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DYNAMIC PROGRAMMABLE INTELLIGENT 
SEARCH MEMORY 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is a continuation of U.S. patent 
application Ser. No. 11/952,117, filed Dec. 6, 2007, which 
claims priority to Provisional Application Ser. No. 60/965, 
267 filed on Aug. 17, 2007 entitled “Embedded program 
mable intelligent search memory”. Provisional Application 
Ser. No. 60/965,170 filed on Aug. 117, 2007 entitled “100 
Gbps security and search architecture using programmable 
intelligent search memory”. Provisional Application Ser. No. 
60/963,059 filed on Aug. 1, 2007 entitled “Signature search 
architecture for programmable intelligent search memory'. 
Provisional Application Ser. No. 60/961,596 filed on Jul. 23, 
2007 entitled “Interval symbol architecture for program 
mable intelligent search memory”. Provisional Application 
Ser. No. 60/933,313 filed on Jun. 6, 2007 entitled “FSA 
context Switch architecture for programmable intelligent 
search memory”. Provisional Application Ser. No. 60/933, 
332 filed on Jun. 6, 2007 entitled “FSA extensionarchitecture 
for programmable intelligent search memory”. Provisional 
Application Ser. No. 60/930,607 filed on May 17, 2007 
entitled “Compiler for programmable intelligent search 
memory”, Provisional Application Ser. No. 60/928,883 filed 
on May 10, 2007 entitled “Complex symbol evaluation for 
programmable intelligent search memory. Provisional 
Application Ser. No. 60/873,632 filedon Dec. 8, 2006 entitled 
“Programmable intelligent search memory”. Provisional 
Application Ser. No. 60/873,889 filedon Dec. 8, 2006 entitled 
"Dynamic programmable intelligent search memory’, which 
are all incorporated herein by reference in their entirety as if 
fully set forth herein. 
0002 U.S. patent application Ser. No. 11/952,117, filed 
Dec. 6, 2007 also claims priority to U.S. patent application 
Ser. No. 11/952,028 filed on Dec. 6, 2007 entitled “Embedded 
programmable intelligent search memory, U.S. patent appli 
cation Ser. No. 11/952,043 filed on Dec. 6, 2007 entitled “100 
Gbps security and search architecture using programmable 
intelligent search memory’, U.S. patent application Ser. No. 
11/952,103 filed on Dec. 6, 2007 entitled “Signature search 
architecture for programmable intelligent search memory'. 
U.S. patent application Ser. No. 11/952,104 filed on Dec. 6, 
2007 entitled “Interval symbol architecture for program 
mable intelligent search memory’, U.S. patent application 
Ser. No. 11/952,108 on Dec. 6, 2007 entitled “FSA context 
Switch architecture for programmable intelligent search 
memory, U.S. patent application Ser. No. 11/952,110 filed 
on Dec. 6, 2007 entitled “FSA extension architecture for 
programmable intelligent search memory, U.S. patent appli 
cation Ser. No. 11/952,111 filed on Dec. 6, 2007 entitled 
“Compiler for programmable intelligent search memory'. 
U.S. patent application Ser. No. 11/952,112 filed on Dec. 6, 
2007 entitled “Complex symbol evaluation for program 
mable intelligent search memory'. U.S. patent application 
Ser. No. 11/952,114 filed on Dec. 6, 2007 entitled “Program 
mable intelligent search memory’ which are all co-pending 
U.S. patent applications of common ownership. 

BACKGROUND OF THE INVENTION 

0003. This invention relates generally to memory technol 
ogy and in particular to high performance intelligent content 
search memory. 
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0004. Many modern applications depend on fast informa 
tion search and retrieval. With the advent of the world-wide 
web and the phenomenal growth in its usage, content search 
has become a critical capability. A large number of servers get 
deployed in web search applications due to the performance 
limitations of the State of the art microprocessors for regular 
expression driven search. 
0005. There have been significant research and develop 
ment resources devoted to the topic of searching of lexical 
information or patterns in Strings. Regular expressions have 
been used extensively since the mid 1950s to describe the 
patterns in Strings for content search, lexical analysis, infor 
mation retrieval systems and the like. Regular expressions 
were first studied by S. C. Kleene in mid-1950s to describe the 
events of nervous activity. It is well understood in the industry 
that regular expression (RE) can also be represented using 
finite state automata (FSA). Non-deterministic FSA (NFA) 
and deterministic FSA (DFA) are two types of FSAs that have 
been used extensively over the history of computing. Rabin 
and Scott were the first to show the equivalence of DFA and 
NFA as far as their ability to recognize languages in 1959. In 
general a significant body of research exists on regular 
expressions. Theory of regular expressions can be found in 
“Introduction to Automata Theory. Languages and Compu 
tation” by Hoperoft and Ullman and a significant discussion 
of the topics can also be found in book “Compilers: Prin 
ciples, Techniques and Tools” by Aho, Sethi and Ullman. 
0006 Computers are increasingly networked within enter 
prises and around the world. These networked computers are 
changing the paradigm of information management and Secu 
rity. Vast amount of information, including highly confiden 
tial, personal and sensitive information is now being gener 
ated, accessed and stored over the network. This information 
needs to be protected from unauthorized access. Further, 
there is a continuous onslaught of spam, viruses, and other 
inappropriate content on the users through email, web access, 
instant messaging, web download and other means, resulting 
in significant loss of productivity and resources. 
0007 Enterprise and service provider networks are rap 
idly evolving from 10/100Mbps line rates to 1Gbps, 10Gbps 
and higher line rates. Traditional model of perimeter security 
to protect information systems pose many issues due to the 
blurring boundary of an organization's perimeter. Today as 
employees, contractors, remote users, partners and customers 
require access to enterprise networks from outside, a perim 
eter security model is inadequate. This usage model poses 
serious security vulnerabilities to critical information and 
computing resources for these organizations. Thus the tradi 
tional model of perimeter security has to be bolstered with 
security at the core of the network. Further, the convergence 
of new Sources of threats and high line rate networks is 
making Software based perimetersecurity to stop the external 
and internal attacks inadequate. There is a clear need for 
enabling security processing in hardware inside core or end 
systems beside a perimeter security as one of the prominent 
means of security to thwart ever increasing security breaches 
and attacks. 

0008 FBI and other leading research institutions have 
reported in recent years that over 70% of intrusions in orga 
nizations have been internal. Hence a perimeter defense rely 
ing on protecting an organization from external attacks is not 
Sufficient as discussed above. Organizations are also required 
to screen outbound traffic to prevent accidental or malicious 
disclosure of proprietary and confidential information as well 
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as to prevent its network resources from being used to prolif 
erate spam, viruses, worms and other malware. There is a 
clear need to inspect the data payloads of the network traffic 
to protect and secure an organization's network for inbound 
and outbound security. 
0009 Data transported using TCP/IP or other protocols is 
processed at the source, the destination or intermediate sys 
tems in the network or a combination thereof to provide data 
security or other services like secure sockets layer (SSL) for 
Socket layer security, Transport layer security, encryption/ 
decryption, RDMA, RDMA security, application layer secu 
rity, Virtualization or higher application layer processing, 
which may further involve application level protocol process 
ing (for example, protocol processing for HTTP, HTTPS, 
XML, SGML, Secure XML, other XML derivatives, Telnet, 
FTP, IP Storage, NFS, CIFS, DAFS, and the like). Many of 
these processing tasks put a significant burden on the host 
processor that can have a direct impact on the performance of 
applications and the hardware system. Hence, Some of these 
tasks need to be accelerated using dedicated hardware for 
example SSL, or TLS acceleration. As the usage of XML 
increases for web applications, it is creating a significant 
performance burden on the host processor and can also ben 
efit significantly from hardware acceleration. Detection of 
spam, viruses and other inappropriate content require deep 
packet inspection and analysis. Such tasks can put huge pro 
cessing burden on the host processor and can Substantially 
lower network line rate. Hence, deep packet content search 
and analysis hardware is also required. 
0010 Internet has become an essential tool for doing busi 
ness at Small to large organizations. HTML based Static web 
is being transformed into a dynamic environment over last 
several years with deployment of XML based services. XML 
is becoming the lingua-franca of the web and its usage is 
expected to increase substantially. XML is a descriptive lan 
guage that offers many advantages by making the documents 
self-describing for automated processing but is also known to 
cause huge performance overhead for best of class server 
processors. Decisions can be made by processing the intelli 
gence embedded in XML documents to enable business to 
business transactions as well as other information exchange. 
However, due to the performance overload on the best of class 
server processors from analyzing XML documents, they can 
not be used in systems that require network line rate XML 
processing to provide intelligent networking. There is a clear 
need for acceleration Solutions for XML document parsing 
and content inspection at network line rates which are 
approaching 1 Gbps and 10Gbps, to realize the benefits of a 
dynamic web based on XML services. 
0011 Regular expressions can be used to represent the 
content search Strings for a variety of applications like those 
discussed above. A set of regular expressions can then form a 
rule set for searching for a specific application and can be 
applied to any document, file, message, packet or stream of 
data for examination of the same. Regular expressions are 
used in describing anti-spam rules, anti-virus rules, anti-spy 
ware rules, anti-phishing rules, intrusion detection rules, 
extrusion detection rules, digital rights management rules, 
legal compliance rules, worm detection rules, instant mes 
sage inspection rules, VOIP security rules, XML document 
security and search constructs, genetics, proteomics, XML 
based protocols like XMPP web search, database search, 
bioinformatics, signature recognition, speech recognition, 
web indexing and the like. These expressions get converted 
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into NFAS or DFAs for evaluation on a general purpose pro 
cessor. However, significant performance and storage limita 
tions arise for each type of the representation. For example an 
Ncharacter regular expression can take up to the order of 2^ 
memory for the states of a DFA, while the same for an NFA is 
in the order of N. On the other hand the performance for the 
DFA evaluation for an M byte input data stream is in the order 
of M memory accesses and the order of (NM) processor 
cycles for the NFA representation on modern microproces 
SOS. 

0012. When the number of regular expressions increases, 
the impact on the performance deteriorates as well. For 
example, in an application like anti-spam, there may be hun 
dreds of regular expression rules. These regular expressions 
can be evaluated on the server processors using individual 
NFAS or DFAs. It may also be possible to create a composite 
DFA to represent the rules. Assuming that there are XREs for 
an application, then a DFA based representation of each indi 
vidual RE would result up to the order of (X*2') states 
however the evaluation time would grow up to the order of 
(X*N) memory cycles. Generally, due to the potential expan 
sion in the number of states for a DFA they would need to be 
stored in off chip memories. Using a typical access time 
latency of main memory systems of 60 ns, it would require 
about (X*60 ns N*M) time to process an XRE DFA with N 
states over an M byte data stream. This can result in tens of 
Mbps performance for modest size of X, N & M. Such per 
formance is obviously significantly below the needs of 
today's network line rates of 1 Gbps to 10Gbps. On the other 
hand, if a composite DFA is created, it can result in an upper 
bound of storage in the order of2' which may not be within 
physical limits of memory size for typical commercial com 
puting systems even for a few hundred REs. Thus the upper 
bound in memory expansion for DFAS can be a significant 
issue. Then on the other hand NFAS are non-deterministic in 
nature and can result in multiple state transitions that can 
happen simultaneously. NFAS can only be processed on a 
state of the art microprocessor in a scalar fashion, resulting in 
multiple executions of the NFA for each of the enabled paths. 
XREs with Ncharacters on average can be represented in the 
upper bound of (X*N) states as NFAS. However, each NFA 
would require Miterations for an M-byte stream, causing an 
upper bound of (X*N*M* processor cycles per loop). Assum 
ing the number of processing cycles are in the order of 10 
cycles, then for a best of class processor at 4 GHz, the pro 
cessing time can be around (X*N*M*2.5 ns), which for a 
nominal N of 8 and X in tens can result in below 100 Mbps 
performance. There is a clear need to create high performance 
regular expression based content search acceleration which 
can provide the performance in line with the network rates 
which are going to 1 Gbps and 10Gbps. 
0013 The methods for converting a regular expression to 
Thompson's NFA and DFA are well known. The resulting 
automata are able to distinguish whether a string belongs to 
the language defined by the regular expression however it is 
not very efficient to figure out if a specific sub-expression of 
a regular expression is in a matching string or the extent of the 
string. Tagged NFAS enable such queries to be conducted 
efficiently without having to scan the matching string again. 
For a discussion on Tagged NFA refer to the paper "NFAs 
with Tagged Transitions, their Conversion to Deterministic 
Automata and Application to Regular Expressions”, by Ville 
Laurikari, Helsinki University of Technology, Finland. 
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0014 US Patent Applications, 20040059443 and 
200500 12521, describe a method and apparatus for efficient 
implementation and evaluation of state machines and pro 
grammable finite state automata using programmable regis 
ters, and associated logic. These applications describe single 
chip regular expression processor that can Support 1000 to 
2000 finite state machines implemented in the state of the art 
(0.13 um to 90 nm) process technology. These applications 
describe a state machine architecture where nodes of the state 
machine architecture are interconnected with each other 
using an interconnection network which forms an AND-OR 
logic based on the current state, received symbol and state 
transition connectivity control. However, for basic operations 
the apparatus and the method described in these applications 
becomes virtually inoperable in the event of input stream 
containing a symbol not recognized by the regular expres 
Sion. For instance, if the finite state machine receives a sym 
bol which is not in the set of symbols that are programmed for 
it to recognize, the finite state machine can enter into a con 
dition where all the states are inactive or disabled and from 
that point forward the state machine stays in that state and 
does not recognize any symbols that are even part of the 
defined symbols. For example if a finite state machine is 
programmed to search for a string sequence "help', then the 
machine may get programmed with “h”, “e'. “1”, “p’ as the 
symbols of the state machine. The state machine gets initial 
ized in a start state that may optionally be provided using the 
start state control. However, if the input stream being 
searched includes a symbol other than those programmed, the 
state machine described in these applications reach a state 
where all nodes of the state machine become inactive and stay 
inactive until they are re-initialized at startup of the finite state 
machine apparatus. For example, if the input string received is 
“henk will help you then the finite state machine of these 
applications will reach an inactive state on processing the 
symbol “n” (third character of the phrase “henk will help 
you') and then will not recognize the help' string that follows 
later. Thus these applications are virtually inoperable for 
regular expression matching as described. Beside this, the 
number of regular expressions that can be implemented and 
Supported in the state of the art process technology using 
these methods are small compared to the needs of the appli 
cations as described below. 

0015 There is a class of applications like routing, access 
control, policy based processing and the like in the field of 
networking that require a special class of content search 
which amounts to looking up a set of data stored in the 
memory and detecting whether the data set contains data 
being searched. The data being searched may be an Internet 
Protocol (IP) address in a router or switch's forwarding data 
base which can be hundreds of thousand entries. Since the 
speeds at which these searches have to be done to Support high 
line rates like 1 Gbps, 10 Gbps and beyond, the traditional 
method of trie based searches is very time inefficient. For 
these types of applications that require rapid lookup of data 
among a large database a class of memory called Content 
Addressable Memory (CAM) has been used. CAMs have 
been used in high speed networking for alongtime. The CAM 
architectures essentially compare incoming data with all data 
that is stored in the CAM simultaneously and deliver an 
indication of match or no match and the location of the match. 
However, these devices can only search for a fixed set of 
string of characters and are not well Suited for regular expres 
sion searches. For example a regular expression like “ab” 
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which states to find a string of Zero or more occurrences of 
character'a' followed by character “b' cannot be adequately 
represented in a CAM or would occupy a large number of 
entries and it becomes impractical for a set of regular expres 
sions with any more complexity. Thus CAMs generally get 
used for searching for fixed patterns, typically network packet 
headers, and are not Suited for regular expressions search. 
However, the systems that use CAMs, like unified threat 
management devices or routers or Switches orgateways or the 
like that provide content based intelligent applications like 
upper layer security, have a clear need for high speed deep 
packet inspection or content search which involves a large 
number of rich regular expressions. 

SUMMARY OF THE INVENTION 

0016. I describe a high performance Programmable Intel 
ligent Search MemoryTM (PRISMTM) for searching content 
with regular expressions as well as other pattern searches. The 
high performance programmable intelligent content search 
memory can have myriad of uses wherever any type of con 
tent needs to be searched for example in networking, storage, 
security, web search applications, XML processing, bioinfor 
matics, signature recognition, genetics, proteomics, speech 
recognition, database search, enterprise search and the like. 
The programmable intelligent search memory of my inven 
tion may be embodied as independent PRISM memory inte 
grated circuits working with or may also be embodied within 
microprocessors, multi-core processors, network processors, 
TCP Offload Engines, network packet classification engines, 
protocol processors, regular expression processors, content 
search processors, network Search engines, content address 
able memories, mainframe computers, grid computers, serv 
ers, workstations, personal computers, laptops, notebook 
computers, PDAs, handheld devices, cellular phones, wired 
or wireless networked devices, Switches, routers, gateways, 
unified threat management devices, firewalls, VPNs, intru 
sion detection and prevention systems, extrusion detection 
systems, compliance management systems, wearable com 
puters, data warehouses, storage area network devices, Stor 
age systems, data vaults, chipsets and the like or their deriva 
tives or any combination thereof. 
0017 Content search applications require lot more regular 
expressions to be searched than those that can tit on state of 
the art regular expression processor like those described by 
the applications 20040059443 and 200500 1252.1. For 
example, a very popular open Source intrusion detection and 
prevention technology, SNORT, uses around 3500 to 5000 
regular expressions. This is only one of the security applica 
tions that unified security threat management devices, rout 
ers, servers and the like Support. These applications modestly 
need support for well over 10,000 regular expressions. How 
ever, as the security threats continue to grow the number of 
regular expressions needed for just these applications may 
rise Substantially. Applications like gene database searches or 
web search applications like Google and others require orders 
of magnitude more regular expressions Support than what can 
be supported by the state of the art regular expression proces 
SOS. 

0018 Thus there is a clear need to for a solution that can 
Support orders of magnitude larger number of regular expres 
sions in a single chip for current and emerging content search 
applications. My invention describes such architectures, 
methods and apparatuses that can meet the needs of current 
and future applications for intelligent content search. 
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0019. I describe programmable intelligent search memory 
in this invention, unlike a regular expression processor of the 
patent applications above, that overcomes the issues 
described above. I also show search memory architecture for 
performing a large number of regular expression searches at 
high line rates. I also show how my search memory architec 
ture can be configured to behave like content addressable 
memory which can be very advantageous in applications that 
require a combination of searches that may be done using 
CAMS and deep packet content searches requiring regular 
expression search. I describe a content search memory which 
performs content search using regular expressions repre 
sented as left-biased or right-biased NFAS. My invention also 
provides capabilities to support Tagged NFA implementa 
tions. My invention also shows how content search memory 
can be used to provide application acceleration through 
search application programmer interface and the search 
memory of this invention. For clarity, as used in this patent the 
terms “programmable intelligent search memory”, “search 
memory”, “content search memory’, or “PRISM memory” 
are used interchangeably and have the same meaning unless 
specifically noted. Furtherfor clarity, as used in this patent the 
term “memory’ when used independently is used to refer to 
random access memory or RAM or Dynamic RAM (DRAM) 
or DDR or QDR or RLDRAM or RDRAM or FCRAM or 
Static RAM (SRAM) or read only memory (ROM) or FLASH 
or cache memory or the like or any future derivatives of such 
memories. 

0020. The regular expressions may optionally be tagged to 
detect Sub expression matches beside the full regular expres 
sion match. The regular expressions are converted into 
equivalent FSAs that may optionally be NFAS and may 
optionally be converted into tagged NFAS. The PRISM 
memory also optionally provides ternary content addressable 
memory functionality. So fixed string searches may option 
ally be programmed into the PRISM memory of my inven 
tion. PRISM memory of this invention enables a very efficient 
and compact realization of intelligent content search using 
FSA to meet the needs of current and emerging content search 
applications. Unlike a regular expression processor based 
approach, the PRISM memory can support tens of thousands 
to hundreds of thousands of content search rules defined as 
regular expressions as well as patterns of strings of characters. 
0021. The PRISM memory performs simultaneous search 
of regular expressions and other patterns (also referred to as 
“rules' or “regular expression rules' or “pattern search rules' 
or “patterns” or “regular expressions' in this patent) against 
the content being examined. The content may be presented to 
the search memory by a companion processor or PRISM 
controller or content stream logic or a master processor or the 
like which may be on the same integrated circuit chip as the 
memory or may be on a separate device. The content to be 
searched may be streaming content or network packets or data 
from a master processor or data from a disk or a file or reside 
in on-chip memory or off-chip memory or buffers or the like 
from which a controller may present it to the search memory 
arrays for examination. The content search memory arrays 
may initially be configured with the regular expression rules 
converted into NFAS or tagged NFAS and optionally other 
pattern search rules. PRISM memory may optionally com 
prise of configuration control logic which may be distributed 
or central or a combination thereof. The configuration control 
logic may optionally address PRISM memory cells to read 
and/or write FSA rules or other patterns to be searched. Once 
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the PRISM memory is setup with all the related information 
about the NFAS and other rules, the content to be examined 
can be presented to the PRISM memory. PRISM memory 
provides capabilities to update rules or program new rules or 
additional rules, in line with the content examination within a 
few clock cycles unlike the current regular expression pro 
cessors which require the content evaluation to stop for long 
periods of time until large tables of composite DFAs are 
updated in an external or internal memory. Typically the 
content is presented as a stream of characters or symbols 
which get examined against the rules in the PRISM memory 
simultaneously and whenever a rule is matched the PRISM 
memory array provides that indication as a rule match signal 
which is interpreted by the control logic of the PRISM. There 
may be multiple rule matches simultaneously in which case a 
priority encoder which may also be programmable is used to 
select one or more matches as the winner(s). The priority 
encoder may then provide a tag or an address or an action or 
a combination that may have already been programmed in the 
priority encoder which may be used to look-up related data 
from associated on-chip or off-chip memory that may option 
ally determine the next set of actions that may need to be taken 
on the content being examined. For example, in case of a 
security application if a set of regular expressions are defined 
and programmed for spam detection, then if one or more of 
these rules when matched can have action(s) associated with 
them that the message or content may need to quarantined for 
future examination by a user or it can have an action that says 
the content should be dropped or enable a group of regular 
expressions in the PRISM memory to be applied to the con 
tent or the like depending on the specific application. The 
PRISM memory architecture comprises of means or circuits 
or the like for programming and reprogramming of the FSA 
rules and optionally CAM signatures and masks. It further 
comprises of means or circuits or the like to stream the con 
tent to be searched to the PRISM memory arrays. It may 
further comprise of priority encoder which may optionally be 
programmable. The PRISM memory may optionally com 
prise of random access memory (on-chip or off-chip) which is 
used to store actions associated with specific rule matches. 
The PRISM memory may optionally comprise of database 
extension ports which may be optionally used when the num 
ber of rules is larger than those that may tit in a single inte 
grated circuit chip. The PRISM memory may optionally com 
prise of clusters of PRISM memory cells that enable a group 
of FSA rules to be programmed per cluster. The PRISM 
clusters may optionally comprise of memory for fast storage 
and retrieval of FSA states for examination of content that 
belongs to different streams or contexts or flows or sessions or 
the like as described below referred to as context memory. For 
clarity, context memory or global context memory or local 
context memory or cluster context memory, all comprise of 
memory like random access memory or RAM or Dynamic 
RAM (DRAM) or DDR or QDR or RLDRAM or RDRAM or 
FCRAM or Static RAM (SRAM) or read only memory 
(ROM) or FLASH or cache memory or the like or any future 
derivatives of such memories as discussed above. The PRISM 
memory may optionally comprise of global context memory 
beside the local cluster context memory for storage and 
retrieval of FSA states of different contexts and enable Sup 
porting a large number of contexts. The cluster context 
memory may optionally cache a certain number of active 
contexts while the other contexts may be stored in the global 
context memory. There may optionally be off-chip context 
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memory as well, which can be used to store and retrieve FSA 
states for much larger number of contexts. The PRISM 
memory may optionally comprise of cache or context control 
logic (also referred as “context controller) that manages the 
cluster, global or external context memory or cache or a 
combination thereof. The cache or context control logic may 
optionally be distributed per cluster or may be central for the 
PRISM memory or any combination thereof. The PRISM 
controller or the content stream logic that streams the content 
to be searched may be provided with an indication of the 
context of the content being searched or it may detect the 
context of the content or a combination thereof, and may 
optionally direct the context memory and associated control 
logic i.e. the context controller to get the appropriate context 
ready. Once the context memory has the required context 
available an indication may be provided to PRISM configu 
ration control logic that it may program or load the context 
states in the PRISM memory. The PRISM configuration con 
trol logic (also referred as “configuration controller” in this 
patent) may optionally first save the current context loaded in 
the set of active FSA blocks before loading the new context. 
The configuration controller(s) and the context controller(s) 
may thus optionally store and retrieve appropriate contexts of 
the FSAS and start searching the content against the pro 
grammed rules with appropriate context states of the FSAS 
restored. Thus PRISM memory may optionally dynamically 
reconfigure itself at run-time based on the context of the 
content or the type of the application or the like or a combi 
nation thereof enabling run-time adaptable PRISM memory 
architecture. The contexts as referred to in this patent may, as 
examples without limitation, be related to specific streams, or 
documents, or network connections or message streams or 
sessions or the like. The PRISM memory may process content 
from multiple contexts arriving in data groups or packets or 
the like. For content search in applications where the content 
belonging to one context may arrive interspersed with content 
from other contexts, it may be important to maintain the state 
of the content searched for a context up to the time when 
content from a different context gets searched by PRISM 
memory. The context memory or cache with the associated 
controllers as described in this patent enable handling of 
multiple contexts. 
0022. For clarification, the description in this patent appli 
cation uses term NFA to describe the NFAS and optionally, 
when tagging is used in regular expressions, to describe 
tagged NFA unless tagged NFA is specifically indicated. All 
NFAS may optionally be tagged to form tagged NFAS, hence 
the description is not to be used as a limiter to apply only to 
tagged NFAS. The descriptions of this patent are applicable 
for non-tagged NFAS as well and tagging is an optional func 
tion which may or may not be implemented or used, and thus 
non-tagged NFAS are covered by the teachings of this patent 
as will be appreciated by one skilled in the art. At various 
places in this patent application the term content search 
memory, content search memory, search memory and the like 
are used interchangeably for programmable intelligent search 
memory or PRISM memory. These usages are meant to indi 
cate the content search memory or PRISM memory of this 
invention without limitation. 

0023. In many content search applications like security, 
there is a need to constantly update the rules or the signatures 
being used to detect malicious traffic. In Such applications it 
is critical that a solution be adaptable to keep up with the 
constantly evolving nature of the security threat. In an always 
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connected type of usage models, it is extremely important to 
have the latest security threat mitigation rules updated in the 
security system on a frequent basis. When a composite DFA 
type architecture is used compiling and releasing any new 
security rules or policy can consume a large amount of time, 
where the updates may not be timely to avoid the impact of the 
security threat. In such environments the release of new rule 
base may take up to 8 to 24 hours, which is quite delayed 
response to constantly evolving threat. In the architecture of 
this invention, that issue is addressed since the release of new 
rules is a matter of converting those rules into NFAS and 
updating or programming only these very Small set of rules 
into the content search memory. Thus the response to new 
threats can be near immediate unlike the huge delays which 
occur from integration of the new rules in the composite rule 
base and converting those into composite DFAS. 
0024. There are several instances of REs which include 
only a few states. For example if the content search includes 
looking for *.exe or *.com or *.html or the like, the NFA for 
these REs include a small number of states. Thus if all NFA 
memory blocks Support say 16 states, then it may be possible 
to include multiple rules per block. This invention enables the 
maximum utilization of the FSA blocks by allowing multiple 
rules per FSA block. The blocks may optionally provide FSA 
extension circuits to chain the base blocks together to create 
super blocks that can handle larger FSAs. 
(0025 Berry and Sethi in their paper “From Regular 
Expressions to Deterministic Automata' Published in Theo 
retical Computer Science in 1986, showed that regular 
expressions can be represented by NFAS Such that a given 
state in the state machine is entered by one symbol, unlike the 
Thompson NFA. Further, the Berry-Sethi. NFAS are e-free. A 
V term RE can be represented using V+1 states NFA using 
Berry-Sethi like NFA realization method. The duality of 
Berry-Sethi method also exists where all transitions that lead 
the machine out of a state are dependent on the same symbol. 
This is shown in the paper 'A Taxonomy of finite automata 
construction algorithms' by Bruce Watson published in 1994 
in section 4.3. I show a method of creating NFA search 
architecture in a memory leveraging the principles of Berry 
Sethi's NFA realization and the dual of their construct. The 
NFA search memory is programmable to realize an arbitrary 
regular expression. 
0026. In this invention I also show how the content search 
memory of this invention can be used to create general appli 
cation acceleration in a compute device like a server, personal 
computer, workstation, laptop, routers, Switches, gateways, 
security devices, web search servers, grid computers, hand 
held devices, cell phones, or the like. I show an example 
content search application programmer interface which can 
be used as a general facility that may get offered by an 
operating system for those devices to applications running on 
them which can utilize the content search memory and sig 
nificantly improve the performance of those applications 
compared to having them run on the general purpose proces 
sor of these devices. 

0027. An example application of anti-spam is illustrated in 
this application which can be accelerated to become a high 
line rate application unlike current solutions which run on 
general purpose processors. Although the illustration is with 
anti-spam application, other content search intensive appli 
cations like intrusion detection and prevention oranti-virus or 
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other applications described in this patent can all be acceler 
ated to very high line rate applications using the teachings of 
the inventions of this patent. 
0028. This patent also describes a content inspection 
architecture that may be used for detecting intrusions, extru 
sions and confidential information disclosure (accidental or 
malicious or intended), regulatory compliance search using 
hardware for regulations like HIPAA, Sarbanes-Oxley, Gra 
ham-Leach-Bliliey act, California security bills, security bills 
of various states and/or countries and the like, deep packet 
inspection, detecting spam, detecting viruses, detecting 
worms, detecting spyware, detecting digital rights manage 
ment information, instant message inspection, URL, match 
ing, application detection, detection of malicious content, and 
other content, policy based access control as well as other 
policy processing, content based Switching, load balancing, 
virtualization or other application layer content inspection for 
application level protocol analysis and processing for web 
applications based on HTTP, XML and the like and applying 
specific rules which may enable anti-spam, anti-virus, other 
security capabilities like anti-spyware, anti-phishing and the 
like capabilities. The content inspection memory may be used 
for detecting and enforcing digital rights management rules 
for the content. The content inspection memory may also be 
used for URL matching, string searches, content based load 
balancing, sensitive information search like credit card num 
bers or social security numbers or health information or the 
like. 
0029 Classification of network traffic is another task that 
consumes up to half of the processing cycles available on 
packet processors leaving few cycles for deep packet inspec 
tion and processing at high line rates. The described content 
search memory can significantly reduce the classification 
overhead when deployed as companion search memory to 
packet processors or network processors or TOE or storage 
network processors or the like. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0030 FIG. 1a illustrates Thompson's NFA (prior art) 
0031 FIG. 1b illustrates Berry-Sethi NFA (prior art) 
0032 FIG. 1c illustrates DFA (prior art) 
0033 FIG.2a illustrates a left-biased NFA and state tran 
sition table (prior art) 
0034 FIG.2b illustrates a right-biased NFA and state tran 
sition table (prior art) 
0035 FIG.3a illustrates state transition controls 
0036 FIG. 3b illustrates configurable next state tables per 
State 

0037 FIG. 4a illustrates state transition logic (STL) for a 
State 

0038 FIG. 4b illustrates a state logic block 
0039 FIG. 5a illustrates state transition logic (STL) for a 
state in Left-Biased FSA 
0040 FIG. 5b illustrates state transition logic (STL) for a 
state in Right-Biased FSA 
0041 FIG. 6A illustrates Right-biased Tagged FSA Rule 
block in PRISM 
0042 FIG. 6B illustrates Left-biased Tagged FSA Rule 
block in PRISM 
0043 FIG. 7A illustrates State Block Bit in PRISM 
0044 FIG. 7A illustrates State Block Bit in PRISM 
004.5 FIG. 8A illustrates Symbol Logic Bit in PRISM. 
0046 FIG. 8B illustrates Symbol Logic Bit in PRISM 
(DRAM based with independent Refresh port) 
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0047 FIG. 9 illustrates Partial State Logic Bit in PRISM 
0048 FIG.9A illustrates Partial State Logic Bitin PRISM 
(DRAM based with refresh port) 
0049 FIG. 10a illustrates State Control Block in PRISM 
0050 FIG. 10b illustrates Local Init Detect Circuit in 
PRISM 
0051 FIG. 10c illustrates State Control Block Bit in 
PRISM 

0052 FIG. 10d illustrates State Control Block Bit in 
PRISM (DRAM based) 
0053 FIG. 11 illustrates Tagged Match Detect Block Bit 
in PRISM 
0054 FIG. 11A illustrates Match Detect Block Bit in 
PRISM (DRAM based) 
0055 FIG. 12 illustrates PRISM Block Diagram 
0056 FIG. 13 illustrates PRISM Memory Cluster Block 
Diagram 
0057 FIG. 14 illustrates Computing Device with Content 
Search Memory Based Accelerator 
0.058 FIG. 15 illustrates an example anti-spam perfor 
mance bottleneck and Solution 
0059 FIG. 16 illustrates anti-spam with anti-virus perfor 
mance bottleneck 
0060 FIG. 17 illustrates application content search per 
formance bottleneck and solution 
0061 FIG. 18 illustrates an example content search API 
usage model 
0062 FIG. 19 illustrates an example content search API 
with example functions 
0063 FIG. 20 illustrates an example application flow 
(static setup) for PRISM 
0064 FIG. 21 illustrates PRISM search compiler flow 
(full--incremental rule distribution) 

DESCRIPTION 

0065. I describe high performance Programmable intelli 
gent Search Memory for searching content with regular 
expressions as well as other pattern searches. The regular 
expressions may optionally be tagged to detect Sub expres 
sion matches beside the full regular expression match. The 
regular expressions are converted into equivalent FSAS that 
may optionally be NFAS and may optionally be converted into 
tagged NFAS. The PRISM memory also optionally supports 
ternary content addressable memory functionality. So fixed 
string searches may optionally be programmed into the 
PRISM memory of my invention. PRISM memory of this 
invention enables a very efficient and compact realization of 
intelligent content search using FSA to meet the needs of 
current and emerging content search applications. Unlike a 
regular expression processor based approach, the PRISM 
memory can Support tens of thousands to hundreds of thou 
sands of content search rules defined as regular expressions as 
well as patterns of strings of characters. The PRISM memory 
performs simultaneous search of regular expressions and 
other patterns. The content search memory can perform high 
speed content search at line rates from 1Gbps to 10Gbps and 
higher, when the best of class server microprocessor can only 
perform the same tasks at well below 100 Mbps. The content 
search memory can be used not only to perform layer 2 
through layer 4 searches that may be used for classification 
and security applications, it can also be used to perform deep 
packet inspection and layer 4 through layer 7 content analy 
S1S. 
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0066 Following are some of the embodiments, without 
limitations, that can implement PRISM memory: 
0067. The PRISM memory may be embodied inside net 
work interface cards of servers, workstations, client PCs, 
notebook computers, handheld devices, Switches, routers and 
other networked devices. The servers may be web servers, 
remote access servers, file servers, departmental servers, Stor 
age servers, network attached storage servers, database serv 
ers, blade servers, clustering servers, application servers, con 
tent/media servers, VOIP servers and systems, grid 
computers/servers, and the like. The PRISM memory may 
also be used inside an I/O chipset of one of the end systems or 
network core systems like a Switch or router or appliance or 
the like. 
0068. The PRISM memory may also be embodied on 
dedicated content search acceleration cards that may be used 
inside various systems described in this patent. Alternatively. 
PRISM memory may also be embodied as a content search 
memory inside a variety of hardware and/or integrated cir 
cuits like ASSPs, ASICs, FPGA, microprocessors, multi-core 
processors, network processors, TCP Offload Engines, net 
workpacket classification engines, protocol processors, regu 
lar expression processors, content search processors, main 
frame computers, grid computers, servers, workstations, 
personal computers, laptops, handheld devices, cellular 
phones, wired or wireless networked devices, Switches, rout 
ers, gateways, XML accelerators, VOIP servers, Speech rec 
ognition systems, bio informatics systems, genetic and pro 
teomics search systems, web search servers, electronic vault 
application networks and systems, Data Warehousing sys 
tems, Storage area network systems, content indexing appli 
ances like web indexing, email indexing and the like, chipsets 
and the like or any combination thereof. Alternatively, 
PRISM memory blocks may be embedded inside other 
memory technologies like DRAM, SDRAM, DDR DRAM, 
DDR II DRAM, RI DRAM, SRAM, RDRAM, FCRAM, 
QDR SRAM, DDR SRAM, CAMs, Boundary Addressable 
Memories, Magnetic memories, Flash or other special pur 
pose memories or a combination thereofor future derivates of 
Such memory technologies to enable memory based content 
search. 
0069. One preferred embodiment of the invention is in an 
integrated circuit memory chip with PRISM memory that 
may support a size of around 128,000 8-symbol regular 
expressions or may support around 18 Mbit of ternary CAM 
memory based memory cells in current process technologies. 
Another preferred embodiment of the invention is an inte 
grated circuit memory chip with PRISM memory that may 
support a size of around 128,000 8-symbol regular expres 
sions or may support around 18 Mbit of dynamic memory 
based memory cells in current process technologies. Each 
process generation may provide ability to store around twice 
as many PRISM memory bits as the previous generation. 
Thus in one preferred embodiment the PRISM memory 
would be able to support tens of thousands of eight state FSA 
and can potentially support over 100,000 FSAs. There are 
many variations of the PRISM memory architecture can be 
created that can Support more or less FSAS depending upon 
various factors like the number of states per FSA, the chip die 
area, cost, manufacturability expectations and the like which 
will be appreciated by a person with ordinary skill in the art. 

DETAILED DESCRIPTION 

0070 I describe high performance Programmable Intelli 
gent Search Memory for searching content with regular 
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expressions as well as other pattern searches. The regular 
expressions may optionally be tagged to detect Sub expres 
sion matches beside the full regular expression match. The 
regular expressions are converted into equivalent FSAS or 
NFAS and optionally into tagged NFAS. The PRISM memory 
also optionally Supports ternary content addressable memory 
functionality. So fixed string searches may optionally be pro 
grammed into the PRISM memory of my invention. PRISM 
memory of this invention enables a very efficient and compact 
realization of intelligent content search using FSA to meet the 
needs of current and emerging content search applications. 
Unlike a regular expression processor based approach, the 
PRISM memory can support tens of thousands to hundreds of 
thousands of content search rules defined as regular expres 
sions as well as patterns of strings of characters. The PRISM 
memory performs simultaneous search of regular expressions 
and other patterns. The content search memory can perform 
high speed content search at linerates from 1Gbps to 10Gbps 
and higher using current process technologies. The descrip 
tion here is with respect to one preferred embodiment of this 
invention in an integrated circuit (IC) chip, it will be appre 
ciated by those with ordinary skill in the art that changes in 
these embodiments may be made without departing from the 
principles and spirit of the invention. The illustrations are 
made to point out salient aspects of the invention and do not 
illustrate well understood IC design elements, components 
and the like implementation of the invention in integrated 
circuits so as not to obscure the invention. 

(0071 Ability to perform content search has become a 
critical capability in the networked world. As the network line 
rates go up to 1Gbps, 10Gbps and higher, it is important to be 
able to perform deep packet inspection for many applications 
at line rate. Several Security issues, like viruses, worms, con 
fidential information leaks and the like, can be detected and 
prevented from causing damage if the network traffic can be 
inspected at high line rates. In general, content search rules 
can be represented using regular expressions. Regular expres 
sion rules can be represented and computed using FSAS. 
NFAS and DFAs are the two types of FSAs that are used for 
evaluation of regular expressions. For high line rate applica 
tions a composite DFA can be used, where each character of 
the input stream can be processed per cycle of memory 
access. However, this does have a limit on how fast the search 
can be performed dictated by the memory access speed. 
Another limiter of Such approach is the amount of memory 
required to search even a modest number of regular expres 
sion rules. As discussed above, NFAS also have their limita 
tions to achieve high performance on general purpose proces 
sors. In general, today's best of class microprocessors can 
only achieve less than 100Mbps performance using NFAS or 
DFAs for a small number of regular expressions. Hence, there 
is a clear need to create targeted content search acceleration 
hardware to raise the performance of the search to the line 
rates of 1 Gbps and 10Gbps. This invention shows such a high 
performance content search hardware that can be targeted for 
high line rates. 
0072. As described earlier, regular expression can be rep 
resented using FSA like NFA or DFA. FIG. 1a illustrates 
Thompson's construction for the regular expression (xy+y) 
yx. Thompson's construction proceeds in a step by step 
manner where each step introduces two new states, so the 
resulting NFA has at most twice as many states as the symbols 
or characters and operators in the regular expression. An FSA 
is comprised of states, state transitions, and symbols that 
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cause the FSA to transition from one state to another. An FSA 
comprises at least one start state, and at least one accept state 
where the start state is where the FSA evaluation begins and 
the accept state is a state which is reached when the FSA 
recognizes a string. Block 101 represent the start state of the 
FSA, while block105 is an accept state. Block 102 represents 
state 2 and 104 represents state 3. The transition from state 2 
to state 3 is triggered on the symbol x. 103 and is represented 
as a directed edge between the two states. Thompson's NFA 
comprises of 'e' transitions, 116, which are transitions among 
states which may be taken without any input symbol. 
0073 FIG. 1b illustrates Berry-Sethi NFA for the regular 
expression (xy+y)*yx. Berry and Sethi described an algo 
rithm of converting regular expressions into FSA using a 
technique called marking of a regular expression. It results 
in an NFA which has a characteristic that all transitions into 
any state are from the same symbol. For example, all transi 
tions into state 1, 107, are from symbol x . The other char 
acteristic of the Berry-Sethi construct is that number of NFA 
states are the same as the number of symbols in the regular 
expression and one start state. In this type of construction, 
each occurrence of a symbol is treated as a new symbol. The 
construction converts the regular expression (xy+y)*yX to a 
marked expression (xy+y)yx where each x leads to the 
same state, 107. The figure does not illustrate the markings. 
Once the FSA is constructed the markings are removed. The 
FIG. 1b illustrates the NFA with the markings removed. As 
can be seen from the figure, in Berry-Sethi construction all 
incoming transitions into a state are all dependent on the same 
symbol. Similarly, a duality of Berry-Sethi construct also has 
been studied and documented in the literature as discussed 
earlier, where instead of all incoming transitions being depen 
dent on the same symbol, all outgoing transitions from a state 
are dependent on the same symbol. The Berry-Sethi construct 
is also called a left-biased type of construct, where as its dual 
is called a right-biased construct. 
0074 Finite State Automaton can evaluate incoming sym 
bols or characters against the regular expression language of 
the automaton and detect when an input string is one of the 
strings recognized by it. However, it is advantageous in cer 
tain conditions to know if a certain Sub-expression of the 
regular expression is also matched. That may be enabled by 
tagging the NFA as described in the paper by Ville Laurikari 
referred earlier. Following description illustrates how the 
inventions of this patent enable tagged NFA realization in 
PRISM memory. The tagging for Sub-expression checking 
may involve further processing of the FSA to uniquely iden 
tify sub-expression matching. However for illustration pur 
pose, if in the regular expression"(xy+y)*yx' if one desires to 
detect if the Sub-expression "xy' is in the recognized String, 
one can tag the state 4, 110, as a tagged state. Thus, whenever 
the regular expression transitions through state 4, 110, the 
Sub-expression match or tag match may be indicated. There 
may also be need to detect if a specific transition leads the 
regular expression through a desired sub-expression. In Such 
a case a tag start state and a tag end state may be marked. For 
instance, if it is desired to detect if the transition from state 0 
to state 2, 117, is taken then the state 0 may be marked as a tag 
start state and state 2 may be marked as a tag end State. The 
tagged FSA implementation may then indicate the beginning 
of the to transition when the FSA reaches the tag start state 
and then indicate the end of the tag transition when the FSA 
reaches the tag end state. If the FSA moves from the tag start 
state immediately followed by transitioning into tag end State, 
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then the tagged FSA can indicate the match of a tagged 
transition. The illustrations in the description below do not 
illustrate this aspect of tagged NFA, though it may optionally 
be supported in PRISM and may be easily implemented as 
follows or other means for example by adding a tag start and 
tag end State flags (as memory bits or flip-flops) and the logic 
for the tag transition detection to follow the steps described 
above as can be appreciated by those with ordinary skill in the 
art. The patent of this disclosure enables detection of sub 
expressions using tagging. 
(0075 FIG. 1c is illustrates a DFA for the same regular 
expression (xy+y)*yx. DFA is deterministic in that only one 
of its states is active at a given time, and only one transition is 
taken dependent on the input symbol. Whereas in an NFA, 
multiple states can be active at the same time and transitions 
can be taken from one state to multiple states based on one 
input symbol. There are well known algorithms in the litera 
ture, like subset construction, to convert a RE or NFA to a 
DFA. One point to note for the DFA that is illustrated for the 
regular expression is that it has fewer states than both the 
Thompson NFA as well as Berry-Sethi NFA. The upper 
bound on the number of states for an N character DFA is 2', 
however expressions that result in the upper bound in the 
number of DFA states do not occur frequently in lexical 
analysis applications as noted by Aho, Sethi and Ullman in 
section 3.7 of their book on Compilers referenced above. This 
DFA may be realized in the PRISM Memory using the con 
structs described below to represent an FSA, using a left 
biased realization. Thus PRISM memory of this invention 
may also be used to program certain DFAS where all incom 
ing transitions to each state are with the same symbol like the 
DFA of this illustration. 

0076 FIG. 2a illustrates a left-biased NFA and its state 
transition table (prior art). The illustration is a generic four 
state Berry-Sethi like NFA with all transitions from each node 
to the other shown with the appropriate symbol that the tran 
sition depends on. For example, state A, 201 has all incoming 
transitions dependent on symbola as illustrated by example 
transitions labeled 202 and 203. When the FSA is in State A, 
201, an input symbol 'd', transitions the FSA to state D with 
the transition, 204, from state A to state D. The table in the 
figure illustrates the same FSA using, a state transition table. 
The column PS, 211, is the present state of the FSA, while 
the row sym, 212, is a list of all the symbols that the state 
transitions depend on. The table 213, illustrates the next state 
(NS) that the FSA transition to from the present state (PS) 
when an input symbol from those in the sym header row is 
received. In this FSA, state A is the start state and state C is 
an accept state. Hence, if the FSA is in the present state A and 
an input symbol b is received, the FSA transitions to the next 
state B. So when the next input symbol is received, the FSA 
is in present state Band is evaluated for state transition with 
the row corresponding to present state B. 
(0077 FIG.2b illustrates a right-biased NFA and its state 
transition table (prior art). The illustration is a generic four 
state dual of Berry-Sethi NFA with all transitions from each 
node to the other shown with the appropriate symbol that the 
transition depends on. For example, state A. 205 has all 
outgoing transitions dependent on symbola as illustrated by 
example transitions labeled 208 and 209 where as unlike the 
left-biased NFA described above, each incoming transition is 
not on the same symbol, for example transitions labeled 206 
and 207 depend on symbols band'd respectively. The state 
transition table in this figure is similar to the left biased one, 
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except that the FSA transitions to multiple states based on the 
same input symbol. For example if the FSA is in the present 
state Band a symbol b is received, then the FSA transitions 
to all states A. B., C and D. When an input symbol is 
received which points the FSA to an empty box, like 216, the 
FSA has received a string which it does not recognize. The 
FSA can then be initialized to start from the start state again 
to evaluate the next string and may indicate that the string is 
not recognized. 
0078. The FIG.2a and FIG.2b, illustrate generic four state 
NFAS where all the transitions from each state to the other are 
shown based on the left-biased or right-biased construct char 
acteristics. However not all four state NFAS would need all 
the transitions to be present. Thus if a symbol is received 
which would require the FSA to transition from the present 
state to the next state when such transition on the received 
input symbol is not present, the NFA is said to not recognize 
the input string. At such time the NFA may be restarted in the 
start state to recognize the next string. In general, one can use 
these example tour state NFAS to representan tour state RE in 
a left-biased (LB) or right-biased (RB) form provided there is 
a mechanism to enable or disable a given transition based on 
the resulting four states NFA for the RE. 
007.9 FIG. 3a illustrates state transition controls for a 
left-biased and right-biased NFA. The figure illustrates a left 
biased NFA with a state A, 300, which has incoming tran 
sitions dependent on receiving inputSymbol S1 from states 
B, 301, C, 302, and D, 303. However, the transitions 
from each of the states B,C and D to state A, occur only 
if the appropriate state dependent control is set besides receiv 
ing the input symbol S1. The state dependent control for 
transition from state B to state A is V, while those from 
states C and 'D' to state A is V and V respectively. Tran 
sition to the next state A is dependent on present state A 
through the state dependent control V. Thus transition into a 
state A occurs depending on the received inputSymbol being 
S1 and if the state dependent control for the appropriate 
transition is set. Thus, one can represent any arbitrary four 
states NFA by setting or clearing the state dependent control 
for a specific transition. Thus, if a four states left biased NFA 
comprises of transition into state A. from state B and C 
but not from the states A or D, the state dependent controls 
can be set as V=0, V-1, V-1 and V-0. Hence if the NFA 
is in state D and a symbol S1 is received, the NFA will not 
transition into state A, however if the NFA is in state Band 
a symbol S1 is received the NFA will transition into state 
A. 

0080. Similarly, FIG. 3a also illustrates states and transi 
tions for a right-biased NFA. The figure illustrates a right 
biased NFA with a state A, 306, which has incoming tran 
sitions from state 307, state 'C', 308, and state D, 309, on 
receiving input symbols S2, S3 and S4 respectively. 
However, the transitions from each of the states B. C and 
'D' to state A, occur only if the appropriate state dependent 
control is set besides receiving the appropriate input symbol. 
The state dependent control for transition from state B to 
state A is V, while those from states C and D to state A 
is V, and V respectively. Transition to the next state A is 
dependent on present state A through the state dependent 
control V. Thus transition into a state ‘A’ occurs based on the 
received input symbol and if the state dependent control for 
the appropriate transition is set. Thus, one can represent any 
arbitrary four states right-biased NFA by setting or clearing 
the state dependent control for a specific transition. All State 
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transition controls for a given state form a state dependent 
vector (SDV), which is comprised of V, V, V, and V for 
the illustration in FIG. 3a for the left-biased and the right 
biased NFAS. 

I0081 FIG. 3b illustrates configurable next state table per 
state. The left-biased state table for NS=A, is shown by the 
table 311, whereas the right-biased state table for NS=A, is 
shown by the table 312. The state dependent vector for both 
left-biased and right-biased NFA state is the same, while the 
received input symbol that drive the transition are different 
for the left-biased vs. right-biased NFA states. Thus a state 
can be represented with properties like left-biased (LB), 
right-biased (RB), start state, accept state, SDV as well as 
action that may be taken if this state is reached during the 
evaluation of input strings to the NFA that comprises this 
State. 

I0082 FIG. 4a illustrates state transition logic (STL) for a 
state. The STL is used to evaluate the next state for a state. The 
next state computed using the STL for a state depends on the 
current state of the NFA, the SDV, and the received symbol or 
symbols for a left-biased NFA and right-biased NFA respec 
tively. The InChar input is evaluated against symbols S1 
through Sn using the symbol detection logic, block 400, 
where n is an integer representing the number of symbols in 
the RE of the NFA. The choice of depends on how many states 
are typically expected for the NFAS of the applications that 
may use the search memory. Thus, in may be chosen to be 8. 
16, 32 or any other integer. The simplest operation for symbol 
detection may be a compare of the input symbol with S1 
through Sn. The output of the symbol detection logic is 
called the received symbol vector (RSV) comprised of indi 
vidual detection signals RS1 through RSn. LB/RBi is a 
signal that indicates if a left-biased NFA or a right-biased 
NFA is defined. LB/RBi is also used as an input in evaluating 
state transition. The STL for a state supports creation of a 
left-biased as well as right-biased NFA constructs. The 
LB/RBill signal controls whether the STL is realizing a left 
biased or a right-biased construct. The state dependent vector 
in the form of V1 through Vn, is also applied as input to the 
STL. The SDV enables creation of arbitrary n-state NFAs 
using STL as a basis for a state logic block illustrated in FIG. 
4b. Present states are fed into STL as a current state vector 
(CSV) comprised of Q1 through Qn. STL generates a 
signal N1 which gets updated in the state memory, block 
402, on the next input clock signal. N1 is logically repre 
sented as N1=(V1 and Q1 and (LB/RBit OR RS1)) OR (V2 
and Q2 and (LB/RBit OR RS2)) OR (Vn and Qn and (LB/ 
RBit OR RSn)) AND (NOT LB/RBit OR RS1). Similar 
signal for another state n, would be generated with similar 
logic, except that the signal 401, feeding into the OR gate, 
415, would be which is the output of the n-th symbol detec 
tion logic, changing the last term of the node N1 logic from 
((NOT LB/RBit OR RS1) to ((NOT LB/RBit OR RSn). The 
state memory. 402, can be implemented as a single bit flip 
flop or a memory bit in the state logic block discussed below. 
I0083 FIG. 4b illustrates a state logic block (SLB). The 
SLB comprises the STL, 406. Init logic, 408, state memory, 
410, the accept state detect logic, 411, the SDV for this state, 
407, start flag, 409, accept flag, 412, tag associated with this 
state, 419, or action associated with this state, 413 or a com 
bination of the foregoing. The SLB receives current state 
vector and the received symbol vector which are fed to STL to 
determine the next state. The realization of a state of an 
arbitrary NFA can then be done by updating the SDV for the 



US 2011/01 19440 A1 

state and selecting the symbols that the NFA detects and takes 
actions on. Further, each state may get marked as a start state 
or an accept state or tagged NFA state or a combination or 
neither start or accept or tagged State through the start, tag and 
accept flags. The init logic block, 408, receives control signals 
that indicate if the state needs to be initialized from the start 
state or cleared or disabled from updates, or loaded directly 
with another state value, or may detect a counter value and 
decide to accept a transition or not and the like. The init block 
also detects if the FSA has received a symbol not recognized 
by the language of the regular expression and then may take 
the FSA into a predefined initial state to start processing the 
stream at the next symbol and not get into a state where it 
stops recognizing the stream. The Init block can be used to 
override the STL evaluation and set the state memory to active 
or inactive state. The STL, 406, provides functionality as 
illustrated in FIG. 4a, except that the state memory is included 
in the SLB as independent functional block, 410. The state 
memory, 410, can be implemented as a single bit flip-flop or 
a memory bit. When the state memory is set it indicates that 
the state is active otherwise the state is inactive. The accept 
detect logic, 411, detects if this state has been activated and if 
it is an accept state of the realized NFA. If the state is an accept 
state, and if this state is reached during the NFA evaluation, 
then the associated action is provided as an output of the SLB 
on the A1 signal, 416, and an accept state activation indicated 
on M1, 417. If the FSA reaches a state which is flagged as a 
tagged State using the tag flag, then the match detect logic 
may indicate a tag match, not illustrated, which another cir 
cuit can use to determine the action to be taken for the par 
ticular tag. The action could be set up to be output from the 
SLB on the state activation as an accept state as well as when 
the state is not an accept state, like a tagged state, as required 
by the implementation of the NFA. This can enable the SLB 
to be used for tagged NFA implementation where an action or 
tag action can be associated with a given transition into a 
State. 

0084. If there are n states supported per FSA rule, then 
each SLB needs 'n'-bit SDV which can be stored as a n-bit 
memory location, 3-bits allocated to start, tag and accept 
flags, 1-bit for LB/RBil, m-bit action storage. Thus if n=16 
and m=6, then the total storage used per SLB would be a 
26-bit register equivalent which is a little less than 4 bytes per 
state. If tag start flag and tag end flags are Supported, not 
illustrated, then the number of memory bits would be 28-bits. 
If multiple tagged expressions need to be enabled then the 
number of bits for tagging may be appropriately increased. 
I0085 FIG. 5a illustrates State transition logic (STL) for a 
state in a left-biased FSA. This figure illustrates state transi 
tion logic for a state of an FSA when the logic illustrated 
above for FIG. 4a is simplified with the LB/RBi set to active 
and symbol detection logic for one of the states illustrated. 
The symbol bits are illustrated as 'm-bit wide as S...S. 
illustrated in block 502. The input character symbol bits are 
labeled as cIn. . . . cIn, 501. The symbol detection logic 
illustrated in FIG. 4a, 400, is illustrated as individual bits 
labeled E. . . . E. 503, and is also referred to as symbol 
evaluation logic in this patent. The symbol dependent vector 
is labeled V. ...V. 504 which indicates the symbol depen 
dent vector bit enabling transition into state 1 from each of the 
'n' states that represent the CSV, Q, ... Q, 509, of the FSA. 
RS1,505, is the result of the evaluation of the input character 
symbol with one symbol of the FSA, S...S. illustrated in 
block 502. The logic gates, 506 and 507, are NAND gates that 
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form the logic function to generate the next state, Q1, based 
on the RS1, SDV, V, ...V, and CSV. Q, ... Q. States Q, 
...Q. would be generated using similar circuit structure as the 
one illustrated in FIG. 5a, except the RSV bit, SDV and the 
symbol specific to the particular state will be used. For 
example, for the generation of state Q, the Symbol would be 
S...S., the SDV vector would beV, ...V. and the RSV 
bit would be RSn instead of RS1. 

I0086 FIG. 5b illustrates State transition logic (STL) for a 
state in a right-biased FSA. This figure illustrates state tran 
sition logic for a state when the logic illustrated above for 
FIG. 4a is simplified with the LB/RBi setto inactive state and 
symbol detection logic for one of the states illustrated. Key 
differences between the right biased FSA circuit illustrated in 
this figure and the left-biased FSA illustrated in FIG. 5a, is 
that the next state generation logic depends on all received 
symbol vector bits. RS1,505, through RSn, 505m, which are 
the result of the evaluation of the input character symbol with 
each of then symbols of the FSA instead of only one RSV 
bit, RS1,505, illustrated in FIG.5a. The logic gates, 506a and 
507b, represent the right-biased FSA logic function to gen 
erate the next state based on the RSV. RS1,505, through RSn, 
505n, SDV, V, ...V, and CSV. Q. ... Q. States Q, ...Q. 
would be generated using similar circuit structure as the one 
illustrated in FIG.5b, except the SDV and the symbol specific 
to the particular state will be used. For example, for the 
generation of state Q, the Symbol would be S. . . . S., the 
SDV vector would beV...V. and the RSV vector would as 

be the same, RS1,505, through RSn, 505n. 
I0087 PRISM memory allows various elements of the FSA 
blocks to be programmable as discussed below. 
I0088 FIG. 6A illustrates Right-biased Tagged FSA Rule 
block in PRISM. As discussed earlier the FSA of PRISM are 
optionally Tagged. For clarity, FSA rule block, PRISM FSA 
rule block, PRISM FSA rule memory block, rule block, rule 
memory block, are used interchangeable in this application. 
Further, NFA rule block or PRISM NFA rule block or NFA 
rule memory, block, are also used interchangeably and mean 
a PRISMFSA rule block where the FSA type is an NFA in this 
patent. The discussion below is with respect to tagged NFA, 
though it is also applicable for non-tagged NFAS or other FSA 
types where the tagging elements, described below, are not 
used or not present. This figure illustrates a state block 1, 601, 
which comprises of Some elements of the state transition 
logic illustrated in FIG. 5b. The figure illustrates other state 
blocks, 602 and 603, that represent state blocks 2 through n, 
where n is the number of states of the NFA or FSA pro 
grammed in this PRISM FSA rule block. These blocks are 
illustrated without details unlike state block 1. The primary 
difference between the blocks is that each state block gener 
ates its own RSV bit and uses only its own state bit from the 
CSV. For instance state block 2, generates RS2 by evaluating 
the received character with the symbol programmed in its 
symbol logic block which is similar to block 502. The state 
blocks are organized slightly differently than the illustration 
in FIG. 5b. The logic for one state illustrated in FIG. 5b, is 
illustrated to be organized in a vertical slice like, 614, where 
each state block holds portion of the logic necessary to form 
the final state. In this illustration the state Qn, 508n, is gen 
erated by processing the outputs from each state blocks 'n'-th 
slice. The SDV vector bits held in each state block are for 
transition control from the specific state to all other states. For 
instance the blocks, like 504a, hold different members of the 
SDV vectors compared to the blocks, like 504. Thus the SDV 
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for each state is distributed amongst multiple state blocks 
unlike that illustrated in FIG. 5b. For example state block 1, 
holds SDV vector bits V, V, through V indicating 
state transition vectorbits for transitioning out of state 1 to the 
in states, unlike FIG.5b which are transposed where the state 
transition logic for a state holds bits V, V, through V. 
for transition into state 1. The indices V indicate the state 
dependent vector bit that enables or disables transition from 
state X to state Y where each X and Y may have a range from 
1 through n, where n is the number of states of the FSA. Thus 
the SDV of a state indicates the controls for enabling transi 
tions from any state to itself as illustrated in 504, which 
indicates SDV transition controls from states in through 1 to 
state 1. As can be noticed the indices of the vector bits are 
reversed between the FIG. 5b and FIG. 6a. Thus a specific 
state's SDV is distributed in multiple state blocks and is 
illustrated aligned vertically like slice 614. This figure also 
illustrates the initialization logic, 408, illustrated in FIG. 4b as 
block 605 that affects what value gets loaded in the state 
memory bit, 508n, under different conditions like initializa 
tion, startup, error State, store and load or context Switch and 
the like. Thus SDV vectors for an FSA are written to the FSA 
rule block in a state transposed manner as described above. 
The initialization block comprises of initialization/start state 
vector memory bits. Thus the input into the init block, 605, is 
logically equivalent to the node N1b in FIG. 5b, adjusted for 
the appropriate state bit. The state control block, 604, com 
prises of the logic gates, 507a, which logically NANDs the 
partial state output, like 615, from the state blocks 1 through 
state block n. The state control block, 604, further comprises 
of the init logic blocks, like 605, and the state memory blocks, 
like 508a through 508n. The FSA Rule block also comprises 
of tagged match detect block, 613, which may optionally 
comprise of tagging elements for Supporting tagged NFAS. 
The tagged match detect block comprises of Accept vector 
blocks, like 610, which comprise of accept vector memory 
bits and may optionally comprise of tag memory bits. The 
tagged match detect block further comprises of accept detect 
blocks, like 611, which comprise of accept state detection and 
may optionally comprise of tagged state or state transition 
detection logic. The state memory blocks, like 508a through 
508m, may be controlled be clock or enable or a combination 
signals to step the FSA amongst its states as new input char 
acters are evaluated. The clocked enable signals may provide 
more control over simple clock by enabling when the FSA 
should be evaluated. For instance upon finding a match, the 
FSA controller, 1302, described below may be programmed 
to hold further evaluation of any symbols for this FSA until 
the match information is processed. The FSA rule block gen 
erates multiple output signals that can be used to indicate the 
progress of the FSA. The FSA rule block outputs comprise of 
a Rule Match, 609, which indicates when the regular expres 
sion rule programmed in the FSA rule block is matched with 
characters of the input stream. The Rule Match signal may be 
used by the local or global priority encoder and evaluation 
processor, blocks 1315 and 1213 respectively described 
below, to decide on next steps to be taken based on user 
programmed actions and/or policies. The priority encoder 
and evaluation processors may optionally comprise of 
counters that may be triggered upon specific rule matches. 
The counters may be used for several purposes like statistical 
events monitoring, match location detection in the input 
stream and the like. The priority encoders may also decide the 
highest priority winner if multiple matches are triggered and 
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then the output may be used to find the appropriate action 
associated with the matched regular expression rule. The FSA 
rule block output may optionally comprise of Tag Match 
signal(s) that may be used by the priority encoders and evalu 
ation processors to detect partial regular expression matches. 
The number of tag match signals per FSA rule block may 
depend on the number of sub-expressions that are allowed to 
be detected in a given FSA. The FSA rule block is organized 
as a series of memory locations that each hold a portion of the 
NFA rule evaluation information using memory circuits like 
the SDV memory. Symbols memory, Mask vectors memory 
(discussed below), initialization or start state vector memory, 
accept state vector memory, optionally tag state flag or vector 
memory, the FSA states memory or current state vector 
memory and the like. The FSA rule block comprises of FSA 
evaluation circuits interspersed amongst the memory blocks 
storing the FSA programmable information like the SDV, 
start state, accept state, symbols and the like. The FSA rule 
blocks evaluate multiple symbols against input stream for 
matches to step the FSA. Each symbol evaluation block, like 
503, may optionally output an indication of a pattern com 
parison between the input character or symbol and the pro 
grammed symbol. These output signals, like 614, 616, 617, 
can be treated as local content addressable memory match 
signals. The PRISM memory may optionally support logic 
that enables generating merged CAM match signals from 
multiple FSA rule blocks to support larger width pattern 
matches. Thus the PRISM memory can be used as content 
addressable memory when enabled to process the CAM 
match signals. The PRISM memory can be optionally con 
figured such that portions of the memory support CAM func 
tionality while other portions may support FSA functionality 
or the entire PRISM memory may optionally be configured to 
behave like FSA memory or CAM memory. The CAM 
memories typically support functionality to detect 4 byte 
patterns, 18 byte patterns or even 144 byte patterns. PRISM 
memory may optionally provide configuration mechanisms 
to Support similar large pattern evaluation by chaining mul 
tiple FSA rule blocks CAM match signals using appropriate 
logic to generate composite CAM match signals for desired 
pattern width. 
I0089 FIG. 6B illustrates Left-biased Tagged FSA Rule 
block in PRISM. As discussed earlier the FSA of PRISM are 
optionally Tagged. The discussion below is with respect to 
tagged NFA, though it is also applicable for non-tagged NFAS 
or other FSA types where the tagging elements, described 
below, are not used or not present. Left-biased FSA Rule 
blocks are similar in functionality as those discussed above 
for the Right-biased FSA rule blocks except for a few minor 
differences that enable the FSA rule block to behave as a 
Left-biased FSA. The state blocks, 601a, 602a, 603a, in the 
left-biased NFAS receive all RSV vector bits, like 505n, 
unlike a specific RSV bit per state block in the right-biased 
NFA. The input to NAND gates like 506b, is the specific RSV 
bit depending on the bit slice at the bit location in the state 
block of the NAND gate. Thus bit location p where p can 
range from 1 through n, uses RSp (Received Symbol Vector 
bit p) to generate the partial state block output, 6.15a. By 
making such a change in the blocks the NFA may now func 
tion as a left-biased NFA. The rest of the blocks perform 
similar functions as described above for a right-biased NFA. 
(0090 PRISM memory may comprise of left-biased NFAs, 
right-biased NFAS or left-biased FSA or right-biased FSA or 
a combination of them or may be comprised as selectable 
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left-biased or right-biased NFAS with logic similar to FIG.4a. 
All Such variations are within the scope of this invention, as 
may be appreciated by one with ordinary skill in the art. 
0091 FIG. 21 illustrates PRISM search compiler flow 
which is used for full and incremental rules distribution. For 
clarity, the PRISM search compiler is also referred to as 
search compiler or compiler in this patent application and the 
terms are used interchangeably. The search compiler of FIG. 
21 allows an IT manager or user to create and compile the 
search and security rules of different types as illustrated by 
2101, 2102 and 2103, without limitations. Even though, the 
illustrated rules list primarily security type rules there may be 
regular expression rules for other application that needs con 
tent search like many applications listed in this patent appli 
cation. The compiler flow would optionally be provided with 
the characteristics of the specific nodes like the security capa 
bility presence, the rules communication method, the size of 
the rule base Supported, the performance metrics of the node, 
deployment location e.g. LAN or SAN or WAN or other, or 
the like for specific security or network related search appli 
cations. The compiler flow may optionally use this knowl 
edge to compile node specific rules from the rule set(s) cre 
ated by the IT manager or the user if appropriate for the 
application. The compiler comprises a rules parser, block 
2104, for parsing the rules to be presented to the PRISMFSA 
Compiler, block 2106, which analyzes the rules and creates 
rules database used for analyzing the content. The rule parser 
may read the rules from files of rules or directly from the 
command line or a combination depending on the output of 
the rule engines, like blocks 2101, 2102 and 2103. The rules 
for a specific node are parsed to recognize the language spe 
cific tokens used to describe the rules or regular expression 
tokens and outputs regular expression (RE) rules, 2105. The 
parser then presents the REs to the PRISM FSA compiler 
which processes the REs and generates NFA for RE. Option 
ally if tagging is supported by the specific PRISM instance, 
and if REs use tagging, the PRISM FSA compiler, it then 
decides whether the RE will be processed as a NFA or tagged 
NFA based on the PRISM memory capability. It then gener 
ates the NFA or tNFA rule in a format loadable or program 
mable into PRISM memory and stores the database in the 
compiled rules database storage, 2108. 
0092 Rules distribution engine, block 2109, then commu 
nicates the rules to specific system or systems that comprise 
of PRISM memory. The search rules targeted to specific 
systems may be distributed to a host processor or a control 
processor or other processor of the system that comprises 
PRISM memory. A software or hardware on the receiving 
processor may then optionally communicate the rules to the 
PRISM memory by communicating with the external inter 
face, block 1202, and the PRISM controller, block 1203, 
described below to configure and/or program the PRISM 
memory with the FSA rules. The Rules distribution engine, 
2109, may optionally communicate directly with the PRISM 
controller, block 1203, through the external interface block 
1202, if the external interface and PRISM controller option 
ally support such functionality. The rules may be distributed 
using a secure link or insecure link using proprietary or stan 
dard protocols as appropriate per the specific node's capabil 
ity over a network. 
0093 FIG. 12 illustrates PRISM block diagram. As may 
be appreciated by one with ordinary skill in the art, that many 
different variations of these blocks and their configuration, 
organization and the like can be created from the teachings of 
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this patent and are all covered without limitations. PRISM 
controller, block 1203, communicates with the piles distribu 
tion engine, block 2109 or with a master processor or a 
companion processor like a host system microprocessor or a 
control processor or a network processor or a Switch proces 
sor or an ASIC based controller or processor or the like to 
receive appropriate compiled rule tables prior to starting the 
content inspection. It programs the received rules into the 
appropriate PRISM FSA rule memory blocks, described ear 
lier, by working with the address decode and control logic 
block 1204, coupled to the PRISM controller, block 1203, and 
the PRISM memory cluster arrays, block 1210. There may be 
multiple rules being stored in each PRISM memory cluster 
array FSA rule blocks. There may optionally be multiple 
application specific contexts, not illustrated, Supported by the 
PRISM memory cluster arrays. Once the rules distribution 
engine communicates the compiled rules to the PRISM con 
troller as described above and they are setup or programmed 
in their respective FSA rule blocks, PRISM memory is ready 
to start processing the data stream to perform content inspec 
tion. The PRISM memory state configuration information is 
received via the external interface block, 1202, which may 
communicate on a system bus or a network or the like with a 
master processor or companion processor, not illustrated, as 
described above. The PRISM memory of this patent may be 
deployed in various configurations like a look-aside configu 
ration or flow-through configuration oran accelerator adapter 
configuration or may be embedded inside variety of proces 
sors or logic or ASICs or FPGA or the like as discussed earlier 
as well others not illustrated. In a look-aside oran accelerator 
adapter configuration, the PRISM memory may optionally be 
under control of a master processor which may be a network 
processor or a switch processor or a TCP/IP processor or 
classification processor or forwarding processor or a host 
processor or a microprocessor or the like depending on the 
system in which such a card would reside. The PRISM con 
troller, 1203, receives the configuration information under the 
control of Such master processor that communicates with the 
rule engine to receive the configuration information and com 
municates it on to the PRISM memory. Once the configura 
tion is done, the master processor provides packets or data 
files or content to the PRISM memory for which content 
inspection needs to be done. The external interface, 1202, 
used to communicated with a master processor may be stan 
dard buses like PCI, PCI express. RapidIO, HyperTransport 
or LA-1 or DDR or RDRAM or SRAM memory interface or 
there derivatives or the like or a proprietary bus. The band 
width on the bus should be sufficient to keep the content 
search memory operating at its peak line rate. The PRISM 
memory may preferably be a memory mapped or may option 
ally be an IO mapped device in the master processor space for 
it to receive the content and other configuration information 
in a look-aside or accelerator configuration. PRISM memory 
optionally may be polled by the master processor or may 
provide a doorbell or interrupt mechanism to the master to 
indicate when it is done with a given packet or content or 
when it finds a content match to the programmed rules. 
(0094. The PRISM controller receives incoming data for 
examination using regular expression rules or for examina 
tion using patterns to be matched, and may optionally store 
them into data buffer/memory, block 1207, before presenting 
it to the PRISM memory cluster arrays. The PRISM memory 
may optionally directly stream the content to be examined to 
the content stream logic, block 1208, which may stage the 
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content for examination by the PRISM memory cluster 
arrays, block 2110. The PRISM controller maintains the 
record of the content being processed and once the content is 
processed it informs the master processor. The PRISM 
memory cluster arrays inform the global priority encoder and 
evaluation processor, block 1213, of the results of the search. 
When a match to a rule is found the priority encoder and 
evaluation processor may retrieve an action associated with 
the rule from the global action memory, block 1217, depend 
ing on programmable policies and may optionally provide 
this to the PRISM controller. The PRISM controller may 
optionally inform the master processor about the search 
results. The PRISM controller may execute the specific action 
or policy defined for the rule match. The actions may option 
ally comprise to stop further content evaluation, enable a 
certain set of rules to be examined by enabling appropriate 
cluster array and pass the content through that PRISM 
memory cluster array for further examination, or inform the 
master processor of the result and continue further examina 
tion or hold the match result in on-chip or off-chip memory or 
butlers for the master processor to request this information 
later or any combination thereof or the like. If the PRISM 
memory is configured to examine network traffic in a flow 
through configuration, not illustrated, it may also be pro 
grammed to drop the offending packet or stop the specific 
TCP connection or the session or the like. Optionally the 
master processor may receive the match information and may 
take specific actions on the content stream. 
0095. The address decode and control logic, block 1204, is 
coupled to the PRISM controller, 1203, the external interface, 
1202, the PRISM memory cluster arrays, 1210, the global 
priority encoder and evaluation processor, 1213, the database 
expansion port, 1218 as well as other blocks through a cou 
pling interface, 1215. The PRISM memory may support a 
large number of regular expressions in some preferred 
embodiments as discussed above, however if there are appli 
cations that need more rules, then there may optionally be a 
database expansion port, 1218, which would enable the 
expansion of the rules by adding additional PRISM memory 
(ies) to the database expansion port. The database expansion 
port may provide a seamless extension of the number of rules 
and may use additional memory space in the host or master 
processor. There are multiple ways of enabling the database 
expansion as may be appreciated by those with ordinary skill 
in the art. The address decode and control logic is also 
coupled to optional, cluster address decode and FSA control 
ler, block 1302, and decodes addresses for the PRISM 
memory locations which are used to hold FSA rule block 
programming information as well as the FSA State informa 
tion. It may perform the address decode, memory read, 
memory write and other PRISM memory management con 
trol functions by itself or working in conjunction with cluster 
address decode and FSA controller. The blocks 1204 and 
optionally 1302, may be programmed to provide configura 
tion information for the clusters. The configuration informa 
tion may optionally comprise of size of the NFAS e.g. 8-state 
or 16-state or the like, CAM functionality enabling, tagged 
NFA related configuration, context addresses if appropriate 
for local cluster context addressing and/or global context 
addresses, clusters specific configurations that may support a 
mixed CAM and Regular Expression functionality at the 
PRISM memory level, action memory association for specific 
FSA rules or clusters or a combination thereof and the like. 
The PRISM memory cluster arrays and other blocks like 
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global and local priority encoder and evaluation processor, 
blocks 1213 and 1315, local (not illustrated) and global action 
memories, block 1217 and the like get configured and pro 
grammed with information before the content inspection 
begins. Further, since PRISM memory supports dynamic 
reconfiguration of rules, its programming and configuration 
may be updated during the content inspection as well for 
example when a new security threat has been discovered and 
a new rule to catch that security violation needs to be pro 
grammed. The PRISM memory provides ability to support 
multiple content streams to be processed through the PRISM 
memory cluster arrays, using context mechanism which asso 
ciates each content stream with a specific context, which may 
optionally be assigned a specific context ID. 
(0096 FIG. 13 illustrates PRISM Memory cluster block 
diagram. There may be options to have multiple content 
streams and hence multiple contexts may optionally be simul 
taneously operated upon in different memory FSA clusters, 
illustrated in FIG. 13. For clarity, PRISM Memory cluster, 
memory FSA cluster, a cluster, memory cluster and memory 
FSA cluster are used interchangeably in this patent. A given 
cluster and its associated FSAS may also be able to Support 
multiple content streams using the context information. 
When a new content stream starts getting processed by a FSA 
rule block or a cluster or the like, it may traverse through 
various FSAs whose states may need to be saved, if the 
content stream is not fully processed, when the same FSAs 
need to start processing another content stream. The local 
context memory, block 1312, or global context memory, 
block 1212, or external memory (not illustrated) coupled to 
external memory controller, block 1221, or a combination 
thereof may be used to save the state of active FSAs for a 
given context before the FSAs are switched to operate on a 
different context. Further, the new context may have its saved 
context restored in the specific FSAs before content from that 
context starts to be processed. The local context memory 
along with global context memory affords the benefit of very 
fast context Switching for active contexts simultaneously 
across multiple clusters and FSAS without creating a context 
switch bottleneck. The number of contexts being store locally 
percluster and those stored globally or externally is a function 
of the manufacturing cost and other tradeoffs which will be 
apparent to the one with ordinary skill in the art. Typically the 
amount of information that needs to be stored and retrieved 
per context may be limited to the NFAS or FSAs that are in the 
process of recognizing a specific string defined by its regular 
expression. In general most NFAS or FSAs may be continu 
ously be starting to analyze the input streams from a start state 
if the strings being searched are not very frequent in the 
content being search. The FSA controller, block 1302, 
coupled with blocks 1204, and the local and global context 
memories and their respective memory controllers as well as 
the blocks 1213 and 1315, the local priority encoder and 
evaluation processor, takes the steps to perform the context 
Switch if contexts are enabled before processing a new con 
text. 

0097. The cluster address decode and FSA controller, 
block 1302, may decode incoming addresses for configuring, 
reading or writing from PRISM memory locations or the like 
of the cluster PRISM array, block 1308 which is comprised of 
an array of PRISM FSA rule blocks illustrated above, and 
activates memory location's word line and/orbit lines or other 
word lines or content lines or mask lines or the like or a 
combination thereof, described below to read, write and/or 
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access the specific PRISM memory location. There may 
optionally be cluster specific bit line drivers and sense ampli 
fiers, block 1309, and bit line control logic, block 1310, which 
may be used to read or write specific bits in the cluster PRISM 
array, block 1308. These circuits are well understood by 
memory designers with ordinary skill in the art. The sense 
amplifiers and drivers may optionally be present at the global 
PRISM memory level illustrated in FIG. 12, depending on the 
tradeoffs of die area, performance, cost, power and the like 
which one with ordinary skill in the art can easily appreciate. 
The benefit of having local sense amps and drivers is poten 
tially creating lower interconnect load for individual memory 
bits, which in turn can help improve the performance. Typi 
cally the block 1302 may be operating during the configura 
tion, context switching or other maintenance operations like 
storing and retrieving specific NFA or FSA state information, 
or refreshing specific PRISMFSA memory bits if appropriate 
and the like. Generally during content processing the block 
1302 may be dormant unless there is a match or an error or the 
like when it may start performing the necessary tasks like 
communicating the match, action, policy, error or the like to 
the PRISM controller, initiating context switching and the 
like. The PRISM controller, block 1203, coupled with the 
content stream logic, block 1208, content staging buffer, 
1209, address decode and control logic, block 1204, and the 
cluster FSA controllers, block 1302, may present the content 
to be examined to the PRISMFSA rule blocks. The content to 
be examined may be streamed by the block 1208 from the 
data buffer or memory, 1207, or from external memory, or a 
combination into the content staging buffer. The content stag 
ing buffer, 1209, is coupled to cluster search buffer, 1306, and 
cluster search control, 1307 to align the appropriate content to 
the clusters for searching. The content staging buffer may 
hold content from the same context or multiple contexts 
depending on the configuration of the clusters and the like. 
The content is presented to the cluster PRISM array, 1308, 
that comprises of the PRISM NFA rule blocks for examina 
tion in a sequence timed using a control signal like a clock or 
enable or a combination. The NFA rule blocks perform their 
inspection and indicate whether there is any rule match or 
optionally if there is any CAM pattern match or optionally 
any tag match and the like. The match signals are looked at by 
cluster level local priority encoder and evaluation processor, 
block 1315, which may determine if there is a match and if 
there are multiple matches which match should be used, or all 
matches should be used or the like depending on the configu 
ration. This block 1315, may be coupled to global priority 
encoder and evaluation processor, block 1213, which may 
perform a similar operation by examining match signals from 
multiple clusters. The local and global evaluation processors 
of these blocks may optionally generate address(es) for the 
winning match(es) to the global action memory or external 
memory or a combination that may store appropriate action 
information that needs to be retrieved and processed to deter 
mine action(s) that need to be taken as a result of specific rule 
match(es). There may be optional cluster level action 
memory, not illustrated, for fast retrieval of action informa 
tion. This cluster level action memory may act as a cache of 
the global and/or external memory based action storage. As 
described earlier the FSA controller, block 1302, coupled 
with local context memory, block 1312, its memory control 
ler, block 1313, along with the local and global evaluation 
processor and priority encoders coupled to global action and 
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context memories, may be used to store and retrieve context 
information from and to configure the PRISM cluster arrays 
with appropriate FSA states. 
(0098. The PRISM memory may support high line rate 
content search. If the prism memory clusters process 8-bit 
characters from the input stream and the memory is operating 
at 250 MHz frequency, a line rate of 2 Gbps may be readily 
realized. To increase the performance of the PRISM memory 
multiple approaches may be taken. In an embodiment of 
PRISM memory the number of bits of characters from the 
content being examined can be increased from 8-bit to 16-bit 
and thus the performance of the PRISM memory can be 
doubled. This would entail increasing the size of the symbols 
implemented in the PRISM FSA rule blocks. The PRISM 
compiler optionally would also be updated for Such a change 
in symbol size. The other alternative is to increase the fre 
quency of the operation of the PRISM memory device by 
right partitioning of the PRISM memory clusters and other 
circuit and architectural techniques as may be appreciated by 
those with ordinary skill in the art. Yet another alternative 
embodiment can realize 10 Gbps performance by using 
smaller number of FSA rules per chip and program multiple 
PRISM memory clusters to the same rule sets and pass dif 
ferent content streams through these clusters. Yet another 
embodiment may realize the performance needs by combin 
ing the above approaches. Yet another approach may be to 
utilize multiple PRISM memory chips and multiplex the con 
tent to be examined to meet the performance goals. The 
PRISM database expansion port may also be used to realize 
the same goals. Thus the PRISM memory of this invention 
can be readily used to perform very high speed content 
inspection for one to two orders of magnitude larger numbers 
of regular expressions than processor based approach. 
0099 FIG. 7A illustrates a state block bit in PRISM. The 
state block bit may comprise of symbol logic, block 703, 
which may comprise symbol memory block (symbol bit), 
block 708, to store a bit of a symbol of the FSA rule block. It 
may further comprise of an optional mask memory block 
(bit), block 709, to store an optional mask bit of a mask vector 
that may be applied during the symbol evaluation. The mask 
bit may indicate whether the associated symbol and the input 
character bits should be evaluated or not. The state block bit 
may further comprise of an optional mask circuit, block 710, 
which performs the masking operation when active. The State 
block bit further comprises of a symbol evaluate circuit, block 
711, which is used to evaluate the input character bit against 
the symbol stored in the symbol memory block bit. In the 
illustration, the symbol memory is illustrated to store specific 
characters, though the symbols may be more complex than a 
simple character, for example a range of characters or logical 
or arithmetic operators for a specific character or the like. 
When the symbol is extended beyond a simple character, 
appropriate changes may be necessary in the symbol evalua 
tion circuit to Support more complex symbol evaluation as 
may be appreciated by those with ordinary skill in the art. This 
patent covers such symbol extensions as well. The state block 
bit also comprises of a SDV memory block (bit), block 712, 
for storing a bit of the state dependent vector used to deter 
mine whether specific state is enabled to transition to another 
state or not as discussed earlier. The state block bit may also 
comprise of partial state oval circuit, block 713, that may 
evaluate a portion of the state transition logic by coupling the 
SDV memory block (bit), the RSX. 704, and the state Qy,716. 
In a preferred embodiment this may be a NAND gate circuit 
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similar to 506 or 506a illustrated in FIGS. 5a and 5b. The 
partial state evaluate circuit may generate an output signal 
STxy, 717, that may indicate it a specific transition from the 
state x to state y is enabled and activated. Multiple state block 
bits with their appropriate memory bits like those described 
and illustrated above may be address as a group of memory 
locations. Thus for example an FSA support 8-bit symbols 
and 8-state NFA, then 8 state block bits may be arrayed 
together to form one state block like block 601. Eight such 
state blocks along with State control block, 604, and tagged 
Match detect block, 613, may be grouped together to create a 
FSA or an NFA rule block. The specific collection of symbol 
bits of a state block may be accessible as a group of a specific 
memory location. In this case one symbol of the 8-state NFA 
may be accessed as a byte of one memory address that points 
to it. Thus in an organization of PRISM memory as illus 
trated, eight one byte memory locations may be used to 
address each symbol for the NFA. It will be appreciated by 
those with ordinary skill in the art that other organizations of 
the PRISM memory are possible without digressing from the 
teachings of this patent and are all covered by the teachings in 
this patent. Similarly, the mask vectors of an NFA or FSA rule 
block occupy a set of memory locations. The memory loca 
tions for all the memory elements of the FSA rule blocks are 
decoded by the global and/or local cluster address decoder 
and FSA controllers discussed above. They generate specific 
word line and bit line controls to access these memory loca 
tions. The state block bit comprises of a word line input, 701, 
which selects the word line for the symbol memory block. 
The appropriate bit lines. BL/ML, 707, and their comple 
ment, BLn/MLn, 714 may also be activated depending on 
whether the symbol is being read or written to the memory 
location. In this illustrations bit lines and mask bit lines are 
shared lines, 707 and 714, but may be separate lines as may be 
appreciated by one with ordinary skill in the art. The bit lines 
and their complement bit lines connect to sense amplifiers, 
like 1309, not illustrated in this figure, like those in FIG. 13, 
to read the value of the location addressed by the specific 
word line. The bit line and its complement may be driven to 
desired values when the operation is to write the specific 
memory location selected by the word line. The FIG. 7A 
illustrates multiple word lines for the different memory 
blocks in a state block. The state block bit may comprise of an 
optional Mask Word line to address the optional mask 
memory block. The state block bit may further comprise of 
another word line, WL2, 705, that is used to address the SDV 
memory block. Thus three memory locations may be used to 
represent a state blockin the NFA rule block in PRISM. These 
may be contiguous locations or partitioned differently based 
on the similarity of the type of information being stored. Thus 
if an NFA or FSA supports 8 states, there may be 24 memory 
locations in the PRISM Memory address space that may be 
used to represent the memory in the state blocks. Further the 
NFA accept vector, start vector and optionally the tag vectors 
may occupy a location each in the memory space. The NFA 
state vector may also optionally use up another-location, not 
illustrated, in the PRISM memory space. Thus an 8-state NFA 
or FSA may use 28 to 30 memory address locations to store 
the related information of the FSA. If the symbols are wider 
for example when symbols are 16-bits, and the FSA states are 
8, the organization of the PRISM memory may be done 
slightly differently, not illustrated, to maintain the modular 
arrays as may be appreciated by one with ordinary skill in the 
art. The symbols may be used to occupy more than one 
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address location addressed by separate word lines or may 
occupy a wider word if a single word line is used. Using the 
appropriate addressing and read, write operations of the 
memory, the PRISM NFA rule blocks may be programmed 
and dynamically reconfigure the realized regular expressions. 
0100. The symbol evaluate circuit, 711, generates a signal, 
RSX and/or CAM matchX, 704, which is used to indicate 
when the input character matches the programmed symbol. 
The content symbol or character to be examined with the 
programmed symbol, is presented to the state block bit on the 
content bit lines CL, 740, and complement bit line CLn, 715 
which are coupled to the symbol evaluate circuit. The symbol 
evaluate circuit further couples to the mask memory block bit 
and the symbol memory block bit through the mask circuit, 
710, and evaluates if the content bit presented to this state 
block bit matches with the programmed symbol bit. The 
output of the symbol evaluate circuit is the RSX/CAM matchx 
signal 704, which is coupled between multiple symbol evalu 
ate circuits of all state block bits of a state block, and is 
asserted when all the bits of the symbol programmed in the 
state block match their corresponding symbol bits of the input 
content to being examined. The figure illustrates separate bit 
lines and their complement lines far content and mask and 
other programming information illustrated by the lines, 740 
and 707 or 714 and 715. Those with ordinary skill in the art 
can appreciate that the positive and complement bit lines may 
each be on the same signal or may each be on a separate 
signals. Thus all variations of these implementations are cov 
ered by the teachings of this patent. The bit lines used to store 
and retrieve the information to memory elements may option 
ally be separate from the content lines, as illustrated in the 
FIG. 7A for various reasons, like performance, interconnect 
load, die size, cost, power and the like. 
0101 FIG. 8A illustrates symbol logic bit in PRISM. This 
figure illustrates the circuit detail for the symbol logic,703, of 
the state block bit illustrated in FIG. 7A. This figure illustrates 
the BL (bit line), CL (content bit line) and ML (mask bit lines) 
sharing the same signal as described above as a memory 
design choice. They may each be separate as discussed ear 
lier, in which case the connectivity will be different to the 
appropriate elements of the symbol logic bit. The symbol 
logic bit illustrates a realization using static memory archi 
tecture for the memory bits. The transistors, 810, 825, 826, 
827, 828, and 829 form a typical six transistor static memory 
cell which are coupled to the bit line using the line 806, and 
the complement of the bit line by the line 824. The transistors, 
825 and 827, may optionally comprise of p-channel metal 
oxide semiconductor (PMOS) field effect transistor (FET) 
device in a complementary metal-oxide semiconductor 
(CMOS) process technology, while the transistors, 810, 826, 
828, 829, may optionally comprise of the n-channel metal 
oxide semiconductor (NMOS) field effect transistor (FET) 
devices. These six transistors coupled together as illustrated 
in the FIG. 8A form a static memory cell. Memory cells 
comprised of other transistor devices in other process tech 
nologies like SiGe. Bipolar or the like providing similar func 
tionality as those in this patent are all within the scope and 
spirit of the teachings of this patent as may be appreciated by 
those with ordinary skill in the art. The transistors 825, 826, 
827 and 828 are setup as back to back inverters which are 
written to from the BL, 802, and BLn, 805, coupled to tran 
sistors 810 and 829 respectively, when word line WL, 801 is 
selected which activates the devices 810 and 829 and when 
the BL and BLn are driven by the bit line drivers with the logic 
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value and its complement to be stored in the memory cell. 
This memory cell stores a symbol bit. If a logic value 1 needs 
to be stored, the BL is driven by 1 and BLn by '0'. If the WL 
is active then the logic value gets stored in the symbol 
memory bit. When the symbol memory bit needs to be read 
the BL and BLn may not be driven actively other than pre 
charging. The sense amplifiers attached to the bit lines may 
then detect the differential in the voltage swing on BL and 
BLn to read the symbol memory bit. The transistors,812, 814, 
815, 816, 817 and 818 form a similar six transistor memory 
cell as above, where the transistors 814 and 816 may option 
ally be of PMOS type, while the others may optionally be of 
NMOS type, for storing the symbol mask bit, which is 
accessed by selecting mask word line (MWL), line 803. This 
memory location is used to store the symbol mask bit. The 
symbol mask bit when set enables the symbol evaluation and 
disables the evaluation when the mask bit is disabled. Reverse 
setup is also feasible, except the connectivity between the 
symbol memory cell and the mask memory cell would need to 
be changed appropriately. The device pairs 808, 809 and 821, 
822 are coupled to the symbol bit, mask bit and content line, 
802, and form a XOR functionality by coupling with the 
RSX/CAM Match X pre-charged line 804. This line 804, is 
shared between adjoining symbol logic bits of a NFA or FSA 
rule block. This line is pulled low, if any of the bit pairs of the 
content and the symbol do not match, assuming the bit is 
enabled using the optional mask bit. The line stays high only 
if all the bits of the symbol match all content bits. The mask 
bit is coupled to devices 808 and 809 by the signal 813. 
Alternatively, the mask bit signal 813a, may be coupled to 
another n-transistor, not illustrated, which would couple to 
device 808 and 821 on its drain and to ground value on its 
Source, there by providing a similar masking functionality 
described below. When the mask bit is set, device 815, is 
turned-on which enables the path from devices 808 and 809, 
when the content value on CL, 802, coupled to device 809, is 
1 and when the symbol bit value is 0, a value of 1 is 
coupled to 808 by signal 811 which enables the path from the 
RSX/CAM Match x, line 804, to ground, GND. This causes 
the match signal 804 to be pulled-down or low indicating a 
mismatch. Similarly the transistors 821 and 822, provide are 
enabled when the symbol bit value is 1 and the content value 
is 0, coupled to device 822 through CLn, 805, which carries 
the complement of the content value, forming a XOR func 
tion on the RSX or CAM Match X signal, line 804. Thus, the 
match signal, 804, stays high or active only when all the bits 
of the symbol and the content input match respectively. 
Though the symbol evaluation illustrated is a compare opera 
tion, other operations like range detect, or other ALU opera 
tions may be implemented with appropriate circuits added 
without digressing from the teachings of this application as 
may be appreciated by those with ordinary skill in the art. 
0102 FIG. 8B illustrates symbol logic bit in PRISM 
(DRAM based with independent Refresh port). This figure 
illustrates the circuit detail for the symbol logic, 703, of the 
state block bit realized using dynamic memory like DRAM. 
This figure illustrates the BL (bit line), 835, CL (content bit 
line), 857, and ML (mask bit lines), 856, as independent 
signals. The symbol logic bit of FIG. 8B illustrates a realiza 
tion using dynamic memory architecture for the memory bits. 
The transistor, 840, and the capacitor, 842 form a typical 
dynamic memory cell which are coupled to the bit line using 
the signal 839. The transistor 840 may optionally be of the 
NMOS type transistor. The capacitor. 842, holds the memory 
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bit state using a dynamic charge which decays over time, and 
hence it needs to be refreshed with the correct state in certain 
time period. Typically, the capacitor may be refreshed within 
8 ms time period. DRAM's typically have refresh mode that 
is multiplexed with the normal mode of operation. In Such a 
case, the memory banks are not usable during refresh cycles. 
For a high performance application this is not acceptable. The 
transistor, 843, is coupled with a refresh bit line, RBL, 836, 
which is separate from BL, 835. This device, 843, is also 
coupled to a refresh word line RWL, 833. Thus the dynamic 
memory based symbol logic of this patent has an independent 
port to refresh the memory cell and not affect the performance 
of the PRISM memory during dynamic memory cell refresh. 
When the word line WL, 801, is asserted, the capacitor, 842, 
is coupled to the bit line BL, 835, through the transistor, 840. 
When the BL is driven by the bit line driver, not illustrated in 
this figure, coupled to the bit line, the logic value on the bit 
line gets stored as a dynamic charge on the capacitor, 842. If 
a logic value 1 needs to be stored, the BL, is driven to 1 and 
similarly if the value needs to be 0, the BL is driven to 0. 
If the WL, 801 is active then the logic value gets stored in the 
symbol memory bit. When the symbol memory bit needs to be 
read the BL may not be driven actively other than pre-charg 
ing. The sense amplifiers, not illustrated in this figure, 
coupled to the bit line may then detect voltage swing on BL to 
read the symbol memory hit value. All transistor devices 
illustrated in FIG.8B except transistor 858 may optionally be 
of NMOS type while the transistor 858 may optionally be of 
the PMOS type. 
0103 During normal operation of the PRISM memory 
being used for content inspection, the symbol bit has to be 
available and refreshed. To accomplish this function a refresh 
circuit, not illustrated, which may optionally be present in the 
Cluster FSA Controller, 1302, for each PRISM cluster or may 
be present for the entire PRISM memory as separate func 
tional block or the like, and may be continuously operating to 
refresh the dynamic memory locations when the PRISM 
memory is comprised of dynamic memory cells. The PRISM 
memory may either be comprised of dynamic memory or 
static memory or a combination. The refresh circuit would 
have access to all the rows and columns of the dynamic 
PRISM memory through the appropriate refresh word lines 
like RWL, 833, and the refresh bit lines like RBL, 836. The 
refresh circuit may optionally comprise of refresh counter(s) 
that may count from 0 through optionally 2000 and use the 
count as a refresh word line address for each block of option 
ally 2000 memory rows selecting refresh word line like RWL 
for each row and cycling through them, refreshing all the 
memory locations, at least once within the refresh time win 
dow which may typically be less than 8 ms. To refresh a 
dynamic memory location, the refresh word line, 833, is 
activated coupling the refresh transistor, 843, the capacitor, 
842, and the refresh bit line, 836. The sense amplifiers on the 
refresh bit lines detect the value stored on the capacitor. An 
FSA clock cycle may optionally comprise of a pre-charge 
phase when various pre-charged signals like the RSX signals, 
like 837, or the Rule match signals and the like get pre 
charged to Vcc or high logic level. The FSA clock cycle 
optionally also comprises of an evaluate phase during which 
all the FSA evaluations are performed and at the end of that 
clock cycle the state updates are stored in the state memory or 
flip-flops, like 508a. The refresh operation is typically per 
formed during the pre-charge phase of the FSA evaluation. 
During this period the refresh word line is selected and the 
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memory bit value on the capacitor like 842, is read on to the 
refresh bit line, 836. The sense amplifiers, not illustrated, 
coupled to the refresh bit lines detect the memory value and 
record the value for writing it back on the capacitor to restore 
the memory bit state. The refresh bit lines also retain the value 
on the line for use during the evaluate state since the capacitor 
of the memory cell is disturbed during the reading by the 
refresh operation. During this period the capacitor may be 
fully restored as well or may be refreshed to a sufficient level 
to be used in the evaluate phase without giving false mis 
match. The refresh word line may optionally be kept active 
during the evaluate phase of the cycle as well so that the 
memory bit value that is retained on the refresh bit line pro 
vides the correct symbol bit value to be used during the 
evaluation phase of the FSA clock cycle. Then during the 
pre-charge phase of the following FSA clock cycle the bit 
value recorded by the refresh sense amplifiers is fully written 
to the capacitor 842 through the refresh transistor 843 
coupled to the refresh bit line. This phase is also called refresh 
restore phase in this patent. During the refresh restore phase, 
the refresh word line is kept active. Thus the dynamic memory 
cell illustrated in FIG.8B can be refreshed and restored and be 
used in the FSA rule block and PRISM memory saving about 
four transistors per memory bit location compared to the 
static memory based cells. The method of refresh and restor 
ing the memory bit cells may be chosen based on the need for 
performance, design complexity and the like. For a lower 
frequency operation, the refresh read and restore operation 
may all be completed in the pre-charge phase of one FSA 
clock cycle, however for a higher frequency operation the 
refresh read and restore operations may be performed in the 
pre-charge phase of two different or consecutive FSA clock 
cycles as described above. Thus, each memory location may 
be refreshed within one or two FSA clock cycles and the 
refresh circuitry is designed appropriately to refresh each 
location at least once during the dynamic memory refresh 
period discussed above as can be appreciated by those with 
ordinary skill in the art. 
0104. The transistor 849 and the capacitor 851 form the 
dynamic memory cell that holds the optional mask bit of the 
mask vector for the dynamic memory based PRISM symbol 
logic bit. The transistor 849 is also illustrated to be coupled to 
the word line 801 though it could optionally be coupled to a 
different word line for mask vector. This memory location is 
used to store the symbol mask bit. The symbol mask bit when 
set enables the symbol evaluation and disables the evaluation 
when the mask bit is disabled. Reverse setup is also feasible, 
except the connectivity between the symbol memory cell and 
the mask memory cell would need to be changed appropri 
ately. The device pairs 845, 847 and 846, 848 are coupled to 
the symbol bit, mask bit, the content line (CL), 857, comple 
ment of the content line (CLn), 834, and forman XOR func 
tionality by coupling with the RSX/CAM Match X pre 
charged signal line 837. The line 837, is shared between 
adjoining symbol logic bits of a PRISMFSA rule block. This 
line is pulled low, if any of the bit pairs of the content and the 
symbol do not match, assuming the bit is enabled using the 
optional mask bit. The line stays high only if all the bits of a 
symbol match all content symbol bits. The mask bit is 
coupled to devices 845 and 846 by the signal 854. When the 
mask bit, capacitor 851, is set, the device 852, is turned-on 
which enables the path from devices 846 and 848 to ground, 
when the content value on CL. 857, coupled to device 848, by 
the signal 855 is 1 and when the symbol bit value is 0, a 
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value of 1 is coupled to 846 by signal 860 which is an output 
of the inverterformed by the devices 858 and 859, which then 
enables the path from the RSX/CAM Match x, line 837, to 
ground, GND. This causes the match signal 837 to be pulled 
down or low indicating a mismatch. Similarly the transistors 
845 and 847, are turned on when the symbol value is 1 and 
the complement of the content value, CLn, 834, is 1 indi 
cating the content value to be 0, thus forming a XOR func 
tion on the RSX or CAM Match X signal, line 837. Thus, the 
match signal, 837, stays high or active only when all the bits 
of the symbol and the content input match respectively. 
Though the symbol evaluation illustrated is a compare opera 
tion, other operations like range detect, or other ALU opera 
tions may be implemented with appropriate circuits added 
without digressing from the teachings of this application as 
may be appreciated by those with ordinary skill in the art. 
0105 FIG. 9 illustrates Partial State Logic Bit in PRISM. 
This figure illustrates a circuit for the partial state logic block, 
706. The partial state logic bit comprises of a memory bit for 
state dependent vector. The transistors 906, 912, 913,914, 
915 and 918 form the typical six transistor static memory cell 
configuration to store the SDV bit. The operation of this 
memory bit is similar to the memory bits described above. 
The word line WL2,901, selects devices 906 and 918, and the 
BL/CL/ML, and the complement are coupled to the memory 
cell from 905 and 920 respectively. The transistors 908,909, 
910, 911, 916 and 919, form the three input NAND gate 
between the stored SDV bit, the input state Qy,921 and the 
RSX line 902 coupled to transistor 911 using signal 904. The 
NAND gate generates the partial state transition control sig 
nal STxy,917, that indicates if there is a transition from state 
x' to state y'activated similar to the signal 717. Even though 
the circuit of the NAND gate is fully static, it may be possible 
to use precharged circuits to realize the same function with 
fewer gates as may be appreciated by those with ordinary skill 
in the art. The transistors, 912,914,908,916,919, illustrated 
in FIG.9 may optionally be of the PMOS type, while the other 
transistors illustrated in FIG.9 may optionally be of NMOS 
type. 
0106] 1 FIG. 9A illustrates Partial State Logic Bit in 
PRISM (DRAM based with refresh port). This figure illus 
trates a circuit for the partial state block, 706 using a dynamic 
memory cell. The partial state logic bit comprises of a 
memory bit for state dependent vector (SDV). The transistor 
930 and the capacitor 932 form a typical dynamic memory 
cell configuration to store the SDV hit. The operation of this 
memory bit is similar to the memory bits described above for 
the symbol logic. Since this is a dynamic memory cell like the 
one in the dynamic symbol memory hit illustrated in FIG.8B, 
this memory bit also needs to be refreshed. The transistor 933, 
coupled to refresh bit line,926, and the refresh word line,923, 
create an independent refresh port similar to the one for the 
dynamic symbol memory bit discussed above. This dynamic 
memory cell is also refreshed using mechanism similar to that 
discussed above for the symbol dynamic memory cell illus 
trated in FIG. 8B. The word line WL2, 901, when asserted 
turns the devices 930 on and enables coupling of the capaci 
tor,932, and the bit line BL,925, through the signal 929. The 
transistors 936,937.938,939,940 and 941, formathree input 
NAND gate between the stored SDV bit,932, the input state 
Qy,921 and the RSX line 924 coupled to transistor 939 using 
signal 928 (for clarity, RSX is the same signal as the signal 
RSX/CAM Match X signal 837 illustrated in FIG. 5B. The 
NAND gate generates a partial state transition control signal 
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STxy,917, that indicates if there is a transition activated from 
state x to state y'. Even though the circuit of the NAND gate 
is fully static, it is possible to use pre-charged circuits to 
realize the same function with fewer gates as may be appre 
ciated by those with ordinary skill in the art. As illustrated in 
FIG. 9A the transistors, 936,940 and 94.1 may optionally be 
of PMOS type while the other transistors in this figure may 
optionally be of NMOS type. 
01.07 FIG. 10a illustrates state control block in PRISM. 
This figure illustrates the state control block, 604, with the 
appropriate elements labeled. Essentially the NAND gates, 
1001(1) through 1001(n) are bit specific state transition con 
trol logic portions that logically NAND the partial state out 
puts from the state blocks. The blocks 1002(1) through 1002 
(n) are the initialization blocks described earlier and the 
blocks 1003(1) through 1003(n) hold the states of the NFA or 
FSA rule block. 

0108 FIG. 10b illustrates local Init Detect Circuit in 
PRISM. This circuit may be optionally used to detect if the 
states of the FSA reach an error, which in this case is assumed 
to be all state bits to be inactive or low. The FSA is evaluating 
a symbol only when at least one of the states is set, otherwise 
the FSA may reach an error state and stop evaluating the input 
content. To prevent Such a condition, the circuit illustrated in 
FIG.10b is used to generate a local initialization signal when 
everall the states of the FSA are inactive. This signal, LInit, 
can then be used to set the FSA to a predefined start state. The 
signal LInit, 1018, is pre-charged to an active high value. 
Whenever, at least one of the state bits, Q1 through Qn is 
active the transistor coupled to that state, 1007(1) through 
1007(n) respectively, is turned on and the signal LInit is 
pulled to an active low state, however when each of the state 
bits is inactive, the LInit signal stays high indicating a local 
initialization signal which gets processed by State control 
block bit gates 1019 and the multiplexer, 1015, that then 
initializes the state bit, 1032, to the start state memory bit 
coupled through signal 1024 and the multiplexer 1014 and 
1015 to the state memory bit, 1032. As illustrated in this FIG. 
10b, all transistors may optionally be of NMOS type except 
transistor 1006 which may optionally be of PMOS type. 
0109. The FIG. 10c illustrates state control block bit in 
PRISM. This block bit stores the initialization vector or start 
state bit in a typical six transistor static memory configuration 
created using the transistors. 1008, 1010, 1012, 1011, 1013 
and 1009. The start state bit is selected by the FSA controller 
by driving the word line iv WL, 1027, which is coupled to 
devices 1008 and 1009. The value on the BL and BLn is 
coupled through those transistors into the memory cell during 
write and is read onto the bit lines during a read operation. The 
output of the memory cell, 1024, is used as one of the inputs 
to a multiplexer, 1014 which may optionally be present to 
enable selection of the initialization vector bit. When the 
Load signal, 1017, is asserted, the value of signal 1016, is 
coupled to the output of the multiplexer, 1022 but when Load 
signal is not asserted the start state bit, 1024, is coupled to 
1022. The signal LSn, may optionally be provided as a means 
to load a state context that was saved earlier or any other state 
value to be loaded into the state bit, 1032. The state bit, may 
alternatively be written using a memory bit and be coupled 
with the other initialization logic appropriately. The Load 
signal may be asserted by the FSA controller to indicate 
updating the State bit value. During normal operation the 
signal 1025 that acts as a select signal for the multiplexer 1015 
is inactive, selecting the output of the bit location specific gate 
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like 1001(n) which indicates the state transition of the FSA 
during normal content evaluation. However, if the local ini 
tialization signal is asserted then path from the start state bit 
1024, to the state bit, 1032 is enabled and the state bit gets 
initialized. There may also be a need to provide a global 
cluster wide or PRISM memory wide initialization, which is 
controlled by asserting global initialization signal GInit, 
1018b which again enables the path from the start state bit 
1024 to the state bit 1032. The state control block may gen 
erate state bit signals Qn, 1029 and optionally signal Qnb. 
1030. The state bit, 1032, may be updated at synchronized 
interval with other parts of the memory, using a control signal, 
1031, which may be a clock or an enable signal or other signal 
like hold or a combination. As illustrated in FIG. 10c the 
transistors, 1010 and 1011 may optionally be of PMOS type 
while the transistors, 1008, 1009, 1012, 1013, illustrated in 
this figure may optionally be of NMOS type. 
0110. The FIG. 100 illustrates state control block bit in 
PRISM (DRAM based). This state control block bit stores an 
initialization vector or start state bit in a typical dynamic 
Memory configuration created using the transistor, 1035, and 
the capacitor, 1038. The start state bit is selected by the 
PRISM cluster FSA controllerby driving the wordline iv WL, 
1027, which is coupled to the transistor 1035. The value on 
the bit line BL 1026, is coupled through this transistor, 1035, 
to the capacitor, 1038 which stores the memory bit value as a 
dynamic charge similar to the dynamic memory cells 
described above. Similar to the other dynamic memory cells 
described above, this memory cell also needs to be refreshed. 
The refresh transistor, 1039, couples the refresh bit line RBL, 
1034 to the capacitor 1038 when the refresh word line 
ivRWL, 1033, is asserted. The refresh mechanism for this 
memory cell also follows similar mechanisms and principles 
as described above for the other dynamic memory cells of this 
application like the symbol memory bit illustrated in FIG.8B. 
The output of the memory cell, 1024, is used as one of the 
inputs to a multiplexer, 1014 which may optionally be present 
to enable selection of the initialization vector bit. The other 
elements of this illustration operate essentially in similar 
manner as described above for the FIG. 10c. Further, various 
circuits of illustrated in this figure may be realized using a 
dynamic circuit architecture as would be appreciated by those 
with ordinary skill in the art. As illustrated in FIG. 10d the 
transistors, 1035, and 1039 may optionally be of NMOS type. 
0111 FIG. 11 illustrates Tagged match detect block bit in 
PRISM. As discussed earlier the FSA of PRISM are option 
ally Tagged. The discussion below is with respect to tagged 
NFA or FSAs, though it is also applicable for non-tagged 
NFAS or FSAS where the tagging elements, are not used or not 
present. The tagged match detect block bit comprises of an 
accept state memory bit, formed by the familiar six transistor 
static memory bit as earlier memory bits, where the transis 
tors 1106, 1110, 1112, 1111, 1113 and 1114 form the accept 
state memory bit. The devices 1106 and 1114 are coupled to 
the word line AWL, 1101, which selects the accept memory 
bit when it needs to be read or written. These devices are also 
coupled to the four transistors forming the back to back 
inverter and the bit lines, 1104 and 1115. This memory bit is 
read and written in a manner similar to the description for 
other memory bits above. The tagged Match Detect block bit 
may optionally comprise of a tag state memory bit which may 
be set to detect a Sub-expression evaluation as described 
earlier. Additional tag state bits and state transition tag bits 
may be optionally present in PRISM tagged match detect 
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block bit as discussed earlier but are not illustrated in this 
figure. The optional tag memory bit is again stored in a typical 
six transistor memory cell comprising the transistors, 1124. 
1125, 1126, 1127, 1128 and 1129. This memory location may 
be selected by asserting word line TWL, 1119. The operation 
of the tag memory cell is similar to other memory cells 
described above. The rule match detection is formed by cou 
pling accept state bit 1107 and the FSA state Qn, 1102, 
through the devices 1108 and 1109. When accept state bit is 
set, it indicates that the particular state bit is an accept state, 
meaning that when the FSA evaluation reaches that state a 
string recognized by the regular expression vile programmed 
in the NFA is found and hence a rule match should be sig 
naled. The Rule Match signal, 1103, is an active low signal as 
illustrated. It is precharged to a high value and stays at that 
level as long as a state which is an accept state is not reached. 
However, when Qn signal is asserted and the accept state bit 
1107, corresponding to that state signal Qn, is set, the devices 
1108 and 1109 pull the rule match signal low, indicating a 
match. The rule match signal is shared with the adjoining bits 
of the FSA, so when any of the accept state bit is matched the 
Rule Match signal is asserted to an active low value. The 
polarity of the rule match signal can be reversed by selecting 
appropriate bits to couple to the transistors 1109 and 1108. 
Similarly, if the tagging is supported, the devices 1130 and 
1132, couple to the tag match signal, 1122 and pull it down if 
the tag is asserted and the FSA state is also asserted. The rule 
match and tag match signals from individual NFA rule blocks 
in a PRISM cluster array may be evaluated by the local and/or 
global priority encoder and the evaluation processors of 
PRISM memory illustrated in FIGS. 12 and 13 and appropri 
ate actions taken as described above. As illustrated in FIG. 11 
the transistors, 1110, 1111, 1126, 1127 may optionally be of 
PMOS type while the other transistors in this figure may 
optionally be of NMOS type. 
0112 FIG. 11A illustrates match detect block bit in 
PRISM (DRAM based). As discussed earlier the FSA of 
PRISM are optionally tagged. The discussion below is with 
respect to non-tagged NFA, though it is also applicable for 
tagged NFAS where the tagging elements, are present and 
being utilized. The match detect block bit comprises of an 
accept state memory bit, formed by a typical transistor and 
capacitor based dynamic memory bit similar to other 
dynamic memory bits earlier, where the transistor 1136, and 
the capacitor 1138 which holds the memory value as a 
dynamic charge form the accept state memory bit. The device 
1136 is coupled to the word line AWL, 1133, which selects the 
accept memory bit when it needs to be read or written. This 
memory bit is read and written in a manner similar to the 
description for other dynamic memory bits above. Similar to 
the other dynamic memory bits described above, this memory 
bit also comprises of a refresh port comprised of the refresh 
transistor, 1139, coupled to the refresh word line ARWL, 
1134, and the refresh bit line RBL, 1147. The refresh mecha 
nism for this dynamic memory cell follows the same prin 
ciples and methods described above for the dynamic symbol 
memory bit illustrated in FIG.8B and other dynamic memory 
bits. The rule match detection is formed by coupling accept 
state bit 1137 and an FSA state bit signal Qn, 1102, through 
the devices 1141 and 1142. When accept state bit is set, it 
indicates that the particular state bit is an accept state, mean 
ing that when the FSA evaluation reaches that state a string 
recognized by the regular expression rule programmed in the 
FSA is found and hence a rule match should be signaled. The 
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Rule Match signal, 1103, is an active low signal as illustrated. 
It is pre-charged to a high value and stays at that level as long 
as a state which is an accept state is not reached. However, 
when Qn signal is asserted and the accept state bit 1137 is set, 
the devices 1141 and 1142 pull the rule match signal low, 
indicating a match. The rule match signal is shared with the 
adjoining bits of the FSA, so when any accept state bit is 
matched the Rule Match signal is asserted to an active low 
value. As illustrated in FIG. 11A transistors, 1136, 1139, 
1141, 1142 may optionally be of NMOS type. 
0113 FIG. 14 illustrates a computing device with content 
search memory based accelerator. The computing device may 
be a server, a workstation, a personal computer, a networking 
device like a switch or a router or other type of device. This is 
one type of configuration in which a content search accelera 
tor using one version of the content search memory of this 
invention may be used. The figure illustrates a computing 
device comprising one or more CPUs, 1400 (1) through 1400 
(n), at least one chipset, 1402, at least one memory compo 
nent, 1401, with at least one content search accelerator, 1403, 
and Zero or more adapters providing other functions. The 
content search accelerator may comprise of content search 
memory (PRISM), 1404. It may also comprise at least one 
memory component, 1405, coupled to the content search 
memory. There are many different system configurations that 
may be created with the content search memory of this inven 
tion. Hence the examples in this patent should not be used as 
limiting the scope, rather they are primarily a means to 
explain the content search memory in a few sample usage 
scenarios. The content search memory of this patent may be 
used on line cards, network adapters or network interface 
controllers, storage networking cards, IO cards, mother 
boards, control processing cards, Switching cards or other 
system elements of systems like networking devices such as 
routers, Switches, management devices, security devices, 
gateways, virtualization devices, storage networking devices, 
servers, storage arrays, and the like. The content search 
memory or its components may also be coupled to or embed 
ded in or a combination thereof, the microprocessors, net 
work processors, regular expression search processors, con 
tent search processors, multi-core processors, Switching 
chips, protocol processors, TCP/IP processors, control plane 
processors, chipsets, control processors or other devices, 
including being incorporated as a functional block on these 
processors or chips. The content search memory may be used 
to perform content inspection at high line rates in the systems 
in which it is incorporated to offload or assist in content 
processing to the main processors of such systems. There may 
be configurations where multiple content search memories 
may also be incorporated in Systems to provide Scaling in 
performance or number of rules or a combination thereof for 
content search. The content search memory may be incorpo 
rated on network line cards, in line with the traffic and offer 
line rate deep packet inspection when coupled to a network 
ing processor or TOE or packet processor or the like. 
0114. The configuration illustrated in FIG.14 may option 
ally be used for email security or instance message security or 
outbound security or extrusion detection or HIPAA compli 
ance or Sarbanes-Oxley compliance or Gramm-Leach-Bliley 
compliance or web security or the like or a combination 
thereof. The security capabilities listed may comprise anti 
spam, anti-virus, anti-phishing, anti-spyware, detection/pre 
vention of directory harvest attacks, detection/prevention of 
worms, intrusion detection/prevention, firewalls, or the like 
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or detection/prevention of leaks of Confidential information, 
health care information, customer information, credit card 
numbers, Social security numbers or the like or a combination 
thereof. The content search memory in such device may be 
configured with a set of security rules for one or more of the 
applications listed above and provide acceleration for content 
search for information incoming or outgoing from the device. 
Content search memory device may be deployed at any place 
in the network, like close to or embedded in a router or a 
Switch or gateway of an organization's networks or at a 
departmental level or within a datacenter or a combination 
and provide high speed content inspection to incoming or 
outgoing traffic flow of the network. 
0115 FIG. 15 illustrates example anti-spam performance 
bottleneck and solution. As discussed earlier, content search 
performance using a DFA or NFA based search on a micro 
processor results in below 100 Mbps performance. FIG. 15 
illustrates an anti-spam application as an example application 
to show the value of hardware based content search. The 
performance numbers are not illustrated to Scale. The figure 
illustrates four vertical stacks of operations in four types of 
appliances. The first stack, 1500, is illustrated to represent an 
email appliance stack. An email appliance typically may 
comprise device drivers to drive the hardware devices on the 
appliance, the networking protocol stack along with other 
functions of the Operating System (OS) and a mail transport 
agent (MTA) which are all typically software components 
along with other application software. Today's servers, which 
are typically used for email appliances, are able to keep up 
with network line rates of up to 1 Gbps, and perform the 
application functions due to the high performance processors. 
Typically a 1 GHZ processor is required to process 1 Gbps line 
rate traffic for network protocol stack processing. Since the 
state of art processors are around 4 GHz today, the servers can 
handle the network traffic and have processing power avail 
able to do other needs of the OS and the applications running 
on a server. Thus the email appliance stack, 1500, running on 
a high end server, should be able to keep up with a high line 
rate. A study by network world magazine, "Spam in the Wild: 
Sequel done in December 2004, showed the performance 
comparison of a large number of anti-spam Software and 
appliance vendors. Under their configuration the range of the 
message processing performance of the vendor products 
listed was from around 5 messages per second to 21 messages 
per second. When this performance number is translated into 
linerate performance using the worst case message sizes used 
by network world of 10,000 characters per message, the line 
rate performance comes to be below 2 Mbps sustained per 
formance. All the vendors either software or appliance solu 
tions were based on dual Xeon processor servers. Thus, a 
server that can handle 1Gbps network line rate traffic, when 
performing anti-spam application its performance drops 
down to below 10 Mbps. The reason for this is that one of the 
features used extensively by most anti-spam Vendors is 
searching of emails against a set of rules, which are typically 
represented as regular expressions. The anti-spam appliance 
stack, 1501, illustrates the email appliance with anti-spam 
capability loaded on it. Anti-spam applications typically per 
forms many complex regular expression rules based filtering 
along with statistical filtering, reputation based filtering and 
the like. The anti-spam rules are typically applied sequen 
tially to each incoming email one after the other to find a rule 
that may match the content of the email. Then the anti-spam 
application may apply scores to the rules that match and then 
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decide if a message is spam or not based on the total score it 
receives. Such an operation causes the stack performance 
needs to grow Substantially higher than a typical email appli 
ance stack, where the anti-spam filters, 1505, overhead on the 
performance of the appliance is Substantial to reduce the over 
all anti-spam server appliance performance to be below 10 
Mbps. The content search memory of this invention can be 
used in Such anti-spam appliances to achieve significant per 
formance improvements. The hardware accelerated anti 
spam appliance stack, 1502, illustrates the impact of using the 
search memory of this invention on the overall performance 
of the system. In such a case, all the anti-spam filters, 1511 
thru 1513, may be configured on the search memory, 1506, 
which in turn may be used to inspect each incoming message. 
Since all rules would be searched simultaneously, the search 
memory based appliance can achieve well over 1 Gbps line 
rate performance or more, since the host CPU is relieved from 
the performance intensive regular expression searches. The 
compute device illustrated in FIG. 14 may be one such con 
figuration that may be used as the anti-spam appliance to 
achieve multiple orders of magnitude higher performance 
than a typical server based anti-spam appliance. The stack, 
1503, illustrates a stack of an enhanced messaging appliance 
which may use a TCP/IP offload processor for offloading the 
protocol processing from the host CPU along with the content 
search memory of this invention. Thus a significant amount of 
CPU bandwidth can be made available to other applications 
which may not have been possible to execute on the comput 
ing device without significant performance impact. The use 
of TCP/IP offload and content search memory may be done 
individually or in combination and the use of one does not 
require the use of the other. TCP offload and content search 
memory could be on the same device providing network 
connectivity and the acceleration. Although the discussion 
above is with respect to anti-spam application, other critical 
network applications like Intrusion Detection and Prevention 
systems Suffer from similar performance issue, where the line 
rate gets limited by memory access time if a composite DFA 
type solution is used. Typical IDS/IPS performance on a 
single processor based solution does not scale above 1 Gbps. 
The content search memory of this invention can be applied 
for IDS/IPS regular expression search performance issues 
and can achieve one to two orders of magnitude higher line 
rate inspection than any composite DFA based solutions. 
0116 FIG. 16 illustrates an anti-spam with anti-virus per 
formance bottleneck. This figure is very similar to FIG. 15, 
except that the anti-spam appliance whose stack is illustrated 
also supports anti-virus capability. Anti-virus searches are 
different then the anti-spam searches but they also add a 
significant performance overhead as illustrated by the stack, 
1604. The number of filters for anti-virus is lot larger then 
those for anti-spam, though when a content search memory of 
this invention is used the anti-virus overhead can also be 
substantially reduced as illustrated by 1605. 
0117 FIG. 17 illustrates application content search per 
formance bottleneck and solution. The content search 
memory of this invention can be used as a search accelerator 
for a large number of applications that require content search 
but do the search on the host processor or host CPU or host 
microprocessor or the like. Since, the performance of these 
processors for content search is not very high as discussed 
above, a content search memory based accelerator can Sub 
stantially increase the performance of these applications. The 
applications that require content search are many like data 
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warehousing applications, database applications, bioinfor 
matics related applications, genetics, proteomics, drug dis 
covery related applications and the like. The figure illustrates 
three boxes, 1700, 1701 and 1702 which represent the content 
search based application performance in terms of host CPU 
load. The traditional applications run on a server or a work 
station or personal computer, and perform content search 
interspersed with other tasks that the application needs to 
perform. If the applications perform a significant amount of 
search, then the performance need of the search portions of 
the application can be substantially higher Men the other 
parts. This is illustrated by content search portions of appli 
cations app1 and appN, 1703 and 1705 respectively, com 
pared to the other code of these applications, 1704 and 1706. 
The stack in 1700 is how current or prior art solution exists for 
content search applications. Though the stack illustrates a 
continuous stack for content search and other code sections, 
the actual execution may generally be composed of search 
interspersed with other code functions. When a content 
search memory and accelerator of this invention is used in the 
computing device performing this function, it may be pos 
sible to have the application leverage the search capabilities 
of the memory and accelerate the performance of the appli 
cation Substantially compared to a computing device without 
the search acceleration support. The stack in 1701, illustrates 
the impact on the CPU load and the resulting time spent by the 
application when converted to leverage the content search 
accelerator. The stacks 1703 and 1705, could take substan 
tially less load and time as illustrated by stacks, 1707 and 
1708 respectively. Similarly, the performance of the system 
may be further increased by offloading the TCP/IP protocol 
processing as illustrated by 1709. As described above, TCP/ 
IP offload and content search offload are independent of each 
other and may each be done without the other in a system. 
However, one could also use the content search memory with 
the TCP/IP processor together as separate components or on 
the same device and achieve the performance benefits. 
0118 FIG. 18 illustrates an example content search API 
usage model. As discussed above, the content search memory 
may be used to accelerate content search portions of generic 
applications. To enable an ease of creation of new applica 
tions and migrate existing applications to leverage Such 
search memory acceleration capability this invention illus 
trates an application programming interface (API) for content 
search. An example content search API is illustrated in FIG. 
19 and described below. The content search API may reside in 
the user level or the kernel level with user level calls. Or a 
combination. The FIG. 18 illustrates the content search API at 
the user layer, 1807. The content search API would provide 
API functions that any application can call to get the benefit of 
content search acceleration. There would be a convention of 
usage for the applications to use the content search API. For 
example the application may be required to setup the search 
rules that can be configured on the search memory using the 
API calls before the application is run or may be required to 
dynamically create the rules and set them up in the appropri 
ate format so that they can be configured on the content search 
memory using the API or a combination. There would be API 
calling conventions that may be established dependent on the 
hardware system, the operating system or the search memory 
or a combination. The applications may then be coded to the 
API conventions and benefit from the search memory accel 
eration. The figure illustrates applications Appl. 1800 
through App N, 1803, working with the content search API, 
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1807 to get access to the content search memory/acceleration 
hardware, 1817, using logical interface paths illustrated as 
1812, 1813 and 1814. The content search API may access the 
services and resources provided by the content search 
memory/accelerator through a port driver which may be run 
ning under a kernel. The applications may pass the content to 
be searched directly through this interface or put the content 
to be searched as well as tables to be setup as needed, in the 
application’s buffers, 1804, 1805, and then instruct the con 
tent search memory to retrieve the information from these 
buffers through the content search API. The API may map 
these buffers to the kernel space so the port driver for the 
search API can provide them to the content search memory or 
the buffers may be made available for direct memory access 
by the search memory hardware. The search memory may 
store the content in on-chip or off-chip memory buffers, 1818, 
and then perform the requested search on the content. Once 
the search is complete the results of the search may be pro 
vided back to the application using a doorbell mechanism or 
a callback mechanism or data buffers or the like as allowed by 
the operating systems model. The content search API may 
provide a polling mechanism as well which may be used by 
the application to check and/or retrieve the search results. 
0119 FIG. 19 illustrates an example content search API 
with example functions. The figure illustrates a set of func 
tions which may be a part of the example content search API. 
Though, the list of functions may be more or less than those 
illustrated, the functions provide a basic set that would enable 
an application to use the content search memory hardware 
with the use of the API. The example functions do not illus 
trate the input, output or return parameters for API function 
calls, which may depend on the operating system, calling 
conventions and the like as can be appreciated by one with 
ordinary skill in the art. An application may use the API, by 
first querying the capabilities of the PRISM content search 
memory and then initializing it with appropriate rules, point 
ers, permissions and the like that may be required for the 
content search memory to communicate with the application 
and its resources through the kernel or the user mode or a 
combination. The application may set specific rules as thFA 
rules or NFA rules which may get configured in the search 
memory. An application may be given access to multiple 
contexts that it may be able to leverage to perform context 
based search. The application can start performing the search 
against its content once the content search memory is appro 
priately setup with all necessary rules. The application can 
communicate the content to be searched directly to the search 
memory using the API by sending a byte stream of the content 
through the interface. There may be versions of an API func 
tion, not illustrated, like sendData() which may be used by an 
application to start sending data to the search memory, start 
the search and to indicate when the search memory should 
stop searching. A more efficient way of performing the search 
may be that the application may fill a buffer or a set of buffers 
to be searched, and then provide the search memory with a 
pointer(s) to the buffer(s) so it can then start searching the 
buffers with the configured rules once it receives a call to start 
the search using an API call like startHWsearch(). The search 
memory may have been initialized to communicate the results 
of the search to the application through one of many mecha 
nisms like copying the results to a result buffer or storing the 
result on the memory associated with the search memory or 
invoking a callback function registered by the application to 
the operating system or the like. The search memory may also 
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communicate to the application with a doorbell mechanism to 
inform it that the search is done. There are many different 
ways of communicating the information as described earlier 
and may be dependent on the operating system and the system 
hardware architecture as can be appreciated by one with 
ordinary skill in the art. There may also be polling mechanism 
available with an API function like is Searchlone(), not 
illustrated, which may provide the answer to a query to the 
search memory whether a specific search is complete. If the 
answer from the PRISM memory to the application is that the 
search is done, then the application may ask for the specific 
result using an API call like getRes(), or the application may 
ask for a pointer to a buffer that may hold the result using an 
API call like getResPtr() illustrated in FIG. 19. Once the 
application is done with the specific search or is done using 
the search memory it may call the API function stoph 
Wsearch() to stop PRISM memory from performing the 
search for this application. There may also be an API call like 
remove AppContext() not illustrated, which may be called by 
the application to indicate to the OS and the search memory 
hardware that the application is done using the search 
memory and hence all its associated context may be freed-up 
by the search memory hardware for use by another applica 
tion that may need the search memory resources. There may 
be other hardware features specific API calls as well, like 
setRuleGroup(), selectRuleGroup(), setInitGroup() and the 
like, that may allow an application to create groups of rules 
and the order of their execution using mechanisms of rule 
grouping using the PRISM cluster arrays that may enable rule 
groups. As discussed earlier there may be many more func 
tions and variation of API functions that can be created to 
enable a general content search application acceleration using 
a hardware search memory from the teachings of this patent 
that will be appreciated by those with ordinary skill in the art. 
Thus it is possible to create a content search API to provide 
content search capabilities to general applications. Though, 
the description above is given with an example where the 
rules to be used are setup by an application before starting the 
search, it may be possible to update the rule set that is con 
figured in the search memory dynamically while the search is 
in progress by adding, removing and/or modifying the rules 
that have already been configured to start using the updated 
rule set for any future searches by the application. 
0120 FIG. 20 illustrates an example application flow 
(static setup) using the search memory. The flow illustrates a 
static process for setting up the rules and the search memory 
although as discussed above a dynamic setup is also feasible 
as would be obvious to one with ordinary skill in the art. The 
flow may allow an application to add/remove/modify rules in 
the search memory as the application executes at runtime to 
enable a dynamic flow. The illustration provides a mechanism 
where existing applications or new applications may be 
updated with content search rules and API calls which can 
enable the application to use a content search memory. An 
application source, 2000, may be updated, 2001 to create 
application source with modifications for content search 
where the content search rules may be setup in distinct code 
sections or may be clearly marked, 2002, as expected by the 
content search compiler coding conventions, which is then 
compiled by a content search aware compiler. 2003. The 
compiler generates an object code, 2004, with content search 
rules compiled in sections which a loader may use to config 
ure them in the search memory. The application object code 
may then be distributed to customers or users of content 
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search memory for accelerating the application's search per 
formance. The application code may be distributed electroni 
cally using the interact, worldwide web, enterprise network, 
or other network or using other means like a CD, DVD, or 
other computer storage that can be used to load the applica 
tion. The application update, 2001, may be done manually or 
using a tool or both as appropriate. The distributed object 
code, 2006, is read by the loader, 2007, or a similar function 
provided by an operating system to which the application is 
targeted, and setup for execution on the system. The loader or 
another function may use a set of content search API calls or 
a port driver or other OS function or a combination to con 
figure the content search memory with appropriate rules that 
the application needs as coded in the object code as illustrated 
by block 2008. Once the search memory hardware is setup 
and other resources that the application needs get reserved or 
setup, the application is started, 2009, by the OS. The appli 
cation may execute or perform tasks, 2010, if needed before 
content search. The application may then setup the content, 
2011, it needs to search by the search memory. Then it starts 
the search memory to perform search, 2013. Once the search 
is done it may retrieve the results, 2014. While the search is 
being conducted by the search memory, the application may 
continue to perform other tasks, 2012, on the main CPU or 
other elements of the system. If the application is done the 
application may exit, otherwise the application may continue 
the execution where more tasks may be performed including 
new search if necessary. The flow diagram illustrates the 
execution of tasks as a loop from 2015 to 2010, though the 
tasks being executed may be very different from one time to 
the next through the loop. The loop is not illustrated to mean 
that the same code sequence is being repeated. It is meant to 
illustrate that the type of tasks may be repeated. Further, not 
all tasks from 2010 through 2015 may need to be present in an 
application flow as may be appreciated by one with ordinary 
skill in the art. Once the application is done, it may release all 
the resources it uses beside those for the content search 
memory. 

I0121 FIG. 21 illustrates a PRISM search compiler flow 
(full and incremental rule distribution). The flow can be used 
for distributing search rules or security rules when the full set 
of rules are defined or when any updates or modifications are 
made to the rule set and incremental changes to the rule set 
need to be communicated and configured in the search 
memory. The search memory may be used in a distributed 
security architecture within System nodes across a network 
which may be a LAN, WAN, MAN, SAN, wireless or wired 
LAN and the like. The rules like application layer rules, 
network layer rules or storage network layer rules or any other 
search rules may be created using manual or automated 
means and provided as inputs to the search compiler flow in a 
predefined format. The search compiler's rule parser, 2104, 
parses the rules and converts them into regular expression 
format if the rules are not already in that form. Then the 
regular expression rules are converted into FSA rules com 
piled to the node capabilities of the node that has the content 
search memory and stored in the rules database. The rules 
from the rule database are retrieved and distributed by the 
rules distribution engine to the appropriate node(s) with the 
search memory. The search or security rules may be distrib 
uted to the host processor or a control processor or a host 
microprocessor or a network processor or a master processor 
or a combination thereof as appropriate depending on the 
node capability. The rules may be distributed using a secure 
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link or insecure link using proprietary or standard protocols 
as appropriate per the specific node's capability over a net 
work. The network may be a local area network (LAN), wide 
area network (WAN), internet, metro area network (MAN), 
wireless LAN, storage area network (SAN) or a system area 
network or another network type deployed or a combination 
thereof. The network may be Ethernet based, internet proto 
col based or SONET based or other protocol based or a 
combination thereof. 
0122) The PRISM memory of this invention may be manu 
factured into hardware products in the chosen embodiment of 
various possible embodiments using a manufacturing pro 
cess, without limitation, broadly outlined below. The PRISM 
memory in its chosen embodiment may be designed and 
verified at various levels of chip design abstractions like RTL 
level, circuit/schematic/gate level, layout level etc. for func 
tionality, timing and other design and manufacturability con 
straints for specific target manufacturing process technology. 
The design would be verified at various design abstraction 
levels before manufacturing and may be verified in a manu 
factured form before being shipped. The PRISM memory 
design with other Supporting circuitry of the chosen embodi 
ment at the appropriate physical/layout level may be used to 
create mask sets to be used for manufacturing the chip in the 
target process technology. The mask sets are then used to 
build the PRISM memory based chip through the steps used 
for the selected process technology. The PRISM memory 
based chip then may go through testing/packaging process as 
appropriate to assure the quality of the manufactured product. 
(0123 Thus the inventions of this patent cover various 
aspects like: 
0124. A memory architecture comprising programmable 
intelligent search memory (PRISM) for content search 
wherein the PRISM memory provides search capability for 
regular expression based search. 
(0.125. The PRISM memory further comprises an array of 
search memory circuits that provide the regular expression 
search functions for searching content from documents, mes 
sages or packets or other data received from the network or 
the local host or a master processor or a network processor or 
TCP Offload Engine or Processor or Storage Network pro 
cessor or a security processor or other processor or a combi 
nation thereof. 
0126 The PRISM memory further comprises of a plural 

ity of clusters of the search memory circuits that provide 
regular expression search functions for a plurality of regular 
expressions. The search memory circuits comprise of 
memory elements to store symbols of finite state automata 
representing the regular expressions. The search memory cir 
cuits further comprise memory elements to store mask vec 
tors (MV) that may be applied to the stored symbols. The 
mask vectors are coupled to the symbol memory elements and 
the content being searched through symbol evaluation cir 
cuits that detect whether the received content comprises of the 
symbols being searched. The search memory circuits further 
comprise of memory elements to store elements of State 
dependent vectors (SDV) which are used to decide the state 
traversal by the search memory for the finite state automata. 
The search memory circuits further comprise of match detect 
circuits that operate by coupling with the memory elements 
for symbols, MVs, SDVs, and the symbol evaluation circuits 
for multiple states of the FSAS to decide on the traversal of the 
states in the FSA based on the content being searched and the 
programmed symbols, SDVs, and MVs. The search memory 
circuits may further comprise tag and match detect circuits 
that operate to provide tagged FSA and regular expression 
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search, wherein the tagged FSA is used to detect Sub-string or 
partial regular expression match beside a full regular expres 
sion match. 
I0127. The memory elements of the PRISM memory com 
prise of Static or dynamic memory cells. The memory ele 
ments are each independently addressable in a random order. 
The PRISM memory further comprises of circuits to couple 
the content search memory with other logic to provide cou 
pling with processors that can interface to the PRISM 
memory integrated circuits. The PRISM memory further 
comprises of a controller for interfacing with the processors 
to receive the content to be searched. The PRISM memory 
may further comprise of address decode logic circuits which 
decode the received address to select the specific static or 
dynamic memory cells location to be read or written. The 
memory elements of the search memory may each be 
uniquely addressed to read or write appropriate values in the 
memory elements. The address decoding logic and the con 
troller generate control signals necessary to address the 
appropriate memory locations of the static or dynamic 
memory cells based search memory. The control signals are 
coupled to the PRISM arrays as a series of word lines and bit 
lines that can randomly be used to access desired memory 
locations. 
I0128. The memory elements of PRISM support detection 
of character pattern strings. The PRISM memory comprises 
of symbol detection circuits and may optionally comprise of 
mask vectors per symbol bits, that may be used to evaluate 
received character string using simple XOR based compare or 
other logic function and create a match indication. The 
PRISM match signal processing circuits may logically com 
bine multiple match signals from each symbol detection 
block to generate a composite match signal which would be 
activated only if all the symbols have a match. The composite 
match signal creates a match functionality like a traditional 
CAM chip and thus enable PRISM chip to be partially or fully 
configured to behave like a CAM provide a pattern matching 
functionality beside regular expression search. 
I0129. While the foregoing, has been with reference to 
particular embodiments of the invention, it will be appreci 
ated by those with ordinary skill in the art that changes in 
these embodiments may be made without departing from the 
principles and spirit of the invention. 

1. A memory architecture comprising programmable intel 
ligent search memory for content search wherein said pro 
grammable intelligent search memory comprises dynamic 
random access memory circuits and performs regular expres 
sion based search. 

2. An integrated circuit chip comprising programmable 
intelligent search memory for content search wherein said 
programmable intelligent search memory comprises 
dynamic random access memory circuits and performs regu 
lar expression based search. 

3. A hardware processor comprising an integrated circuit 
chip memory said integrated circuit chip memory comprising 
programmable intelligent search memory for content search, 
wherein said programmable intelligent search memory com 
prises dynamic random access memory circuits and performs 
regular expression based search. 

4. An integrated circuit chip of claim 2 comprising a pro 
cessor comprising memory, said memory comprising said 
programmable intelligent search memory for content search, 
wherein said programmable intelligent search memory per 
forms regular expression based search. 
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