the like.
The programmable intelligent search memory of my inven
tion may be embodied as independent PRISM memory inte
grated circuits working with or may also be embodied within
microprocessors, multi-core processors, network processors,
TCP Offload Engines, network packet classification engines,
protocol processors, regular expression processors, content
search processors, network Search engines, content address
able memories, mainframe computers, grid computers, serv
ers, workstations, personal computers, laptops, notebook
computers, PDAs, handheld devices, cellular phones, wired
or wireless networked devices, Switches, routers, gateways,
unified threat management devices, firewalls, VPNs, intru
sion detection and prevention systems, extrusion detection
systems, compliance management systems, wearable com
puters, data warehouses, storage area network devices, Stor
age systems, data vaults, chipsets and the like or their deriva
tives or any combination thereof.
0017 Content search applications require lot more regular
expressions to be searched than those that can tit on state of
the art regular expression processor like those described by
the applications 20040059443 and 200500 1252.1. For
example, a very popular open Source intrusion detection and
prevention technology, SNORT, uses around 3500 to 5000
regular expressions. This is only one of the security applica
tions that unified security threat management devices, rout
ers, servers and the like Support. These applications modestly
need support for well over 10,000 regular expressions. How
ever, as the security threats continue to grow the number of
regular expressions needed for just these applications may
rise Substantially. Applications like gene database searches or
web search applications like Google and others require orders
of magnitude more regular expressions Support than what can
be supported by the state of the art regular expression proces
SOS.

0018 Thus there is a clear need to for a solution that can
Support orders of magnitude larger number of regular expres
sions in a single chip for current and emerging content search
applications. My invention describes such architectures,
methods and apparatuses that can meet the needs of current
and future applications for intelligent content search.

US 2011/01 19440 A1

0019. I describe programmable intelligent search memory
in this invention, unlike a regular expression processor of the
patent applications above, that overcomes the issues
described above. I also show search memory architecture for
performing a large number of regular expression searches at
high line rates. I also show how my search memory architec
ture can be configured to behave like content addressable
memory which can be very advantageous in applications that
require a combination of searches that may be done using
CAMS and deep packet content searches requiring regular
expression search. I describe a content search memory which
performs content search using regular expressions repre
sented as left-biased or right-biased NFAS. My invention also
provides capabilities to support Tagged NFA implementa
tions. My invention also shows how content search memory
can be used to provide application acceleration through
search application programmer interface and the search
memory of this invention. For clarity, as used in this patent the
terms “programmable intelligent search memory”, “search
memory”, “content search memory’, or “PRISM memory”
are used interchangeably and have the same meaning unless
specifically noted. Furtherfor clarity, as used in this patent the
term “memory’ when used independently is used to refer to
random access memory or RAM or Dynamic RAM (DRAM)
or DDR or QDR or RLDRAM or RDRAM or FCRAM or
Static RAM (SRAM) or read only memory (ROM) or FLASH
or cache memory or the like or any future derivatives of such
memories.

0020. The regular expressions may optionally be tagged to
detect Sub expression matches beside the full regular expres
sion match. The regular expressions are converted into
equivalent FSAs that may optionally be NFAS and may
optionally be converted into tagged NFAS. The PRISM
memory also optionally provides ternary content addressable
memory functionality. So fixed string searches may option
ally be programmed into the PRISM memory of my inven
tion. PRISM memory of this invention enables a very efficient
and compact realization of intelligent content search using
FSA to meet the needs of current and emerging content search
applications. Unlike a regular expression processor based
approach, the PRISM memory can support tens of thousands
to hundreds of thousands of content search rules defined as
regular expressions as well as patterns of strings of characters.
0021. The PRISM memory performs simultaneous search
of regular expressions and other patterns (also referred to as
“rules' or “regular expression rules' or “pattern search rules'
or “patterns” or “regular expressions' in this patent) against
the content being examined. The content may be presented to
the search memory by a companion processor or PRISM
controller or content stream logic or a master processor or the
like which may be on the same integrated circuit chip as the
memory or may be on a separate device. The content to be
searched may be streaming content or network packets or data
from a master processor or data from a disk or a file or reside
in on-chip memory or off-chip memory or buffers or the like
from which a controller may present it to the search memory
arrays for examination. The content search memory arrays
may initially be configured with the regular expression rules
converted into NFAS or tagged NFAS and optionally other
pattern search rules. PRISM memory may optionally com
prise of configuration control logic which may be distributed
or central or a combination thereof. The configuration control
logic may optionally address PRISM memory cells to read
and/or write FSA rules or other patterns to be searched. Once

May 19, 2011

the PRISM memory is setup with all the related information
about the NFAS and other rules, the content to be examined
can be presented to the PRISM memory. PRISM memory
provides capabilities to update rules or program new rules or
additional rules, in line with the content examination within a
few clock cycles unlike the current regular expression pro
cessors which require the content evaluation to stop for long
periods of time until large tables of composite DFAs are
updated in an external or internal memory. Typically the
content is presented as a stream of characters or symbols
which get examined against the rules in the PRISM memory
simultaneously and whenever a rule is matched the PRISM
memory array provides that indication as a rule match signal
which is interpreted by the control logic of the PRISM. There
may be multiple rule matches simultaneously in which case a
priority encoder which may also be programmable is used to
select one or more matches as the winner(s). The priority
encoder may then provide a tag or an address or an action or
a combination that may have already been programmed in the
priority encoder which may be used to look-up related data
from associated on-chip or off-chip memory that may option
ally determine the next set of actions that may need to be taken
on the content being examined. For example, in case of a
security application if a set of regular expressions are defined
and programmed for spam detection, then if one or more of
these rules when matched can have action(s) associated with
them that the message or content may need to quarantined for
future examination by a user or it can have an action that says
the content should be dropped or enable a group of regular
expressions in the PRISM memory to be applied to the con
tent or the like depending on the specific application. The
PRISM memory architecture comprises of means or circuits
or the like for programming and reprogramming of the FSA
rules and optionally CAM signatures and masks. It further
comprises of means or circuits or the like to stream the con
tent to be searched to the PRISM memory arrays. It may
further comprise of priority encoder which may optionally be
programmable. The PRISM memory may optionally com
prise of random access memory (on-chip or off-chip) which is
used to store actions associated with specific rule matches.
The PRISM memory may optionally comprise of database
extension ports which may be optionally used when the num
ber of rules is larger than those that may tit in a single inte
grated circuit chip. The PRISM memory may optionally com
prise of clusters of PRISM memory cells that enable a group
of FSA rules to be programmed per cluster. The PRISM
clusters may optionally comprise of memory for fast storage
and retrieval of FSA states for examination of content that
belongs to different streams or contexts or flows or sessions or
the like as described below referred to as context memory. For
clarity, context memory or global context memory or local
context memory or cluster context memory, all comprise of
memory like random access memory or RAM or Dynamic
RAM (DRAM) or DDR or QDR or RLDRAM or RDRAM or
FCRAM or Static RAM (SRAM) or read only memory
(ROM) or FLASH or cache memory or the like or any future
derivatives of such memories as discussed above. The PRISM
memory may optionally comprise of global context memory
beside the local cluster context memory for storage and
retrieval of FSA states of different contexts and enable Sup
porting a large number of contexts. The cluster context
memory may optionally cache a certain number of active
contexts while the other contexts may be stored in the global
context memory. There may optionally be off-chip context

US 2011/01 19440 A1

memory as well, which can be used to store and retrieve FSA
states for much larger number of contexts. The PRISM
memory may optionally comprise of cache or context control
logic (also referred as “context controller) that manages the
cluster, global or external context memory or cache or a
combination thereof. The cache or context control logic may
optionally be distributed per cluster or may be central for the
PRISM memory or any combination thereof. The PRISM
controller or the content stream logic that streams the content
to be searched may be provided with an indication of the
context of the content being searched or it may detect the
context of the content or a combination thereof, and may
optionally direct the context memory and associated control
logic i.e. the context controller to get the appropriate context
ready. Once the context memory has the required context
available an indication may be provided to PRISM configu
ration control logic that it may program or load the context
states in the PRISM memory. The PRISM configuration con
trol logic (also referred as “configuration controller” in this
patent) may optionally first save the current context loaded in
the set of active FSA blocks before loading the new context.
The configuration controller(s) and the context controller(s)
may thus optionally store and retrieve appropriate contexts of
the FSAS and start searching the content against the pro
grammed rules with appropriate context states of the FSAS
restored. Thus PRISM memory may optionally dynamically
reconfigure itself at run-time based on the context of the
content or the type of the application or the like or a combi
nation thereof enabling run-time adaptable PRISM memory
architecture. The contexts as referred to in this patent may, as
examples without limitation, be related to specific streams, or
documents, or network connections or message streams or
sessions or the like. The PRISM memory may process content
from multiple contexts arriving in data groups or packets or
the like. For content search in applications where the content
belonging to one context may arrive interspersed with content
from other contexts, it may be important to maintain the state
of the content searched for a context up to the time when
content from a different context gets searched by PRISM
memory. The context memory or cache with the associated
controllers as described in this patent enable handling of
multiple contexts.
0022. For clarification, the description in this patent appli
cation uses term NFA to describe the NFAS and optionally,
when tagging is used in regular expressions, to describe
tagged NFA unless tagged NFA is specifically indicated. All
NFAS may optionally be tagged to form tagged NFAS, hence
the description is not to be used as a limiter to apply only to
tagged NFAS. The descriptions of this patent are applicable
for non-tagged NFAS as well and tagging is an optional func
tion which may or may not be implemented or used, and thus
non-tagged NFAS are covered by the teachings of this patent
as will be appreciated by one skilled in the art. At various
places in this patent application the term content search
memory, content search memory, search memory and the like
are used interchangeably for programmable intelligent search
memory or PRISM memory. These usages are meant to indi
cate the content search memory or PRISM memory of this
invention without limitation.

0023. In many content search applications like security,
there is a need to constantly update the rules or the signatures
being used to detect malicious traffic. In Such applications it
is critical that a solution be adaptable to keep up with the
constantly evolving nature of the security threat. In an always

May 19, 2011

connected type of usage models, it is extremely important to
have the latest security threat mitigation rules updated in the
security system on a frequent basis. When a composite DFA
type architecture is used compiling and releasing any new
security rules or policy can consume a large amount of time,
where the updates may not be timely to avoid the impact of the
security threat. In such environments the release of new rule
base may take up to 8 to 24 hours, which is quite delayed
response to constantly evolving threat. In the architecture of
this invention, that issue is addressed since the release of new
rules is a matter of converting those rules into NFAS and
updating or programming only these very Small set of rules
into the content search memory. Thus the response to new
threats can be near immediate unlike the huge delays which
occur from integration of the new rules in the composite rule
base and converting those into composite DFAS.
0024. There are several instances of REs which include
only a few states. For example if the content search includes
looking for *.exe or *.com or *.html or the like, the NFA for
these REs include a small number of states. Thus if all NFA
memory blocks Support say 16 states, then it may be possible
to include multiple rules per block. This invention enables the
maximum utilization of the FSA blocks by allowing multiple
rules per FSA block. The blocks may optionally provide FSA
extension circuits to chain the base blocks together to create
super blocks that can handle larger FSAs.
(0025 Berry and Sethi in their paper “From Regular
Expressions to Deterministic Automata' Published in Theo
retical Computer Science in 1986, showed that regular
expressions can be represented by NFAS Such that a given
state in the state machine is entered by one symbol, unlike the
Thompson NFA. Further, the Berry-Sethi. NFAS are e-free. A
V term RE can be represented using V+1 states NFA using
Berry-Sethi like NFA realization method. The duality of
Berry-Sethi method also exists where all transitions that lead
the machine out of a state are dependent on the same symbol.
This is shown in the paper 'A Taxonomy of finite automata
construction algorithms' by Bruce Watson published in 1994
in section 4.3. I show a method of creating NFA search
architecture in a memory leveraging the principles of Berry
Sethi's NFA realization and the dual of their construct. The
NFA search memory is programmable to realize an arbitrary
regular expression.
0026. In this invention I also show how the content search
memory of this invention can be used to create general appli
cation acceleration in a compute device like a server, personal
computer, workstation, laptop, routers, Switches, gateways,
security devices, web search servers, grid computers, hand
held devices, cell phones, or the like. I show an example
content search application programmer interface which can
be used as a general facility that may get offered by an
operating system for those devices to applications running on
them which can utilize the content search memory and sig
nificantly improve the performance of those applications
compared to having them run on the general purpose proces
sor of these devices.

0027. An example application of anti-spam is illustrated in
this application which can be accelerated to become a high
line rate application unlike current solutions which run on
general purpose processors. Although the illustration is with
anti-spam application, other content search intensive appli
cations like intrusion detection and prevention oranti-virus or

US 2011/01 19440 A1

other applications described in this patent can all be acceler
ated to very high line rate applications using the teachings of
the inventions of this patent.
0028. This patent also describes a content inspection
architecture that may be used for detecting intrusions, extru
sions and confidential information disclosure (accidental or
malicious or intended), regulatory compliance search using
hardware for regulations like HIPAA, Sarbanes-Oxley, Gra
ham-Leach-Bliliey act, California security bills, security bills
of various states and/or countries and the like, deep packet
inspection, detecting spam, detecting viruses, detecting
worms, detecting spyware, detecting digital rights manage
ment information, instant message inspection, URL, match
ing, application detection, detection of malicious content, and
other content, policy based access control as well as other
policy processing, content based Switching, load balancing,
virtualization or other application layer content inspection for
application level protocol analysis and processing for web
applications based on HTTP, XML and the like and applying
specific rules which may enable anti-spam, anti-virus, other
security capabilities like anti-spyware, anti-phishing and the
like capabilities. The content inspection memory may be used
for detecting and enforcing digital rights management rules
for the content. The content inspection memory may also be
used for URL matching, string searches, content based load
balancing, sensitive information search like credit card num
bers or social security numbers or health information or the
like.
0029 Classification of network traffic is another task that
consumes up to half of the processing cycles available on
packet processors leaving few cycles for deep packet inspec
tion and processing at high line rates. The described content
search memory can significantly reduce the classification
overhead when deployed as companion search memory to
packet processors or network processors or TOE or storage
network processors or the like.

BRIEF DESCRIPTION OF THE DRAWINGS

0030 FIG. 1a illustrates Thompson's NFA (prior art)
0031 FIG. 1b illustrates Berry-Sethi NFA (prior art)
0032 FIG. 1c illustrates DFA (prior art)
0033 FIG.2a illustrates a left-biased NFA and state tran
sition table (prior art)
0034 FIG.2b illustrates a right-biased NFA and state tran
sition table (prior art)
0035 FIG.3a illustrates state transition controls
0036 FIG. 3b illustrates configurable next state tables per
State

0037 FIG. 4a illustrates state transition logic (STL) for a
State

0038 FIG. 4b illustrates a state logic block
0039 FIG. 5a illustrates state transition logic (STL) for a
state in Left-Biased FSA
0040 FIG. 5b illustrates state transition logic (STL) for a
state in Right-Biased FSA
0041 FIG. 6A illustrates Right-biased Tagged FSA Rule
block in PRISM
0042 FIG. 6B illustrates Left-biased Tagged FSA Rule
block in PRISM
0043 FIG. 7A illustrates State Block Bit in PRISM
0044 FIG. 7A illustrates State Block Bit in PRISM
004.5 FIG. 8A illustrates Symbol Logic Bit in PRISM.
0046 FIG. 8B illustrates Symbol Logic Bit in PRISM
(DRAM based with independent Refresh port)

May 19, 2011

0047 FIG. 9 illustrates Partial State Logic Bit in PRISM
0048 FIG.9A illustrates Partial State Logic Bitin PRISM
(DRAM based with refresh port)
0049 FIG. 10a illustrates State Control Block in PRISM
0050 FIG. 10b illustrates Local Init Detect Circuit in
PRISM
0051 FIG. 10c illustrates State Control Block Bit in
PRISM

0052 FIG. 10d illustrates State Control Block Bit in
PRISM (DRAM based)
0053 FIG. 11 illustrates Tagged Match Detect Block Bit
in PRISM
0054 FIG. 11A illustrates Match Detect Block Bit in
PRISM (DRAM based)
0055 FIG. 12 illustrates PRISM Block Diagram
0056 FIG. 13 illustrates PRISM Memory Cluster Block
Diagram
0057 FIG. 14 illustrates Computing Device with Content
Search Memory Based Accelerator
0.058 FIG. 15 illustrates an example anti-spam perfor
mance bottleneck and Solution
0059 FIG. 16 illustrates anti-spam with anti-virus perfor
mance bottleneck
0060 FIG. 17 illustrates application content search per
formance bottleneck and solution
0061 FIG. 18 illustrates an example content search API
usage model
0062 FIG. 19 illustrates an example content search API
with example functions
0063 FIG. 20 illustrates an example application flow
(static setup) for PRISM
0064 FIG. 21 illustrates PRISM search compiler flow
(full--incremental rule distribution)

DESCRIPTION

0065. I describe high performance Programmable intelli
gent Search Memory for searching content with regular
expressions as well as other pattern searches. The regular
expressions may optionally be tagged to detect Sub expres
sion matches beside the full regular expression match. The
regular expressions are converted into equivalent FSAS that
may optionally be NFAS and may optionally be converted into
tagged NFAS. The PRISM memory also optionally supports
ternary content addressable memory functionality. So fixed
string searches may optionally be programmed into the
PRISM memory of my invention. PRISM memory of this
invention enables a very efficient and compact realization of
intelligent content search using FSA to meet the needs of
current and emerging content search applications. Unlike a
regular expression processor based approach, the PRISM
memory can Support tens of thousands to hundreds of thou
sands of content search rules defined as regular expressions as
well as patterns of strings of characters. The PRISM memory
performs simultaneous search of regular expressions and
other patterns. The content search memory can perform high
speed content search at line rates from 1Gbps to 10Gbps and
higher, when the best of class server microprocessor can only
perform the same tasks at well below 100 Mbps. The content
search memory can be used not only to perform layer 2
through layer 4 searches that may be used for classification
and security applications, it can also be used to perform deep
packet inspection and layer 4 through layer 7 content analy
S1S.

US 2011/01 19440 A1

0066 Following are some of the embodiments, without
limitations, that can implement PRISM memory:
0067. The PRISM memory may be embodied inside net
work interface cards of servers, workstations, client PCs,
notebook computers, handheld devices, Switches, routers and
other networked devices. The servers may be web servers,
remote access servers, file servers, departmental servers, Stor
age servers, network attached storage servers, database serv
ers, blade servers, clustering servers, application servers, con
tent/media servers, VOIP servers and systems, grid
computers/servers, and the like. The PRISM memory may
also be used inside an I/O chipset of one of the end systems or
network core systems like a Switch or router or appliance or
the like.
0068. The PRISM memory may also be embodied on
dedicated content search acceleration cards that may be used
inside various systems described in this patent. Alternatively.
PRISM memory may also be embodied as a content search
memory inside a variety of hardware and/or integrated cir
cuits like ASSPs, ASICs, FPGA, microprocessors, multi-core
processors, network processors, TCP Offload Engines, net
workpacket classification engines, protocol processors, regu
lar expression processors, content search processors, main
frame computers, grid computers, servers, workstations,
personal computers, laptops, handheld devices, cellular
phones, wired or wireless networked devices, Switches, rout
ers, gateways, XML accelerators, VOIP servers, Speech rec
ognition systems, bio informatics systems, genetic and pro
teomics search systems, web search servers, electronic vault
application networks and systems, Data Warehousing sys
tems, Storage area network systems, content indexing appli
ances like web indexing, email indexing and the like, chipsets
and the like or any combination thereof. Alternatively,
PRISM memory blocks may be embedded inside other
memory technologies like DRAM, SDRAM, DDR DRAM,
DDR II DRAM, RI DRAM, SRAM, RDRAM, FCRAM,
QDR SRAM, DDR SRAM, CAMs, Boundary Addressable
Memories, Magnetic memories, Flash or other special pur
pose memories or a combination thereofor future derivates of
Such memory technologies to enable memory based content
search.
0069. One preferred embodiment of the invention is in an
integrated circuit memory chip with PRISM memory that
may support a size of around 128,000 8-symbol regular
expressions or may support around 18 Mbit of ternary CAM
memory based memory cells in current process technologies.
Another preferred embodiment of the invention is an inte
grated circuit memory chip with PRISM memory that may
support a size of around 128,000 8-symbol regular expres
sions or may support around 18 Mbit of dynamic memory
based memory cells in current process technologies. Each
process generation may provide ability to store around twice
as many PRISM memory bits as the previous generation.
Thus in one preferred embodiment the PRISM memory
would be able to support tens of thousands of eight state FSA
and can potentially support over 100,000 FSAs. There are
many variations of the PRISM memory architecture can be
created that can Support more or less FSAS depending upon
various factors like the number of states per FSA, the chip die
area, cost, manufacturability expectations and the like which
will be appreciated by a person with ordinary skill in the art.

DETAILED DESCRIPTION

0070 I describe high performance Programmable Intelli
gent Search Memory for searching content with regular

May 19, 2011

expressions as well as other pattern searches. The regular
expressions may optionally be tagged to detect Sub expres
sion matches beside the full regular expression match. The
regular expressions are converted into equivalent FSAS or
NFAS and optionally into tagged NFAS. The PRISM memory
also optionally Supports ternary content addressable memory
functionality. So fixed string searches may optionally be pro
grammed into the PRISM memory of my invention. PRISM
memory of this invention enables a very efficient and compact
realization of intelligent content search using FSA to meet the
needs of current and emerging content search applications.
Unlike a regular expression processor based approach, the
PRISM memory can support tens of thousands to hundreds of
thousands of content search rules defined as regular expres
sions as well as patterns of strings of characters. The PRISM
memory performs simultaneous search of regular expressions
and other patterns. The content search memory can perform
high speed content search at linerates from 1Gbps to 10Gbps
and higher using current process technologies. The descrip
tion here is with respect to one preferred embodiment of this
invention in an integrated circuit (IC) chip, it will be appre
ciated by those with ordinary skill in the art that changes in
these embodiments may be made without departing from the
principles and spirit of the invention. The illustrations are
made to point out salient aspects of the invention and do not
illustrate well understood IC design elements, components
and the like implementation of the invention in integrated
circuits so as not to obscure the invention.

(0071 Ability to perform content search has become a
critical capability in the networked world. As the network line
rates go up to 1Gbps, 10Gbps and higher, it is important to be
able to perform deep packet inspection for many applications
at line rate. Several Security issues, like viruses, worms, con
fidential information leaks and the like, can be detected and
prevented from causing damage if the network traffic can be
inspected at high line rates. In general, content search rules
can be represented using regular expressions. Regular expres
sion rules can be represented and computed using FSAS.
NFAS and DFAs are the two types of FSAs that are used for
evaluation of regular expressions. For high line rate applica
tions a composite DFA can be used, where each character of
the input stream can be processed per cycle of memory
access. However, this does have a limit on how fast the search
can be performed dictated by the memory access speed.
Another limiter of Such approach is the amount of memory
required to search even a modest number of regular expres
sion rules. As discussed above, NFAS also have their limita
tions to achieve high performance on general purpose proces
sors. In general, today's best of class microprocessors can
only achieve less than 100Mbps performance using NFAS or
DFAs for a small number of regular expressions. Hence, there
is a clear need to create targeted content search acceleration
hardware to raise the performance of the search to the line
rates of 1 Gbps and 10Gbps. This invention shows such a high
performance content search hardware that can be targeted for
high line rates.
0072. As described earlier, regular expression can be rep
resented using FSA like NFA or DFA. FIG. 1a illustrates
Thompson's construction for the regular expression (xy+y)
yx. Thompson's construction proceeds in a step by step
manner where each step introduces two new states, so the
resulting NFA has at most twice as many states as the symbols
or characters and operators in the regular expression. An FSA
is comprised of states, state transitions, and symbols that

US 2011/01 19440 A1

cause the FSA to transition from one state to another. An FSA
comprises at least one start state, and at least one accept state
where the start state is where the FSA evaluation begins and
the accept state is a state which is reached when the FSA
recognizes a string. Block 101 represent the start state of the
FSA, while block105 is an accept state. Block 102 represents
state 2 and 104 represents state 3. The transition from state 2
to state 3 is triggered on the symbol x. 103 and is represented
as a directed edge between the two states. Thompson's NFA
comprises of 'e' transitions, 116, which are transitions among
states which may be taken without any input symbol.
0073 FIG. 1b illustrates Berry-Sethi NFA for the regular
expression (xy+y)*yx. Berry and Sethi described an algo
rithm of converting regular expressions into FSA using a
technique called marking of a regular expression. It results
in an NFA which has a characteristic that all transitions into
any state are from the same symbol. For example, all transi
tions into state 1, 107, are from symbol x . The other char
acteristic of the Berry-Sethi construct is that number of NFA
states are the same as the number of symbols in the regular
expression and one start state. In this type of construction,
each occurrence of a symbol is treated as a new symbol. The
construction converts the regular expression (xy+y)*yX to a
marked expression (xy+y)yx where each x leads to the
same state, 107. The figure does not illustrate the markings.
Once the FSA is constructed the markings are removed. The
FIG. 1b illustrates the NFA with the markings removed. As
can be seen from the figure, in Berry-Sethi construction all
incoming transitions into a state are all dependent on the same
symbol. Similarly, a duality of Berry-Sethi construct also has
been studied and documented in the literature as discussed
earlier, where instead of all incoming transitions being depen
dent on the same symbol, all outgoing transitions from a state
are dependent on the same symbol. The Berry-Sethi construct
is also called a left-biased type of construct, where as its dual
is called a right-biased construct.
0074 Finite State Automaton can evaluate incoming sym
bols or characters against the regular expression language of
the automaton and detect when an input string is one of the
strings recognized by it. However, it is advantageous in cer
tain conditions to know if a certain Sub-expression of the
regular expression is also matched. That may be enabled by
tagging the NFA as described in the paper by Ville Laurikari
referred earlier. Following description illustrates how the
inventions of this patent enable tagged NFA realization in
PRISM memory. The tagging for Sub-expression checking
may involve further processing of the FSA to uniquely iden
tify sub-expression matching. However for illustration pur
pose, if in the regular expression"(xy+y)*yx' if one desires to
detect if the Sub-expression "xy' is in the recognized String,
one can tag the state 4, 110, as a tagged state. Thus, whenever
the regular expression transitions through state 4, 110, the
Sub-expression match or tag match may be indicated. There
may also be need to detect if a specific transition leads the
regular expression through a desired sub-expression. In Such
a case a tag start state and a tag end state may be marked. For
instance, if it is desired to detect if the transition from state 0
to state 2, 117, is taken then the state 0 may be marked as a tag
start state and state 2 may be marked as a tag end State. The
tagged FSA implementation may then indicate the beginning
of the to transition when the FSA reaches the tag start state
and then indicate the end of the tag transition when the FSA
reaches the tag end state. If the FSA moves from the tag start
state immediately followed by transitioning into tag end State,

May 19, 2011

then the tagged FSA can indicate the match of a tagged
transition. The illustrations in the description below do not
illustrate this aspect of tagged NFA, though it may optionally
be supported in PRISM and may be easily implemented as
follows or other means for example by adding a tag start and
tag end State flags (as memory bits or flip-flops) and the logic
for the tag transition detection to follow the steps described
above as can be appreciated by those with ordinary skill in the
art. The patent of this disclosure enables detection of sub
expressions using tagging.
(0075 FIG. 1c is illustrates a DFA for the same regular
expression (xy+y)*yx. DFA is deterministic in that only one
of its states is active at a given time, and only one transition is
taken dependent on the input symbol. Whereas in an NFA,
multiple states can be active at the same time and transitions
can be taken from one state to multiple states based on one
input symbol. There are well known algorithms in the litera
ture, like subset construction, to convert a RE or NFA to a
DFA. One point to note for the DFA that is illustrated for the
regular expression is that it has fewer states than both the
Thompson NFA as well as Berry-Sethi NFA. The upper
bound on the number of states for an N character DFA is 2',
however expressions that result in the upper bound in the
number of DFA states do not occur frequently in lexical
analysis applications as noted by Aho, Sethi and Ullman in
section 3.7 of their book on Compilers referenced above. This
DFA may be realized in the PRISM Memory using the con
structs described below to represent an FSA, using a left
biased realization. Thus PRISM memory of this invention
may also be used to program certain DFAS where all incom
ing transitions to each state are with the same symbol like the
DFA of this illustration.

0076 FIG. 2a illustrates a left-biased NFA and its state
transition table (prior art). The illustration is a generic four
state Berry-Sethi like NFA with all transitions from each node
to the other shown with the appropriate symbol that the tran
sition depends on. For example, state A, 201 has all incoming
transitions dependent on symbola as illustrated by example
transitions labeled 202 and 203. When the FSA is in State A,
201, an input symbol 'd', transitions the FSA to state D with
the transition, 204, from state A to state D. The table in the
figure illustrates the same FSA using, a state transition table.
The column PS, 211, is the present state of the FSA, while
the row sym, 212, is a list of all the symbols that the state
transitions depend on. The table 213, illustrates the next state
(NS) that the FSA transition to from the present state (PS)
when an input symbol from those in the sym header row is
received. In this FSA, state A is the start state and state C is
an accept state. Hence, if the FSA is in the present state A and
an input symbol b is received, the FSA transitions to the next
state B. So when the next input symbol is received, the FSA
is in present state Band is evaluated for state transition with
the row corresponding to present state B.
(0077 FIG.2b illustrates a right-biased NFA and its state
transition table (prior art). The illustration is a generic four
state dual of Berry-Sethi NFA with all transitions from each
node to the other shown with the appropriate symbol that the
transition depends on. For example, state A. 205 has all
outgoing transitions dependent on symbola as illustrated by
example transitions labeled 208 and 209 where as unlike the
left-biased NFA described above, each incoming transition is
not on the same symbol, for example transitions labeled 206
and 207 depend on symbols band'd respectively. The state
transition table in this figure is similar to the left biased one,

US 2011/01 19440 A1

except that the FSA transitions to multiple states based on the
same input symbol. For example if the FSA is in the present
state Band a symbol b is received, then the FSA transitions
to all states A. B., C and D. When an input symbol is
received which points the FSA to an empty box, like 216, the
FSA has received a string which it does not recognize. The
FSA can then be initialized to start from the start state again
to evaluate the next string and may indicate that the string is
not recognized.
0078. The FIG.2a and FIG.2b, illustrate generic four state
NFAS where all the transitions from each state to the other are
shown based on the left-biased or right-biased construct char
acteristics. However not all four state NFAS would need all
the transitions to be present. Thus if a symbol is received
which would require the FSA to transition from the present
state to the next state when such transition on the received
input symbol is not present, the NFA is said to not recognize
the input string. At such time the NFA may be restarted in the
start state to recognize the next string. In general, one can use
these example tour state NFAS to representan tour state RE in
a left-biased (LB) or right-biased (RB) form provided there is
a mechanism to enable or disable a given transition based on
the resulting four states NFA for the RE.
007.9 FIG. 3a illustrates state transition controls for a
left-biased and right-biased NFA. The figure illustrates a left
biased NFA with a state A, 300, which has incoming tran
sitions dependent on receiving inputSymbol S1 from states
B, 301, C, 302, and D, 303. However, the transitions
from each of the states B,C and D to state A, occur only
if the appropriate state dependent control is set besides receiv
ing the input symbol S1. The state dependent control for
transition from state B to state A is V, while those from
states C and 'D' to state A is V and V respectively. Tran
sition to the next state A is dependent on present state A
through the state dependent control V. Thus transition into a
state A occurs depending on the received inputSymbol being
S1 and if the state dependent control for the appropriate
transition is set. Thus, one can represent any arbitrary four
states NFA by setting or clearing the state dependent control
for a specific transition. Thus, if a four states left biased NFA
comprises of transition into state A. from state B and C
but not from the states A or D, the state dependent controls
can be set as V=0, V-1, V-1 and V-0. Hence if the NFA
is in state D and a symbol S1 is received, the NFA will not
transition into state A, however if the NFA is in state Band
a symbol S1 is received the NFA will transition into state
A.

0080. Similarly, FIG. 3a also illustrates states and transi
tions for a right-biased NFA. The figure illustrates a right
biased NFA with a state A, 306, which has incoming tran
sitions from state 307, state 'C', 308, and state D, 309, on
receiving input symbols S2, S3 and S4 respectively.
However, the transitions from each of the states B. C and
'D' to state A, occur only if the appropriate state dependent
control is set besides receiving the appropriate input symbol.
The state dependent control for transition from state B to
state A is V, while those from states C and D to state A
is V, and V respectively. Transition to the next state A is
dependent on present state A through the state dependent
control V. Thus transition into a state ‘A’ occurs based on the
received input symbol and if the state dependent control for
the appropriate transition is set. Thus, one can represent any
arbitrary four states right-biased NFA by setting or clearing
the state dependent control for a specific transition. All State

May 19, 2011

transition controls for a given state form a state dependent
vector (SDV), which is comprised of V, V, V, and V for
the illustration in FIG. 3a for the left-biased and the right
biased NFAS.

I0081 FIG. 3b illustrates configurable next state table per
state. The left-biased state table for NS=A, is shown by the
table 311, whereas the right-biased state table for NS=A, is
shown by the table 312. The state dependent vector for both
left-biased and right-biased NFA state is the same, while the
received input symbol that drive the transition are different
for the left-biased vs. right-biased NFA states. Thus a state
can be represented with properties like left-biased (LB),
right-biased (RB), start state, accept state, SDV as well as
action that may be taken if this state is reached during the
evaluation of input strings to the NFA that comprises this
State.

I0082 FIG. 4a illustrates state transition logic (STL) for a
state. The STL is used to evaluate the next state for a state. The
next state computed using the STL for a state depends on the
current state of the NFA, the SDV, and the received symbol or
symbols for a left-biased NFA and right-biased NFA respec
tively. The InChar input is evaluated against symbols S1
through Sn using the symbol detection logic, block 400,
where n is an integer representing the number of symbols in
the RE of the NFA. The choice of depends on how many states
are typically expected for the NFAS of the applications that
may use the search memory. Thus, in may be chosen to be 8.
16, 32 or any other integer. The simplest operation for symbol
detection may be a compare of the input symbol with S1
through Sn. The output of the symbol detection logic is
called the received symbol vector (RSV) comprised of indi
vidual detection signals RS1 through RSn. LB/RBi is a
signal that indicates if a left-biased NFA or a right-biased
NFA is defined. LB/RBi is also used as an input in evaluating
state transition. The STL for a state supports creation of a
left-biased as well as right-biased NFA constructs. The
LB/RBill signal controls whether the STL is realizing a left
biased or a right-biased construct. The state dependent vector
in the form of V1 through Vn, is also applied as input to the
STL. The SDV enables creation of arbitrary n-state NFAs
using STL as a basis for a state logic block illustrated in FIG.
4b. Present states are fed into STL as a current state vector
(CSV) comprised of Q1 through Qn. STL generates a
signal N1 which gets updated in the state memory, block
402, on the next input clock signal. N1 is logically repre
sented as N1=(V1 and Q1 and (LB/RBit OR RS1)) OR (V2
and Q2 and (LB/RBit OR RS2)) OR (Vn and Qn and (LB/
RBit OR RSn)) AND (NOT LB/RBit OR RS1). Similar
signal for another state n, would be generated with similar
logic, except that the signal 401, feeding into the OR gate,
415, would be which is the output of the n-th symbol detec
tion logic, changing the last term of the node N1 logic from
((NOT LB/RBit OR RS1) to ((NOT LB/RBit OR RSn). The
state memory. 402, can be implemented as a single bit flip
flop or a memory bit in the state logic block discussed below.
I0083 FIG. 4b illustrates a state logic block (SLB). The
SLB comprises the STL, 406. Init logic, 408, state memory,
410, the accept state detect logic, 411, the SDV for this state,
407, start flag, 409, accept flag, 412, tag associated with this
state, 419, or action associated with this state, 413 or a com
bination of the foregoing. The SLB receives current state
vector and the received symbol vector which are fed to STL to
determine the next state. The realization of a state of an
arbitrary NFA can then be done by updating the SDV for the

US 2011/01 19440 A1

state and selecting the symbols that the NFA detects and takes
actions on. Further, each state may get marked as a start state
or an accept state or tagged NFA state or a combination or
neither start or accept or tagged State through the start, tag and
accept flags. The init logic block, 408, receives control signals
that indicate if the state needs to be initialized from the start
state or cleared or disabled from updates, or loaded directly
with another state value, or may detect a counter value and
decide to accept a transition or not and the like. The init block
also detects if the FSA has received a symbol not recognized
by the language of the regular expression and then may take
the FSA into a predefined initial state to start processing the
stream at the next symbol and not get into a state where it
stops recognizing the stream. The Init block can be used to
override the STL evaluation and set the state memory to active
or inactive state. The STL, 406, provides functionality as
illustrated in FIG. 4a, except that the state memory is included
in the SLB as independent functional block, 410. The state
memory, 410, can be implemented as a single bit flip-flop or
a memory bit. When the state memory is set it indicates that
the state is active otherwise the state is inactive. The accept
detect logic, 411, detects if this state has been activated and if
it is an accept state of the realized NFA. If the state is an accept
state, and if this state is reached during the NFA evaluation,
then the associated action is provided as an output of the SLB
on the A1 signal, 416, and an accept state activation indicated
on M1, 417. If the FSA reaches a state which is flagged as a
tagged State using the tag flag, then the match detect logic
may indicate a tag match, not illustrated, which another cir
cuit can use to determine the action to be taken for the par
ticular tag. The action could be set up to be output from the
SLB on the state activation as an accept state as well as when
the state is not an accept state, like a tagged state, as required
by the implementation of the NFA. This can enable the SLB
to be used for tagged NFA implementation where an action or
tag action can be associated with a given transition into a
State.

0084. If there are n states supported per FSA rule, then
each SLB needs 'n'-bit SDV which can be stored as a n-bit
memory location, 3-bits allocated to start, tag and accept
flags, 1-bit for LB/RBil, m-bit action storage. Thus if n=16
and m=6, then the total storage used per SLB would be a
26-bit register equivalent which is a little less than 4 bytes per
state. If tag start flag and tag end flags are Supported, not
illustrated, then the number of memory bits would be 28-bits.
If multiple tagged expressions need to be enabled then the
number of bits for tagging may be appropriately increased.
I0085 FIG. 5a illustrates State transition logic (STL) for a
state in a left-biased FSA. This figure illustrates state transi
tion logic for a state of an FSA when the logic illustrated
above for FIG. 4a is simplified with the LB/RBi set to active
and symbol detection logic for one of the states illustrated.
The symbol bits are illustrated as 'm-bit wide as S...S.
illustrated in block 502. The input character symbol bits are
labeled as cIn. . . . cIn, 501. The symbol detection logic
illustrated in FIG. 4a, 400, is illustrated as individual bits
labeled E. . . . E. 503, and is also referred to as symbol
evaluation logic in this patent. The symbol dependent vector
is labeled V. ...V. 504 which indicates the symbol depen
dent vector bit enabling transition into state 1 from each of the
'n' states that represent the CSV, Q, ... Q, 509, of the FSA.
RS1,505, is the result of the evaluation of the input character
symbol with one symbol of the FSA, S...S. illustrated in
block 502. The logic gates, 506 and 507, are NAND gates that

May 19, 2011

form the logic function to generate the next state, Q1, based
on the RS1, SDV, V, ...V, and CSV. Q, ... Q. States Q,
...Q. would be generated using similar circuit structure as the
one illustrated in FIG. 5a, except the RSV bit, SDV and the
symbol specific to the particular state will be used. For
example, for the generation of state Q, the Symbol would be
S...S., the SDV vector would beV, ...V. and the RSV
bit would be RSn instead of RS1.

I0086 FIG. 5b illustrates State transition logic (STL) for a
state in a right-biased FSA. This figure illustrates state tran
sition logic for a state when the logic illustrated above for
FIG. 4a is simplified with the LB/RBi setto inactive state and
symbol detection logic for one of the states illustrated. Key
differences between the right biased FSA circuit illustrated in
this figure and the left-biased FSA illustrated in FIG. 5a, is
that the next state generation logic depends on all received
symbol vector bits. RS1,505, through RSn, 505m, which are
the result of the evaluation of the input character symbol with
each of then symbols of the FSA instead of only one RSV
bit, RS1,505, illustrated in FIG.5a. The logic gates, 506a and
507b, represent the right-biased FSA logic function to gen
erate the next state based on the RSV. RS1,505, through RSn,
505n, SDV, V, ...V, and CSV. Q. ... Q. States Q, ...Q.
would be generated using similar circuit structure as the one
illustrated in FIG.5b, except the SDV and the symbol specific
to the particular state will be used. For example, for the
generation of state Q, the Symbol would be S. . . . S., the
SDV vector would beV...V. and the RSV vector would as

be the same, RS1,505, through RSn, 505n.
I0087 PRISM memory allows various elements of the FSA
blocks to be programmable as discussed below.
I0088 FIG. 6A illustrates Right-biased Tagged FSA Rule
block in PRISM. As discussed earlier the FSA of PRISM are
optionally Tagged. For clarity, FSA rule block, PRISM FSA
rule block, PRISM FSA rule memory block, rule block, rule
memory block, are used interchangeable in this application.
Further, NFA rule block or PRISM NFA rule block or NFA
rule memory, block, are also used interchangeably and mean
a PRISMFSA rule block where the FSA type is an NFA in this
patent. The discussion below is with respect to tagged NFA,
though it is also applicable for non-tagged NFAS or other FSA
types where the tagging elements, described below, are not
used or not present. This figure illustrates a state block 1, 601,
which comprises of Some elements of the state transition
logic illustrated in FIG. 5b. The figure illustrates other state
blocks, 602 and 603, that represent state blocks 2 through n,
where n is the number of states of the NFA or FSA pro
grammed in this PRISM FSA rule block. These blocks are
illustrated without details unlike state block 1. The primary
difference between the blocks is that each state block gener
ates its own RSV bit and uses only its own state bit from the
CSV. For instance state block 2, generates RS2 by evaluating
the received character with the symbol programmed in its
symbol logic block which is similar to block 502. The state
blocks are organized slightly differently than the illustration
in FIG. 5b. The logic for one state illustrated in FIG. 5b, is
illustrated to be organized in a vertical slice like, 614, where
each state block holds portion of the logic necessary to form
the final state. In this illustration the state Qn, 508n, is gen
erated by processing the outputs from each state blocks 'n'-th
slice. The SDV vector bits held in each state block are for
transition control from the specific state to all other states. For
instance the blocks, like 504a, hold different members of the
SDV vectors compared to the blocks, like 504. Thus the SDV

US 2011/01 19440 A1

for each state is distributed amongst multiple state blocks
unlike that illustrated in FIG. 5b. For example state block 1,
holds SDV vector bits V, V, through V indicating
state transition vectorbits for transitioning out of state 1 to the
in states, unlike FIG.5b which are transposed where the state
transition logic for a state holds bits V, V, through V.
for transition into state 1. The indices V indicate the state
dependent vector bit that enables or disables transition from
state X to state Y where each X and Y may have a range from
1 through n, where n is the number of states of the FSA. Thus
the SDV of a state indicates the controls for enabling transi
tions from any state to itself as illustrated in 504, which
indicates SDV transition controls from states in through 1 to
state 1. As can be noticed the indices of the vector bits are
reversed between the FIG. 5b and FIG. 6a. Thus a specific
state's SDV is distributed in multiple state blocks and is
illustrated aligned vertically like slice 614. This figure also
illustrates the initialization logic, 408, illustrated in FIG. 4b as
block 605 that affects what value gets loaded in the state
memory bit, 508n, under different conditions like initializa
tion, startup, error State, store and load or context Switch and
the like. Thus SDV vectors for an FSA are written to the FSA
rule block in a state transposed manner as described above.
The initialization block comprises of initialization/start state
vector memory bits. Thus the input into the init block, 605, is
logically equivalent to the node N1b in FIG. 5b, adjusted for
the appropriate state bit. The state control block, 604, com
prises of the logic gates, 507a, which logically NANDs the
partial state output, like 615, from the state blocks 1 through
state block n. The state control block, 604, further comprises
of the init logic blocks, like 605, and the state memory blocks,
like 508a through 508n. The FSA Rule block also comprises
of tagged match detect block, 613, which may optionally
comprise of tagging elements for Supporting tagged NFAS.
The tagged match detect block comprises of Accept vector
blocks, like 610, which comprise of accept vector memory
bits and may optionally comprise of tag memory bits. The
tagged match detect block further comprises of accept detect
blocks, like 611, which comprise of accept state detection and
may optionally comprise of tagged state or state transition
detection logic. The state memory blocks, like 508a through
508m, may be controlled be clock or enable or a combination
signals to step the FSA amongst its states as new input char
acters are evaluated. The clocked enable signals may provide
more control over simple clock by enabling when the FSA
should be evaluated. For instance upon finding a match, the
FSA controller, 1302, described below may be programmed
to hold further evaluation of any symbols for this FSA until
the match information is processed. The FSA rule block gen
erates multiple output signals that can be used to indicate the
progress of the FSA. The FSA rule block outputs comprise of
a Rule Match, 609, which indicates when the regular expres
sion rule programmed in the FSA rule block is matched with
characters of the input stream. The Rule Match signal may be
used by the local or global priority encoder and evaluation
processor, blocks 1315 and 1213 respectively described
below, to decide on next steps to be taken based on user
programmed actions and/or policies. The priority encoder
and evaluation processors may optionally comprise of
counters that may be triggered upon specific rule matches.
The counters may be used for several purposes like statistical
events monitoring, match location detection in the input
stream and the like. The priority encoders may also decide the
highest priority winner if multiple matches are triggered and

May 19, 2011

then the output may be used to find the appropriate action
associated with the matched regular expression rule. The FSA
rule block output may optionally comprise of Tag Match
signal(s) that may be used by the priority encoders and evalu
ation processors to detect partial regular expression matches.
The number of tag match signals per FSA rule block may
depend on the number of sub-expressions that are allowed to
be detected in a given FSA. The FSA rule block is organized
as a series of memory locations that each hold a portion of the
NFA rule evaluation information using memory circuits like
the SDV memory. Symbols memory, Mask vectors memory
(discussed below), initialization or start state vector memory,
accept state vector memory, optionally tag state flag or vector
memory, the FSA states memory or current state vector
memory and the like. The FSA rule block comprises of FSA
evaluation circuits interspersed amongst the memory blocks
storing the FSA programmable information like the SDV,
start state, accept state, symbols and the like. The FSA rule
blocks evaluate multiple symbols against input stream for
matches to step the FSA. Each symbol evaluation block, like
503, may optionally output an indication of a pattern com
parison between the input character or symbol and the pro
grammed symbol. These output signals, like 614, 616, 617,
can be treated as local content addressable memory match
signals. The PRISM memory may optionally support logic
that enables generating merged CAM match signals from
multiple FSA rule blocks to support larger width pattern
matches. Thus the PRISM memory can be used as content
addressable memory when enabled to process the CAM
match signals. The PRISM memory can be optionally con
figured such that portions of the memory support CAM func
tionality while other portions may support FSA functionality
or the entire PRISM memory may optionally be configured to
behave like FSA memory or CAM memory. The CAM
memories typically support functionality to detect 4 byte
patterns, 18 byte patterns or even 144 byte patterns. PRISM
memory may optionally provide configuration mechanisms
to Support similar large pattern evaluation by chaining mul
tiple FSA rule blocks CAM match signals using appropriate
logic to generate composite CAM match signals for desired
pattern width.
I0089 FIG. 6B illustrates Left-biased Tagged FSA Rule
block in PRISM. As discussed earlier the FSA of PRISM are
optionally Tagged. The discussion below is with respect to
tagged NFA, though it is also applicable for non-tagged NFAS
or other FSA types where the tagging elements, described
below, are not used or not present. Left-biased FSA Rule
blocks are similar in functionality as those discussed above
for the Right-biased FSA rule blocks except for a few minor
differences that enable the FSA rule block to behave as a
Left-biased FSA. The state blocks, 601a, 602a, 603a, in the
left-biased NFAS receive all RSV vector bits, like 505n,
unlike a specific RSV bit per state block in the right-biased
NFA. The input to NAND gates like 506b, is the specific RSV
bit depending on the bit slice at the bit location in the state
block of the NAND gate. Thus bit location p where p can
range from 1 through n, uses RSp (Received Symbol Vector
bit p) to generate the partial state block output, 6.15a. By
making such a change in the blocks the NFA may now func
tion as a left-biased NFA. The rest of the blocks perform
similar functions as described above for a right-biased NFA.
(0090 PRISM memory may comprise of left-biased NFAs,
right-biased NFAS or left-biased FSA or right-biased FSA or
a combination of them or may be comprised as selectable

US 2011/01 19440 A1

left-biased or right-biased NFAS with logic similar to FIG.4a.
All Such variations are within the scope of this invention, as
may be appreciated by one with ordinary skill in the art.
0091 FIG. 21 illustrates PRISM search compiler flow
which is used for full and incremental rules distribution. For
clarity, the PRISM search compiler is also referred to as
search compiler or compiler in this patent application and the
terms are used interchangeably. The search compiler of FIG.
21 allows an IT manager or user to create and compile the
search and security rules of different types as illustrated by
2101, 2102 and 2103, without limitations. Even though, the
illustrated rules list primarily security type rules there may be
regular expression rules for other application that needs con
tent search like many applications listed in this patent appli
cation. The compiler flow would optionally be provided with
the characteristics of the specific nodes like the security capa
bility presence, the rules communication method, the size of
the rule base Supported, the performance metrics of the node,
deployment location e.g. LAN or SAN or WAN or other, or
the like for specific security or network related search appli
cations. The compiler flow may optionally use this knowl
edge to compile node specific rules from the rule set(s) cre
ated by the IT manager or the user if appropriate for the
application. The compiler comprises a rules parser, block
2104, for parsing the rules to be presented to the PRISMFSA
Compiler, block 2106, which analyzes the rules and creates
rules database used for analyzing the content. The rule parser
may read the rules from files of rules or directly from the
command line or a combination depending on the output of
the rule engines, like blocks 2101, 2102 and 2103. The rules
for a specific node are parsed to recognize the language spe
cific tokens used to describe the rules or regular expression
tokens and outputs regular expression (RE) rules, 2105. The
parser then presents the REs to the PRISM FSA compiler
which processes the REs and generates NFA for RE. Option
ally if tagging is supported by the specific PRISM instance,
and if REs use tagging, the PRISM FSA compiler, it then
decides whether the RE will be processed as a NFA or tagged
NFA based on the PRISM memory capability. It then gener
ates the NFA or tNFA rule in a format loadable or program
mable into PRISM memory and stores the database in the
compiled rules database storage, 2108.
0092 Rules distribution engine, block 2109, then commu
nicates the rules to specific system or systems that comprise
of PRISM memory. The search rules targeted to specific
systems may be distributed to a host processor or a control
processor or other processor of the system that comprises
PRISM memory. A software or hardware on the receiving
processor may then optionally communicate the rules to the
PRISM memory by communicating with the external inter
face, block 1202, and the PRISM controller, block 1203,
described below to configure and/or program the PRISM
memory with the FSA rules. The Rules distribution engine,
2109, may optionally communicate directly with the PRISM
controller, block 1203, through the external interface block
1202, if the external interface and PRISM controller option
ally support such functionality. The rules may be distributed
using a secure link or insecure link using proprietary or stan
dard protocols as appropriate per the specific node's capabil
ity over a network.
0093 FIG. 12 illustrates PRISM block diagram. As may
be appreciated by one with ordinary skill in the art, that many
different variations of these blocks and their configuration,
organization and the like can be created from the teachings of

May 19, 2011

this patent and are all covered without limitations. PRISM
controller, block 1203, communicates with the piles distribu
tion engine, block 2109 or with a master processor or a
companion processor like a host system microprocessor or a
control processor or a network processor or a Switch proces
sor or an ASIC based controller or processor or the like to
receive appropriate compiled rule tables prior to starting the
content inspection. It programs the received rules into the
appropriate PRISM FSA rule memory blocks, described ear
lier, by working with the address decode and control logic
block 1204, coupled to the PRISM controller, block 1203, and
the PRISM memory cluster arrays, block 1210. There may be
multiple rules being stored in each PRISM memory cluster
array FSA rule blocks. There may optionally be multiple
application specific contexts, not illustrated, Supported by the
PRISM memory cluster arrays. Once the rules distribution
engine communicates the compiled rules to the PRISM con
troller as described above and they are setup or programmed
in their respective FSA rule blocks, PRISM memory is ready
to start processing the data stream to perform content inspec
tion. The PRISM memory state configuration information is
received via the external interface block, 1202, which may
communicate on a system bus or a network or the like with a
master processor or companion processor, not illustrated, as
described above. The PRISM memory of this patent may be
deployed in various configurations like a look-aside configu
ration or flow-through configuration oran accelerator adapter
configuration or may be embedded inside variety of proces
sors or logic or ASICs or FPGA or the like as discussed earlier
as well others not illustrated. In a look-aside oran accelerator
adapter configuration, the PRISM memory may optionally be
under control of a master processor which may be a network
processor or a switch processor or a TCP/IP processor or
classification processor or forwarding processor or a host
processor or a microprocessor or the like depending on the
system in which such a card would reside. The PRISM con
troller, 1203, receives the configuration information under the
control of Such master processor that communicates with the
rule engine to receive the configuration information and com
municates it on to the PRISM memory. Once the configura
tion is done, the master processor provides packets or data
files or content to the PRISM memory for which content
inspection needs to be done. The external interface, 1202,
used to communicated with a master processor may be stan
dard buses like PCI, PCI express. RapidIO, HyperTransport
or LA-1 or DDR or RDRAM or SRAM memory interface or
there derivatives or the like or a proprietary bus. The band
width on the bus should be sufficient to keep the content
search memory operating at its peak line rate. The PRISM
memory may preferably be a memory mapped or may option
ally be an IO mapped device in the master processor space for
it to receive the content and other configuration information
in a look-aside or accelerator configuration. PRISM memory
optionally may be polled by the master processor or may
provide a doorbell or interrupt mechanism to the master to
indicate when it is done with a given packet or content or
when it finds a content match to the programmed rules.
(0094. The PRISM controller receives incoming data for
examination using regular expression rules or for examina
tion using patterns to be matched, and may optionally store
them into data buffer/memory, block 1207, before presenting
it to the PRISM memory cluster arrays. The PRISM memory
may optionally directly stream the content to be examined to
the content stream logic, block 1208, which may stage the

US 2011/01 19440 A1

content for examination by the PRISM memory cluster
arrays, block 2110. The PRISM controller maintains the
record of the content being processed and once the content is
processed it informs the master processor. The PRISM
memory cluster arrays inform the global priority encoder and
evaluation processor, block 1213, of the results of the search.
When a match to a rule is found the priority encoder and
evaluation processor may retrieve an action associated with
the rule from the global action memory, block 1217, depend
ing on programmable policies and may optionally provide
this to the PRISM controller. The PRISM controller may
optionally inform the master processor about the search
results. The PRISM controller may execute the specific action
or policy defined for the rule match. The actions may option
ally comprise to stop further content evaluation, enable a
certain set of rules to be examined by enabling appropriate
cluster array and pass the content through that PRISM
memory cluster array for further examination, or inform the
master processor of the result and continue further examina
tion or hold the match result in on-chip or off-chip memory or
butlers for the master processor to request this information
later or any combination thereof or the like. If the PRISM
memory is configured to examine network traffic in a flow
through configuration, not illustrated, it may also be pro
grammed to drop the offending packet or stop the specific
TCP connection or the session or the like. Optionally the
master processor may receive the match information and may
take specific actions on the content stream.
0095. The address decode and control logic, block 1204, is
coupled to the PRISM controller, 1203, the external interface,
1202, the PRISM memory cluster arrays, 1210, the global
priority encoder and evaluation processor, 1213, the database
expansion port, 1218 as well as other blocks through a cou
pling interface, 1215. The PRISM memory may support a
large number of regular expressions in some preferred
embodiments as discussed above, however if there are appli
cations that need more rules, then there may optionally be a
database expansion port, 1218, which would enable the
expansion of the rules by adding additional PRISM memory
(ies) to the database expansion port. The database expansion
port may provide a seamless extension of the number of rules
and may use additional memory space in the host or master
processor. There are multiple ways of enabling the database
expansion as may be appreciated by those with ordinary skill
in the art. The address decode and control logic is also
coupled to optional, cluster address decode and FSA control
ler, block 1302, and decodes addresses for the PRISM
memory locations which are used to hold FSA rule block
programming information as well as the FSA State informa
tion. It may perform the address decode, memory read,
memory write and other PRISM memory management con
trol functions by itself or working in conjunction with cluster
address decode and FSA controller. The blocks 1204 and
optionally 1302, may be programmed to provide configura
tion information for the clusters. The configuration informa
tion may optionally comprise of size of the NFAS e.g. 8-state
or 16-state or the like, CAM functionality enabling, tagged
NFA related configuration, context addresses if appropriate
for local cluster context addressing and/or global context
addresses, clusters specific configurations that may support a
mixed CAM and Regular Expression functionality at the
PRISM memory level, action memory association for specific
FSA rules or clusters or a combination thereof and the like.
The PRISM memory cluster arrays and other blocks like

May 19, 2011

global and local priority encoder and evaluation processor,
blocks 1213 and 1315, local (not illustrated) and global action
memories, block 1217 and the like get configured and pro
grammed with information before the content inspection
begins. Further, since PRISM memory supports dynamic
reconfiguration of rules, its programming and configuration
may be updated during the content inspection as well for
example when a new security threat has been discovered and
a new rule to catch that security violation needs to be pro
grammed. The PRISM memory provides ability to support
multiple content streams to be processed through the PRISM
memory cluster arrays, using context mechanism which asso
ciates each content stream with a specific context, which may
optionally be assigned a specific context ID.
(0096 FIG. 13 illustrates PRISM Memory cluster block
diagram. There may be options to have multiple content
streams and hence multiple contexts may optionally be simul
taneously operated upon in different memory FSA clusters,
illustrated in FIG. 13. For clarity, PRISM Memory cluster,
memory FSA cluster, a cluster, memory cluster and memory
FSA cluster are used interchangeably in this patent. A given
cluster and its associated FSAS may also be able to Support
multiple content streams using the context information.
When a new content stream starts getting processed by a FSA
rule block or a cluster or the like, it may traverse through
various FSAs whose states may need to be saved, if the
content stream is not fully processed, when the same FSAs
need to start processing another content stream. The local
context memory, block 1312, or global context memory,
block 1212, or external memory (not illustrated) coupled to
external memory controller, block 1221, or a combination
thereof may be used to save the state of active FSAs for a
given context before the FSAs are switched to operate on a
different context. Further, the new context may have its saved
context restored in the specific FSAs before content from that
context starts to be processed. The local context memory
along with global context memory affords the benefit of very
fast context Switching for active contexts simultaneously
across multiple clusters and FSAS without creating a context
switch bottleneck. The number of contexts being store locally
percluster and those stored globally or externally is a function
of the manufacturing cost and other tradeoffs which will be
apparent to the one with ordinary skill in the art. Typically the
amount of information that needs to be stored and retrieved
per context may be limited to the NFAS or FSAs that are in the
process of recognizing a specific string defined by its regular
expression. In general most NFAS or FSAs may be continu
ously be starting to analyze the input streams from a start state
if the strings being searched are not very frequent in the
content being search. The FSA controller, block 1302,
coupled with blocks 1204, and the local and global context
memories and their respective memory controllers as well as
the blocks 1213 and 1315, the local priority encoder and
evaluation processor, takes the steps to perform the context
Switch if contexts are enabled before processing a new con
text.

0097. The cluster address decode and FSA controller,
block 1302, may decode incoming addresses for configuring,
reading or writing from PRISM memory locations or the like
of the cluster PRISM array, block 1308 which is comprised of
an array of PRISM FSA rule blocks illustrated above, and
activates memory location's word line and/orbit lines or other
word lines or content lines or mask lines or the like or a
combination thereof, described below to read, write and/or

US 2011/01 19440 A1

access the specific PRISM memory location. There may
optionally be cluster specific bit line drivers and sense ampli
fiers, block 1309, and bit line control logic, block 1310, which
may be used to read or write specific bits in the cluster PRISM
array, block 1308. These circuits are well understood by
memory designers with ordinary skill in the art. The sense
amplifiers and drivers may optionally be present at the global
PRISM memory level illustrated in FIG. 12, depending on the
tradeoffs of die area, performance, cost, power and the like
which one with ordinary skill in the art can easily appreciate.
The benefit of having local sense amps and drivers is poten
tially creating lower interconnect load for individual memory
bits, which in turn can help improve the performance. Typi
cally the block 1302 may be operating during the configura
tion, context switching or other maintenance operations like
storing and retrieving specific NFA or FSA state information,
or refreshing specific PRISMFSA memory bits if appropriate
and the like. Generally during content processing the block
1302 may be dormant unless there is a match or an error or the
like when it may start performing the necessary tasks like
communicating the match, action, policy, error or the like to
the PRISM controller, initiating context switching and the
like. The PRISM controller, block 1203, coupled with the
content stream logic, block 1208, content staging buffer,
1209, address decode and control logic, block 1204, and the
cluster FSA controllers, block 1302, may present the content
to be examined to the PRISMFSA rule blocks. The content to
be examined may be streamed by the block 1208 from the
data buffer or memory, 1207, or from external memory, or a
combination into the content staging buffer. The content stag
ing buffer, 1209, is coupled to cluster search buffer, 1306, and
cluster search control, 1307 to align the appropriate content to
the clusters for searching. The content staging buffer may
hold content from the same context or multiple contexts
depending on the configuration of the clusters and the like.
The content is presented to the cluster PRISM array, 1308,
that comprises of the PRISM NFA rule blocks for examina
tion in a sequence timed using a control signal like a clock or
enable or a combination. The NFA rule blocks perform their
inspection and indicate whether there is any rule match or
optionally if there is any CAM pattern match or optionally
any tag match and the like. The match signals are looked at by
cluster level local priority encoder and evaluation processor,
block 1315, which may determine if there is a match and if
there are multiple matches which match should be used, or all
matches should be used or the like depending on the configu
ration. This block 1315, may be coupled to global priority
encoder and evaluation processor, block 1213, which may
perform a similar operation by examining match signals from
multiple clusters. The local and global evaluation processors
of these blocks may optionally generate address(es) for the
winning match(es) to the global action memory or external
memory or a combination that may store appropriate action
information that needs to be retrieved and processed to deter
mine action(s) that need to be taken as a result of specific rule
match(es). There may be optional cluster level action
memory, not illustrated, for fast retrieval of action informa
tion. This cluster level action memory may act as a cache of
the global and/or external memory based action storage. As
described earlier the FSA controller, block 1302, coupled
with local context memory, block 1312, its memory control
ler, block 1313, along with the local and global evaluation
processor and priority encoders coupled to global action and

May 19, 2011

context memories, may be used to store and retrieve context
information from and to configure the PRISM cluster arrays
with appropriate FSA states.
(0098. The PRISM memory may support high line rate
content search. If the prism memory clusters process 8-bit
characters from the input stream and the memory is operating
at 250 MHz frequency, a line rate of 2 Gbps may be readily
realized. To increase the performance of the PRISM memory
multiple approaches may be taken. In an embodiment of
PRISM memory the number of bits of characters from the
content being examined can be increased from 8-bit to 16-bit
and thus the performance of the PRISM memory can be
doubled. This would entail increasing the size of the symbols
implemented in the PRISM FSA rule blocks. The PRISM
compiler optionally would also be updated for Such a change
in symbol size. The other alternative is to increase the fre
quency of the operation of the PRISM memory device by
right partitioning of the PRISM memory clusters and other
circuit and architectural techniques as may be appreciated by
those with ordinary skill in the art. Yet another alternative
embodiment can realize 10 Gbps performance by using
smaller number of FSA rules per chip and program multiple
PRISM memory clusters to the same rule sets and pass dif
ferent content streams through these clusters. Yet another
embodiment may realize the performance needs by combin
ing the above approaches. Yet another approach may be to
utilize multiple PRISM memory chips and multiplex the con
tent to be examined to meet the performance goals. The
PRISM database expansion port may also be used to realize
the same goals. Thus the PRISM memory of this invention
can be readily used to perform very high speed content
inspection for one to two orders of magnitude larger numbers
of regular expressions than processor based approach.
0099 FIG. 7A illustrates a state block bit in PRISM. The
state block bit may comprise of symbol logic, block 703,
which may comprise symbol memory block (symbol bit),
block 708, to store a bit of a symbol of the FSA rule block. It
may further comprise of an optional mask memory block
(bit), block 709, to store an optional mask bit of a mask vector
that may be applied during the symbol evaluation. The mask
bit may indicate whether the associated symbol and the input
character bits should be evaluated or not. The state block bit
may further comprise of an optional mask circuit, block 710,
which performs the masking operation when active. The State
block bit further comprises of a symbol evaluate circuit, block
711, which is used to evaluate the input character bit against
the symbol stored in the symbol memory block bit. In the
illustration, the symbol memory is illustrated to store specific
characters, though the symbols may be more complex than a
simple character, for example a range of characters or logical
or arithmetic operators for a specific character or the like.
When the symbol is extended beyond a simple character,
appropriate changes may be necessary in the symbol evalua
tion circuit to Support more complex symbol evaluation as
may be appreciated by those with ordinary skill in the art. This
patent covers such symbol extensions as well. The state block
bit also comprises of a SDV memory block (bit), block 712,
for storing a bit of the state dependent vector used to deter
mine whether specific state is enabled to transition to another
state or not as discussed earlier. The state block bit may also
comprise of partial state oval circuit, block 713, that may
evaluate a portion of the state transition logic by coupling the
SDV memory block (bit), the RSX. 704, and the state Qy,716.
In a preferred embodiment this may be a NAND gate circuit

US 2011/01 19440 A1

similar to 506 or 506a illustrated in FIGS. 5a and 5b. The
partial state evaluate circuit may generate an output signal
STxy, 717, that may indicate it a specific transition from the
state x to state y is enabled and activated. Multiple state block
bits with their appropriate memory bits like those described
and illustrated above may be address as a group of memory
locations. Thus for example an FSA support 8-bit symbols
and 8-state NFA, then 8 state block bits may be arrayed
together to form one state block like block 601. Eight such
state blocks along with State control block, 604, and tagged
Match detect block, 613, may be grouped together to create a
FSA or an NFA rule block. The specific collection of symbol
bits of a state block may be accessible as a group of a specific
memory location. In this case one symbol of the 8-state NFA
may be accessed as a byte of one memory address that points
to it. Thus in an organization of PRISM memory as illus
trated, eight one byte memory locations may be used to
address each symbol for the NFA. It will be appreciated by
those with ordinary skill in the art that other organizations of
the PRISM memory are possible without digressing from the
teachings of this patent and are all covered by the teachings in
this patent. Similarly, the mask vectors of an NFA or FSA rule
block occupy a set of memory locations. The memory loca
tions for all the memory elements of the FSA rule blocks are
decoded by the global and/or local cluster address decoder
and FSA controllers discussed above. They generate specific
word line and bit line controls to access these memory loca
tions. The state block bit comprises of a word line input, 701,
which selects the word line for the symbol memory block.
The appropriate bit lines. BL/ML, 707, and their comple
ment, BLn/MLn, 714 may also be activated depending on
whether the symbol is being read or written to the memory
location. In this illustrations bit lines and mask bit lines are
shared lines, 707 and 714, but may be separate lines as may be
appreciated by one with ordinary skill in the art. The bit lines
and their complement bit lines connect to sense amplifiers,
like 1309, not illustrated in this figure, like those in FIG. 13,
to read the value of the location addressed by the specific
word line. The bit line and its complement may be driven to
desired values when the operation is to write the specific
memory location selected by the word line. The FIG. 7A
illustrates multiple word lines for the different memory
blocks in a state block. The state block bit may comprise of an
optional Mask Word line to address the optional mask
memory block. The state block bit may further comprise of
another word line, WL2, 705, that is used to address the SDV
memory block. Thus three memory locations may be used to
represent a state blockin the NFA rule block in PRISM. These
may be contiguous locations or partitioned differently based
on the similarity of the type of information being stored. Thus
if an NFA or FSA supports 8 states, there may be 24 memory
locations in the PRISM Memory address space that may be
used to represent the memory in the state blocks. Further the
NFA accept vector, start vector and optionally the tag vectors
may occupy a location each in the memory space. The NFA
state vector may also optionally use up another-location, not
illustrated, in the PRISM memory space. Thus an 8-state NFA
or FSA may use 28 to 30 memory address locations to store
the related information of the FSA. If the symbols are wider
for example when symbols are 16-bits, and the FSA states are
8, the organization of the PRISM memory may be done
slightly differently, not illustrated, to maintain the modular
arrays as may be appreciated by one with ordinary skill in the
art. The symbols may be used to occupy more than one

May 19, 2011

address location addressed by separate word lines or may
occupy a wider word if a single word line is used. Using the
appropriate addressing and read, write operations of the
memory, the PRISM NFA rule blocks may be programmed
and dynamically reconfigure the realized regular expressions.
0100. The symbol evaluate circuit, 711, generates a signal,
RSX and/or CAM matchX, 704, which is used to indicate
when the input character matches the programmed symbol.
The content symbol or character to be examined with the
programmed symbol, is presented to the state block bit on the
content bit lines CL, 740, and complement bit line CLn, 715
which are coupled to the symbol evaluate circuit. The symbol
evaluate circuit further couples to the mask memory block bit
and the symbol memory block bit through the mask circuit,
710, and evaluates if the content bit presented to this state
block bit matches with the programmed symbol bit. The
output of the symbol evaluate circuit is the RSX/CAM matchx
signal 704, which is coupled between multiple symbol evalu
ate circuits of all state block bits of a state block, and is
asserted when all the bits of the symbol programmed in the
state block match their corresponding symbol bits of the input
content to being examined. The figure illustrates separate bit
lines and their complement lines far content and mask and
other programming information illustrated by the lines, 740
and 707 or 714 and 715. Those with ordinary skill in the art
can appreciate that the positive and complement bit lines may
each be on the same signal or may each be on a separate
signals. Thus all variations of these implementations are cov
ered by the teachings of this patent. The bit lines used to store
and retrieve the information to memory elements may option
ally be separate from the content lines, as illustrated in the
FIG. 7A for various reasons, like performance, interconnect
load, die size, cost, power and the like.
0101 FIG. 8A illustrates symbol logic bit in PRISM. This
figure illustrates the circuit detail for the symbol logic,703, of
the state block bit illustrated in FIG. 7A. This figure illustrates
the BL (bit line), CL (content bit line) and ML (mask bit lines)
sharing the same signal as described above as a memory
design choice. They may each be separate as discussed ear
lier, in which case the connectivity will be different to the
appropriate elements of the symbol logic bit. The symbol
logic bit illustrates a realization using static memory archi
tecture for the memory bits. The transistors, 810, 825, 826,
827, 828, and 829 form a typical six transistor static memory
cell which are coupled to the bit line using the line 806, and
the complement of the bit line by the line 824. The transistors,
825 and 827, may optionally comprise of p-channel metal
oxide semiconductor (PMOS) field effect transistor (FET)
device in a complementary metal-oxide semiconductor
(CMOS) process technology, while the transistors, 810, 826,
828, 829, may optionally comprise of the n-channel metal
oxide semiconductor (NMOS) field effect transistor (FET)
devices. These six transistors coupled together as illustrated
in the FIG. 8A form a static memory cell. Memory cells
comprised of other transistor devices in other process tech
nologies like SiGe. Bipolar or the like providing similar func
tionality as those in this patent are all within the scope and
spirit of the teachings of this patent as may be appreciated by
those with ordinary skill in the art. The transistors 825, 826,
827 and 828 are setup as back to back inverters which are
written to from the BL, 802, and BLn, 805, coupled to tran
sistors 810 and 829 respectively, when word line WL, 801 is
selected which activates the devices 810 and 829 and when
the BL and BLn are driven by the bit line drivers with the logic

US 2011/01 19440 A1

value and its complement to be stored in the memory cell.
This memory cell stores a symbol bit. If a logic value 1 needs
to be stored, the BL is driven by 1 and BLn by '0'. If the WL
is active then the logic value gets stored in the symbol
memory bit. When the symbol memory bit needs to be read
the BL and BLn may not be driven actively other than pre
charging. The sense amplifiers attached to the bit lines may
then detect the differential in the voltage swing on BL and
BLn to read the symbol memory bit. The transistors,812, 814,
815, 816, 817 and 818 form a similar six transistor memory
cell as above, where the transistors 814 and 816 may option
ally be of PMOS type, while the others may optionally be of
NMOS type, for storing the symbol mask bit, which is
accessed by selecting mask word line (MWL), line 803. This
memory location is used to store the symbol mask bit. The
symbol mask bit when set enables the symbol evaluation and
disables the evaluation when the mask bit is disabled. Reverse
setup is also feasible, except the connectivity between the
symbol memory cell and the mask memory cell would need to
be changed appropriately. The device pairs 808, 809 and 821,
822 are coupled to the symbol bit, mask bit and content line,
802, and form a XOR functionality by coupling with the
RSX/CAM Match X pre-charged line 804. This line 804, is
shared between adjoining symbol logic bits of a NFA or FSA
rule block. This line is pulled low, if any of the bit pairs of the
content and the symbol do not match, assuming the bit is
enabled using the optional mask bit. The line stays high only
if all the bits of the symbol match all content bits. The mask
bit is coupled to devices 808 and 809 by the signal 813.
Alternatively, the mask bit signal 813a, may be coupled to
another n-transistor, not illustrated, which would couple to
device 808 and 821 on its drain and to ground value on its
Source, there by providing a similar masking functionality
described below. When the mask bit is set, device 815, is
turned-on which enables the path from devices 808 and 809,
when the content value on CL, 802, coupled to device 809, is
1 and when the symbol bit value is 0, a value of 1 is
coupled to 808 by signal 811 which enables the path from the
RSX/CAM Match x, line 804, to ground, GND. This causes
the match signal 804 to be pulled-down or low indicating a
mismatch. Similarly the transistors 821 and 822, provide are
enabled when the symbol bit value is 1 and the content value
is 0, coupled to device 822 through CLn, 805, which carries
the complement of the content value, forming a XOR func
tion on the RSX or CAM Match X signal, line 804. Thus, the
match signal, 804, stays high or active only when all the bits
of the symbol and the content input match respectively.
Though the symbol evaluation illustrated is a compare opera
tion, other operations like range detect, or other ALU opera
tions may be implemented with appropriate circuits added
without digressing from the teachings of this application as
may be appreciated by those with ordinary skill in the art.
0102 FIG. 8B illustrates symbol logic bit in PRISM
(DRAM based with independent Refresh port). This figure
illustrates the circuit detail for the symbol logic, 703, of the
state block bit realized using dynamic memory like DRAM.
This figure illustrates the BL (bit line), 835, CL (content bit
line), 857, and ML (mask bit lines), 856, as independent
signals. The symbol logic bit of FIG. 8B illustrates a realiza
tion using dynamic memory architecture for the memory bits.
The transistor, 840, and the capacitor, 842 form a typical
dynamic memory cell which are coupled to the bit line using
the signal 839. The transistor 840 may optionally be of the
NMOS type transistor. The capacitor. 842, holds the memory

May 19, 2011

bit state using a dynamic charge which decays over time, and
hence it needs to be refreshed with the correct state in certain
time period. Typically, the capacitor may be refreshed within
8 ms time period. DRAM's typically have refresh mode that
is multiplexed with the normal mode of operation. In Such a
case, the memory banks are not usable during refresh cycles.
For a high performance application this is not acceptable. The
transistor, 843, is coupled with a refresh bit line, RBL, 836,
which is separate from BL, 835. This device, 843, is also
coupled to a refresh word line RWL, 833. Thus the dynamic
memory based symbol logic of this patent has an independent
port to refresh the memory cell and not affect the performance
of the PRISM memory during dynamic memory cell refresh.
When the word line WL, 801, is asserted, the capacitor, 842,
is coupled to the bit line BL, 835, through the transistor, 840.
When the BL is driven by the bit line driver, not illustrated in
this figure, coupled to the bit line, the logic value on the bit
line gets stored as a dynamic charge on the capacitor, 842. If
a logic value 1 needs to be stored, the BL, is driven to 1 and
similarly if the value needs to be 0, the BL is driven to 0.
If the WL, 801 is active then the logic value gets stored in the
symbol memory bit. When the symbol memory bit needs to be
read the BL may not be driven actively other than pre-charg
ing. The sense amplifiers, not illustrated in this figure,
coupled to the bit line may then detect voltage swing on BL to
read the symbol memory hit value. All transistor devices
illustrated in FIG.8B except transistor 858 may optionally be
of NMOS type while the transistor 858 may optionally be of
the PMOS type.
0103 During normal operation of the PRISM memory
being used for content inspection, the symbol bit has to be
available and refreshed. To accomplish this function a refresh
circuit, not illustrated, which may optionally be present in the
Cluster FSA Controller, 1302, for each PRISM cluster or may
be present for the entire PRISM memory as separate func
tional block or the like, and may be continuously operating to
refresh the dynamic memory locations when the PRISM
memory is comprised of dynamic memory cells. The PRISM
memory may either be comprised of dynamic memory or
static memory or a combination. The refresh circuit would
have access to all the rows and columns of the dynamic
PRISM memory through the appropriate refresh word lines
like RWL, 833, and the refresh bit lines like RBL, 836. The
refresh circuit may optionally comprise of refresh counter(s)
that may count from 0 through optionally 2000 and use the
count as a refresh word line address for each block of option
ally 2000 memory rows selecting refresh word line like RWL
for each row and cycling through them, refreshing all the
memory locations, at least once within the refresh time win
dow which may typically be less than 8 ms. To refresh a
dynamic memory location, the refresh word line, 833, is
activated coupling the refresh transistor, 843, the capacitor,
842, and the refresh bit line, 836. The sense amplifiers on the
refresh bit lines detect the value stored on the capacitor. An
FSA clock cycle may optionally comprise of a pre-charge
phase when various pre-charged signals like the RSX signals,
like 837, or the Rule match signals and the like get pre
charged to Vcc or high logic level. The FSA clock cycle
optionally also comprises of an evaluate phase during which
all the FSA evaluations are performed and at the end of that
clock cycle the state updates are stored in the state memory or
flip-flops, like 508a. The refresh operation is typically per
formed during the pre-charge phase of the FSA evaluation.
During this period the refresh word line is selected and the

US 2011/01 19440 A1

memory bit value on the capacitor like 842, is read on to the
refresh bit line, 836. The sense amplifiers, not illustrated,
coupled to the refresh bit lines detect the memory value and
record the value for writing it back on the capacitor to restore
the memory bit state. The refresh bit lines also retain the value
on the line for use during the evaluate state since the capacitor
of the memory cell is disturbed during the reading by the
refresh operation. During this period the capacitor may be
fully restored as well or may be refreshed to a sufficient level
to be used in the evaluate phase without giving false mis
match. The refresh word line may optionally be kept active
during the evaluate phase of the cycle as well so that the
memory bit value that is retained on the refresh bit line pro
vides the correct symbol bit value to be used during the
evaluation phase of the FSA clock cycle. Then during the
pre-charge phase of the following FSA clock cycle the bit
value recorded by the refresh sense amplifiers is fully written
to the capacitor 842 through the refresh transistor 843
coupled to the refresh bit line. This phase is also called refresh
restore phase in this patent. During the refresh restore phase,
the refresh word line is kept active. Thus the dynamic memory
cell illustrated in FIG.8B can be refreshed and restored and be
used in the FSA rule block and PRISM memory saving about
four transistors per memory bit location compared to the
static memory based cells. The method of refresh and restor
ing the memory bit cells may be chosen based on the need for
performance, design complexity and the like. For a lower
frequency operation, the refresh read and restore operation
may all be completed in the pre-charge phase of one FSA
clock cycle, however for a higher frequency operation the
refresh read and restore operations may be performed in the
pre-charge phase of two different or consecutive FSA clock
cycles as described above. Thus, each memory location may
be refreshed within one or two FSA clock cycles and the
refresh circuitry is designed appropriately to refresh each
location at least once during the dynamic memory refresh
period discussed above as can be appreciated by those with
ordinary skill in the art.
0104. The transistor 849 and the capacitor 851 form the
dynamic memory cell that holds the optional mask bit of the
mask vector for the dynamic memory based PRISM symbol
logic bit. The transistor 849 is also illustrated to be coupled to
the word line 801 though it could optionally be coupled to a
different word line for mask vector. This memory location is
used to store the symbol mask bit. The symbol mask bit when
set enables the symbol evaluation and disables the evaluation
when the mask bit is disabled. Reverse setup is also feasible,
except the connectivity between the symbol memory cell and
the mask memory cell would need to be changed appropri
ately. The device pairs 845, 847 and 846, 848 are coupled to
the symbol bit, mask bit, the content line (CL), 857, comple
ment of the content line (CLn), 834, and forman XOR func
tionality by coupling with the RSX/CAM Match X pre
charged signal line 837. The line 837, is shared between
adjoining symbol logic bits of a PRISMFSA rule block. This
line is pulled low, if any of the bit pairs of the content and the
symbol do not match, assuming the bit is enabled using the
optional mask bit. The line stays high only if all the bits of a
symbol match all content symbol bits. The mask bit is
coupled to devices 845 and 846 by the signal 854. When the
mask bit, capacitor 851, is set, the device 852, is turned-on
which enables the path from devices 846 and 848 to ground,
when the content value on CL. 857, coupled to device 848, by
the signal 855 is 1 and when the symbol bit value is 0, a

May 19, 2011

value of 1 is coupled to 846 by signal 860 which is an output
of the inverterformed by the devices 858 and 859, which then
enables the path from the RSX/CAM Match x, line 837, to
ground, GND. This causes the match signal 837 to be pulled
down or low indicating a mismatch. Similarly the transistors
845 and 847, are turned on when the symbol value is 1 and
the complement of the content value, CLn, 834, is 1 indi
cating the content value to be 0, thus forming a XOR func
tion on the RSX or CAM Match X signal, line 837. Thus, the
match signal, 837, stays high or active only when all the bits
of the symbol and the content input match respectively.
Though the symbol evaluation illustrated is a compare opera
tion, other operations like range detect, or other ALU opera
tions may be implemented with appropriate circuits added
without digressing from the teachings of this application as
may be appreciated by those with ordinary skill in the art.
0105 FIG. 9 illustrates Partial State Logic Bit in PRISM.
This figure illustrates a circuit for the partial state logic block,
706. The partial state logic bit comprises of a memory bit for
state dependent vector. The transistors 906, 912, 913,914,
915 and 918 form the typical six transistor static memory cell
configuration to store the SDV bit. The operation of this
memory bit is similar to the memory bits described above.
The word line WL2,901, selects devices 906 and 918, and the
BL/CL/ML, and the complement are coupled to the memory
cell from 905 and 920 respectively. The transistors 908,909,
910, 911, 916 and 919, form the three input NAND gate
between the stored SDV bit, the input state Qy,921 and the
RSX line 902 coupled to transistor 911 using signal 904. The
NAND gate generates the partial state transition control sig
nal STxy,917, that indicates if there is a transition from state
x' to state y'activated similar to the signal 717. Even though
the circuit of the NAND gate is fully static, it may be possible
to use precharged circuits to realize the same function with
fewer gates as may be appreciated by those with ordinary skill
in the art. The transistors, 912,914,908,916,919, illustrated
in FIG.9 may optionally be of the PMOS type, while the other
transistors illustrated in FIG.9 may optionally be of NMOS
type.
0106] 1 FIG. 9A illustrates Partial State Logic Bit in
PRISM (DRAM based with refresh port). This figure illus
trates a circuit for the partial state block, 706 using a dynamic
memory cell. The partial state logic bit comprises of a
memory bit for state dependent vector (SDV). The transistor
930 and the capacitor 932 form a typical dynamic memory
cell configuration to store the SDV hit. The operation of this
memory bit is similar to the memory bits described above for
the symbol logic. Since this is a dynamic memory cell like the
one in the dynamic symbol memory hit illustrated in FIG.8B,
this memory bit also needs to be refreshed. The transistor 933,
coupled to refresh bit line,926, and the refresh word line,923,
create an independent refresh port similar to the one for the
dynamic symbol memory bit discussed above. This dynamic
memory cell is also refreshed using mechanism similar to that
discussed above for the symbol dynamic memory cell illus
trated in FIG. 8B. The word line WL2, 901, when asserted
turns the devices 930 on and enables coupling of the capaci
tor,932, and the bit line BL,925, through the signal 929. The
transistors 936,937.938,939,940 and 941, formathree input
NAND gate between the stored SDV bit,932, the input state
Qy,921 and the RSX line 924 coupled to transistor 939 using
signal 928 (for clarity, RSX is the same signal as the signal
RSX/CAM Match X signal 837 illustrated in FIG. 5B. The
NAND gate generates a partial state transition control signal

US 2011/01 19440 A1

STxy,917, that indicates if there is a transition activated from
state x to state y'. Even though the circuit of the NAND gate
is fully static, it is possible to use pre-charged circuits to
realize the same function with fewer gates as may be appre
ciated by those with ordinary skill in the art. As illustrated in
FIG. 9A the transistors, 936,940 and 94.1 may optionally be
of PMOS type while the other transistors in this figure may
optionally be of NMOS type.
01.07 FIG. 10a illustrates state control block in PRISM.
This figure illustrates the state control block, 604, with the
appropriate elements labeled. Essentially the NAND gates,
1001(1) through 1001(n) are bit specific state transition con
trol logic portions that logically NAND the partial state out
puts from the state blocks. The blocks 1002(1) through 1002
(n) are the initialization blocks described earlier and the
blocks 1003(1) through 1003(n) hold the states of the NFA or
FSA rule block.

0108 FIG. 10b illustrates local Init Detect Circuit in
PRISM. This circuit may be optionally used to detect if the
states of the FSA reach an error, which in this case is assumed
to be all state bits to be inactive or low. The FSA is evaluating
a symbol only when at least one of the states is set, otherwise
the FSA may reach an error state and stop evaluating the input
content. To prevent Such a condition, the circuit illustrated in
FIG.10b is used to generate a local initialization signal when
everall the states of the FSA are inactive. This signal, LInit,
can then be used to set the FSA to a predefined start state. The
signal LInit, 1018, is pre-charged to an active high value.
Whenever, at least one of the state bits, Q1 through Qn is
active the transistor coupled to that state, 1007(1) through
1007(n) respectively, is turned on and the signal LInit is
pulled to an active low state, however when each of the state
bits is inactive, the LInit signal stays high indicating a local
initialization signal which gets processed by State control
block bit gates 1019 and the multiplexer, 1015, that then
initializes the state bit, 1032, to the start state memory bit
coupled through signal 1024 and the multiplexer 1014 and
1015 to the state memory bit, 1032. As illustrated in this FIG.
10b, all transistors may optionally be of NMOS type except
transistor 1006 which may optionally be of PMOS type.
0109. The FIG. 10c illustrates state control block bit in
PRISM. This block bit stores the initialization vector or start
state bit in a typical six transistor static memory configuration
created using the transistors. 1008, 1010, 1012, 1011, 1013
and 1009. The start state bit is selected by the FSA controller
by driving the word line iv WL, 1027, which is coupled to
devices 1008 and 1009. The value on the BL and BLn is
coupled through those transistors into the memory cell during
write and is read onto the bit lines during a read operation. The
output of the memory cell, 1024, is used as one of the inputs
to a multiplexer, 1014 which may optionally be present to
enable selection of the initialization vector bit. When the
Load signal, 1017, is asserted, the value of signal 1016, is
coupled to the output of the multiplexer, 1022 but when Load
signal is not asserted the start state bit, 1024, is coupled to
1022. The signal LSn, may optionally be provided as a means
to load a state context that was saved earlier or any other state
value to be loaded into the state bit, 1032. The state bit, may
alternatively be written using a memory bit and be coupled
with the other initialization logic appropriately. The Load
signal may be asserted by the FSA controller to indicate
updating the State bit value. During normal operation the
signal 1025 that acts as a select signal for the multiplexer 1015
is inactive, selecting the output of the bit location specific gate

May 19, 2011

like 1001(n) which indicates the state transition of the FSA
during normal content evaluation. However, if the local ini
tialization signal is asserted then path from the start state bit
1024, to the state bit, 1032 is enabled and the state bit gets
initialized. There may also be a need to provide a global
cluster wide or PRISM memory wide initialization, which is
controlled by asserting global initialization signal GInit,
1018b which again enables the path from the start state bit
1024 to the state bit 1032. The state control block may gen
erate state bit signals Qn, 1029 and optionally signal Qnb.
1030. The state bit, 1032, may be updated at synchronized
interval with other parts of the memory, using a control signal,
1031, which may be a clock or an enable signal or other signal
like hold or a combination. As illustrated in FIG. 10c the
transistors, 1010 and 1011 may optionally be of PMOS type
while the transistors, 1008, 1009, 1012, 1013, illustrated in
this figure may optionally be of NMOS type.
0110. The FIG. 100 illustrates state control block bit in
PRISM (DRAM based). This state control block bit stores an
initialization vector or start state bit in a typical dynamic
Memory configuration created using the transistor, 1035, and
the capacitor, 1038. The start state bit is selected by the
PRISM cluster FSA controllerby driving the wordline iv WL,
1027, which is coupled to the transistor 1035. The value on
the bit line BL 1026, is coupled through this transistor, 1035,
to the capacitor, 1038 which stores the memory bit value as a
dynamic charge similar to the dynamic memory cells
described above. Similar to the other dynamic memory cells
described above, this memory cell also needs to be refreshed.
The refresh transistor, 1039, couples the refresh bit line RBL,
1034 to the capacitor 1038 when the refresh word line
ivRWL, 1033, is asserted. The refresh mechanism for this
memory cell also follows similar mechanisms and principles
as described above for the other dynamic memory cells of this
application like the symbol memory bit illustrated in FIG.8B.
The output of the memory cell, 1024, is used as one of the
inputs to a multiplexer, 1014 which may optionally be present
to enable selection of the initialization vector bit. The other
elements of this illustration operate essentially in similar
manner as described above for the FIG. 10c. Further, various
circuits of illustrated in this figure may be realized using a
dynamic circuit architecture as would be appreciated by those
with ordinary skill in the art. As illustrated in FIG. 10d the
transistors, 1035, and 1039 may optionally be of NMOS type.
0111 FIG. 11 illustrates Tagged match detect block bit in
PRISM. As discussed earlier the FSA of PRISM are option
ally Tagged. The discussion below is with respect to tagged
NFA or FSAs, though it is also applicable for non-tagged
NFAS or FSAS where the tagging elements, are not used or not
present. The tagged match detect block bit comprises of an
accept state memory bit, formed by the familiar six transistor
static memory bit as earlier memory bits, where the transis
tors 1106, 1110, 1112, 1111, 1113 and 1114 form the accept
state memory bit. The devices 1106 and 1114 are coupled to
the word line AWL, 1101, which selects the accept memory
bit when it needs to be read or written. These devices are also
coupled to the four transistors forming the back to back
inverter and the bit lines, 1104 and 1115. This memory bit is
read and written in a manner similar to the description for
other memory bits above. The tagged Match Detect block bit
may optionally comprise of a tag state memory bit which may
be set to detect a Sub-expression evaluation as described
earlier. Additional tag state bits and state transition tag bits
may be optionally present in PRISM tagged match detect

US 2011/01 19440 A1

block bit as discussed earlier but are not illustrated in this
figure. The optional tag memory bit is again stored in a typical
six transistor memory cell comprising the transistors, 1124.
1125, 1126, 1127, 1128 and 1129. This memory location may
be selected by asserting word line TWL, 1119. The operation
of the tag memory cell is similar to other memory cells
described above. The rule match detection is formed by cou
pling accept state bit 1107 and the FSA state Qn, 1102,
through the devices 1108 and 1109. When accept state bit is
set, it indicates that the particular state bit is an accept state,
meaning that when the FSA evaluation reaches that state a
string recognized by the regular expression vile programmed
in the NFA is found and hence a rule match should be sig
naled. The Rule Match signal, 1103, is an active low signal as
illustrated. It is precharged to a high value and stays at that
level as long as a state which is an accept state is not reached.
However, when Qn signal is asserted and the accept state bit
1107, corresponding to that state signal Qn, is set, the devices
1108 and 1109 pull the rule match signal low, indicating a
match. The rule match signal is shared with the adjoining bits
of the FSA, so when any of the accept state bit is matched the
Rule Match signal is asserted to an active low value. The
polarity of the rule match signal can be reversed by selecting
appropriate bits to couple to the transistors 1109 and 1108.
Similarly, if the tagging is supported, the devices 1130 and
1132, couple to the tag match signal, 1122 and pull it down if
the tag is asserted and the FSA state is also asserted. The rule
match and tag match signals from individual NFA rule blocks
in a PRISM cluster array may be evaluated by the local and/or
global priority encoder and the evaluation processors of
PRISM memory illustrated in FIGS. 12 and 13 and appropri
ate actions taken as described above. As illustrated in FIG. 11
the transistors, 1110, 1111, 1126, 1127 may optionally be of
PMOS type while the other transistors in this figure may
optionally be of NMOS type.
0112 FIG. 11A illustrates match detect block bit in
PRISM (DRAM based). As discussed earlier the FSA of
PRISM are optionally tagged. The discussion below is with
respect to non-tagged NFA, though it is also applicable for
tagged NFAS where the tagging elements, are present and
being utilized. The match detect block bit comprises of an
accept state memory bit, formed by a typical transistor and
capacitor based dynamic memory bit similar to other
dynamic memory bits earlier, where the transistor 1136, and
the capacitor 1138 which holds the memory value as a
dynamic charge form the accept state memory bit. The device
1136 is coupled to the word line AWL, 1133, which selects the
accept memory bit when it needs to be read or written. This
memory bit is read and written in a manner similar to the
description for other dynamic memory bits above. Similar to
the other dynamic memory bits described above, this memory
bit also comprises of a refresh port comprised of the refresh
transistor, 1139, coupled to the refresh word line ARWL,
1134, and the refresh bit line RBL, 1147. The refresh mecha
nism for this dynamic memory cell follows the same prin
ciples and methods described above for the dynamic symbol
memory bit illustrated in FIG.8B and other dynamic memory
bits. The rule match detection is formed by coupling accept
state bit 1137 and an FSA state bit signal Qn, 1102, through
the devices 1141 and 1142. When accept state bit is set, it
indicates that the particular state bit is an accept state, mean
ing that when the FSA evaluation reaches that state a string
recognized by the regular expression rule programmed in the
FSA is found and hence a rule match should be signaled. The

May 19, 2011

Rule Match signal, 1103, is an active low signal as illustrated.
It is pre-charged to a high value and stays at that level as long
as a state which is an accept state is not reached. However,
when Qn signal is asserted and the accept state bit 1137 is set,
the devices 1141 and 1142 pull the rule match signal low,
indicating a match. The rule match signal is shared with the
adjoining bits of the FSA, so when any accept state bit is
matched the Rule Match signal is asserted to an active low
value. As illustrated in FIG. 11A transistors, 1136, 1139,
1141, 1142 may optionally be of NMOS type.
0113 FIG. 14 illustrates a computing device with content
search memory based accelerator. The computing device may
be a server, a workstation, a personal computer, a networking
device like a switch or a router or other type of device. This is
one type of configuration in which a content search accelera
tor using one version of the content search memory of this
invention may be used. The figure illustrates a computing
device comprising one or more CPUs, 1400 (1) through 1400
(n), at least one chipset, 1402, at least one memory compo
nent, 1401, with at least one content search accelerator, 1403,
and Zero or more adapters providing other functions. The
content search accelerator may comprise of content search
memory (PRISM), 1404. It may also comprise at least one
memory component, 1405, coupled to the content search
memory. There are many different system configurations that
may be created with the content search memory of this inven
tion. Hence the examples in this patent should not be used as
limiting the scope, rather they are primarily a means to
explain the content search memory in a few sample usage
scenarios. The content search memory of this patent may be
used on line cards, network adapters or network interface
controllers, storage networking cards, IO cards, mother
boards, control processing cards, Switching cards or other
system elements of systems like networking devices such as
routers, Switches, management devices, security devices,
gateways, virtualization devices, storage networking devices,
servers, storage arrays, and the like. The content search
memory or its components may also be coupled to or embed
ded in or a combination thereof, the microprocessors, net
work processors, regular expression search processors, con
tent search processors, multi-core processors, Switching
chips, protocol processors, TCP/IP processors, control plane
processors, chipsets, control processors or other devices,
including being incorporated as a functional block on these
processors or chips. The content search memory may be used
to perform content inspection at high line rates in the systems
in which it is incorporated to offload or assist in content
processing to the main processors of such systems. There may
be configurations where multiple content search memories
may also be incorporated in Systems to provide Scaling in
performance or number of rules or a combination thereof for
content search. The content search memory may be incorpo
rated on network line cards, in line with the traffic and offer
line rate deep packet inspection when coupled to a network
ing processor or TOE or packet processor or the like.
0114. The configuration illustrated in FIG.14 may option
ally be used for email security or instance message security or
outbound security or extrusion detection or HIPAA compli
ance or Sarbanes-Oxley compliance or Gramm-Leach-Bliley
compliance or web security or the like or a combination
thereof. The security capabilities listed may comprise anti
spam, anti-virus, anti-phishing, anti-spyware, detection/pre
vention of directory harvest attacks, detection/prevention of
worms, intrusion detection/prevention, firewalls, or the like

US 2011/01 19440 A1

or detection/prevention of leaks of Confidential information,
health care information, customer information, credit card
numbers, Social security numbers or the like or a combination
thereof. The content search memory in such device may be
configured with a set of security rules for one or more of the
applications listed above and provide acceleration for content
search for information incoming or outgoing from the device.
Content search memory device may be deployed at any place
in the network, like close to or embedded in a router or a
Switch or gateway of an organization's networks or at a
departmental level or within a datacenter or a combination
and provide high speed content inspection to incoming or
outgoing traffic flow of the network.
0115 FIG. 15 illustrates example anti-spam performance
bottleneck and solution. As discussed earlier, content search
performance using a DFA or NFA based search on a micro
processor results in below 100 Mbps performance. FIG. 15
illustrates an anti-spam application as an example application
to show the value of hardware based content search. The
performance numbers are not illustrated to Scale. The figure
illustrates four vertical stacks of operations in four types of
appliances. The first stack, 1500, is illustrated to represent an
email appliance stack. An email appliance typically may
comprise device drivers to drive the hardware devices on the
appliance, the networking protocol stack along with other
functions of the Operating System (OS) and a mail transport
agent (MTA) which are all typically software components
along with other application software. Today's servers, which
are typically used for email appliances, are able to keep up
with network line rates of up to 1 Gbps, and perform the
application functions due to the high performance processors.
Typically a 1 GHZ processor is required to process 1 Gbps line
rate traffic for network protocol stack processing. Since the
state of art processors are around 4 GHz today, the servers can
handle the network traffic and have processing power avail
able to do other needs of the OS and the applications running
on a server. Thus the email appliance stack, 1500, running on
a high end server, should be able to keep up with a high line
rate. A study by network world magazine, "Spam in the Wild:
Sequel done in December 2004, showed the performance
comparison of a large number of anti-spam Software and
appliance vendors. Under their configuration the range of the
message processing performance of the vendor products
listed was from around 5 messages per second to 21 messages
per second. When this performance number is translated into
linerate performance using the worst case message sizes used
by network world of 10,000 characters per message, the line
rate performance comes to be below 2 Mbps sustained per
formance. All the vendors either software or appliance solu
tions were based on dual Xeon processor servers. Thus, a
server that can handle 1Gbps network line rate traffic, when
performing anti-spam application its performance drops
down to below 10 Mbps. The reason for this is that one of the
features used extensively by most anti-spam Vendors is
searching of emails against a set of rules, which are typically
represented as regular expressions. The anti-spam appliance
stack, 1501, illustrates the email appliance with anti-spam
capability loaded on it. Anti-spam applications typically per
forms many complex regular expression rules based filtering
along with statistical filtering, reputation based filtering and
the like. The anti-spam rules are typically applied sequen
tially to each incoming email one after the other to find a rule
that may match the content of the email. Then the anti-spam
application may apply scores to the rules that match and then

20
May 19, 2011

decide if a message is spam or not based on the total score it
receives. Such an operation causes the stack performance
needs to grow Substantially higher than a typical email appli
ance stack, where the anti-spam filters, 1505, overhead on the
performance of the appliance is Substantial to reduce the over
all anti-spam server appliance performance to be below 10
Mbps. The content search memory of this invention can be
used in Such anti-spam appliances to achieve significant per
formance improvements. The hardware accelerated anti
spam appliance stack, 1502, illustrates the impact of using the
search memory of this invention on the overall performance
of the system. In such a case, all the anti-spam filters, 1511
thru 1513, may be configured on the search memory, 1506,
which in turn may be used to inspect each incoming message.
Since all rules would be searched simultaneously, the search
memory based appliance can achieve well over 1 Gbps line
rate performance or more, since the host CPU is relieved from
the performance intensive regular expression searches. The
compute device illustrated in FIG. 14 may be one such con
figuration that may be used as the anti-spam appliance to
achieve multiple orders of magnitude higher performance
than a typical server based anti-spam appliance. The stack,
1503, illustrates a stack of an enhanced messaging appliance
which may use a TCP/IP offload processor for offloading the
protocol processing from the host CPU along with the content
search memory of this invention. Thus a significant amount of
CPU bandwidth can be made available to other applications
which may not have been possible to execute on the comput
ing device without significant performance impact. The use
of TCP/IP offload and content search memory may be done
individually or in combination and the use of one does not
require the use of the other. TCP offload and content search
memory could be on the same device providing network
connectivity and the acceleration. Although the discussion
above is with respect to anti-spam application, other critical
network applications like Intrusion Detection and Prevention
systems Suffer from similar performance issue, where the line
rate gets limited by memory access time if a composite DFA
type solution is used. Typical IDS/IPS performance on a
single processor based solution does not scale above 1 Gbps.
The content search memory of this invention can be applied
for IDS/IPS regular expression search performance issues
and can achieve one to two orders of magnitude higher line
rate inspection than any composite DFA based solutions.
0116 FIG. 16 illustrates an anti-spam with anti-virus per
formance bottleneck. This figure is very similar to FIG. 15,
except that the anti-spam appliance whose stack is illustrated
also supports anti-virus capability. Anti-virus searches are
different then the anti-spam searches but they also add a
significant performance overhead as illustrated by the stack,
1604. The number of filters for anti-virus is lot larger then
those for anti-spam, though when a content search memory of
this invention is used the anti-virus overhead can also be
substantially reduced as illustrated by 1605.
0117 FIG. 17 illustrates application content search per
formance bottleneck and solution. The content search
memory of this invention can be used as a search accelerator
for a large number of applications that require content search
but do the search on the host processor or host CPU or host
microprocessor or the like. Since, the performance of these
processors for content search is not very high as discussed
above, a content search memory based accelerator can Sub
stantially increase the performance of these applications. The
applications that require content search are many like data

US 2011/01 19440 A1

warehousing applications, database applications, bioinfor
matics related applications, genetics, proteomics, drug dis
covery related applications and the like. The figure illustrates
three boxes, 1700, 1701 and 1702 which represent the content
search based application performance in terms of host CPU
load. The traditional applications run on a server or a work
station or personal computer, and perform content search
interspersed with other tasks that the application needs to
perform. If the applications perform a significant amount of
search, then the performance need of the search portions of
the application can be substantially higher Men the other
parts. This is illustrated by content search portions of appli
cations app1 and appN, 1703 and 1705 respectively, com
pared to the other code of these applications, 1704 and 1706.
The stack in 1700 is how current or prior art solution exists for
content search applications. Though the stack illustrates a
continuous stack for content search and other code sections,
the actual execution may generally be composed of search
interspersed with other code functions. When a content
search memory and accelerator of this invention is used in the
computing device performing this function, it may be pos
sible to have the application leverage the search capabilities
of the memory and accelerate the performance of the appli
cation Substantially compared to a computing device without
the search acceleration support. The stack in 1701, illustrates
the impact on the CPU load and the resulting time spent by the
application when converted to leverage the content search
accelerator. The stacks 1703 and 1705, could take substan
tially less load and time as illustrated by stacks, 1707 and
1708 respectively. Similarly, the performance of the system
may be further increased by offloading the TCP/IP protocol
processing as illustrated by 1709. As described above, TCP/
IP offload and content search offload are independent of each
other and may each be done without the other in a system.
However, one could also use the content search memory with
the TCP/IP processor together as separate components or on
the same device and achieve the performance benefits.
0118 FIG. 18 illustrates an example content search API
usage model. As discussed above, the content search memory
may be used to accelerate content search portions of generic
applications. To enable an ease of creation of new applica
tions and migrate existing applications to leverage Such
search memory acceleration capability this invention illus
trates an application programming interface (API) for content
search. An example content search API is illustrated in FIG.
19 and described below. The content search API may reside in
the user level or the kernel level with user level calls. Or a
combination. The FIG. 18 illustrates the content search API at
the user layer, 1807. The content search API would provide
API functions that any application can call to get the benefit of
content search acceleration. There would be a convention of
usage for the applications to use the content search API. For
example the application may be required to setup the search
rules that can be configured on the search memory using the
API calls before the application is run or may be required to
dynamically create the rules and set them up in the appropri
ate format so that they can be configured on the content search
memory using the API or a combination. There would be API
calling conventions that may be established dependent on the
hardware system, the operating system or the search memory
or a combination. The applications may then be coded to the
API conventions and benefit from the search memory accel
eration. The figure illustrates applications Appl. 1800
through App N, 1803, working with the content search API,

May 19, 2011

1807 to get access to the content search memory/acceleration
hardware, 1817, using logical interface paths illustrated as
1812, 1813 and 1814. The content search API may access the
services and resources provided by the content search
memory/accelerator through a port driver which may be run
ning under a kernel. The applications may pass the content to
be searched directly through this interface or put the content
to be searched as well as tables to be setup as needed, in the
application’s buffers, 1804, 1805, and then instruct the con
tent search memory to retrieve the information from these
buffers through the content search API. The API may map
these buffers to the kernel space so the port driver for the
search API can provide them to the content search memory or
the buffers may be made available for direct memory access
by the search memory hardware. The search memory may
store the content in on-chip or off-chip memory buffers, 1818,
and then perform the requested search on the content. Once
the search is complete the results of the search may be pro
vided back to the application using a doorbell mechanism or
a callback mechanism or data buffers or the like as allowed by
the operating systems model. The content search API may
provide a polling mechanism as well which may be used by
the application to check and/or retrieve the search results.
0119 FIG. 19 illustrates an example content search API
with example functions. The figure illustrates a set of func
tions which may be a part of the example content search API.
Though, the list of functions may be more or less than those
illustrated, the functions provide a basic set that would enable
an application to use the content search memory hardware
with the use of the API. The example functions do not illus
trate the input, output or return parameters for API function
calls, which may depend on the operating system, calling
conventions and the like as can be appreciated by one with
ordinary skill in the art. An application may use the API, by
first querying the capabilities of the PRISM content search
memory and then initializing it with appropriate rules, point
ers, permissions and the like that may be required for the
content search memory to communicate with the application
and its resources through the kernel or the user mode or a
combination. The application may set specific rules as thFA
rules or NFA rules which may get configured in the search
memory. An application may be given access to multiple
contexts that it may be able to leverage to perform context
based search. The application can start performing the search
against its content once the content search memory is appro
priately setup with all necessary rules. The application can
communicate the content to be searched directly to the search
memory using the API by sending a byte stream of the content
through the interface. There may be versions of an API func
tion, not illustrated, like sendData() which may be used by an
application to start sending data to the search memory, start
the search and to indicate when the search memory should
stop searching. A more efficient way of performing the search
may be that the application may fill a buffer or a set of buffers
to be searched, and then provide the search memory with a
pointer(s) to the buffer(s) so it can then start searching the
buffers with the configured rules once it receives a call to start
the search using an API call like startHWsearch(). The search
memory may have been initialized to communicate the results
of the search to the application through one of many mecha
nisms like copying the results to a result buffer or storing the
result on the memory associated with the search memory or
invoking a callback function registered by the application to
the operating system or the like. The search memory may also

US 2011/01 19440 A1

communicate to the application with a doorbell mechanism to
inform it that the search is done. There are many different
ways of communicating the information as described earlier
and may be dependent on the operating system and the system
hardware architecture as can be appreciated by one with
ordinary skill in the art. There may also be polling mechanism
available with an API function like is Searchlone(), not
illustrated, which may provide the answer to a query to the
search memory whether a specific search is complete. If the
answer from the PRISM memory to the application is that the
search is done, then the application may ask for the specific
result using an API call like getRes(), or the application may
ask for a pointer to a buffer that may hold the result using an
API call like getResPtr() illustrated in FIG. 19. Once the
application is done with the specific search or is done using
the search memory it may call the API function stoph
Wsearch() to stop PRISM memory from performing the
search for this application. There may also be an API call like
remove AppContext() not illustrated, which may be called by
the application to indicate to the OS and the search memory
hardware that the application is done using the search
memory and hence all its associated context may be freed-up
by the search memory hardware for use by another applica
tion that may need the search memory resources. There may
be other hardware features specific API calls as well, like
setRuleGroup(), selectRuleGroup(), setInitGroup() and the
like, that may allow an application to create groups of rules
and the order of their execution using mechanisms of rule
grouping using the PRISM cluster arrays that may enable rule
groups. As discussed earlier there may be many more func
tions and variation of API functions that can be created to
enable a general content search application acceleration using
a hardware search memory from the teachings of this patent
that will be appreciated by those with ordinary skill in the art.
Thus it is possible to create a content search API to provide
content search capabilities to general applications. Though,
the description above is given with an example where the
rules to be used are setup by an application before starting the
search, it may be possible to update the rule set that is con
figured in the search memory dynamically while the search is
in progress by adding, removing and/or modifying the rules
that have already been configured to start using the updated
rule set for any future searches by the application.
0120 FIG. 20 illustrates an example application flow
(static setup) using the search memory. The flow illustrates a
static process for setting up the rules and the search memory
although as discussed above a dynamic setup is also feasible
as would be obvious to one with ordinary skill in the art. The
flow may allow an application to add/remove/modify rules in
the search memory as the application executes at runtime to
enable a dynamic flow. The illustration provides a mechanism
where existing applications or new applications may be
updated with content search rules and API calls which can
enable the application to use a content search memory. An
application source, 2000, may be updated, 2001 to create
application source with modifications for content search
where the content search rules may be setup in distinct code
sections or may be clearly marked, 2002, as expected by the
content search compiler coding conventions, which is then
compiled by a content search aware compiler. 2003. The
compiler generates an object code, 2004, with content search
rules compiled in sections which a loader may use to config
ure them in the search memory. The application object code
may then be distributed to customers or users of content

22
May 19, 2011

search memory for accelerating the application's search per
formance. The application code may be distributed electroni
cally using the interact, worldwide web, enterprise network,
or other network or using other means like a CD, DVD, or
other computer storage that can be used to load the applica
tion. The application update, 2001, may be done manually or
using a tool or both as appropriate. The distributed object
code, 2006, is read by the loader, 2007, or a similar function
provided by an operating system to which the application is
targeted, and setup for execution on the system. The loader or
another function may use a set of content search API calls or
a port driver or other OS function or a combination to con
figure the content search memory with appropriate rules that
the application needs as coded in the object code as illustrated
by block 2008. Once the search memory hardware is setup
and other resources that the application needs get reserved or
setup, the application is started, 2009, by the OS. The appli
cation may execute or perform tasks, 2010, if needed before
content search. The application may then setup the content,
2011, it needs to search by the search memory. Then it starts
the search memory to perform search, 2013. Once the search
is done it may retrieve the results, 2014. While the search is
being conducted by the search memory, the application may
continue to perform other tasks, 2012, on the main CPU or
other elements of the system. If the application is done the
application may exit, otherwise the application may continue
the execution where more tasks may be performed including
new search if necessary. The flow diagram illustrates the
execution of tasks as a loop from 2015 to 2010, though the
tasks being executed may be very different from one time to
the next through the loop. The loop is not illustrated to mean
that the same code sequence is being repeated. It is meant to
illustrate that the type of tasks may be repeated. Further, not
all tasks from 2010 through 2015 may need to be present in an
application flow as may be appreciated by one with ordinary
skill in the art. Once the application is done, it may release all
the resources it uses beside those for the content search
memory.

I0121 FIG. 21 illustrates a PRISM search compiler flow
(full and incremental rule distribution). The flow can be used
for distributing search rules or security rules when the full set
of rules are defined or when any updates or modifications are
made to the rule set and incremental changes to the rule set
need to be communicated and configured in the search
memory. The search memory may be used in a distributed
security architecture within System nodes across a network
which may be a LAN, WAN, MAN, SAN, wireless or wired
LAN and the like. The rules like application layer rules,
network layer rules or storage network layer rules or any other
search rules may be created using manual or automated
means and provided as inputs to the search compiler flow in a
predefined format. The search compiler's rule parser, 2104,
parses the rules and converts them into regular expression
format if the rules are not already in that form. Then the
regular expression rules are converted into FSA rules com
piled to the node capabilities of the node that has the content
search memory and stored in the rules database. The rules
from the rule database are retrieved and distributed by the
rules distribution engine to the appropriate node(s) with the
search memory. The search or security rules may be distrib
uted to the host processor or a control processor or a host
microprocessor or a network processor or a master processor
or a combination thereof as appropriate depending on the
node capability. The rules may be distributed using a secure

US 2011/01 19440 A1

link or insecure link using proprietary or standard protocols
as appropriate per the specific node's capability over a net
work. The network may be a local area network (LAN), wide
area network (WAN), internet, metro area network (MAN),
wireless LAN, storage area network (SAN) or a system area
network or another network type deployed or a combination
thereof. The network may be Ethernet based, internet proto
col based or SONET based or other protocol based or a
combination thereof.
0122) The PRISM memory of this invention may be manu
factured into hardware products in the chosen embodiment of
various possible embodiments using a manufacturing pro
cess, without limitation, broadly outlined below. The PRISM
memory in its chosen embodiment may be designed and
verified at various levels of chip design abstractions like RTL
level, circuit/schematic/gate level, layout level etc. for func
tionality, timing and other design and manufacturability con
straints for specific target manufacturing process technology.
The design would be verified at various design abstraction
levels before manufacturing and may be verified in a manu
factured form before being shipped. The PRISM memory
design with other Supporting circuitry of the chosen embodi
ment at the appropriate physical/layout level may be used to
create mask sets to be used for manufacturing the chip in the
target process technology. The mask sets are then used to
build the PRISM memory based chip through the steps used
for the selected process technology. The PRISM memory
based chip then may go through testing/packaging process as
appropriate to assure the quality of the manufactured product.
(0123 Thus the inventions of this patent cover various
aspects like:
0124. A memory architecture comprising programmable
intelligent search memory (PRISM) for content search
wherein the PRISM memory provides search capability for
regular expression based search.
(0.125. The PRISM memory further comprises an array of
search memory circuits that provide the regular expression
search functions for searching content from documents, mes
sages or packets or other data received from the network or
the local host or a master processor or a network processor or
TCP Offload Engine or Processor or Storage Network pro
cessor or a security processor or other processor or a combi
nation thereof.
0126 The PRISM memory further comprises of a plural

ity of clusters of the search memory circuits that provide
regular expression search functions for a plurality of regular
expressions. The search memory circuits comprise of
memory elements to store symbols of finite state automata
representing the regular expressions. The search memory cir
cuits further comprise memory elements to store mask vec
tors (MV) that may be applied to the stored symbols. The
mask vectors are coupled to the symbol memory elements and
the content being searched through symbol evaluation cir
cuits that detect whether the received content comprises of the
symbols being searched. The search memory circuits further
comprise of memory elements to store elements of State
dependent vectors (SDV) which are used to decide the state
traversal by the search memory for the finite state automata.
The search memory circuits further comprise of match detect
circuits that operate by coupling with the memory elements
for symbols, MVs, SDVs, and the symbol evaluation circuits
for multiple states of the FSAS to decide on the traversal of the
states in the FSA based on the content being searched and the
programmed symbols, SDVs, and MVs. The search memory
circuits may further comprise tag and match detect circuits
that operate to provide tagged FSA and regular expression

May 19, 2011

search, wherein the tagged FSA is used to detect Sub-string or
partial regular expression match beside a full regular expres
sion match.
I0127. The memory elements of the PRISM memory com
prise of Static or dynamic memory cells. The memory ele
ments are each independently addressable in a random order.
The PRISM memory further comprises of circuits to couple
the content search memory with other logic to provide cou
pling with processors that can interface to the PRISM
memory integrated circuits. The PRISM memory further
comprises of a controller for interfacing with the processors
to receive the content to be searched. The PRISM memory
may further comprise of address decode logic circuits which
decode the received address to select the specific static or
dynamic memory cells location to be read or written. The
memory elements of the search memory may each be
uniquely addressed to read or write appropriate values in the
memory elements. The address decoding logic and the con
troller generate control signals necessary to address the
appropriate memory locations of the static or dynamic
memory cells based search memory. The control signals are
coupled to the PRISM arrays as a series of word lines and bit
lines that can randomly be used to access desired memory
locations.
I0128. The memory elements of PRISM support detection
of character pattern strings. The PRISM memory comprises
of symbol detection circuits and may optionally comprise of
mask vectors per symbol bits, that may be used to evaluate
received character string using simple XOR based compare or
other logic function and create a match indication. The
PRISM match signal processing circuits may logically com
bine multiple match signals from each symbol detection
block to generate a composite match signal which would be
activated only if all the symbols have a match. The composite
match signal creates a match functionality like a traditional
CAM chip and thus enable PRISM chip to be partially or fully
configured to behave like a CAM provide a pattern matching
functionality beside regular expression search.
I0129. While the foregoing, has been with reference to
particular embodiments of the invention, it will be appreci
ated by those with ordinary skill in the art that changes in
these embodiments may be made without departing from the
principles and spirit of the invention.

1. A memory architecture comprising programmable intel
ligent search memory for content search wherein said pro
grammable intelligent search memory comprises dynamic
random access memory circuits and performs regular expres
sion based search.

2. An integrated circuit chip comprising programmable
intelligent search memory for content search wherein said
programmable intelligent search memory comprises
dynamic random access memory circuits and performs regu
lar expression based search.

3. A hardware processor comprising an integrated circuit
chip memory said integrated circuit chip memory comprising
programmable intelligent search memory for content search,
wherein said programmable intelligent search memory com
prises dynamic random access memory circuits and performs
regular expression based search.

4. An integrated circuit chip of claim 2 comprising a pro
cessor comprising memory, said memory comprising said
programmable intelligent search memory for content search,
wherein said programmable intelligent search memory per
forms regular expression based search.

c c c c c

