
(19)대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 。Int. Cl.

     H04L 29/06 (2006.01)

(45) 공고일자

(11) 등록번호

(24) 등록일자

2006년07월28일

10-0606025

2006년07월20일

(21) 출원번호 10-2004-0094795 (65) 공개번호 10-2006-0055243

(22) 출원일자 2004년11월18일 (43) 공개일자 2006년05월23일

(73) 특허권자 삼성전자주식회사

경기도 수원시 영통구 매탄동 416

(72) 발명자 송봉규

경기 수원시 영통구 영통동 청명마을4단지아파트 405동 703호

최승필

경기 용인시 풍덕천2동 주공1단지아파트 106동 1501호

조원창

경기 용인시 풍덕천2동 용인3차 동보아파트 101동 504호

(74) 대리인 이건주

심사관 : 이동환

(54) 간이 망 관리 프로토콜 기반의 망 관리 장치 및 방법

요약

본 발명은 네트워크 장비를 관리하는 장치 및 방법에 관한 것으로, 특히 간이 망 관리 프로토콜(SNMP)을 사용하는 통신

장비를 관리하기 위한 망 관리 장치 및 방법에 관한 것이다.

컴파일 타임에 개발자가 응용프로그램을 통해 SNMP 인터페이스 헤더 파일을 작성하면, 추출부가 상기 인터페이스 헤더

파일을 근거로 MIB 파일과 객체 식별자 정보를 생성한다. 런 타임에는 매니저가 SNMP 요청을 하면, 에이전트가 상기

SNMP 요청 메시지에 포함된 OID정보를 객체 식별자 정보 처리부로 전송하고, 상기 객체 식별자 정보 처리부는 객체 식별

자 정보 저장부를 참조하여 GMS 정보를 상기 에이전트에게 전달한다.

상기 에이전트는 상기 GMS 정보를 근거로 응용프로그램과 GMS 요청/응답 과정을 수행한다.

대표도

도 5

색인어

SNMP, OID, MIB

등록특허 10-0606025

- 1 -



명세서

도면의 간단한 설명

도 1은 일반적인 SNMP의 매니저(manager)와 SNMP 에이전트(agent)간의 구성 및 제어 동작을 설명하기 위한 도면,

도 2는 종래 기술에 따른 SNMP 에이전트 개발 방법의 흐름도,

도 3은 종래 기술에 따른 상기 매니저와 응용프로그램들 간의 인터페이스 방법을 도시한 도면,

도 4는 본 발명에 따른 SNMP 에이전트의 블록 구성도,

도 5는 상기 도 4에 도시된 상기 SNMP 에이전트의 블록구성도 및 본 발명의 컴파일(Compile) 시간과 런(Run) 시간을 포

함한 전체 동작흐름을 나타낸 도면,

도 6은 상기 SNMP 에이전트의 컴파일 동작 수행방식을 도시한 도면,

도 7은 본 발명의 실시 예에 따른 컴파일 타임 시 SNMP 에이전트내의 동작 흐름도,

도 8은 상기 SNMP 에이전트가 런 타임 시 상기 도 6의 컴파일 시에 생성된 OIDInfo 데이터 파일을 이용하여 수행하는 과

정

도 9는 본 발명의 실시 예에 따른 런 타임 시 SNMP 에이전트내의 동작 흐름도,

도 10은 에이전트와 응용프로그램간의 통신을 위한 GMS PDU 구성을 도시한 도면,

도 11은 상기 에이전트가 Get/GetNext/GetFirst 메시지를 상기 응용프로그램에게 전송할 경우 그 절차와 그 응답에 관한

동작을 도시한 도면,

도 12는 상기 에이전트가 PreSet/Set 메시지를 상기 응용프로그램에게 전송할 경우 그 절차와 그 응답에 관한 동작을 도

시한 도면,

도 13은 상기 에이전트가 GetBulk 메시지를 상기 응용프로그램에게 전송할 경우 그 절차와 그 응답에 관한 동작을 도시한

도면,

도 14는 상기 에이전트가 Notification(Trap) 메시지를 상기 응용프로그램에게 전송할 경우 그 절차와 그 응답에 관한 동

작을 도시한 도면,

도 15a는 상기 객체 식별자 정보 파일을 구성하는 항목들을 개략적으로 도시한 도면,

도 15b는 상기 도 15a에 도시된 각 항목들을 구성하는 정보를 나타내는 테이블을 도시한 도면,

도 16은 상기 객체 식별자 정보 저장부(500)의 구조를 대략적으로 묘사해 놓은 도면,

도 17은 본 발명의 실시 예에 따른 GMS 정보를 찾는 방법을 도시한 도면,

도 18은 본 발명의 실시 예에 따른 상기 에이전트(400)가 노티피케이션 정보를 찾는 방법을 도시한 도면.

발명의 상세한 설명

발명의 목적

발명이 속하는 기술 및 그 분야의 종래기술

등록특허 10-0606025

- 2 -



본 발명은 네트워크 장비를 관리하는 장치 및 방법에 관한 것으로, 특히 간이 망 관리 프로토콜(Simple Network

Management Protocol : 이하 SNMP라 함)을 사용하는 통신 장비를 관리하기 위한 망 관리 장치 및 방법에 관한 것이다.

지난 수년간 네트워크의 급속한 성장과 다양한 이질적인 시스템의 등장으로 네트워크를 통합적으로 관리하기 어려워졌으

며, 네트워크가 대규모화되면서 많은 분야에서 네트워크 장비에 대한 관리가 필수 불가결한 요소가 되었다.

그러므로, 네트워크 관리자들은 다양한 네트워크 환경에서 포괄적으로 관리할 수 있는 네트워크 프레임워크(Frame

work)를 요구하게 되었다. 이러한 요구로 인하여 세계 최대의 인터넷 표준 단체인 인터넷 공학 추진 팀(Internet

Engineering Task Force : 이하 IETF라 함)은 인터넷 기반의 네트워크 장비를 관리하니 위한 표준으로 비교적 단순한 프

로토콜인 SNMP를 채택하게 되었다.

일반적으로 SNMP를 적용하는 시스템에서는 관리 시스템을 매니저(manager)라고 통칭하며, 관리 대상을 에이전트

(agent)라 통칭한다. 상기 매니저와 에이전트를 연결하는 관리 정보의 전달망은 TCP/IP(Transmission Contol Protocol/

Internet Protocol) 방식에 준거한 것이며, SNMP를 사용한 통신은 매니저와 에이전트 사이에서 관리 정보 베이스

(Management Information Base : 이하 MIB라 함)를 기초로 관리 정보 검색, 관리 정보 연속 검색, 관리 정보 바꿔 쓰기,

예외 동작의 통지 등의 명령을 사용하여 이루어진다.

상기 SNMP 에이전트는 관리 대상 장비에 존재하는 소프트웨어 모듈(software module)로서 MIB에 대한 정보를 갖고 있

으며, 그 정보를 SNMP 프로토콜을 사용하여 상기 SNMP 매니저로 전달한다.

SNMP를 이용하여 관리되어야 할 특정한 정보(information), 자원(resource) 등을 객체(Object)라 하며, 이런 객체들을

모아놓은 집합체를 상기 MIB라하며, 상기 MIB 형식은 SNMP의 일부로서 정의되어 있고, 각 객체들은 ASN.1(Abstract

Syntax Notation One)을 사용해서 정의되어진다.

상기 SNMP 에이전트는 네트워크 장비 기능에 관련된 파라미터(parameter)들로 구성된 MIB를 관리한다. 그러면, 상기

SNMP 매니저는 상기 SNMP 에이전트들이 제공하는 MIB 중에서 특정 값을 얻어와서 그 장비의 상태를 파악하거나 그 값

을 변경한다.

상술한바와 같이 일반적으로 SNMP를 이용하여 네트워크를 관리한다는 것은 관리 대상인 장비들이 제공하는 MIB중에서

특정 값을 얻어와서 그 장비의 상태를 파악하거나 그 값을 변경함을 의미한다.

SNMP는 관리 방법의 용이성과 TCP/IP를 사용하는 다양한 종류의 장비에서 개발이 가능하며, 다양한 RFC(Request For

Comment)를 통해서 관리 범위를 지정하거나 확장이 쉽게 가능하며 프로토콜의 구성이 간단하다. 또한, 구현을 쉽게 할 수

있는 이유로 현재 많은 관리 프로토콜 중에 SNMP가 가장 널리 사용되고 있다.

도 1은 일반적인 SNMP의 매니저(manager)(100)와 SNMP 에이전트(agent)(102)간의 구성 및 제어 동작을 설명하기 위

한 도면이다.

먼저, 도 1에 도시된 SNMP 매니저(100)와 SNMP 에이전트간(102)에 송/수신되는 명령어에 관해 설명한다.

-GetRequest : 오브젝트(object)값을 읽기(read) 위한 요청 신호.

-GetNextRequest : 현재 오브젝트의 다음 오브젝트 값을 읽기 위한 요청 신호.

-GetResponse : Request에 대한 응답 신호.

-SetRequest : 오브젝트 값을 기록(write)하기 위한 신호.

-Trap : 예외 상황 알림.

상기 도 1의 SNMP 매니저(100)와 SNMP 에이전트(102)는 상기에 서술한 메시지를 이용하여 서로 통신을 수행한다.

등록특허 10-0606025

- 3 -



이하 도 2 및 도 3을 통해 종래 기술에 따른 에이전트의 개발 방법 및 응용 프로그램과의 인터페이스 방법에 대해 살펴보기

로 하겠다.

도 2는 종래 기술에 따른 SNMP 에이전트(102) 개발 방법의 흐름도이다.

200단계에서 네트워크 관리자는 상기 SNMP 에이전트(102)를 개발하기 위해 MIB에 대한 정의를 하고, 이에 해당하는 응

용 프로그램과 인터페이스에 사용되는 구조를 정의한다.

상기 200단계에서 정의된 MIB를 근거로 202단계에서 MIB 파일을 생성한다. 204단계에서 상기 네트워크 관리자는 상기

생성된 MIB 파일을 코딩 및 컴파일하여 SNMP 에이전트(102)를 생성한다.

206단계에서 상기 네트워크 관리자는 MIB 또는 인터페이스의 수정 사항이 있는지 여부를 검사하여, 수정 사항이 있다면,

208단계로 진행하여 관리 항목을 정의한다.

상기 208단계에서 정의된 관리 항목을 근거로 210단계에서 상기 네트워크 관리자는 MIB 파일을 생성하고, 212단계에서

상기 생성된 MIB 파일을 근거로 상기 에이전트(102)를 재코딩 및 재컴파일을 한다.

도 3은 종래 기술에 따른 상기 매니저(100)와 응용프로그램(304)들 간의 인터페이스 방법을 도시한 도면이다.

상기 매니저(100)가 상기 응용프로그램(304)들과의 인터페이스를 하기 위해서는 각각의 구조에 대한 정보와 목적지에 대

한 정보를 상기 에이전트(102)가 알고 있어야 한다. 그리고, 일반적인 SNMP 에이전트(102) 개발을 위한 툴(Tool)을 사용

한 경우, 관리 항목에 해당하는 객체(Object)(302)들에서 해당하는 응용프로그램(304)에서 사용하는 구조를 이용하여 각

각 구현해야 한다.

또한, 일반적인 SNMP 에이전트(102)의 개발 방법은 장비의 특성을 반영할 수 있도록 MIB에 대한 설계가 이루어지고

MIB에 설계된 내용에 따라서 SNMP 에이전트(102)의 개발 범위, 장비 내에서 관리 기능을 수행하는 응용 프로그램(304)

들의 역할, SNMP 에이전트(102)와 응용 프로그램(304)들간의 인터페이스 방법 등이 결정된다.

현재 일반적으로 SNMP 프로토콜을 효과적으로 개발하기 위해서 일반적인 툴(Tool)을 사용하는데, 이러한 툴을 이용한

SNMP 에이전트(102)의 개발은 SNMP 에이전트(102)가 데이터를 갖고 있는 경우에는 개발이 쉽지만, 응용 프로그램

(304)과의 인터페이스를 통해서 MIB 객체 값을 얻어 오는 경우 각각의 MIB 객체마다 다른 구조를 사용하기 때문에

SNMP 에이전트(102)의 개발이 어렵고 복잡해지게 된다.

또한, SNMP 매니저(100)는 SNMP 에이전트(102)를 통해서 장비내의 다른 응용 프로그램(304)들이 관리하는 관리항목

에 접근을 하게 된다. 이 관리 항목은 MIB로 표현이 되며, 각각 장비의 특성에 따라 다르게 된다. 이런 MIB를 개발 초기에

완벽히 정의한다는 것은 사실상 불가능한 일이다.

종래의 기술은 이런 MIB를 기준으로 SNMP 에이전트(102)가 개발이 되기 때문에 각각의 장비마다 서로 다른 SNMP 에이

전트(102)를 개발해야 한다. 또한 같은 장비 내에서도 관리되어야 할 항목들의 변경, 추가, 삭제는 수시로 발생할 수 있으

며, 이런 변경 사항이 발생할 경우에 SNMP 에이전트(102)의 수정이 필요하게 된다.

상기와 같은 환경에서 MIB가 변경, 추가, 삭제될 때마다 SNMP 에이전트(102)를 다시 수정하고 재컴파일(Recompile)하

는 것은 개발하는데 많은 시간과 노력이 필요하게 된다.

발명이 이루고자 하는 기술적 과제

따라서 본 발명의 목적은 네트워크 관리 시스템에서 관리 정보 베이스 파일과 객체 식별자 정보 파일을 실시간으로 생성하

는 간이 망 관리 프로토콜 기반의 망 관리 장치 및 방법을 제공함에 있다.

본 발명은 다른 목적은 네트워크 관리 시스템을 구성하는 네트워크에서 발생한 변동사항에 맞게 상기 장비들의 동작을 제

어하기 위한 간이 망 관리 프로토콜 관리 장치 및 방법을 제공함에 있다.

등록특허 10-0606025

- 4 -



본 발명의 또 다른 목적은 네트워크 관리 시스템을 구성하는 장비들을 표준 방식에 의해 동작하게 하기 위한 간이 망 관리

프로토콜 관리 장치 및 방법을 제공함에 있다.

상기한 목적들을 달성하기 위한 본 발명에 따른 방법은, 간이 망 관리 프로토콜(SNMP)을 사용하여 통신 장비를 관리하기

위해 컴파일 타임시에 상기 통신 장비를 관리하기 위한 관리 정보 베이스(MIB) 파일과 상기 간이 망 관리 프로토콜 에이전

트와 응용프로그램 간의 통신을 위한 객체 식별자 정보 파일을 생성하기 위한 방법에 있어서, 변경된 관리 항목을 입력받

은 응용프로그램이 간이 망 관리 프로토콜 인터페이스 헤더 파일을 작성하는 과정과, 상기 작성된 간이 망 관리 프로토콜

인터페이스 헤더 파일을 읽어와서 관리 정보 베이스 파일과 객체 식별자 정보 파일을 생성하는 과정과, 상기 생성된 관리

정보 베이스 파일과 상기 객체 식별자 정보 파일을 저장하는 과정을 포함한다.

상기한 목적들을 달성하기 위한 본 발명의 장치는, 간이 망 관리 프로토콜(SNMP)을 사용하여 통신 장비를 관리하기 위해

컴파일 타임시에 상기 통신 장비를 관리하기 위한 관리 정보 베이스(MIB) 파일과 상기 간이 망 관리 프로토콜 에이전트와

응용프로그램 간의 통신을 위한 객체 식별자 정보 파일을 생성하기 위한 장치에 있어서, 상기 간이 망 관리 프로토콜 장비

의 관리를 위해 응용프로그램이 작성한 헤더 파일을 저장하는 헤더 파일 저장부와, 상기 헤더 파일 저장부에서 상기 헤더

파일을 읽어서 상기 관리 정보 베이스 파일과 상기 간이 망 관리 프로토콜 에이전트와 상기 응용프로그램간의 메시지 교환

을 위한 상기 객체 식별자 정보 파일을 작성하는 추출부와, 상기 추출부에서 작성한 상기 관리 정보 베이스 파일을 저장하

는 관리 정보 베이스 파일 저장부와, 상기 추출부에서 작성한 상기 객체 식별자 정보 파일을 저장하는 객체 식별자 정보 저

장부를 포함한다.

발명의 구성 및 작용

이하 본 발명의 실시 예를 첨부한 도면을 참조하여 상세히 설명하기로 하겠다. 하기에서 본 발명을 설명함에 있어, 관련된

공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한

설명을 생략할 것이다.

본 발명에 있어서, SNMP 에이전트는 도 4와 같이 크게 4부분으로 구성된다.

도 4는 본 발명에 따른 SNMP 에이전트(102)의 블록 구성도이다. 상기 SNMP 에이전트(102)는 네트워크 엘리먼트

(Element)에서 SNMP을 지원하는 기능을 수행한다.

상기 SNMP 에이전트(102)는 SNMP 메시지를 처리하고 응용프로그램들과의 인터페이스를 담당하는 에이전트(400)와 상

기 응용프로그램과 상기 에이전트(400)간의 통신을 하기 위해 필요한 GMS(General Messsage Service)메시지를 만들기

위한 정보를 갖고 있는 라이브러리(Library)인 객체 식별자 정보(Object Identifier Information :이하 OIDInfo)를 처리하

는 객체 식별자 정보 처리부(402)로 구성되어 있다.

또한, GMS 메시지와 MIB를 만들기 위한 정보를 도시되지 않은 객체 식별자 정보 저장부에 전달하는 추출부(Extractor)

(404)와 응용프로그램과의 통신을 위해 사용되는 SNMP 인터페이스 헤더 파일과 상기 응용프로그램(504)이 괸리해야 할

정보와 GMS 정보를 저장하는 헤더 파일 저장부(406)로 구성된다.

상기 객체 식별자 정보(OIDInfo) 처리부는 크게 나누어 두 가지의 기능을 제공한다. 첫째가 SNMP 에이전트(102)에게 응

용프로그램(504)에 대한 GMS 정보와 구조(Structure)에 대한 정보를 제공한다. 둘째로는 상기 GMS 정보를 근거로 다시

SNMP 정보를 제공한다.

도 5는 상기 도 4에 도시된 상기 SNMP 에이전트의 블록구성도 및 본 발명의 컴파일(Compile) 시간과 런(Run) 시간을 포

함한 전체 동작흐름을 나타낸 도면으로서, 하기에서 설명하도록 하겠다.

먼저, 상기 에이전트(400)는 SNMP 프로토콜 처리와 실제 관리 항목을 유지 관리하는 응용 프로그램과 GMS 메시지 송/수

신 역할을 담당한다. 첫 번째로 망 관리자가 이용하는 매니저(100)로부터 미리 정해진 다양한 포맷의 PDU(Protocol Data

Unit)을 받으면, 상기 객체 정보 처리부(402)로부터 메시지 ID, 포트 번호, 메시지 구조 등의 메시지 정보를 알아내서 응용

프로그램(504)에게 해당 요청을 전달하고, 두 번째로 상기 응용프로그램(504)으로부터 안내(Notification : Trap) 메시지

를 수신하면 상기 객체 식별자 정보 처리부(402)로부터 객체 식별자(Object IDentifier : 이하 OID라 함)정보를 얻어서 매

니저(100)에게 트랩(Trap) PDU를 보내는 역할을 한다.

등록특허 10-0606025

- 5 -



상기 객체 식별자 정보 처리부(402)는 관리 항목에 접근하기 위해서 응용프로그램(504)과 메시지 송수신을 위해 필요한

정보를 저장하고 있는 객체 식별자 정보 파일을 객체 식별자 정보 저장부로부터 읽어오고, 검색할 수 있게 해주는 역할을

한다. 상기 객체 식별자 정보 저장부(500)는 OIDInfo 라이브러리 APIs와 OIDInfo 데이터 파일로 구성되며 상기 추출부

(404)가 생성한 데이터 파일을 제공받는다.

상기 추출부(404)는 상기 응용프로그램(504)이 관리 항목으로 정의한 SNMP 인터페이스 헤더 파일을 갖고 MIB 파일을

생성하고 상기 객체 정보 처리부(402)에서 필요한 객체 식별자 정보 파일을 생성하여 상기 객체 식별자 정보 저장부에 저

장하는 역할을 한다.

상기 SNMP 인터페이스 헤더 파일(506)은 상기 응용 프로그램(504)에서 관리하는 정보를 얻기 위해, 메시지 ID, 포트번

호, 메시지 구조 등이 정의되어있는 파일로 각 응용프로그램(504)에서 정의되어 헤더 파일 저장부(406)에 저장된다.

하기 도 6 및 도 7을 참조하여 상기 SNMP 에이전트(102)에서 컴파일 타임시 행해지는 동작에 대하여 설명하기로 하겠다.

또한, 응용프로그램(504)에 전달되는 GMS 메시지에 대한 정보를 갖고 있는 객체 식별자 정보(OIDInfo) 데이터 파일을 만

들기 위한 기본 구조와 이 구조를 이용한 객체 식별자 정보 데이터 생성과정에 대해서 설명을 하겠다.

상기 설명된 방법을 이용하여 상기 추출부(404)는 헤더 파일 저장부(406)로부터 데이터를 생성하는 역할을 수행하며, 상

기 에이전트(400)는 객체 식별자 정보 파일을 이용하여 필요한 정보를 탐색할 수 있는 OIDInfo 라이브러리를 이용하여 응

용프로그램(504)에게 전달되는 GMS 메시지의 정보를 이용한다.

그러면, 상기 도 6을 참조하여 상기 SNMP 에이전트(102)의 컴파일 동작을 보다 상세히 설명하기로 한다. 상기 도 6에서

컴파일 시 추출부(404)에 의해서 데이터 파일을 생성하는 과정을 보여준다.

먼저, 상기 SNMP 에이전트(102)의 개발자가 응용프로그램(504)을 통해 관리해야할 정보 등을 정의한 SNMP 인터페이스

헤더 파일(506)을 헤더 파일 저장부(406)에 정의한다. 그리고, 상기 추출부(404)가 상기 관리해야할 정보를 갖고 있는 상

기 헤더 파일 저장부(406)에서 상기 SNMP 인터페이스 헤더 파일(506)을 읽어서 관리 항목이 정의된 MIB 파일을 만들어

MIB 파일 저장부(502)에 저장한다. 또한, 상기 추출부(404)는 상기 헤더 파일 저장부(406)에서 상기 SNMP 인터페이스

헤더 파일(506)을 읽어서 GMS 메시지를 생성하기 위한 OIDInfo 데이터 파일을 만들어 객체 식별자 정보 저장부(402)에

저장한다.

도 7은 본 발명의 실시 예에 따른 컴파일 타임 시 SNMP 에이전트(102)내의 동작 흐름도이다.

700단계에서 상기 SNMP 에이전트(102)의 관리 항목의 변경이 요구되었다면, 702단계로 진행하여 상기 개발자가 입력한

정보를 근거로 응용프로그램(504)은 변경된 관리 항목에 따라 SNMP 인터페이스 헤더 파일(506)을 작성하여 헤더 파일

저장부(406)에 저장한다.

704단계에서 상기 추출부(404)가 상기 SNMP 인터페이스 헤더 파일을 읽어와서 MIB와 OID 정보 데이터 파일을 작성한

다. 상기 704단계에서 작성된 MIB와 OID 정보 파일을 706단계에서 상기 MIB은 MIB 파일 저장부(502)에 상기 작성된

OID 정보 데이터 파일은 객체 식별자 정보 저장부(500)에 저장한다.

도 8은 상기 SNMP 에이전트가 런 타임 시 상기 도 6의 컴파일 시에 생성된 OIDInfo 데이터 파일을 이용하여 수행하는 과

정을 보여준다.

상기 도 8의 에이전트(400)와 응용프로그램(504)간의 통신은 GMS(General Message Service : 객체 지향 메시지 서비

스)인터페이스를 이용하며 상기 GMS 메시지의 페이로드(Payload)(1006)에는 에이전트(400)와 응용프로그램(504)간의

SNMP 통신을 지원하기 위한 메시지의 타입과 메시지의 페이로드에 반복되는 스트럭쳐의 개수를 나타내는 EM_

Interface_header(1002)가 존재하며, 하기에서 설명하기로 하겠다.

먼저, 상기 매니저(100)가 상기 에이전트(400)에게 SNMP 메시지를 전송하면, 상기 에이전트(400)는 상기 SNMP 메시지

내의 OID 정보를 객체 식별자 정보 처리부(402)로 전송한다. 상기 에이전트(400)가 OID 정보를 상기 객체 식별자 정보 처

리부(402)로 전송하는 이유는, 상기 에이전트(400)가 상기 응용 프로그램(504)과 통신을 수행하기 위해선 GMS 정보가

필요하기 때문이다.

등록특허 10-0606025

- 6 -



상기 객체 식별자 정보 처리부(402)는 수신된 상기 OID 메시지를 근거로 객체 식별자 정보 처리부(500)로부터 GMS 정보

를 읽어서 상기 에이전트(400)로 전송한다. 그러면, 상기 에이전트(400)는 상기 GMS 정보를 근거로 상기 응용프로그램

(504)과 통신을 수행하고, 상기 응용프로그램(504)가 응답한 결과를 근거로 상기 매니저(100)에게 상기 SNMP 요청에 대

한 응답을 한다.

그러면, 이하 도 9를 참조하여 상기 SNMP 에이전트(102)내부 블록들의 런 타임시 동작에 대해 살펴보기로 하겠다.

도 9는 본 발명의 실시 예에 따른 런 타임시 SNMP 에이전트(102)내의 동작 흐름도이다.

900단계에서 에이전트(400)는 상기 매니저(100)로부터 SNMP 요청이 있는지 여부를 검사한다. 상기 900단계에서 요청

이 있다면 902단계로 진행하여 상기 에이전트(400)는 상기 매니저(100)로부터 수신된 SNMP 메시지에 포함된 OID를 객

체 식별자 정보 처리부(402)에 전달한다.

904단계에서 상기 객체 식별자 정보 처리부(402)는 수신된 상기 OID 정보를 근거로 해당되는 GMS 정보를 상기 객체 식

별자 정보 저장부(500)에서 읽어서 상기 에이전트(400)에게 전달한다.

906단계에서 상기 GMS 정보를 수신한 상기 에이전트(400)는 상기 GMS 정보를 근거로 상기 응용프로그램(504)에게

GMS를 요청한다.

908단계에서 상기 응용프로그램(504)은 상기 에이전트(400)가 요구한 GMS 요청에 대한 응답을 하며, 910단계에서 상기

에이전트(400)는 상기 응용프로그램(504)이 응답한 GMS 정보를 근거로 상기 매니저(400)에게 SNMP 응답 메시지를 전

송한다.

도 10은 상기 에이전트(400)와 상기 응용프로그램(504)간의 통신을 위한 GMS PDU 구성을 도시한 도면이다. GMS 헤더

(1000)는 SNMP를 사용하는 모든 소프트웨어간의 통신을 하기 위해 필요한 필드이다. GMS 페이로드(1006)에는 상기 에

이전트(400)와 상기 응용프로그램(504)간의 SNMP 통신을 지원하기 위한 특별한 헤더 파일인 EM_Interface_header

(1002)는 4개의 필드(하기 도 11에서 설명하기로 함)로 구성되어 있으며, 상기 에이전트(400)와 상기 응용프로그램(404)

간의 SNMP를 지원하기 위해서 사용된다. 스트럭쳐(Structure)(1004)는 SNMP 통신시 필요한 필드 값이다.

도 11내지 도 14는 상기 에이전트(400)와 상기 응용프로그램(504)간의 메시지 종류에 따른 PDU 메시지 구성 및 구성 필

드들을 설명한 것으로 하기에서 설명하기로 하겠다.

먼저, 설명에 앞서서 각각의 필드들의 구성 및 역할들에 대해 간략히 살펴보기로 하겠다.

GMS 헤더(GMS Hdr)(1000)와 EM_Interface_header(1002)와 스트럭쳐(Structure)(1004)를 한 개의 열(row)(1014)이

라고 칭한다.

상기 EM_Interface_header(1002)는 상술한 바대로 4개의 필드로 구성되어 있으며 하기에서 상세히 설명하기로 하겠다.

먼저, msgType(1006)은 상기 에이전트(102)와 상기 응용프로그램(504)간의 메시지 타입을 나타내고, rowCount(1008)

는 멀티 로 테이블(multiRowTable)을 지원하는 테이블에 대해서 Get, Set, Get-Next 할때 Payload에 반복되는 스트럭

쳐(1004)의 개수를 나타낸다. 또한, 모든 테이블에 대해서 Get-Bulk를 할 때 SNMP Get-Bulk의 Max-Repeat 값과 같은

용도로 사용된다. response(1010)는 발생할 수 있는 에러를 전달하는데 사용되며, structId(1012)는 응용프로그램(504)

내부에서 추가적으로 사용하는 메시지 ID를 나타낸다. 또한, PLD(Programable Loading Data)를 위해서는 Relation ID로

사용한다.

추가적으로, 상기 에이전트(400)가 상기 응용프로그램(504)로부터 받은 response(1010)를 정상적으로 동작시키기 위해

서 상기 응용프로그램(504)은 상기 에이전트(400)로부터 받은 GMS 메시지의 헤더에서 transactionId(1016)와 bsmId

(1018)를 복사하여 응답 메시지를 만든 후에 상기 에이전트(400)에게 전달한다.

도 11은 상기 에이전트(400)가 Get/GetNext/GetFirst Request 메시지를 상기 응용프로그램(504)에게 전송할 경우 그

절차와 그 응답에 관한 동작을 도시한 도면이다.

등록특허 10-0606025

- 7 -



상기 에이전트(400)가 하나의 열(row)에 해당하는 메모리를 할당하고 상기 매니저(100)로부터 받은 인덱스 값을 GMS 페

이로드(Payload)(1006)에 넣은 후에 응용프로그램(504)에게 전달한다.

상기 응용프로그램(504)은 해당하는 테이블에서 상기 에이전트(400)로부터 받은 인덱스에 해당하는 열을 상기 메모리에

복사하고 상기 에이전트(400)에게 응답을 보낸다. 이때 MsgId는 미리 Structure를 정의하였을 때의 RespondId로 설정한

다. 만약에 Fail이 발생했을 때는 EM_Interface_header(1002)의 response(1010)에 해당하는 에러 값을 넣어서 전달한

다. 이때 GMS 페이로드(1006)를 그대로 다시 보내게 된다.

GetNextRequest 일 경우는 해당하는 열의 다음 열을 찾아서 전달하면 된다.

도 12는 상기 에이전트(400)가 PreSet/SetRequest 메시지를 상기 응용프로그램(504)에게 전송할 경우 그 절차와 그 응

답에 관한 동작을 도시한 도면이다.

먼저, SetRequset 메시지는 상기 에이전트(400)가 상기 응용프로그램(504)에게 PreSetRequset 메시지를 보내게 되는데

상기 PreSetRequest은 상기 GetRequset과 같은 동작을 수행하게 되며, 상기 PresetRequest을 받은 응용프로그램(504)

은 해당 열을 고정하게 된다. 상기 응용프로그램(504)으로부터 PreSetRequest의 응답을 받은 에이전트(400)는

SetRequest을 수행할 어트리뷰트(Attribute)의 값을 바꿔서 다시 응용프로그램(504)으로 SetRequest을 보내게 된다.

상기 응용프로그램(504)으로부터 정상적인 응답을 받으면 상기 에이전트(400)는 상기 매니저(100)로 Set 메시지에 대한

응답을 보내게 된다. 만약에 상기 응용프로그램(504)으로부터 Fail을 받으면 상기 에이전트(400)도 상기 매니저(100)로

Fail을 알리고 상기 에이전트(400)가 시간 초과가 발생하면, 이 Set 패킷을 폐기한다.

SetRequest일 경우에는 상기 에이전트(400)가 요청하는 GMS 페이로드(1006)에는 열에 해당하는 메모리가 할당되어서

전달되지만 응용프로그램이 응답을 보낼 때는 EM_Interface_header(1002)만을 보낸다.

도 13은 상기 에이전트(400)가 여러개의 객체(Objest)값을 읽기 위한 GetBulkRequest 메시지를 상기 응용프로그램(504)

에게 전송할 경우 그 절차와 그 응답에 관한 동작을 도시한 도면이다.

상기 GetBulkRequest일 경우, 해당하는 열로부터 EM_Interface_header(1002)의 rowCount(Maxrepeat)(1008)의 숫자

만큼을 메모리에 생성해서 전달하며, 만약에 rowCount가 "0"이면 전체 테이블을 전달한다.

또한 rowCount(1008)가 "3"으로 상기 응용프로그램(504)에게 요청되었다면, 요청하는 GMS의 페이로드(1006)는 시작

을 나타내는 Index를 보내기 위해서 하나의 Row에 해당하는 메모리만이 할당된다. 상기 응용프로그램(504)은 이 메모리

를 삭제하고 해당하는 rowCount(1008)의 숫자만큼의 메모리를 할당하고 정보를 복사해서 상기 에이전트(400)로 보내게

된다. 이 메모리에 대해서는 상기 에이전트(400)가 삭제한다.

도 14는 상기 에이전트(400)가 Notification(Trap) 메시지를 상기 응용프로그램(504)에게 전송할 경우 그 절차와 그 응답

에 관한 동작을 도시한 도면이다.

노티피케이션(Notification)을 처리하기 위해서는 미리 약속된 스트럭쳐(Structure)가 정의가 되어 있어야 하며, 유일한

Message Id를 갖는다. 응용프로그램(504)은 EM_Interface_header(1002)의 msgType을 EM_NOTIFICATION로 설정

하고 미리 약속되어진 MsgId(1400)의 값을 채운 후에 페이로드에 Structure를 채워서 에이전트(400)에게 전달한다.

이하에서 객체 식별자 정보 저장부(500)에 저장되는 개체 식별자 정보 데이터 파일에 대해 알아보기로 하겠다.

도 15a 와 도 15b는 객체 식별자 정보(OIDInfo) 데이터 파일을 상기 객체 식별자 저장부(500)의 도시되지 않은 메모리에

매핑한 모습을 대략적으로 나타낸 것이다.

도 15a는 상기 객체 식별자 정보 파일을 구성하는 항목들을 개략적으로 도시한 도면이며, 각각의 항목들에 대해서 하기의

도 15b를 참조하여 설명하기로 하겠다.

도 15b는 상기 도 15a에 도시된 각 항목들을 구성하는 정보를 나타내는 테이블을 도시한 도면이다.

등록특허 10-0606025

- 8 -



먼저, 객체 식별자 정보 헤더(OIDInfoHdr)(1500)은 객체 식별자 정보(OIDInfo)의 가장 기초적인 정보를 저장하는 스트럭

쳐(Structure) 이다. 이 스트럭쳐에는 상기 객체 식별자 정보의 버전과 생성 날짜, 디폴트(Default)로 처리하는 객체 식별

자(OID), 그리고 객체 식별자 트리(OID Tree)의 각 노드를 나타내는 스트럭쳐인 OIDTreeInfo(1502)의 가장 상위 노드를

가리키는 오프셋(Offset) 값과 메시지(Message) ID를 이용하여 노티피케이션(Notification)의 정보를 찾기 위해서 사용

되는 NotiInfoHdr(1508)를 가리키는 오프셋(Offset) 값을 포함하고 있다.

상기 OIDInfoHdr(1500)를 구성하는 각 필드에 대한 자세한 설명은 하기의 <표 1>고 같다

[표 1]

 필드 이름  설명

 버전(Version)  객체 식별자 정보(OIDInfo) 파일의 버전을 나타낸다.

 날짜(Date)  객체 식별자 정보(OIDInfo) 파일의 생성날짜를 나타낸다.

 DefaultOID  모든 객체 식별자(OID)가 기본적으로 포함되는 Default OID를 나타낸다. 객체 식별

자 정보 내부에서 탐색 할 때 이 부분을 제외하기 위한 목적에서 사용된다.

 OIDTreeInfoOffset  객체 식별자 트리 정보(OIDTreeInfo)의 가장 상위 객체 식별자 트리 정보를 가리키

는 오프셋(Offset)값이다.

 NotiInfoHdrOffset  메시지 ID를 이용해서 노티피케이션(Notification) 정보를 찾기위해서 사용되는

NotiInfoHdr 중에서 가장 상위의 NotiInfoHdr를 가리키는 오프셋 값이다.

다음으로, 객체 식별자 트리 정보(OIDTreeInfo)(1502)는 트리의 노드 정보를 갖고 있으며 트리 탐색을 위해서 사용된다.

OIDTreeInfo(1502)는 그룹(Group)에 대한 표현은 물론이고 스칼라 객체(Scalar Object)와 테이블 객체(Table Object)

까지 OIDTreeInfo(1502)의 하나의 노드로 표현된다. 이 스트럭쳐는 MIB의 객체 식별자를 나타내는 ObjectID와 상기 노

드의 타입(Type), 그리고 네 개의 오프셋(Offset)으로 구성되어 있다.

상기 ObjectID는 전체 OID를 나타내는 것이 아니라 MIB에서 현재 노드의 객체 식별자이다. 노드 타입(NodeType)은 현

재의 노드가 그룹 오브젝트(Group Object)를 나타내는지 스칼라 오브젝트(Scalar Object)를 나타내는지 테이블 오브젝트

(Table Object)를 나타내는지 구분하기 위해 사용된다. 그리고, 상기 OIDTreeInfo 에 포함되어 있는 오프셋은 상위

OIDTreeInfo를 가리키는 오프셋과 GMS wjdqhdhk 스트럭쳐에 대한 정보를 갖고 있는 GMSInfo를 가리키는 Offset으로

구성되어 있다.

상기 OIDTreeInfo(1502)를 구성하고 있는 각 필드에 대한 설명은 하기의 <표 2>와 같다.

[표 2]

 필드 이름  설명

 objectId  해당 트리 노드의 Object ID를 나타낸다. 이 값은 전체 OID 스트링(String)을 나타내는 것이

아니라 해당 노드의 객체 식별자를 나타내는 인티저(Integer)이다.

 nodeType  트리 노드가 스칼라, 테이블, 그룹인지를 구분하기 위해 사용한다.

 upOIDTreeInfoOffset  트리에서 자신의 상위 OIDTreeInfo를 가리키는 오프셋 값이다.

 nextOIDTreeInfoOffset  OID Tree에서 같은 레벨(Level)의 다음 OIDTreeInfo를 가리키는 Offset값이다.

 gmsInfoOffset  노드 타입이 테이블이나 스칼라 일 경우에 GMS 정보를 갖고 있는 오프셋 값이다. 만약에

nodeType 이 스칼라나 테이블이고 이 값이 0 인 경우나, nodeType이 그룹이고 이 값이 0 이 아

니면, 이것은 추출부에서 객체 식별자 정보 파일을 잘못 생성한 것임을 의미한다.

GMS 정보(GMSInfo)(1504)는 응용프로그램(504)에게 메시지를 전달하기 위한 GMS 헤더 정보와 페이로드 정보를 포함

하고 있다. 이 스트럭쳐에는 structType에 따라서 그 의미가 달라지는 필드와 공통적으로 사용되는 필드로 구분할 수 있

다. 대략적인 필드의 설명으로는, 객체 식별자(OID)는 이 스트럭쳐를 이용해서 생성된 MIB 테이블이나 스칼라를 포함하는

등록특허 10-0606025

- 9 -



그룹에 해당하는 OID를 나타내며, 공통적인 default OID(enterprise OID)를 포함하고 있다. structname은 스트럭쳐를 정

의할 때 만든 이름을 나타낸다. structType은 6가지 서로 다른 스트럭쳐의 타입을 나타내기 위해서 사용되며,

payloadType은 이 스트럭쳐를 이용해서 여러 개의 열(Row)을 Set, Get, Get-Next 등이 가능한지를 나타내는 필드이다.

requestMsgId, responseMsgId, portNumber 는 GMS 헤더 정보를 나타내며, numberOfIndex 는 스트럭쳐의 인덱스

(Index)의 개수를 나타낸다. numberOfField는 MIB의 테이블의 어트리뷰트(Attribute) 개수가 아니라 스트럭쳐의 전체 필

드의 개수를 나타내며, payloadSize는 GMS 페이로드의 크기를 계산하기 위한 스트럭쳐의 전체 크기를 나타낸다.

pldRelationId는 PLD 의 릴레이션(Relation ID)를 나타내며, masterTableOffset은 strucType이 서브-테이블일 경우에

마스터 테이블(Master Table)을 가리키는 Offset이다. nextGMSInfoOffset 는 추후에 사용하기 위해서 남겨놓은 필드이

며 지금은 용도가 정해지지 않았다. 마지막으로 firstGMSAttInfoOffset은 스트럭쳐의 각각의 필드의 정보를 나타내는

GMSAttInfo의 첫 번째를 나타내는 Offset이다.

상기 GMSInfo(1504)의 각 필드들은 structType에 따라서 서로 다른 용도로 사용되며, requestMsgID, responseMsgId,

portNumber 는 GMS Header 정보로 공통적으로 사용되며, nextGMSInfoOffset와 firstGMSAttInfoOffset도 모든

structType에서 사용되는 용도가 같다. 다음으로 하기의 <표 3>에서 상기 structType에 대한 설명과 상기 structType

에 따라 달라지는 각 필드의 용도를 설명하기로 하겠다.

[표 3]

 타입(Type)  설명

 SType_Scalar (scalar)  스칼라 들을 모아 놓은 스트럭쳐를 나타낸다.

 SType_StaticTable (static table)  이 테이블은 응용프로그램에서 데이터를 관리하는 스테틱 테이블을

나타낸다.

SType_AgentDyTable

(agent dynamic table)

 이 테이블은 에이전트에서 데이터를 관리하는 다이내믹 테이블을 나

타낸다.

SType_AppDyTable

(application dynamic table)

 이 테이블은 응용프로그램에서 데이터를 관리하는 다이내믹 테이블

을 나타낸다.

 SType_PLD (pld)  PLD 테이블을 나타내며, Get, Get-Next, Get-Bulk 는 RSI를 통해서

에이전트가 데이터를 얻어오며 Set 만을 응용프로그램에게 전송한다.

 SType_SubTable (sub table, array)  배열의 사용에 의해서 확장된 GMSInfo를 나타낸다.

이하에서 상기 structType에 따른 GMSInfo(1504) 각 필드의 용도를 설명하기로 하겠다.

먼저, 상기 structType이 스칼라(Scalar)일 경우에 상기 GMS(1504)의 각 필드의 용도는 하기의 <표 4>를 참조하여 설명

하기로 하겠다.

등록특허 10-0606025

- 10 -



[표 4]

다음은, 상기 structType이 static-table일 경우에 상기 GMS(1504)의 각 필드의 용도는 하기의 <표 5>를 참조하여 설명

하기로 하겠다.

등록특허 10-0606025

- 11 -



[표 5]

다음은, 상기 structType이 agent-dynamic-table일 경우에 상기 GMS(1504)의 각 필드의 용도는 하기의 <표 6>를 참조

하여 설명하기로 하겠다.

등록특허 10-0606025

- 12 -



[표 6]

다음은, 상기 structType이 application-dynamic-table일 경우에 상기 GMS(1504)의 각 필드의 용도는 하기의 <표 7>

를 참조하여 설명하기로 하겠다.

등록특허 10-0606025

- 13 -



[표 7]

다음은, 상기 structType이 pld일 경우에 상기 GMS(1504)의 각 필드의 용도는 하기의 <표 8>를 참조하여 설명하기로 하

겠다.

등록특허 10-0606025

- 14 -



[표 8]

다음은, 상기 structType이 sub-table일 경우에 상기 GMS(1504)의 각 필드의 용도는 하기의 <표 9>를 참조하여 설명하

기로 하겠다.

등록특허 10-0606025

- 15 -



[표 9]

페이로드(payload)에 들어가는 각각의 필드에 대한 정보는 firstGMSAttInfoOffset 이 가리키는 GMSAttInfo들을 순서대

로 찾아가면 알 수 있다.

지금까지 GMSInfo(1504)에 대한 각각의 필드와 스트럭쳐들의 구조를 살펴보았다. 이제는 GMSAttInfo(1506) 스트럭쳐

에 대해 살펴보기로 하겠다. 상기 GMSAssInfo(1506)는 GMS의 페이로드에 들어가는 스트럭쳐의 각각의 필드의 정보를

나타내는 스트럭쳐이다. 스트럭쳐 각가의 필드를 나타내는 GMSAttInfo(1506)는 오프셋으로 서로 연결이 되어 있으며 마

지막 GMSAttInfo의 오프셋 값은 "0"이다.

상기 GMSAttInfo(1506)의 순서는 인덱스를 나타내는 GMSAttInfo가 먼저 순서대로 나오며, 만약에 이 스트럭쳐가 배열

을 포함하고 있는 경우에는 배열을 나타내는 GMSAttInfo는 제일 마지막에 나오게 된다.

인덱스들은 Object ID 순서대로 정렬이 되어 있으며, 밸류(Value)들도 Object ID 순서대로 정렬이 되어 있다.

GMSAttInfo 들은 GMSInfo의 structType과 GMSAttInfo의 fieldType에 따라서 각각의 필드의 의미가 다르게 된다. 먼저

GMSAttInfo의 타입을 결정하는 fieldType에 대해서 살펴본 후에 fieldType에 따라서 달라지는 각 Field의 용도를 하기

의 <표 10>을 참조하여 살펴보기로 하겠다.

등록특허 10-0606025

- 16 -



[표 10]

structType 이 sub-table이 아니고 fieldType이 scalar value, table value, table and index일 경우에 상기 GMSAttInfo

(1506)의 각각의 필드에 대해 하기의 <표 11>에 나타내었다.

[표 11]

structType 이 sub-table이 아니고 fieldType이 table and array일 경우에 상기 GMSAttInfo(1506)의 각각의 필드에 대

해 하기의 <표 12>에 나타내었다.

등록특허 10-0606025

- 17 -



[표 12]

structType 이 sub-table이 아니고 fieldType이 array and index일 경우에 상기 GMSAttInfo(1506)의 각각의 필드에

대해 하기의 <표 13>에 나타내었다.

[표 13]

structType 이 sub-table이 아니고 fieldType이 table value일 경우에 상기 GMSAttInfo(1506)의 각각의 필드에 대해

하기의 <표 14>에 나타내었다.

등록특허 10-0606025

- 18 -



[표 14]

상기 도 15의 NotiinfoHdr(1508)는 메시지 ID를 이용하여 노티피케이션 정보를 얻기 위하여 객체 식별자 정보 처리부

(402) 내부에서 사용하는 스트럭쳐이다. 상기 노티피케이션 정보를 찾는 방법은 두 개의 메시지 ID를 이용해서 찾는 방법

과 하나의 메시지 ID를 이용해서 찾는 방법 두 가지가 존재한다.

NotiInfoHdr(1508)에는 NotiNodeInfo(1510)의 개수를 나타내는 필드와 상기 NotiNodeInfo(1510)의 첫 번째를 가리키

는 오프 셋으로 구성된다. 각 필드에 대한 설명은 하기의 <표 15>를 참조한다.

[표 15]

상기 도 15의 NotiNodeInfo(1510)는 메시지 ID를 저장하는 필드와 NotiNodeInfo의 타입을 구분하는 notiNodeType와

서브(Sub) NotiInfoHdr를 가리키는 subNotiInfoHdrOffset, 마지막으로, 노티피케이션 정보를 갖고 있는 NotiInfo(1512)

를 가리키는 notiInfoOffset으로 구성되어 있다.

NotiNodeInfo(1510)는 메시지 ID를 이용하여 해당 노티피케이션 정보를 찾기 위해서 사용하는 스트럭쳐이다. 상기

NotiNodeInfo(1510)는 상기 OIDInfo 데이터 파일 저장부(500)에 메시지 ID 순서대로 정렬이 되어 있다. 객체 식별자 정

보 처리부(402)는 상기 NotiNodeInfo(1510)와 NotiInfoHdr(1508)을 이용해서 해당하는 노티피케이션 정보를 찾을 수

있다.

첫 번째로, 하나의 메시지 ID가 하나의 노티피케이션 정보와 매핑되어 있는 경우, NotiInfoHdr의 numberOfNotiNodeinfo

와 firstNotiInfoOffset를 이용해서 이진 탐색 알고리즘을 수행한다. 그러면 해당하는 NotiNodeInfo(1510)를 찾는다. 이

는 NotiNodeInfo(15101)가 메시지 ID순서대로 정렬이 되어있기 때문에 가능하다.

상기 NotiNodeInfo(1510)의 notiInfoOffset이 가리키는 NotiInfo(1512) 정보를 이용하여 SNMP 노티피케이션 메시지를

만든다.

등록특허 10-0606025

- 19 -



두 번째 경우로 두 개의 메시지 ID가 하나의 노티피케이션 정보와 매핑되어있을 경우, 위의 경우와 같은 방법으로

NotiNodeinfo(1510)를 찾는다. 이 NotiNodeinfo(1510)의 notiNodeType은 멀티 노티피케이션 노드가 될 것이며,

subNotiInfoHdrOffset 은 서브(Sub) NotiInfoHdr(1508)를 가리킬 것이다.

그러면, 두 번째 메시지 ID를 이용해서 같은 알고리즘을 반복한다. 그러면 해당하는 NotiNodeInfo(1510)를 찾는다.

NotiNodeInfo(1510)의 notiinfoOffset이 가리키는 NotiInfo 정보를 이용하여 SNMP 노티피케이션 메시지를 만든다.

상술한 각 필드에 대한 설명은 하기의 <표 16>를 참조한다.

[표 16]

다음으로, NotiInfo(1512)에 대하여 살펴보기로 한다. 상기 NotiInfo(1512)는 노티피케이션의 타입을 구분하는

notiInfoType, 그리고 SNMP 인터페이스 헤더 파일에 정의된 노티피케이션 스트럭쳐의 필드의 개수를 나타내는

numberOfNotiField와 메시지 필드 정보의 첫 번째 오프 셋으로 구성된다.

먼저, 상기 notiInfoType에 대해 하기의 <표 17>을 참조한다.

[표 17]

이하에서 상기 NotiInfo(1512)를 구성하는 각 필드에 대해 하기의 <표 18>을 참조한다.

등록특허 10-0606025

- 20 -



[표 18]

다음으로, 마지막 스트럭쳐인 NotiAttInfo(1514)에 대해 설명하기로 하겠다. NotiAttinfo(1514)는 노티피케이션 메시지

각각의 필드에 대한 정보를 나타낸다. 먼저 notiAttOID는 각 노티피케이션을 보내는 필드의 OID를 나타내는 스트링으로

스칼라는 full OID를 테이블에 대해서는 인덱스를 제외한 값을 나타낸다. notiAttName은 SNMP 인터페이스 Header File

에 정의된 필드의 이름을 스트링으로 나타내며, notiASNType은 이 Attribute이 MIB에 표현되는 신택스 형식(Syntax

Type)을 나타낸다. notiFieldType은 이 Attribute이 어떤 타입인지 결정되며, 이 타입에 따라서 다른 필드의 사용 용도도

조금씩 변하게 된다. notiAttType은 이 필드의 C 데이터 형식을 나타내며, notiAttSize는 이 필드의 크기를 나타낸다.

notiStartOffSet은 Application으로부터 받은 Structure로부터 이 필드가 위치하는 오프셋(Offset)값이며

subNotiAttInfoOffset는 만약에 현재의 필드가 배열을 나타낼 경우에 배열을 표현하는 NotiAttInfo를 가리키는 오프 셋값

이다. notiMaxDimensionValue 는 배열의 사용에 의해서 확장된 NotiAttInfo중에 타입이 array and index일 경우, 이

index의 최대값을 나타내며, 이것은 배열의 최대값을 의미한다. 마지막으로 nextNotiAttInfoOffset는 다음 NotiAttInfo

(1514)를 가리키는 오프 셋 값이다. NotiAttInfo(1514)가 들어가 있는 순서는 index가 앞쪽으로 위치한다. 만약에 여러

개의 Table로 구성된 Notification이라면 Table단위로 index다음에 value가 오고 다름 index, value가 위치한다.

상기 NotiAttinfo(1514)의 notiFieldType에 따라 각 필드가 의미하는 내용이 달라지는데, 이는 하기의 표들을 참조하기로

하겠다. 먼저, notiFieldType이 스칼라 밸류(Scalar value)인 경우는 하기의 <표 19>와 같다.

[표 19]

다음으로, notiFieldType이 table and index인 경우는 하기의 <표 20>을 참조하겠다.

등록특허 10-0606025

- 21 -



[표 20]

notiFieldType이 table value인 경우는 하기의 <표 21>을 참조하겠다.

[표 21]

notiFieldType이 table and array인 경우는 하기의 <표 22>을 참조하겠다.

등록특허 10-0606025

- 22 -



[표 22]

다음으로, 상기 NotiAttInfo(1514)의 subNotiAttInfoOffset이 가리키는 NotiAttInfo의 notiFieldType이 array and

index인 경우는 하기의 <표 23>을 참조하겠다.

[표 23]

상기 NotiAttInfo(1514)의 subNotiAttInfoOffset이 가리키는 NotiAttInfo의 notiFieldType이 table value인 경우는 하기

의 <표 24>을 참조하겠다.

등록특허 10-0606025

- 23 -



[표 24]

도 16은 상기 객체 식별자 정보 저장부(500)의 구조를 대략적으로 묘사해 놓은 것이며 OID를 이용해서 Tree를 탐색하기

위한 부분과 Message ID를 이용해서 Notification 정보를 얻어오기 위한 부분으로 나눌 수가 있다. 상기 MIB에 표현되는

하나의 테이블은 하나의 GMS 정보와 매핑된다. Scalar의 경우에는 같은 Group의 밑에 있는 것들을 묶어서 하나의 GMS

정보와 매핑된다. 상기 Scalar 경우에 Group밑에 있는 것들은 하나의 Structure로 정의가 된다는 것이며, index가 존재하

지 않는 Structure라는 의미이다.

그러면, 본 발명의 실시 예에 따라 상기 에이전트(400)와 상기 응용프로그램(504)간의 통신을 하기 위해 GMS 정보를 찾

는 방법을 도 17을 참조하여 설명하기로 하겠다.

도 17은 본 발명의 실시 예에 따른 GMS 정보를 찾는 방법을 도시한 도면이다. 매니저(100)로부터 SNMP Get, Get-Next,

Get-Bulk, Set등의 요청을 받았을 경우 상기 Get, Get-Next, Get-Bulk, Set 메시지에 포함된 객체 식별자(OID)를 이용

하여 해당하는 GMS 정보를 찾기 위해서 객체 식별자 정보 처리부(402)는 다음과 같은 절차에 따르게 된다.

먼저, 에이전트(400)로부터 입력받은 OID String을 Integer Type의 Object ID로 분리, 변경한다. 그 후 Object ID를 갖고

트리 탐색 알고리즘을 이용해서 순차적으로 OIDTreeInfo(1502)를 찾아간다.

그러면, 객체 식별자 정보 저장부(500)는 OID와 일치하는 OIDTreeInfo(1502)를 반환하거나, 상기 OID와 일치하는

OIDTreeInfo(1502)의 N다음 OIDTreeInfo를 반환한다. 만일, 해당하는 OIDTreeInfo를 찾게 되면, 이 OIDTreeInfo이

가리키는 GMSInfo(1504)를 상기 객체 식별자 정보 처리부((402)는 반환하게 된다. 그리고, 상기 에이전트(400)는

GMSInfo(1504)에 있는 정보를 이용하여 GMS Header와 Payload를 만들게 된다. GMS Payload(1006)를 만들 때,

Payload의 앞에는 OAM Header가 들어가고 다음에 에이전트(400)와 응용프로그램(504)사이에 SNMP를 지원하기 위한

EM Header(1002)가 들어가고 그 다음에 스트럭쳐의 값이 들어가게 된다. 또 스트럭쳐의 필드에 대한 정보는

GMSAttInfo(1506)들을 이용하여 GMS PDU를 완성해서 응용프로그램(504)에게 Message를 전달한다.

본 발명의 실시 예에 따라 상기 에이전트(400)가 노티피케이션 정보를 찾는 방법을 도 18을 참조하여 설명하기로 하겠다.

도 18은 본 발명의 실시 예에 따른 상기 에이전트(400)가 노티피케이션 정보를 찾는 방법을 도시한 도면이다.

상기 에이전트(400)가 상기 응용프로그램(504)로부터 미리 약속이 되어 있는 메시지 ID로 상기 응용프로그램(504)로부터

Trap Message를 받으면 상기 메시지 ID를 이용해서 상기 식별자 정보 처리부(500)가 SNMP Notification정보를 찾는 과

정이다.

등록특허 10-0606025

- 24 -



먼저, 상기 에이전트(400)는 수신된 메시지 ID의 개수가 한 개인지 두 개인지를 검사한다. 상기 에이전트(400)는 EM

Header(1002)의 subMsgId 필드를 검사하여 이 값이 0이 아니면 GMS Header(1000)에 있는 Message ID를 첫 번째 메

시지 ID로 subMsgId를 두 번째 메시지 ID로 사용한다.

그 후, 첫 번째 메시지 ID를 이용하여 NotiNodeInfo(1510)를 찾는다. 찾는 방법은 NotiInfoHdr(1508)의 NotiNodeInfo

(1510)의 개수와 이진 탐색 알고리즘을 이용하여 NotiNodeInfo(1510)을 찾고 만약에 상기 두 번째 메시지를 갖는 경우

NotiNodeInfo(1510)의 subNotiInfoHdrOffset이 가리키는 NotiInfoHdr(1508)의 Sub NotiNodeInfo의 개수와 상기 이진

탐색 알고리즘을 이용하여 NotiNodeInfo(1510)을 찾는다.

NotiNodeInfo(1510)의 notiInfoOffset은 노티피케이션정보를 저장하고 있는 NotiInfo(1512)를 가리키고 있으며 상기

NotiInfo(1512)와 NotiAttInfo(1514)를 이용하여 SNMP 노티피케이션 메시지를 만들어서 상기 매니저(100)로 보낸다.

발명의 효과

본 발명에 의하면, 관리 대상이 바뀌거나 관리항목이 추가, 변경, 삭제가 되어도 추출부로 새로운 객체 식별자 정보 파일만

을 생성하면 SNMP 에이전트는 기능의 추가나 새롭게 코딩, 재 컴파일을 할 필요가 없다. 또한 SNMP 에이전트와 응용프

로그램간에 사용하는 스트럭쳐가 추가, 변경, 삭제 되어도 관리항목인 MIB의 변경과 객체 식별자 정보 파일의 변경이 자

동으로 가능하다. 이로 인하여 SNMP 에이전트의 개발이 용이하며 여러 가지 다른 장비나 관리 대상에 SNMP 에이전트를

그대로 사용이 가능하다.

(57) 청구의 범위

청구항 1.

간이 망 관리 프로토콜(SNMP)을 사용하여 통신 장비를 관리하기 위해 컴파일 타임시에 상기 통신 장비를 관리하기 위한

관리 정보 베이스(MIB) 파일과 상기 간이 망 관리 프로토콜 에이전트와 응용프로그램 간의 통신을 위한 객체 식별자 정보

파일을 생성하기 위한 장치에 있어서,

상기 간이 망 관리 프로토콜 장비의 관리를 위해 응용프로그램이 작성한 헤더 파일을 저장하는 헤더 파일 저장부와,

상기 헤더 파일 저장부에서 상기 헤더 파일을 읽어서 상기 관리 정보 베이스 파일과 상기 간이 망 관리 프로토콜 에이전트

와 상기 응용프로그램간의 메시지 교환을 위한 상기 객체 식별자 정보 파일을 작성하는 추출부와,

상기 추출부에서 작성한 상기 관리 정보 베이스 파일을 저장하는 관리 정보 베이스 파일 저장부와,

상기 추출부에서 작성한 상기 객체 식별자 정보 파일을 저장하는 객체 식별자 정보 저장부를 포함함을 특징으로 하는 간이

망 관리 프로토콜 관리 장치.

청구항 2.

제 1항에 있어서, 상기 메시지는 상기 간이 망 관리 프로토콜 에이전트와 상기 응용프로그램간의 통신을 위한 GMS

(General Message Service) 메시지임을 특징으로 하는 간이 망 관리 프로토콜 관리 장치.

청구항 3.

간이 망 관리 프로토콜(SNMP)을 사용하여 통신 장비를 관리하기 위해 컴파일 타임시에 상기 통신 장비를 관리하기 위한

관리 정보 베이스(MIB) 파일과 상기 간이 망 관리 프로토콜 에이전트와 응용프로그램 간의 통신을 위한 객체 식별자 정보

파일을 생성하기 위한 방법에 있어서,

등록특허 10-0606025

- 25 -



변경된 관리 항목을 입력받은 응용프로그램이 간이 망 관리 프로토콜 인터페이스 헤더 파일을 작성하는 과정과,

상기 작성된 간이 망 관리 프로토콜 인터페이스 헤더 파일을 읽어와서 관리 정보 베이스 파일과 객체 식별자 정보 파일을

생성하는 과정과,

상기 생성된 관리 정보 베이스 파일과 상기 객체 식별자 정보 파일을 저장하는 과정을 포함함을 특징으로 하는 간이 망 관

리 프로토콜 관리 방법.

청구항 4.

간이 망 관리 프로토콜을 사용하여 장비를 관리하는 간이 망 관리 프로토콜 에이전트가 런 타임시에 외부에서 입력된 간이

망 관리 프로토콜 요청에 응답하기 위한 장치에 있어서,

외부로부터 간이 망 관리 프로토콜 요청 메시지를 수신하여 상기 메시지 내에 포함된 객체 식별자 정보를 객체 식별자 정

보 처리부로 전송하고 망 관리를 위한 응용프로그램과 통신을 수행하여 망 관리 프로토콜 응답 메시지를 출력하는 에이전

트와,

상기 에이전트가 전송한 객체 식별자 정보를 근거로 객체 식별자 정보 저장부로부터 해당되는 정보를 읽어와서 상기 정보

를 상기 에이전트에게 전달하는 객체 식별자 정보 처리부를 포함함을 특징으로 하는 간이 망 관리 프로토콜 관리 장치.

청구항 5.

제 4항에 있어서, 상기 응용프로그램과 상기 에이전트간의 통신은 GMS(General Message Service)메시지를 사용함을

특징으로 하는 간이 망 관리 프로토콜 관리 장치.

청구항 6.

간이 망 관리 프로토콜을 사용하여 장비를 관리하는 간이 망 관리 프로토콜 에이전트가 런 타임시에 외부에서 입력된 간이

망 관리 프로토콜 요청에 응답하기 위한 방법에 있어서,

외부로부터 간이 망 관리 프로토콜 요청 메시지를 수신하는 과정과,

상기 요청 메시지에 포함된 객체 식별자 정보를 객체 식별자 정보 처리부에 전달하는 과정과,

상기 객체 식별자 정보 처리부가 상기 에이전트가 상기 응용프로그램과 통신하기 위해 필요한 GMS 정보를 객체 식별자

정보 저장부에서 읽어와 상기 에이전트에게 전달하는 과정과,

상기 GMS 정보를 근거로 상기 에이전트가 응용프로그램에게 GMS 요청을 하는 과정과,

상기 응용프로그램이 상기 에이전트에게 GMS 응답을 하는 과정과,

상기 에이전트가 상기 매니저에게 간이 망 관리 프로토콜 요청에 대한 응답 메시지를 출력하는 과정을 포함함을 특징으로

하는 간이 망 관리 프로토콜 관리 방법.

도면

등록특허 10-0606025

- 26 -



도면1

도면2

등록특허 10-0606025

- 27 -



도면3

도면4

등록특허 10-0606025

- 28 -



도면5

도면6

등록특허 10-0606025

- 29 -



도면7

도면8

등록특허 10-0606025

- 30 -



도면9

도면10

등록특허 10-0606025

- 31 -



도면11

등록특허 10-0606025

- 32 -



도면12

등록특허 10-0606025

- 33 -



도면13

등록특허 10-0606025

- 34 -



도면14

등록특허 10-0606025

- 35 -



도면15a

도면15b

등록특허 10-0606025

- 36 -



도면16

등록특허 10-0606025

- 37 -



도면17

등록특허 10-0606025

- 38 -



도면18

등록특허 10-0606025

- 39 -


	문서
	서지사항
	요약
	대표도
	색인어
	명세서
	도면의 간단한 설명
	발명의 상세한 설명
	발명의 목적
	발명이 속하는 기술 및 그 분야의 종래기술
	발명이 이루고자 하는 기술적 과제

	발명의 구성 및 작용
	발명의 효과


	청구의 범위
	도면
	도면1
	도면2
	도면3
	도면4
	도면5
	도면6
	도면7
	도면8
	도면9
	도면10
	도면11
	도면12
	도면13
	도면14
	도면15a
	도면15b
	도면16
	도면17
	도면18




문서
서지사항 1
요약 1
대표도 1
색인어 1
명세서 2
 도면의 간단한 설명 2
 발명의 상세한 설명 2
  발명의 목적 2
   발명이 속하는 기술 및 그 분야의 종래기술 2
   발명이 이루고자 하는 기술적 과제 4
  발명의 구성 및 작용 5
  발명의 효과 25
청구의 범위 25
도면 26
 도면1 27
 도면2 27
 도면3 28
 도면4 28
 도면5 29
 도면6 29
 도면7 30
 도면8 30
 도면9 31
 도면10 31
 도면11 32
 도면12 33
 도면13 34
 도면14 35
 도면15a 36
 도면15b 36
 도면16 37
 도면17 38
 도면18 39
