6/050289 A1 |0V Y 200 0 O

e
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
11 May 2006 (11.05.2006)

TR
A 0 O 0 O OO A

(10) International Publication Number

WO 2006/050289 A1l

(51) International Patent Classification:
GOGF 12/08 (2006.01)

(21) International Application Number:
PCT/US2005/039322

(22) International Filing Date: 27 October 2005 (27.10.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/977,830 28 October 2004 (28.10.2004) US

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-
vard, Santa Clara, California 95052 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): EDIRISOORIYA,
Samantha [LK/US]; 640 E. Vinedo Lane, Tempe, Arizona
85284 (US).

(74) Agents: VINCENT, Lester et al.; BLAKELY
SOKOLOFF TAYLOR & ZAFMAN, 12400 WILSHIRE
BOULEVARD, 7th Floor, Los Angeles, California 950025
(US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(84)

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR PUSHING DATA INTO A PROCESSOR CACHE

[110

—120

PROCESSOR

CACHE

MEMORY CONTROLLER

PREFETCH

0

160
1/0 CONTROLLER

DATA
BUFFER

PREFETCH
PUSH
LOGIC PREDICTIC;]

A

\ 4

156—/

LOGIC

MEMORY

Y
180M
tle}
DEVICE

(57) Abstract: An arrangement is provided for using a centralized pushing mechanism to actively push data into a processor cache
& in a computing system with at least one processor. Each processor may comprise one or more processing units, each of which may
& be associated with a cache. The centralized pushing mechanism may predict data requests of each processing unit in the computing
system based on each processing unit’s memory access pattern. Data predicted to be requested by a processing unit may be moved
from a memory to the centralized pushing mechanism which then sends the data to the requesting processing unit. A cache coherency
protocol in the computing system may help maintain the coherency among all caches in the system when the data is placed into a

cache of the requesting processing unit.

10

15

20

25

30

WO 2006/050289 PCT/US2005/039322

METHOD AND APPARATUS FOR PUSHING DATA
INTO A PROCESSOR CACHE

BACKGROUND

1. FIELD
The present disclosure relates generally to cache architecture in a
computing system and, more specifically, to a method and apparatus for pushing

data into a processor cache.

2. DESCRIPTION

The execution time of programs that have large code and/or data footprints
is significantly affected by the overhead of retrieving data from the memory
system. The memory overhead may substantially increase the total execution
time. Modern processors typically implement prefetches in hardware in order to
anticipatorily fetch data into the processor caches. Prefetching hardware
associated with a processor tracks spatial and temporal access patterns of
memory accesses and issues anticipatory requests to system memory on behalf
of the processor. This helps in reducing the latency of a memory access when the
program executing on the processor actually requires the data. For this
disclosure, the word “data” will refer to both instructions and traditional data. Due
to the prefetch, the data can be found in cache with a latency that is usually much
smaller than system memory access latency. Typically, such prefetching
hardware is distributed with each processor. If not all processors (e.g., a digital
signal processor (DSP)) in a computing system have prefetching hardware, such
processors will not be able to perform hardware-based prefetches. This results in

an imbalance of performance among processors.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present disclosure will become

apparent from the following detailed description of the present disclosure in which:

10

15

20

25

30

WO 2006/050289 PCT/US2005/039322

Figure 1 is a schematic diagram illustrating a single-processor computing
system of which the memory controller may actively push data into a cache of the
processor;

Figure 2 is a flowchart illustrating an example process of using a memory
controller to push data into a processor cache in a single-processor computing
system, assuming MOESI cache protocol is used;

Figure 3 is a diagram illustrating a multiple-processor computing system of
which the memory controller may actively push data into a cache of a processor;

Figures 4 and 5 illustrate a flowchart of an example process of using a
memory controller to push data into a processor cache in a multiple-processor
computing system, assuming MOESI cache protocol is used; and

Figure 6 is a diagram illustrating a computing system of which a centralized
pushing mechanism may be used to actively push data into a cache of a

processor.

DETAILED DESCRIPTION

An embodiment of the present invention comprises a method and
apparatus for using a centralized pushing mechanism to push data into a
processor cache. For example, a memory controller may be adapted to act as the
centralized pushing mechanism to push data into a processor cache in either a
single-processor computing system or a multiple-processor computing system.
The centralized pushing mechanism may comprise request prediction logic to
predict a processor's requests of code/data based on this processor's memory
access patterns. The centralized pushing mechanism may also comprise a

prefetch data buffer to temporarily store the code/data that is predicted to be

__desired by a processor. Additionally, the centralized pushing mechanism may

further comprise push logic to issue a push request and to actively push the
code/data stored in the prefetch data buffer onto a system interconnecting bus.
The target processor may accept the push request issued by the centralized
pushing mechanism and claim the code/data from the system interconnecting bus.
The target processor may either place the code/data into a cache of its own or

2

10

15

20

25

30

WO 2006/050289 PCT/US2005/039322

discard the code/data, according to the state of cache line(s) of the code/data in
its own cache and/or in caches of other processors in the system. Moreover, the
push request may cause changes to the states of the cache line(s) in all caches in

the system to ensure cache coherency.

Reference in the specification to “one embodiment” or “an embodiment” of
the present invention means that a particular feature, structure or characteristic
described in connection with the embodiment is included in at least one
embodiment of the present invention. Thus, the appearances of the phrase “in
one embodiment” appearing in various places throughout the specification are not
necessarily all referring to the same embodiment.

Figure 1 depicts a single-processor computing system 100 of which the
memory controller may actively push data into a cache of the processor. The
system 100 comprises processor 110 coupled to an interconnect (e.g. a bus) 130.
A cache 120 may be associated with the processor 11 0. In one embodiment, the
processor 110 may be a processor in the Pentium® family of processors
including, for example, Pentium® 4 processors, Intel's XScale® processor, Intel’'s
Pentium® M processors, etc., available from Intel Corporation. Alternatively,
other processors from other manufacturers may also be used. In another
embodiment, the processor 110 may be a digital signal processor (DSP).

A cache 120 may be associated with the processor 110. In one
embodiment, the cache 120 may be integrated in the same integrated circuit with
the processor. In another embodiment, the cache 120 may be physically
separated from the processor. The cache 120 is arranged such that the
processor may access code/data faster in the cache than access data in a
memory 170 in the system 100. The cache 120 may comprise different levels
(e.g., three levels; the processor’s access latency to the first level is typically

‘shorter than that to-the second or third level; and the processor’s access latency

to the second level is typically shorter than that to the third level).

The computing system 100 may be coupled with a chipset 140 which may
comprise a memory controller 150 (Figure 1 is a schematic which includes circuits
not shown). The memory controller 150 is connected to a memory 170 to handle
data traffic to and from the memory 170. The memory 170 may store data that is

3

10

15

20

25

30

WO 2006/050289 PCT/US2005/039322

used or executed by the processor 110 or any other device included in the
system. For one embodiment, the main memory 150 may include one or more of
dynamic random access memory (DRAM), read-only mermory (ROM), Flash
memory, etc. The memory controller may be a part of a rmemory control hub
(MCH) (not shown in Figure 1), which may be coupled to an input/output (I/O)
control hub (ICH) (not shown in Figure 1) via a hub interface. In one embodiment,
both the MCH and the ICH may be included in the chipset 140. The ICH may
include an 1/O controller 160 which provides an interface to I/ devices 180 (e.g.,
180A, ..., 180M) within the computing system 100. /O devices 180 may be
connected to the /O controller through an 1/O bus. Some 1/O devices may be
connected to the 1/0 controller 160 via wireless connections.

The memory controller 150 may comprise push logic 152, a prefetch data
buffer 154, and prefetch prediction logic 156. The prefetch prediction logic 156
may analyze memory access patterns of the processor 110 (both temporarily and
spatially) and predict the processor's future data requests based on the
processor's memory access patterns. Based on the prediction by the prefetch
prediction logic, the data predicted to be desired by the processor may be moved
from the memory 170 and temporarily stored in the prefetch data buffer 154. The
push logic may issue a request to the processor to push the data from the
prefetch data buffer 154 to the cache 120. A push request may be sent for each
cache line of data to be pushed. If the processor 110 accepts the push request,
the push logic 152 may put the data on the bus 130 so that the processor may
claim the data from the bus; otherwise, the push logic 152 rmay retry issuing the
push request to the processor.

The computing system 100 may run a cache coherercy protocol. In one
embodiment, a 4-state cache coherency protocol, MESI protocol, may be used.
Under the MESI protocol, a cache line may be marked as One of four states: M
(Modified), .E (Exclusive), S (Shared), and | (Invalidate). The M state of a cache
line indicates that this cache line was modified and the underlying data (e.g.,
corresponding data in the memory) is older than this cache line and thus is no
longer valid. The E state of a cache line indicates that thiis cache line is only
stored in this cache and hasn't been changed by a write access yet. The S state
of a cache line indicates that this cache line may be stored in other caches of the

4

10

15

20

25

30

WO 2006/050289 PCT/US2005/039322

system. The | state of a cache line indicates that this cache line is invalid. In
another embodiment, a 5-state cache coherency, MOESI protocol, may be used.
The MOESI protocol has one more state — O (owned) — than the MESI protocol.
However, an S state in the MOESI protocol is different from an S state in the
MESI protocol. Under an S state with the MOESI protocol, a cache line may be
stored in other caches of the system, but was modified and is not consistent with
the underlying data in the memory. The cache line can only be modified by one
processor and has an O state in this processor's cache, but has an S state in
other processors’ caches. In the description that follows, the MOESI protocol will
be used as ah example cache coherency protocol. However, those skilled in the
art will appreciate that the same principles can be applied to any other cache
coherency protocols such as the MESI and MSI (Modified, Shared, and Invalid)
cache coherency protocols.

The bus 130 in the computing system may be a front side bus (FSB) or any
other type of system interconnection bus. When the push logic 152 in the memory
controller 150 puts data on the bus 130, it also includes a destination identification
of the data (“target ID”). A processor (e.g., the processor 110) that is connected
to the bus 130 and whose ID matches the target ID of the pushed data may claim
the data from the bus. In one embodiment, the bus may have a “push” function,
under which the address portion of a bus transaction may include a field indicating
whether the “push” function is enabled (e.g., value 1 means enabled and value “0”
means disabled); and if the “push” function is enabled, a field or a portion of a field
may be used to indicate a destinat.ion identification of the pushed data (“target
ID"). The bus with the “push” function may also provide a command (e.g.,
Write_Line) to perform cache line writes on the bus. Thus, when the “push” field
is set during a Write_Line transactioh, a processor on the bus will claim the
transaction if the target ID provided with the transaction matches the processor’s -
own ID. Once the transaction is claimed by the targeted processor, the push logic
152 of the memory controller 150 may provide data from the prefetch data buffer
154 into the cache 120.

When the processor 110 claims the pushed cache line from the bus 130,
the processor may or may not decide to place the cache line into the cache 120
such that the cache coherency is not disrupted. The processor 110 needs to

5

10

15

20

25

30

WO 2006/050289 PCT/US2005/039322

check whether the cache line is present in the cache (i.e., whether the data is new
to the cache or not). If the cache line is new to the cache 120, the processor may
place the cache line into the cache; otherwise, the processor needs to further
check the state of the cache line in the cache 120. If the cache line in the cache
120 is in the | state, the processor 110 may replace this cache line with the one
claimed from the bus: and otherwise, the processor 110 will discard the claimed
cache line without writing it into the cache 120.

Although a single-processor computing system, which may use a membry
controller to push data into a processor cache, is illustrated in Figure 1, a person
of ordinary skill in the art will appreciate that a variety of other arrangements may
also be utilized.

Figure 2 illustrates an example process of using a memory controller to
push data into a processor cache in a single-processor computing system. In
block 205, the processors memory access patterns (both spatially and
temporarily) may be analyzed. In block 210, a prediction of the processor’s future
data requests may be made based on the analysis result obtained in block 205.
In block 215, data which will be desired by the processor in the future according to
the prediction made in block 210 may be moved from the memory to a buffer in
the memory controller (e.g., prefetch data buffer 154 as shown in Figure 1). In
block 220, a request to push the desired data into a cache associated with the
processor (e.g., cache 120 as shown in Figure 1) may be issued. One push
request for each cache line of the desired data may be issued.

in block 225, a decision whether the processor accepts the push request
issued in block 220 may be made. The “push” field of the cache line write
transaction may be set (i.e., the “push” function is enabled) and the target ID may
be included in the transaction. This cache line write transaction with “push™ may
be claimed by the processor if the processor’s own ID matches the target D in the
transaction. If the processor does not accept the push request, a retry instruction
may be made in block 230 so that the push request may be reissued in block 220.
If the processor accepts the push request, a cache line of data to be pushed may
be put on a bus, which connects the memory controiler and the processor, as a
write data transaction in block 235. The target ID may be included in the write
data transaction. Here it is assumed that write operation with “push” is executed

6

10

15

20

25

30

WO 2006/050289 PCT/US2005/039322

as a split transaction having a request phase and data phase. However, it is
possible to have an interconnect that supports immediate write operation with
“push”, where the push data is provided during or immediately after the address
(request) phase.

In block 245, the cache of the processor may be checked to see if the
claimed cache line is present. If the claimed cache line is new (i.e., not present in
the cache) to the cache, on one hand, the claimed cache line is placed in the
cache with its state being set as E in block 260. If the claimed cache line is
present in the cache, on the other hand, the state of the cache line present in the
cache may be further checked. If the state is | (i.e., invalid), this cache line in the
cache is replaced with the claimed cache line with its state being set as E in block
250. If the state of the cache line in the cache is M, O, E, or S (i.e., a hit for the
processor), the claimed data may be discarded by the processor in block 255,
without changing the state of the cache line in the cache.

Although a full cache line push is assumed in the above description, a
person of ordinary skill in the art will appreciate the disclosed techniques and
readily apply them to any partial cache line push, with or without modifications.

Figure 3 depicts a multiple-processor computing system 300 of which the
memory controller may actively push data into a cache of a processor. The
system 300 is similar to the computing system 100 shown in Figure 1. Unlike the
system 100 that comprises a single processor, the system, the system 300
comprises multiple processors, 110A, ..., 110N. Each processor has a cache
(e.g., 120A, ..., 120N) associated with it. A cache (e.g., 120A) is arranged such
that its associated processor can access data in the cache faster than data in the
memory 170. All processors are connected fo each other through a bus 130 and
are coupled, through the bus 130, to a chipset 140 that comprises a memory
controller 150 and an |/O controller 160.

The memory controller. 150_may. comprise push logic 152, a prefetch data
buffer 154, and prefetch prediction logic 156. In the system 300, the prefetch
prediction logic 156 may analyze memory access patterns (both temporarily and
spatially) of all the processors, 110A through 110N, and may predict each
processor’s future data requests based on its memory access patterns. Based on
such predictions, data that is likely be requested by each processor may be

7

10

15

20

25

30

WO 2006/050289 PCT/US2005/039322

moved from the memory 170 and temporarily stored in the prefetch data buffer
154. The push logic may issue a request to push the data from the prefetch data
buffer 154 to a cache of a requesting processor. One push request per cache line
of data to be pushed may be issued. A push request including the identification of
a target processor (“target ID”) may be sent to all processors via the bus 130, but
only the targeted processor whose identification matches the target ID needs to
respond to the push request. If the targeted processor accepts the push request,
the push logic 152 may put the cache line on the bus 130 so that the targeted
processor may claim the cache line from the bus; otherwise, the push logic 152
may retry issuing the push request to the targeted processor. When muitiple
processors are collaborating with each other and performing the same task, the
prefetch prediction logic may make a global prediction what data is likely to be
needed by all the processors. Based on such a global prediction, data that is
likely needed by all the processors may be pushed to caches of all the processors
(e.g., the data is broadcasted to all the processors) by the push logic 152.

Similar to what is described along with Figure 1, the push logic 152 may
use any system interconnection bus transactions to push data into a cache of a
targeted processor. If the bus has the “push” functionality, the push logic 152 may
use such functionality to push the data. The targeted processor may claim the
data from the bus, but may or may not actually place the data in its cache such
that cache coherency among multiple processors is not disrupted. Whether the
targeted processor will actually place the data in its cache depends not only on
states of the relevant cache lines in the targeted processor’s cache, but also on
the states of corresponding cache lines in non-targeted processors’ caches. A
detailed description of how to maintain cache coherency when pushing data into a
processor cache by a memory controller in a multiple-processor computing
system will be discussed in connection with Figures 4 and 5.

_ _ Figures 4 and 5 illustrate an example process of using a memory controller
to push data into a processor cache in a multiple-processor computing system. In
block 402, each processor's memory access patterns (both spatially and
temporarily) may be analyzed. In block 408, a prediction of each processor's
future data requests may be made based on analysis results obtained in block
402. If multiple processors are collaborating with each other and performing the

8

10

15

20

25

30

WO 2006/050289 PCT/US2005/039322

same task, a global prediction what data is likely needed by all the processors
may be needed. In block 412, data which is likely to be requested by each
processor according to the prediction made in block 408 may be moved from the
memory to a buffer in the memory controller (e.g., prefetch data buffer 154 as
shown in Figure 3). In block 416, a request to push data desired by a processor
into a cache associated with the processor (e.g., cache 120B as shown in Figure
3) may be issued. A push request per cache line of data may be issued. A push
request may be sent out via a system interconnection bus and may reach all
processors connected to the bus, but only a processor whose ID matches match
the target ID included in the push request will respond to the push request. A
targeted processor may or may not accept the push request.

In block 420, a decision whether a targeted processor accepts the push
request issued in block 416 may be made. The “push” field of the cache line write
transaction may be set (i.e., the “push” function is enabled) and the target ID may
be included in the transaction. This cache line write transaction with “push” may
be claimed by the processor if the processor’s own ID matches the target ID in the
transaction. If the targeted processor does not accept the push request, a retry
instruction may be made in block 424 so that the push request may be reissued in
block 416. If the targeted processor accepts the push request, the cache line of
data to be pushed may be put on a bus, which connects the memory controller
and the processor, as a write data transaction in block 428. Here it is assumed
that write operation with “push” is executed as a split transaction having a request
phase and data phase. However, it is possible to have an interconnect that
supports immediate write operation with “push”, where the push data is provided
during or immediately after the address (request) phase. Before deciding to place
the claimed cache line into a cache of the targeted processor, measures need to
be taken to ensure the cache coherency among all caches of the targeted

- processor and non-targeted processors.

In block 436, the cache of the targeted processor may be checked to see 1f
the pushed cache line claimed from the bus is present. If the claimed cache line
is present in the cache, on one hand, the state of the cache line in the cache may
be further checked. If the state of the cache line is M, O, E, or S (i.e., a hit for the
processor), the claimed cache line may be discarded by the targeted processor in

9

10

15

20

25

30

WO 2006/050289 PCT/US2005/039322

block 440; and the state of the cache line in the cache remains unchanged. If the
claimed cache line is new to the cache or if it is not new but the cache line in the
cache has an | state, on the other hand, further actions are performed in block
444 of Figure 5 to check whether the claimed cache line is new to any of the other
caches, and to check the state of the cache line in any of the other caches if it is
not new to any of the other caches.

If the claimed cache line is new to caches of all the non-targeted
processors, the claimed cache line may be placed in the cache of the targeted
processor with its state being set as E in block 480 of Figure 5. If the claimed
cache line is present in one or more caches of non-targeted processors, but states
of the cache lines in all those caches are |, then the claimed cache line may be
used to replace its corresponding cache line in the targeted processor cache with
a new E state being set for the replaced cache line in block 448.

If the claimed cache line is present in a non-targeted processor cache with
an E or S state and none of the non-targeted processors has the cache line in
either M or O state, the claimed cache line may be used to replace its
corresponding cache line in the targeted processor cache with an S state being
set for the replaced cache line in block 452. In block 456, the state of the cache
line in the non-targeted processor cache is changed from E to S.

If the claimed cache line is present with an M or O state in one non-
targeted processor cache, this means that at least one non-targeted processor
cache has a more updated version of the cache line than the memory. In this
case, a request for retrying to issue a push request may be sent out in block 460.
In block 464, the corresponding cache line with the M/O state may be written back
from the non-targeted processor cache to a buffer in the memory controlier (e.g.,
prefetch data buffer 154 as shown in Figure 3). As a result of writing back, the
state of the corresponding cache line with the M state in one non-targeted

_processor cache is changed from M to O in block 468. In block 472, the written

back cache line from block 468 may be retrieved from the buffer in the memory
controller and used to replace the corresponding cache line in the targeted
processor cache. The state of the cache line replaced with the written back cache
line in the targeted processor cache may be set as S in block 476.

10

10

15

20

25

30

WO 2006/050289 PCT/US2005/039322

Although a full cache line push is assumed in the above description, a
person of ordinary skill in the art can appreciated the disclosed techniques may be
readily made to apply to any partial cache line push.

Although Figures 1 and 3 depict computing systems using a memory
controller to push data into a processor cache, a person of ordinary skill in the art
will appreciate that a variety of other arrangements may also be utilized. For
example, a centralized pushing mechanism as shown in Figure 6 may be used to
achieve the same or similar purposes.

Figure 6 depicts a computing system 600 of which a centralized pushing
mechanism may be used to actively push data into a cache of a processor. The
computing system 600 comprises two processors 610A and 610B, memories
620A and 620B, a centralized pushing mechanism 630, an 1/O hub (IOH) 650, a
Peripheral Component Interconnect (PCl) bus 660, and at least one 1/O device
670 coupled to the PCI bus 660. Each processor (e.g., 610A) may comprise one
or more processing cores, 611A, 611B, ..., 611M. Each processing core may run
a program which needs data from a memory (e.g., 620A or 620B). In one
embodiment, each processing core may have its own cache such as 613A, 613B,
..., 613M aé shown in the figure. In another embodiment, some or all of the
processing cores may share a cache. Typically, a processing core can access
data in its cache more efficiently than it accesses data in memory 620A or 620B.
Each processor (e.g., 610A) may also comprise a memory controller (e.g., 615)
coupled to a memory (e.g., 620A) to control traffic to/from the memory.
Additionally, a processor may comprise a link interface 617 to provide point-to-
point connections (e.g., 640A and 640B) between the processor, the centralized
pushing mechanism 630, and the IOH 650. Although Figure 6 shows two
processors, the system 600 may comprise only one processor or more than two
processors.

The memories 620A_and 620B both store data that are needed by
processors or any other device included in the system 600. The IOH 650 provides
an interface to input/output (//O) devices in the system. The IOH may be coupled
to a Peripheral Component Interconnect (PCI) bus 660. The I/O device 670 may
be connected to the PCl bus. Although not shown, other devices may also be
coupled to the PCI bus and the ICH.

11

10

15

20

25

30

WO 2006/050289 PCT/US2005/039322

The centralized pushing mechanism 630 may comprise push logic 632, a
prefetch data buffer 634, and prefetch prediction logic 636. In the system 600, the
prefetch prediction logic 636 may analyze memory access patterns (both
temporarily and spatially) of all processing cores (e.g., 611A through 611M) in
each processor (e.g., 610A and 610B), and may predict each processing core’s
future data requests based on its memory access patterns. Based on such
predictions, data that is likely be requested by each processing core may be
moved from a memory (e.g., 620A or 620B) and temporarily stored in the prefetch
data buffer 634. The push logic 632 may issue a request to push the data from
the prefetch data buffer 634 to a cache of a requesting processing core. One
push request per cache line of data to be pushed may be issued. A push request
including the identification of a target processing core (“target ID”) may be sent to
all processing cores via the point-to-point connections (e.g., 640A or 640B), but
only the targeted processing core whose identification matches the target ID
needs to respond to the push request. If the targeted processing core accepts the
push request, the push logic 632 may put the cache line on the point-to-point
connections from which the targeted processing core may claim the cache line;
otherwise, the push logic 632 may retry issuing the push request to the targeted
processing core. When multiple processing cores are collaborating with each
other and performing the same task, the prefetch prediction logic may make a
global prediction what data is likely to be needed by those processing cores.
Based on such a global prediction, data that is likely needed by those processors
may be pushed to their caches by the push logic 632. Although the centralized
pushing mechanism 630 is separate from the IOH 650 as shown in Figure 6, the
mechanism may be combined with the IOH in one circuitry or may be an integral
part of the IOH in other embodiments.

Similar to what is described along with Figures 1 and 3, the push logic 632
may use any system_interconnection (e.g., point-to-point connection) transactions
to push data into a cache of a targeted processor. If the system interconnection
has the “push” functionality, the push logic 632 may use such functionality to push
the data. The targeted processing core may claim the data from the system
interconnection, but may or may not actually place the data in its cache such that
cache coherency among multiple processors is not disrupted. Whether the

12

10

15

20

25

30

WO 2006/050289 PCT/US2005/039322

targeted processing core will actually place the data in its cache depends not only
on states of the relevant cache lines in the targeted processor core’s cache, but
also on the states of corresponding cache lines in non-targeted processor cores’
caches. An approach similar to that illustrated in Figures 4 and 5 may be used to

maintain cache coherency in the system 600.

Although an example embodiment of the disclosed techniques is described
with reference to diagrams in Figures 1-6, persons of ordinary skill in the art will
readily appreciate that many other methods of implementing the present invention
may alternatively be used. For example, the order of execution of the functional
blocks or process procedures may be changed, and/or some of the functional
blocks or process procedures described may be changed, eliminated, or
combined.

In the preceding description, various aspects of the present disclosure have
been described. For purposes of explanation, specific numbers, systems and
configurations were set forth in order to provide a thorough understanding of the
present disclosure. However, it is apparent to one skilled in the art having the
benefit of this disclosure that the present disclosure may be practiced without the
specific details. In other instances, well-known features, components, or modules
were omitted, simplified, combined, or split in order not to obscure the present
disclosure.

The disclosed techniques may have various design representations or
formats for simulation, emulation, and fabrication of a design. Data representing a
design may represent the design in a number of manners. First, as is useful in
simulations, the hardware may be represented using a hardware description
language or another functional description language which essentially provides a
computerized model of how the designed hardware is expected to perform. The
hardware model may be stored in a storage medium such as a computer memory
so that the model may be simulated using simulation software that applies a
particular test suite to the hardware model to determine if it indeed functions as
intended. In some embodiments, the simulation software is not recorded,

captured, or contained in the medium.

13

10

15

20

25

WO 2006/050289 PCT/US2005/039322

Additionally, a circuit level model with logic and/or transistor gates may be
produced at some stages of the design process. This model may be similarly
simulated, sometimes by dedicated hardware simulators that form the model
using programmable logic. This type of simulation, taken a degree further, may
be an emulation technique. In any case, re-configurable hardware is another
embodiment that may involve a machine readable medium storing a model
employing the disclosed techniques.

Furthermore, most designs, at some stage, reach a level of data
representing the physical placement of various devices in the hardware model. In
the case where conventional semiconductor fabrication techniques are used, the
data representing the hardware model may be the data specifying the presence or
absence of various features on different mask layers for masks used to produce
the integrated circuit. ~Again, this data representing the integrated circuit
embodies the techniques disclosed in that the circuitry or logic in the data can be
simulated or fabricated to perform these techniques.

In any representation of the design, the data may be stored in any form of a
computer readable medium or device (e.g., hard disk drive, floppy disk drive, read
only memory (ROM), CD-ROM device, flash memory device, digital versatile disk
(DVD), or other storage device). Embodiments of the disclosed techniques may
also be considered to be implemented as a machine-readable storage medium
storing bits describing the design or the particular part of the design. The storage
medium may be sold in and of itself or used by others for further design or
fabrication.

While this disclosure has been described with reference to illustrative
embodiments, this description is not intended to be construed in a limiting sense.
Various modifications of the illustrative embodiments, as well as other

embodiments of the disclosure, which are apparent to persons skilled in the art to

‘which the disclosure pertains are deemed to lie within the spirit and scope of the

disclosure.

14

10

15

20

25

WO 2006/050289 PCT/US2005/039322

CLAIMS

What is claimed is:

1. An apparatus for pushing data from a memory into a cache of a
processing unit in a computing system, comprising:

request prediction logic to analyze memory access patterns by the
processing unit and to predict data requests of the processing unit based on the
memory access patterns; and

push logic to issue a push request per cache line of data predicted to be
requested by the processing unit, and to send the cache line associated with the
push request to the processing unit if the processing unit accepts the push

request, the processing unit placing the cache line in the cache.

2. The apparatus of claim 1, further comprising a prefetch data buffer to
temporarily store the data predicted to be requested by the processing unit, the
data retrieved from the memory.

3. The apparatus of claim 1, wherein the computing system comprises at
least one processor, each processor including at least one processing unit.

4. The apparatus of claim 1, wherein the request prediction logic analyzes
memory access patterns by each processing unit in the computing system and to
predict data requests of each processing unit based on the memory access
patterns; and the push logic pushes data predicted to be requested by each
processing unit to a cache of a targeted processing unit.

5. The apparatus of claim 1, wherein the computing system comprises a

~ coherency protocol to ensure coherency among caches in the computing system

when the request cache line is placed in the cache of the processing unit.

6. A computing system, comprising:
at least one processor, each processor including at least one processing

unit associated with a cache;

15

10

15

20

25

WO 2006/050289 PCT/US2005/039322

at least one memory to store data accessible by each processing unit in the
system; and

a centralized pushing mechanism to facilitate data traffic to and from the at
least one memory, to predict data requests of each processing unit in the system,
and to actively push data into a cache of a targeted processing unit in the at least
one processor based on the predicted data requests of the targeted processing

unit.

7. The computing system of claim 6, wherein a processing unit has faster
access to data in a cache associated with the processing unit than to data in the

at least one memory.

8. The computing system of claim 6, further comprising a cache coherency
protocol to ensure coherency among caches in the computing system when the
data predicted to be requested by the targeted cache is placed in the cache.

9. The computing system of claim 6, wherein the centralized pushing
mechanism comprises:

request prediction logic to analyze memory access patterns by each
processing unit in the system and to predict data requests of each processing unit
based on the memory access patterns; and

push logic to issue a push request per cache line of data predicted to be
requested by a processing unit, and to send the cache line associated with the
push request to the processing unit if the processing unit accepts the push

request.

10. The computing system of claim 9, further comprising a prefetch data

_ buffer to temporarily store data predicted to be requested by a processing unit

before the data is sent to the processing unit, the data retrieved from the memory.

11. The computing system of claim 6, wherein the at least one processor

and the centralized pushing mechanism are coupled to a bus, the centralized

16

10

15

20

25

WO 2006/050289 PCT/US2005/039322

pushing mechanism sending data to the targeted processing unit through bus

write transactions.

12. The computing system of claim 11, wherein the bus comprises a push
functionality and a cache line write transaction, the push functionality enabled
during the cache line write transaction when the centralized pushing mechanism
sends a cache line to a targeted processing unit through a cache line write
transaction, wherein a cache line write transaction comprises an identification of

the targeted processing unit.

13. The computing system of claim 12, wherein a cache line sent through a
cache line write transaction is claimed by a processing unit whose identification

matches the identification of the targeted processing unit in the transaction.

14. The computing system of claim 6, wherein the centralized pushing

mechanism is a memory controller.

15. A method for using a centralized pushing mechanism to push data into
a processor cache, comprising:

analyzing a memory access pattern by a processor;

predicting data requests of the processor based on the processor’s
memory access pattern;

issuing a push request for data predicted to be requested by the processor;
and

pushing the data into a cache of the processor.

16. The method of claim 15, further comprising moving the data from a
memory to a buffer in the centralized pushing mechanism before issuing the push

request.

17. The method of claim 15, further comprising ensuring cache coherency

when pushing the data into the cache of the processor.

17

WO 2006/050289 PCT/US2005/039322

18. The method of claim 15, wherein issuing the push request comprises
issuing a push request for each cache line of the data predicted to be requested

by the processor.

19. The method of claim 18, wherein pushing a cache line of data
5 comprises:

determining if the processor accepts the push request;

if the processor accepts the push request,
sending the cache line to the processor as a bus transaction, and
claiming the cache line from the bus by the processor; and

10 otherwise,

retrying to issue the push request.

20. The method of claim 19, further comprising handling the cache line

claimed from the bus to ensure cache coherency.

21. The method of claim 19, wherein sending the cache line to the
15 processor as a bus transaction comprises using a cache line write transaction of
the bus and enabling a push functionality of the cache line write transaction.

22. A method for using a centralized pushing mechanism to push data into
a cache of a processing unit, comprising:
analyzing memory access patterns by each processing unitin a plurality of
20 processors, each processor including at least one processing unit;
predicting data requests of each processing unit based on each processing
unit's memory access pattern;
issuing at least one push request for data predicted to be requested by
- each processing unit; and. _

25 pushing data predicted to be requested by a processing unit into a cache of

the processing unit.

18

10

15

20

25

WO 2006/050289 PCT/US2005/039322

23. The method of claim 22, wherein predicting data requests comprises
predicting a common data request among multiple processing units in the plurality

of processors.

24. The method of claim 22, further comprising moving the data predicted
to be requested by each processing unit from a memory to a buffer in the
centralized pushing unit before issuing the at least one push request.

25. The method of claim 22, wherein issuing the at leasst one push request
comprises issuing a push request per each cache line of the data predicted to be
requested by each processing unit, the push request including an identification of

a targeted processing unit.

26. The method of claim 25, wherein pushing a cache line of data to a
cache of a targeted processing unit comprises:

determining if the targeted processing unit accepts the push request;
if the targeted processing unit accepts the push requesst,

sending the cache line to the plurality of processors as a bus
transaction, the bus transaction including an identification of a processing
unit to which the cache line is sent, and

claiming the cache line from the bus by the targeted processor if the
targeted processor’s identification matches the identification of the
processor to which the cache line is sent; and
otherwise,

retrying to issue the push request.

27. The method of claim 26, wherein sending the cache line to the plurality
of processors as a bus transaction comprises using a cache line write transaction
of the bus and enabling a push functionality of the cache line write transaction.

28. The method of claim 26, further comprising handling the claimed cache
line to ensure coherency among caches of all processing units in the plurality of
processors.

19

10

15

20

.25

WO 2006/050289 PCT/US2005/039322

29. An article comprising a machine readable medium that stores data
representing a centralized pushing mechanism comprising:

request prediction logic to analyze memory access patterns by at least one
processing unit in a computing system and to predict data requests of the at least
one processing unit based on the memory access patterns;

a prefetch data buffer to temporarily store data predicted to be requested
by the at least one processing unit, the data retrieved from a memory; and

push logic to issue a push request per cache line of data predicted to be
requested by the at least one processing unit, and to send the cache line
associated with the push request to a targeted processing unit if the targeted
processing unit accepts the push request, the targeted processing unit placing the

cache line in the cache.

30. The article of claim 29, wherein the data representing the computing
system comprises a hardware description language code.

31. The article of claim 29, wherein the data representing the computing
system comprises data representing a plurality of mask layers string physical data
representing the presence or absence of material at various locations of each of

the plurality of mask layers.

32. An article comprising a machine readable medium having stored
thereon data which, when accessed by a processor in conjunction with simulation
routines, provides functionality of a centralized pushing mechanism including:

request prediction logic to analyze memory access patterns by at least one
processing unit in a computing system and to predict data requests of the at least
one processing unit based on the memory access patterns;

a prefetch data buffer to temporarily store data predicted to be requested
by the at least one processing unit, the data retrieved from a memory; and

push logic to issue a push request per cache line of data predicted to be
requested by the at least one processing unit, and to send the cache line

associated with the push request to a targeted processing unit if the targeted

20

WO 2006/050289 PCT/US2005/039322

processing unit accepts the push request, the targeted processing unit placing the

cache line in the cache.

33. The article of claim 32, wherein the centralized pushing mechanism
facilitates data traffic to and from a memory, and to actively push data into a
cache of a targeted processing unit, the targeted processing unit having more
efficient access to data in the cache than access to data in the memory.

21

PCT/US2005/039322

WO 2006/050289

1/6

d40IA3d

woss "

I F™-NOId

40IAdd
o/l

AJONAN

|
_
_
I
_
|
!
|
|

L“\ H3ATTOHLNOD O/l
|

o190
HSNd

HITTOHLINOD AHOWIN

0zl /!

oZ\K

H0SS300Nd

o
—

—— . —— —— —— — A ——— — t—————

951 bG1
[\\ ,
90T y344ng

NOILOId3dd vivd
<—» | HO13434d | | HOL3d434dd

WO 2006/050289 PCT/US2005/039322
2/6

ANALYZE PROCESSOR’S | — 205
MEMORY ACCESS PATTERNS

'

PREDICT PROCESSOR’S DATA | —210
REQUEST

l

MOVE DATA FROM MEMORY TO | — 215
A BUFFER

-

ISSUE PUSH REQUEST

220

225

IS

PUSH REQUEST

RETRY

ACCEPTED?

230

PUT DATA ON BUS (WRITE) |~ 235

l

PROCESSOR CLAIMS THE DATA

245 NEW
TATUS OF CACHE LINE?
260

REPLAGE CACHE | 20\ y MO/E/S”
LINE WITH CLAIMED DISCARD PLACE DATA IN

DATA AND SETAS “E”| | CLAIMED DATA CACHE AS “E”

FIGURE 2

PCT/US2005/039322

WO 2006/050289

3/6

30I1A3d
o/l

€ 3dNOld

40INdd
Ol

HITTOHLNOD O/l

<«—> | Ho1343ud | | HOLT4ud | | HSNd

J19071 d344N9
NOILO1d34d vivd

dITTOHLNOD AHONIN

]

dHOVO

d40SS300dd

3HOVO

l\ d0SS300dd
VoLl

AHOWIN w
(<owr _ (ot

WO 2006/050289 PCT/US2005/039322
4/6

ANALYZE PROCESSORS’ _—402
MEMORY ACCESS PATTERNS

'

PREDICT PROCESSORS’ DATA | _— 408
REQUEST

'

MOVE DATA FROM MEMORY TO | _— 412
PREFETCH BUFFER

h

416
ISSUE PUSH REQUEST |

PUSH REQUEST
ACCEPTED?

RETRY

424

PUT DATA ONBUS (WRITE) | 428

l

PROCESSOR CLAIMS THE DATA |— — 432

STATUS OF CACHE ‘" ORNEW

 LINE IN TARGETED
PROCESSOR?

TO FIGURE 5
“M/E/SIO”

DISCARD CLAIMED DATA | 440

FIGURE 4

PCT/US2005/039322

WO 2006/050289

5/6

Rw,:
SV IHOVO NI
V.Lva 30V1d

nmmu w<
ANIT 3HOVO 139dV1 13S

{

dd44N9 HOL13434dd
WOH4 VLVA HLIM 3NIT
3HOVO 1394V1 30V1d3d

goy— 4

«O» OL JAL NH4 "O0dd
1394VL-NON JONVHO

«S» OL «F» HLIM
SH0SS300dd

1394Vl

“NON 3ONVHO

yoy — 4

d344N49 V1vad HO13434d
OL 3INITIHOVO LM

ooy —, 1}

1S3N03Y HSNd AYL3Y

T omfaw

TIVOL
M3N

i

«S» SV
41vlis 13S
ANV 3HOVO
139dVL NI
ANIT IHOVO
30V1d3ay

\vt 9Gy

sy

\1 174%

vy —

¥ 3HNO1d WOHAH

$SH0SS300dd
1494VI-NON 40

SNLViS

«d» SV
41ViS 13S
ANV 3HOVO
1398VL NI
INIT3HOVO

JOV1d3d

nnW\ma >Z§‘

R—: l—l_< '

G 3dNold

PCT/US2005/039322

WO 2006/050289

6/6

9 3dNOSOlid

(=
(e
©

079 3IDIA3A O/l .
059
0 (HOI) anH o/l
- >
099 A »
/969 89 zee |
/ / /
NOILOIa3¥d V.1vd end | sl
“™| HoL3434d | | HO1343Md ——
0290 | V029
Adonan [T "INSINVHOIW ONIHSNd aIzZveINaD |~ | | ANOWan
H ' 09 1 H
719 | G19
N FOVALALINI MNIT JOVAETLINI MNIT N
WELD gcro Vel
3FHOVO | —— [3HOVO| |3HOVO| (= ™ |3HOVO JHOVD| |3HOVD
WITo are | | viTe
d400 | — | 340D 3400 340D 340D IHOD
~-4g0L9 e VOL9

INTERNATIONAL SEARCH REPORT

Inzarnational application No

®r/US2005/039322

A. CLASSIFICATION OF SUBJECT MATTER
806F12/08

According 1o International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, PAJ, INSPEC

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

NY, US,

172-183, XP000975506
ISSN: 0163-5964

45; figure 5
Tine 53

vol. 27, no. 2, May 1999 (1999-05), pages

page 176, left-hand column, line 22 - line
page 176, right-hand column, line 23 -

X LAI A-C ET AL: "MEMORY SHARING PREDICTOR: 1-33
THE KEY TO A SPECULATIVE COHERENT DSM"
COMPUTER ARCHITECTURE NEWS, ACM, NEW YORK,

-/

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

"L* document which may throw doubts on priotity claim(s) or
which is cited to establish the publication date of another
citation or other.special reason (as specified)

"0O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priorily date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an.inventive step when the
document is combined with one or more other such docu-
me'r‘lls, such combination being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of the international search

28 February 2006

Date of mailing of the intemational search report

06/03/2006

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Nielsen, O

Form PCT/ISA/210 (second sheet) {April 2005)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

I national application No

/US2005/039322

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 5 371 870 A (GOODWIN ET AL)
6 December 1994 (1994-12-06)

column 2, line 47 - column 3, Tine 6;
figures 1,3,4

US 2004/199727 A1 (NARAD CHARLES E)

7 October 2004 (2004-10-07)

paragraph ‘0007!
paragraph ¢0009!

1-4,6,7,
9-11,
14-16,
22-24,
26,29,32

1,3,5-9,
11-13,
15,
17-23,
25-33

Form PCT/ISA/210 {continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

igternational application No

/US2005/039322
Patent document Publication Patent family Publication
cited in search report) date member(s) date
US 5371870 A 06-12-1994 NONE
US 2004199727 Al 07-10-2004 CN 1534487 A 06-10-2004
EP 1620804 A2 01-02-2006
WO 2004095291 A2 04-11-2004

Form PCT/ISA/210 (patent family annex) {April 2005)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

