

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
1 April 2004 (01.04.2004)

PCT

(10) International Publication Number
WO 2004/026941 A1

(51) International Patent Classification⁷: C08G 73/00, 73/02, A61K 47/00, 47/06, 47/16, 47/18, 47/30, 9/00

(74) Agents: MACDOUGALL, Donald, Carmichael et al.; Cruikshank & Fairweather, 19 Royal Exchange Square, Glasgow G1 3AE (GB).

(21) International Application Number:

PCT/GB2003/004036

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(22) International Filing Date:

22 September 2003 (22.09.2003)

(25) Filing Language:

English

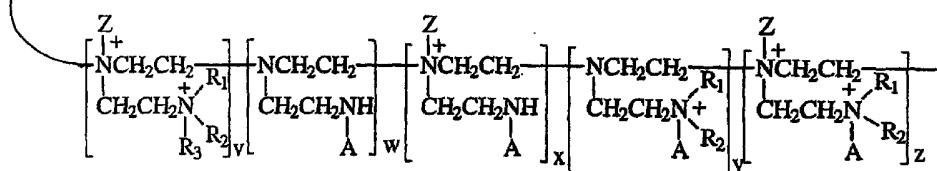
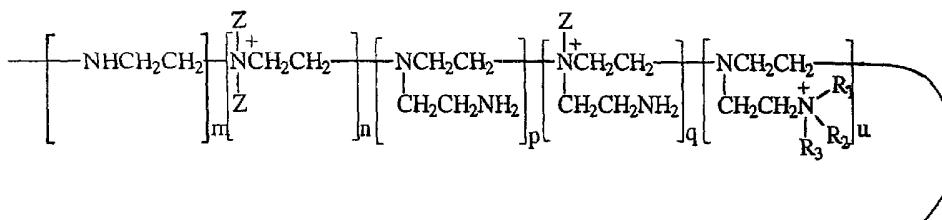
(26) Publication Language:

English

(30) Priority Data:

0221942.6 20 September 2002 (20.09.2002) GB

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).



(71) Applicants (for all designated States except US): THE UNIVERSITY OF STRATHCLYDE [GB/GB]; McCance Building, 16 Richmond Street, Glasgow G1 1XQ (GB). THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW [GB/GB]; Gilbert Scott Building, University Avenue, Glasgow G12 8QQ (GB).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: DRUG DELIVERY

WO 2004/026941 A1

(57) Abstract: This invention relates to the delivery of drugs. In particular, this invention relates to the oral delivery of poorly soluble drugs using novel amphiphilic polymers with both solubilising and absorption enhancing properties.

DRUG DELIVERYField of Invention

5 This invention relates to the delivery of drugs. In particular, this invention relates to the oral delivery of poorly soluble drugs using novel amphiphilic polymers with both solubilising and absorption enhancing properties.

10

Background of Invention

The oral delivery of poorly soluble drugs is usually accomplished with oil based formulations such as microemulsions (Dunn, C.J., Wagstaff, A.J., Perry, C.M., Plosker, G.L., Goa, K.L., 2001, Cyclosporin - An Updated Review of the Pharmacokinetic Properties, Clinical Efficacy and Tolerability of a Microemulsion-Based Formulation Neoral R(1) in Organ Transplantation, Drugs 61: 1957 - 2016; and Porter, C.J.H., Charman, W.N., 2001, In vitro Assessment of Oral Lipid Based Formulations, Advanced Drug Delivery Reviews 50: S127-S147) or low molecular weight surface active agents (BalandraudPieri, N., Queneau P.E., Caroli Bosc, F.X., BertaultPeres, P., Montet, A.M., Durand, A., Montet, J.C. 1997, Effects of Tauroursodeoxycholate Solutions on Cyclosporin and Bioavailability in Rats, Drug Metabolism and Disposition 25: 912-916; Guo, J.X., Ping, Q.N., Chen, Y. 2001, Pharmacokinetic Behaviour of Cyclosporin A in Rabbits by Oral Administration of Lecithin Vesicle and Sandimmun Neoral, International Journal of Pharmaceutics 216: 17-21). Poorly soluble drugs are those drugs that are identified in the British Pharmacopoeia as "practically insoluble" (Medicines Commission, British Pharmacopoeia, The Stationery Office, London, 1998). Such drugs have an aqueous solubility of less than 0.1mg per millilitre of solvent (such as water) at a temperature of about 15°C - 20°C.

Previous attempts to promote oral absorption of poorly soluble drugs such as cyclosporin, have involved

the use of oil and/or surfactant (Dunn, C.J., Wagstaff, A.J., Perry, C.M., Plosker, G.L., Goa, K.L., 2001, Cyclosporin - An Updated Review of the Pharmacokinetic Properties Clinical Efficacy and Tolerability of a

5 Microemulsion-Based Formulation Neoral R(1) in Organ Transplantation, Drugs 61: 957 - 2016; and Porter, C.J.H., Charman, S.A., Williams, R.D., Bakalova, M.B., Charman, W.N., 1996, Evaluation of Emulsifiable Glasses for the Oral Administration of the Cyclosporin in Beagle

10 Dogs, International Journal of Pharmaceutics 141: 227-237), bile salt (BaladraudPieri, N., Queneau, P.E., CaroliBosc F.X., BertaultPeres, P., Montet, A.M., Durand, A., Montet, J.C., 1997, Effects of Taurooursodeoxycholate Solutions on Cyclosporin and Bioavailability in Rats, Drug

15 Metabolism and Disposition 25:912-916), phospholipid based systems (Guo, J.X., Ping, Q.N., Chen, Y., 2001, Pharmacokinetic Behaviour of Cyclosporin A In Rabbits by Oral Administration of Lecithin Vesicle and Sandimmun Neoral, International Journal of Pharmaceutics 21: 17 - 21; and Leigh, M., Hoogeveest, P.V., Tiemessen, H., 2001 Optimising the Oral Bioavailability of the Poorly Water Soluble Drug Cyclosporin A Using Membrane Lipid Technology, Drug Delivery and Sciences 1: 73-77) or cyclodextrins (Miyake, K., Arima, H., Irie, T., Hirayama, F., Uekama, K., 1999, Enhanced Absorption of Cyclosporin A by Complexation with Dimethyl-Beta-Cyclodextrin in Bile duct-Cannulated and Non-Cannulated Rats, Biological and Pharmaceutical Bulletin 22: 66-72). Although a nanocapsule formed during in-situ polymerisation has also

20 been proposed for cyclosporin delivery, this technique has difficulties in delivering the drug (Bonduelle, S., Carrier, M., Pimienta, C., Benoit, J.P., Lenaerts, B., 1996, Tissue Concentration of Nanoencapsulated Radiolabelled Cyclosporin Following Peroral Delivery in

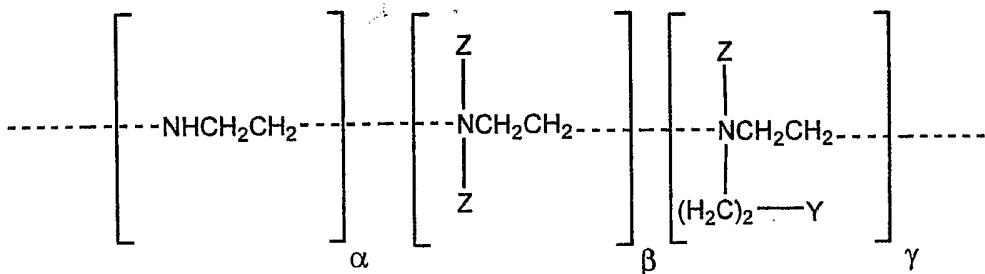
25 Mice or Ophthalmic Application in Rabbits, European Journal of Pharmaceutics and Biopharmaceutics, 42: 31 - 319).

Cyclosporin is a lipophilic immunosuppressant used to treat transplant and autoimmune disease patients.

Cyclosporin is poorly soluble in a variety of solvents and is currently administered as a micro-emulsion formulation.

It is an object of embodiments of the present invention to obviate or mitigate at least one or more of the aforementioned problems.

It is a further object of embodiments of the present invention to improve delivery of poorly soluble drugs to a recipient.


10

Summary of the Invention

According to a first aspect of the present invention there is provided a polyethylenimine polymer according to the following formula:

15

20

wherein α is between 0 to 90%;

25 β is between 0 to 100%;

γ is between 0 to 50%;

wherein $\alpha + \beta + \gamma = 100\%$; and

30 the Z groups are hydrophobic and are independently hydrogen or any linear or branched, substituted or unsubstituted, or cyclo form of any hydrophobic substituent; and

Y may represent a hydrophilic substituent.

It should be understood that the monomer units identified with α , β and γ may form any arrangement in the 35 polyethylenimine polymer. The arrangement of the α , β and γ units may therefore be random or in a block copolymer form such as $\alpha\beta\gamma\alpha\beta\gamma$ etc. This is identified

above by the dashed line between the different monomer units.

The polyethylenimine polymer may be linear or branched.

5 The ratios for α , β , γ are numerical ratios.

Typically, the Z groups may independently be selected from any of the following hydrophobic substituents: an alkyl, an alkenyl, and alkynyl, an aryl, an acyl, a hydroxy alkyl, a hydroxy acyl, polyethylene glycol or any sugar.

10 The Z groups may independently be any linear or branched, substituted or unsubstituted, or cyclo form of the following alkyl, alkenyl, alkynyl, aryl, acyl, hydroxy alkyl, hydroxy acyl, polyethylene glycol or any sugar groups: $C_1 - C_{20}$; $C_1 - C_{12}$; $C_1 - C_6$ or C_1 .

15 The Z groups may be $C_1 - C_4$ linear alkyl groups.

Y may represent any of the following: $-NH_2$; $-NHA$; $-N^+R_1R_2R_3$; and $-N^+R_1R_2A$.

20 R_1 , R_2 , or R_3 may be selected from any of the following substituents: an alkyl, an alkenyl, an alkynyl, an aryl, an acyl, a hydroxy alkyl, a hydroxy acyl, polyethylene glycol or any sugar.

25 R_1 , R_2 and R_3 may independently be any linear or branched, substituted or unsubstituted, or cyclo form of the following alkyl, alkenyl, alkynyl, aryl, acyl, hydroxy alkyl, hydroxy acyl, polyethylene glycol or any sugar groups: $C_1 - C_{20}$; $C_1 - C_{12}$; $C_1 - C_6$ or C_1 .

Typically, R_1 , R_2 and R_3 are $C_1 - C_4$ linear alkyl groups.

30 All of R_1 , R_2 and R_3 may be CH_3 .

Conveniently there may be between 1 and a maximum of 3 R substituents on any single nitrogen. This allows for primary, secondary and tertiary amines.

35 The groups A may be selected from any of the following linear or branched, substituted or unsubstituted, or cyclo groups: $C_1 - C_{30}$; $C_8 - C_{24}$; or $C_{12} - C_{16}$.

Typically, the groups A may be a linear C₁₂ - C₁₆ alkyl group.

In particular, A may be CH₃(CH₂)₁₅.

The ratio of quaternary ammonium nitrogens to 5 nitrogens of amino groups may be selected from any of the following: 0.01% - 100%; 10% - 90%; 30% - 70%; 40% - 60%; 50% - 90% or 60% - 80%. The preferred range is 40% - 90%. A high proportion of quaternary ammonium groups promotes solubilisation of both the polyethylenimine 10 polymer and a hydrophobic drug.

The parent polyethylenimine compound used to make the polyethylenimine polymer may have an average molecular weight of about 2 - 50kD, or more particularly, of about 10 - 25 kD.

15 The polyethylene polymer may have an average molecular weight of about 10 - 25 kD.

The polyethylenimine polymer may produce hydrophobic domains. Hydrophobic domains are areas of the molecule's self-assembly where hydrophobic compounds or compounds 20 which are poorly soluble in water are able to reside and thus become solubilised with an aqueous disperse phase. The level of hydrophobic modification may be from 0.01 - 50%, 0.1 - 20% or 1 - 10% of amino groups. The preferred level of hydrophobic modification is 1 - 10% of amino 25 groups.

All possible monomeric subunits in accordance with the structure as defined in formula I are shown in Figure 1:

wherein m is between 0 - 90 %;
30 n is between 0 - 100 %;
p is between 0 - 50 %;
q is between 0 - 50 %;
u is between 0 - 50 %;
v is between 0 - 50 %;
35 w is between 0 - 20 %;
x is between 0 - 20 %;
y is between 0 - 20 %; and
z is between 0 - 20 %;

wherein, $m + n + p + q + u + v + w + x + y + z = 100\%$; and

A, R_1 , R_2 , R_3 and Z are as defined above.

It should be appreciated that the monomer units m, 5 n, p, q, u, v, w, x, y and z may be arranged in any order.

The ratios for m, n, p, q, u, v, w, x, y and z are numerical ratios.

Typically, if $m = 0\%$ then n is not equal to 0%.

10 Typically, if $n = 0\%$ then m is not equal to 0 %.

Typically, if $p = 0\%$ then $q + u + v + w + x + y + z$ does not equal 0%.

Typically, if $q = 0\%$ then $p + u + v + w + x + y + z$ does not equal 0%.

15 Typically, if $u = 0\%$ then $p + q + v + w + x + y + z$ does not equal 0%.

Typically, if $v = 0\%$ then $p + q + u + w + x + y + z$ does not equal 0%.

20 Typically, if $w = 0\%$ then $x + y + z + n$ does not equal 0%.

Typically, if $x = 0\%$ then $w + y + z + n$ does not equal 0%.

Typically, if $y = 0\%$ then $w + x + z + n$ does not equal 0%.

25 Typically, if $z = 0\%$ then $w + x + y + n$ does not equal zero.

Conveniently, $m + n$ lies between 50 to 100%.

Conveniently, $p + q + u + v$ lies between 20 to 50%.

30 Conveniently, $w + x + y + z$ lies between 0.01 to 10%.

It is possible that polyethylenime may be linear (n=100) or branched as shown in Figure 1. If $n = 0\%$, however, then m must be equal to a value greater than 0% as this allows for the branched material with no backbone 35 quaternisation on erstwhile secondary amines.

It is possible that p, q, u, v, w, x, y or z may be equal to 0%. However, the sum total of p, q, u, v, w, x, y and z may be equal to a value greater than 0%, as this allows for the branched compound to be included.

Alternatively, w, x, y or z may be equal to 0%. However, the sum total of w, x, y or z may not be equal to 0%. This allows for a hydrophobically substituted branched compound.

5 Typically, m + n = 60%, w + x + y + z = 6%, and p + q + u + v = 34%. Using these ranges defines the quaternary ammonium cetyl polyethylenimine found in the Example Section of the present application.

10 According to a second aspect of the present invention there is provided a method of forming a polyethylenimine polymer according to the first aspect by reacting a polyethylenimine compound formed from the polymerisation of ethylenimine with a first organo halide to form an organo side chain on the polyethylenimine compound, and then a second organo halide to react with 15 an amino group on the polyethylenimine compound.

The polyethylenimine used may be branched or linear.

20 Branched polyethylenimine may be prepared by the acid catalysed polymerisation of, for example, aziridine (ethyleneimine) (Dick, C.R., Ham, G.E., J. Macromol. Sci. 1970, A4, 1301-1314; von Harpe, A., Petersen, H., Li, Y., Kissel, T., J. Control. Rel. 2000, 69, 309-332). Linear polymers may be prepared by controlling the conditions of 25 polyethylenimine polymerisation (Zhuk, D.S., Gembitsky, P.A., Alexandrovich, A.I., US Patent No. 4,032,480).

The first organo halide may be any linear or branched, substituted or unsubstituted, or cyclo form of any alkyl, alkenyl, alkynyl, aryl or acyl halide or any hydrophilic halide. The halide may be any of fluoride, 30 chloride, bromide or iodide.

The organo group of the first organo halide may be selected from any of the following linear or branched, substituted or unsubstituted, or cyclo groups: C₁ - C₃₀; C₈ - C₂₄; or C₁₂ - C₁₆.

35 Typically, the first organo halide is a linear C₁₂ - C₁₆ alkyl halide.

In particular, the first organo halide may be cetyl bromide (e.g. CH₃(CH₂)₁₅ Br).

The second organo halide may be any alkyl, alkenyl, alkynyl, aryl or acyl halide or any hydrophilic halide. The halide may be any of fluoride, chloride, bromide or iodide.

5 The organo group of the second organo halide may be selected from any of the following linear or branched, substituted or unsubstituted, or cyclo groups: $C_1 - C_{20}$; $C_1 - C_6$; or C_1 .

10 Typically, the second organo halide is a linear $C_1 - C_6$ alkyl halide. In particular, the second organo halide may be methyl iodide.

15 The polyethylenimine compound and first organo halide may be mixed in an organic solvent such as tetrahydrofuran, which may then be refluxed. The refluxing may occur in an alcoholic solution of, for example, sodium hydroxide. Cetyl polyethylenimine may then be isolated and may then be reacted with the second organo halide.

20 The second organo halide may be added in the presence of, for example, a metal hydroxide (e.g. sodium hydroxide), a metal halide (e.g. sodium iodide) and an alcohol (e.g. methanol).

The polyethylenimine polymer may then be obtained by washing, dialysis and using an ion exchange column.

25 Further quaternisation may be obtained by adding more of the second organo halide.

The formed polyethylenimine polymer may be that as represented in Figure 1.

30 It is also possible to prepare a substituted linear polyethylenimine with the end nitrogens protected, subsequently deprotect the terminal amines and then attach this substituted linear polyethylenimine to the branched molecule and follow the whole conjugation step with a quaternary ammonium step.

35 According to a third aspect of the present invention there is provided a composition comprising a polyethylenimine polymer according to the first aspect and a pharmaceutically acceptable carrier.

Pharmaceutically acceptable carriers are well known to those skilled in the art and include, but are not limited to, 0.1 M and preferably 0.05 M phosphate buffer or 0.9% w/v saline. Additionally, such pharmaceutically acceptable carriers may be aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's or fixed oils. Preservatives and other additives may also be present, such as, for example, antimicrobials, antioxidants, chelating agents, inert gases and the like.

Typically, the ratio of polyethylenimine polymer to pharmaceutically acceptable carrier ranges from any of the following: 0.0001 - 100 w.v., 0.005 - 50 w.v.; 0.001 - 30 w.v.; 0.001 - 10 w.v.; or 0.01 - 1 w.v.

According to a fourth aspect of the present invention there is provided a pharmaceutical composition comprising a polyethylenimine polymer according to the first aspect and a drug.

The drug may be poorly soluble in aqueous solvents such as water. The drug may be administered to a patient as a solution or a particulate formulation.

The drug may be selected from any of the following: cyclosporin; steroids such as prednisolone, oestradiol, testosterone; drugs with multicyclic ring structures which lack polar groups such as paclitaxel; and drugs such as etoposide.

Typically, the ratio of the polyethylenimine polymer to the drug may be selected from any of the following: 0.001 - 100%; 0.1 - 100%; 1 - 100%; 10 - 90%; 30 - 70%.

The pharmaceutical composition may also comprise a pharmaceutically acceptable carrier.

Typically, the ratio of polyethylenimine polymer to drug to pharmaceutically acceptable carrier may be in the range of 5 - 20mg : 0.5 - 5mg : 0.5 - 5mL or 5 - 20mg : 0.5 - 5mg : 0.5 - 5g. In particular, the ratio of 5 polyethylenimine polymer to drug to pharmaceutically acceptable carrier may be about 10mg:2mg:1mL or about 10mg:2mg:2g.

The pharmaceutical composition may be in the form of any of the following: tablets, suppositories, liquid 10 capsule, powder form, or a form suitable for pulmonary delivery.

When tablets are used for oral administration, typically used carriers include sucrose, lactose, mannitol, maltitol, dextran, corn starch, typical 15 lubricants such as magnesium stearate, preservatives such as paraben, sorbin, antioxidants such as ascorbic acid, α -tocopheral, cysteine, disintegrators or binders. When administered orally as capsules, effective diluents include lactose and dry corn starch. A liquid for oral 20 use includes syrup, suspension, solution and emulsion, which may contain a typical inert diluent used in this field, such as water. In addition, sweeteners or flavours may be contained.

Suppositories may be prepared by admixing the 25 compounds of the present invention with a suitable non-irritative excipient such as those that are solid at normal temperature but become liquid at the temperature in the intestine and melt in rectum to release the active ingredient, such as cocoa butter and polyethylene 30 glycols.

The dose of the polymer can be determined on age, body weight, administration time, administration method, combination of drugs, the level of condition of which a patient is undergoing therapy, and other factors. While 35 the daily doses may vary depending on the conditions and body weight of patients, the species of active ingredient, and administration route, in the case of oral

use, the daily does may be about 0.1 - 100 mg/person/day, preferably 0.5 - 30 mg/person/day.

According to a fifth aspect of the present invention there is provided a method of dissolving poorly soluble 5 drugs suitable for oral delivery, using a preformed polymer.

By preformed polymer herein is meant a polymer which already exists and does not need to be formed during an in-situ polymerisation step.

10 The preformed polymer may be a polyethylenimine polymer according to the first aspect.

The poorly soluble drug may be selected from any of the following: cyclosporin; steroids such as prednisolone; oestradiol; testosterone; drugs with 15 multicyclic ring structures which lack polar groups such as paclitaxel; drugs such as etoposide.

The fact that R_1 , R_2 , R_3 and R_4 may be long chain alkyl groups or other hydrophobic groups makes it possible for the polyethylenimine polymer according to 20 the first aspect to dissolve poorly soluble drugs in aqueous media.

The preformed polymer may also be used to dissolve polar (aqueous soluble) materials within hydrophobic media.

25 According to a sixth aspect of the present invention there is provided use of a preformed polymer according to the fifth aspect in dissolving poorly soluble drugs in the preparation of a composition.

30 The composition may be a pharmaceutical composition comprising a drug and/or a pharmaceutically acceptable carrier.

Brief Description of the Drawings

35 Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings in which:

Figure 1 is a representation of a polyethylenimine polymer formed according to the present invention; and

Figure 2 is a Transmission Electron Microscopy (TEM) image of quaternary ammonium cetyl polyethyleneimine (QCPEI2) and cyclosporin nanoparticles.

5 **Examples**

Example 1 - Synthesis of Quaternary Ammonium Cetyl Polyethylenimine (QCPEI)

Alkylation of polyethylenimine was carried out according to a previously reported method (Noding, G., 10 Heitz, W., 1998, Amphiphilic Polyethylenimines Based on Long-Chain Alkyl Bromide Macromolecular Chemistry and Physics 199: 637 - 1644). Briefly, polyethylenimine (M_w = 25kD, 5g) was alkylated by refluxing with cetyl bromide (1.8g) and tetrahydrofuran (50ml) for 48 hours, followed 15 by the addition of an alcoholic solution of sodium hydroxide (4.8g in 25ml methanol), and a further reflux period of 24 hours. Sodium bromide was removed by filtration and the product isolated by evaporation of the solvent, exhaustive dialysis and freeze-drying. 0.6g of 20 cetyl polyethylenimine was then quaternised by reaction with methyl iodide (2.6ml) in the presence of sodium hydroxide (0.23g), sodium iodide (0.28g) and methanol (100ml) for 3 hours at 36°C. The product was isolated by precipitation in ether (400ml), washing with ethanol, 25 exhaustive dialysis of an ethanolic solution and elution through an ion exchange column to isolate the hydrochloride salt.

A yellow cotton wool like solid which is the quaternary ammonium cetyl polyethyleneimine (QCPEI1) was 30 obtained on freeze drying.

A further quaternisation of quaternary ammonium cetyl polyethyleneimine (QCPEI1) produced a doubly quaternised compound, i.e. di-quaternary ammonium cetyl polyethyleneimine (QCPEI2).

35

Characterisation of Quaternary Ammonium Cetyl Polyethylenimine

1H NMR and 1H correlation spectroscopy as well as ^{13}C NMR experiments (Bruker, AMX 400 MHz spectrometer, Bruker

Instruments UK) were carried out on the quaternary cetyl polyethyleneimine in deuterated methanol. Elemental analysis was carried out on the products using a Perkin Elmer 2400 analyser.

5

Polymer Aggregation

The aggregation of an aqueous solution of the polymers was studied using a pyrene probe for hydrophobic domains (see Kalyanasundaram, K., Thomas, J.K., 1977, 10 Environmental Effects on the Vibronic Band Intensities in Pyrene Monomer Fluorescence and the Application to Studies of Micellar Systems, Journal of the American Chemical Society 99: 2039 - 2044). Fluorescence scans (excitation = 340nm) were performed on various 15 concentrations of the polymer dissolved in an aqueous pyrene solution (2 μ M). The ratio of the intensity of the third and first peaks (I_3/I_1) was used to assess the hydrophobicity of the pyrene environment which is an indirect probe for polymer association.

20 Polymer aggregation was also assessed by recording the hypsochromic shift in the UV absorption spectrum of methyl orange (Lieske, A., Jaeger, W., 1999, Block Copolymers Containing Polysoap Blocks, Tenside Surfactants Detergents 36: 155 - 161) in 25 μ M in 0.02M 25 borate buffer when encapsulated within a hydrophobic environment. UV absorption scans (300 - 600nm) were performed on various concentrations of the polymer dissolved in the methyl orange-borate solution and the wavelength of maximum absorbance noted.

30

35 **TABLE 1: Quaternary ammonium cetyl polyethyleneimine (QCPEI1) aggregation in aqueous solution as measured by the increase in (I_3/I_1) ratio in the pyrene fluorescence and by the hypsochromic shift in the methyl orange spectra**

QCPEI1 I3/I1 ratio (QCPEI1 concentration in mg mL ⁻¹)	QCPEI1 Methyl Orange wavelength of maximum absorbance (QCPEI1 concentration in mg mL ⁻¹)	QCPEI2 I3/I1 ratio (QCPEI2 concentration in mg mL ⁻¹)	QCPEI2 Methyl Orange wavelength of maximum absorbance (QCPEI2 concentration in mg mL ⁻¹)
0.64 (0)	465 (0)	0.61 (0)	465 (0)
0.88 (0.87)	450 (0.50)	0.823 (0.81)	456 (0.55)
0.89 (1.73)	452 (1.52)	0.862 (1.621)	450 (1.63)
0.92 (3.73)	452 (3.73)	0.871 (3.24)	458 (3.70)
0.98 (7.04)	454 (7.80)	0.853 (4.37)	455 (7.85)
		0.926 (6.49)	456 (14.25)

The synthesis of the cetyl polyethylenimine was confirmed by a proton NMR and assignments were made as follows:

5 δ = 0.87 = CH_3 (cetyl), δ 1.25 = CH_2 (cetyl), δ 1.45 = $\text{CH}_2 - \text{N}$ (cetyl), δ 2.7 - 2.8 = $\text{CH}_2 - \text{N}$ (cetyl and polyethylenimine). Quaternisation of cetyl polyethylenimine to produce quaternary ammonium cetyl polyethylenimine was confirmed by ^{13}C NMR: δ 14.6 = 10 CH_3 (cetyl), δ 23.9 = CH_2 (cetyl), δ 52.5 and 54.8 = $\text{CH}_3(\text{CH}_3\text{N}^+)$, δ 58.8 and 63.5 = CH_2N and CH_2N^+ (polyethylenimine) and ^1H NMR - δ 0.90 = CH_3 (cetyl), δ 1.3 = CH_2 (cetyl), δ 1.47 = CH_2 (cetyl), δ 1.85 = $\text{CH}_2 - \text{N}$ (cetyl), δ 2.5 - 4.7 = CH_2N , CH_2N^+ and CH_3N^+ .

15 The yields of cetyl polyethylenimine, quaternary polyethylenimine (QCPEI1) and di-quaternary cetyl polyethylenimine (QCPEI1) were 67%, 85% and 46%, respectively.

20 The degree of cetylation was found to be 5.2% of all amine groups using elemental analysis data. The degree of conversion of amines to quaternary ammonium moieties was approximately 64% for quaternary cetyl polyethylenimine and 81% for di-quaternary cetyl polyethylenimine.

25 Both quaternary ammonium polymers aggregate to produce hydrophobic domains in aqueous solution (See Table 1). This is shown by the increase in the I3/I1 values and also by the shift to a lower wavelength of the

methyl orange peak. These hydrophobic domains serve to solubilise poorly aqueous soluble (hydrophobic) drugs such as cyclosporin; in the case of the less quaternised variant - QCPEI1 which forms a clear micellar liquid with 5 cyclosporin, when freshly prepared (Table 1), effectively encapsulating cyclosporin within the hydrophobic domains.

Example 2 - Preparation of Quaternary Cetyl Polyethylenimine - Cyclosporin Formulations

Quaternary cetyl polyethylenimine polymers were dissolved by probe sonication on ice (Soniprep Instruments, UK) followed by the addition of cyclosporin, which was incorporated into the polymer solution by probe sonication. Formulations were stored for up to 13 days 10 and observed for particle formation. Particulate formations were sized by photon correlation spectroscopy, imaged by both transmission electron microscopy (TEM) with negative staining (see Wang, W., Tetley, L., Uchegbu, I.F., 2001. The Level of Hydrophobic 15 Substitution and the Molecular Weight of Amphiphilic Poly-L-Lysine-based Polymers Strongly Affects Their Assembly into Polymeric Bilayer Vesicles, Journal of Colloid and Interface Science 237: 200-207) and freeze fracture electron microscopy (see Uchegbu, I.F., 20 25 Schatzlein, A.G., Tetley, L., Gray, A.I., Sludden, J., Siddique, S., Mosha, E., 1998, Polymeric Chitosan - Based Vesicles for Drug Delivery, Journal of Pharmacy and Pharmacology 50: 453-458). Clear micellar formulations were filtered with a 0.45 μ m filter and the filtered 30 formulations assayed by HPLC using a reverse phase Waters Spherisorb ODS column (25cm x 4.6mm), eluted with a water, acetonitrile tert-butyl methyl ether, orthophosphoric acid (350:600:50:1). Detection was by UV(λ =210nm).

Table 2: QCPEI-cyclosporin formulations

Formulation	Initial Appearance	Initial Mean Particle Size (nm)	% Recovery of cyclosporin from micellar solutions(a)		Mean Particle Size (nm)
			Freshly prepared (mean \pm s.d.)	After storage (2-8°C) for 90 days (mean \pm s.d.)	
QCPEI1	Clear liquid	-	78.7 \pm 8.14 (n=3)	93.3 \pm 6.60 (n=4)	558 (n=3) 608 (n=6)
QCPEI2	Colloidal	310 (n=4)	-	-	377 (n=1) 512 (n=3)

(a) Initial Concentration = 2mg mL⁻¹

n Denotes number of formulations assayed.

5

[In Table 2 the blank boxes (represented with a "-") represent particulate formulations, which cannot be assayed in the same way as micellar formulations].

10 As shown in Table 1 both quaternary ammonium polymers (i.e. QCPEI1 and QCPEI2) aggregate to produce hydrophobic domains in aqueous solutions. These hydrophobic domains serve to solubilise cyclosporin. In the case of the less quaternised variant - QCPEI1 forms 15 a clear micellar liquid with cyclosporin, when freshly prepared, effectively encapsulating cyclosporin within hydrophobic domains. However, as shown in Table 2, the polymer exhibits a lower critical solution temperature and becomes less hydrated with increase in temperature 20 resulting in aggregation of the polymeric micelles to form nanoparticles. Furthermore, Table 2 shows storage of QCPEI1 at refrigeration temperature preserved the micellar formulation. The micellar formulation is preserved as analysis of the optically clear samples 25 after storage for 90 days shows that there is no precipitation of cyclosporin.

In contrast to QCPEI1, the doubly quaternised compound QCPEI2, which is less water soluble than QCPEI1

initially formed stable nanoparticles with cyclosporin. Figure 2 shows that the double quaternarised compound (QCPEI2) does not form micelles with cyclosporin. The size bar shows that the aggregates formed are too large 5 to be micelles although the image could show an aggregate of lots of micelles. These will still be technically nanoparticles as the formulation is not optically clear.

Although the polymer forms micelles within which cyclosporin is solubilised, the polymer exhibits a lower 10 critical solution temperature and becomes less hydrated with increase in temperature resulting in aggregation of the polymeric micelles to form nanoparticles after exposure to elevated temperatures (i.e. removal from the fridge, Table 2). However, storage of QCPEI1 at 15 refrigeration temperature preserved the micellar formulation (Table 2) and there was no conversion of the micelles into nanoparticles. In contrast to QCPEI1, the doubly quaternised compound QCPEI2, which is less water soluble than QCPEI1, initially formed stable 20 nanoparticles with cyclosporin (Figure 2, Table 2) and does not form the micelles with cyclosporin.

Example 3 - Oral Administration of Quaternary Cetyl Polyethylenimine-Cyclosporin Formulations

25 Groups of male Wistar rats (n=4 i.e. the group size, weight = 200 - 220g) were fasted for 12 hours before dosing and subsequently dosed intragastrically (10mg kg⁻¹) with an optically clear quaternary cetyl polyethylenimine (QCPEI1) - cyclosporin formulation (10:2); a particulate 30 quaternary cetyl polyethylenimine (QCPEI2) - Cyclosporin (10:2) formulation; Neoral (Registered Trademark) or water. Neoral is a microemulsion formulation of cyclosporin manufactured and marketed by Novartis.

35 Blood was taken from the tail vein of these anaesthetised rats at 1 hour, 4 hours and 24 hours after dosing. Plasma was separated by centrifugation at 1000g and stored at -20°C until analysis could be performed on the samples. Cyclosporin was measured in the plasma samples using a monoclonal antibody radioimmunoassay kit

(Cyclo-Trac SP-Whole Body Radioimmunoassay Kit) supplied by Diasorin, UK.

Table 3: Blood Levels Following Oral Cyclosporin Dosing

Time	Formulations		
	ngL ⁻¹ of cyclosporin in blood	Neoral ®	QCPEI1
1h	1525±267*	583±284	748±482
4h	1521±163	1179±360	1387±539
24h	346±37	315±95	295±45

5

* = statistically significant difference between groups at the same time point (p<0.05)

10 The oral QCPEI1 formulations were well tolerated in rats with no gross adverse events recorded. Plasma levels at the 4 hour time point from the oil free QCPEI formulations were indistinguishable from peak levels obtained using Neoral (Registered Trademark), although Neoral (Registered Trademark) was absorbed faster than 15 the QCPEI formulations shown in Table 3. The amphiphilic polyethyleneimine polymer therefore promotes the absorption of a poorly soluble drug such as cyclosporin.

20 Within the 37°C environment of the gut lumen it is assumed, although not wishing to be bound by theory, that the narrow particle formulation prevails for both polymers and that these nanoparticles experience the gradual loss of cationic micellar aggregates still encapsulating their hydrophobic payload. As cationic polymers are known to facilitate transport across 25 epithelial membranes and across cell membranes, these micellar aggregates may also facilitate the intestinal absorption of cyclosporin. The disassociation of the nanoparticle into single micellar aggregates results in the delayed absorption when compared to the oil 30 containing formulation.

Example 4 - Oral Delivery of Cyclosporin 2

This Example examines the effect of intermediate and low molecular weight quaternary ammonium hexadecyl 5 polyethylenimine on the oral delivery of cyclosporine A.

Materials

Polyethylenimine (Mw = 10kD) was supplied by Polysciences, UK. Polyethylenimine (Mw = 1.8kD), 10 hexadecyl bromide, methyl iodide and sodium iodide were all obtained from Sigma-Aldrich, Co., UK. Ethanol, diethyl ether and tetrahydrofuran were supplied by the Department of Pure and Applied Chemistry, University of Strathclyde.

15

Methods

Intermediate molecular weight quaternary ammonium cetyl PEI with two different levels of quaternary ammonium modification (Q1₁₀ and Q2₁₀) were synthesised by 20 reacting polyethylenimine (PEI, Mw = 10kD) with both cetyl bromide and methyl iodide as described for QCPEI1 and QCPEI2 respectively in Example 1. Low molecular weight quaternary ammonium cetyl PEI with a high level of quaternary ammonium modification (Q2_{1.8}) was synthesised 25 by reaction of PEI (Mw = 1.8kD) with both cetyl bromide and methyl iodide as described for QCPEI2 in Example 1. Q1₁₀, Q2₁₀, and Q2_{1.8} cyclosporine (2mg mL⁻¹) formulations, each containing 10mg mL⁻¹ of the respective amphiphilic PEI were prepared as described in Example 2.

30 Male Wistar rats (mean weight = XXg [WPC PLEASE COMPLETE], n = 4) were dosed orally with QCPEI1, Q1₁₀, Q2₁₀ or Neoral formulations of cyclosporine (7.5mg kg⁻¹).

Blood was then sampled at various time intervals and cyclosporine analysed in the sampled blood using the radioimmunoassay procedure described in Example 3. In a separate experiment male Wistar rats (mean weight = XXg 5 [WPC PLEASE COMPLETE], n = 4) were dosed orally with Q2₁₀, Q2_{1.8}, or Neoral formulations of cyclosporine (10mg kg⁻¹). A further group was dosed with a dispersion of cyclosporine (10mg kg⁻¹) in water which was shaken just prior to administration. Blood was sampled from these 4 10 groups of animals at various time intervals and cyclosporine analysed in blood using the radioimmunoassay procedure described in Example 3.

Results

Table 4: Blood levels of cyclosporine after dosing 15 animals orally with 7.5mg Kg⁻¹ cyclosporine

Formulation	Blood levels (ng mL ⁻¹ , n = 4, mean ± s.d.)		
	1h	4h	24h
Q1 ₁₀	615 ± 351*	854 ± 376	73 ± 38
Q2 ₁₀	1050 ± 456	1163 ± 326	95 ± 19
QCPEI1	576 ± 320*	799 ± 481	84 ± 44
Neoral	1496 ± 447	989 ± 301	150 ± 68

*Statistically significantly different from Neoral (p < 0.05)

Table 5: Blood levels of cyclosporine after dosing animals orally with 10mg Kg⁻¹ cyclosporine

Formulation	Blood levels (ng mL ⁻¹ , n = 4, mean ± s.d.)		
	1h	4h	24h
Q2 _{1.8}	889 ± 336*	1677 ± 840	461 ± 153 [#]
Q2 ₁₀	1213 ± 196* #	1865 ± 516 [#]	565 ± 115 [#]
Cyclosporine dispersion in water	439 ± 345*	617 ± 277*	88 ± 43
Neoral	2026 ± 209 [#]	1915 ± 158 [#]	475 ± 133 [#]

*Statistically significantly different from Neoral (p < 0.05). [#]statistically significantly different from cyclosporine dispersion in water.

Comment on Results

At the 7.5mg kg⁻¹ dose level Q2₁₀ had an equivalent bioavailability with Neoral while Q1₁₀ and QCPEI1 delivered less cyclosporine via the oral route after 1h when compared to Neoral, although cyclosporine levels equivalent to Neoral were delivered at the 4h and 24h time points by both Q1₁₀ and QCPEI1.

At the 10mg kg⁻¹ dose level, all formulations delivered less cyclosporine than Neoral at the 1h time point although Q2₁₀ improved the absorption of cyclosporine when compared to cyclosporine dispersion in water. At the 4h time point both Q2₁₀ and Q2_{1.8} were bioequivalent with Neoral whereas due to the high standard deviations obtained with Q2_{1.8}, this formulation was statistically indistinguishable from the cyclosporine

dispersion in water. At the 24h time point all formulations resulted in a greater absorption of cyclosporine when compared to the cyclosporine dispersion in water.

5 It is clear that polyethylenimine amphiphiles are able to promote the absorption of cyclosporine.

Example 5: Stability of Cyclosporin Solutions

10 This Example relates to assessing the stability of quaternary ammonium polyethylenimine - cyclosporine formulations.

Materials

15 Polyethylenimine (Mw = 10kD) was supplied by Polysciences, UK. Polyethylenimine (MW = 25kD), hexadecyl bromide, methyl iodide and sodium iodide were all obtained from Sigma-Aldrich, Co., UK. Ethanol, diethyl ether and tetrahydrofuran were supplied by the Department of Pure and Applied Chemistry, University of 20 Strathclyde.

Methods

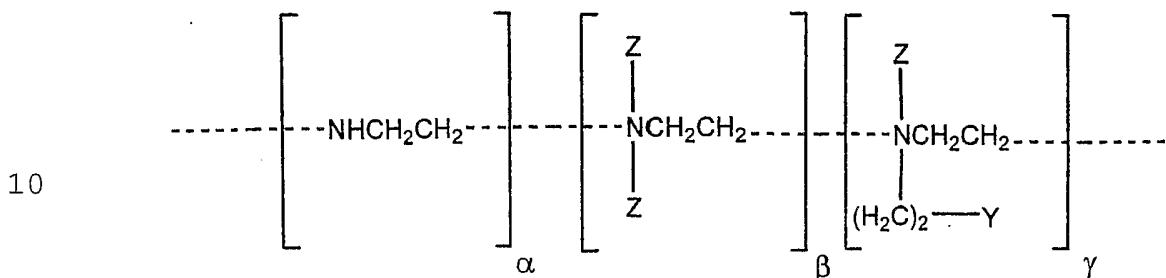
25 Q1₁₀ was synthesised by reacting polyethylenimine (PEI, Mw = 10kD) with both cetyl bromide and methyl iodide as described for QCPEI1 in Example 1. QCPEI1 was also synthesised as described in Example 1. Q1₁₀ and QCPEI1 Formulations of cyclosporine (2mg mL⁻¹) containing 10mg mL⁻¹ of the amphiphilic PEIs were prepared as described in Example 2.

30 Formulations were then stored in stoppered glass containers at refrigeration temperature (2 - 8°C). At

various time intervals aliquots were sampled, filtered through a 0.45 μ m filter and analysed by high performance liquid chromatography (HPLC). Filtered cyclosporine samples (20 μ L) dissolved in acetonitrile, water (1: 1) 5 were injected onto a Waters Spherisorb 5 μ m, 4.6mm X 250mm column (Waters Instruments, UK) maintained at 80°C with a Jones Chromatography Column Heater model 7971 by means of a Waters 717 autosampler and a Waters 515 isocratic pump. The mobile phase was acetonitrile: water: tert-butyl-10 methyl-ether: phosphoric acid (600:350:50:1) at a flow rate of 1.2mL min⁻¹. Peak detection was via a Waters 486 variable wavelength UV detector with the wavelength set at 210nm and data was collected using a Waters 746 data module. A standard curve was prepared using solutions of 15 the drug (1 - 10 μ g mL⁻¹).

Results

Time Point (days)	QCPEI1	Q1 ₁₀
0	78.7 \pm 8.1	80.7 \pm 17.7
7	84.6 \pm 3.1	74.0 \pm 8.1
41	93.7 \pm 8.8	81.9 \pm 3.6
109	91.0 \pm 6.3	79.0 \pm 0.6
181	84.4 \pm 2.9	82.0 \pm 2.3
281	89.4 \pm 0.42	79.0 \pm 1.4


Comment on Results

20 Over a 9 month period the level of cyclosporine recovered from amphiphilic PEI formulations Q1₁₀ and QCPEI1 did not differ appreciably from the original levels, indicating that these formulations were stable when stored for 9 months at refrigeration temperatures.

CLAIMS

1. A polyethylenimine polymer according to the following formula:

5

wherein α is between 0 to 90%;

15 β is between 0 to 100%;

γ is between 0 to 50%;

wherein $\alpha + \beta + \gamma = 100\%$; and

20 the Z groups are hydrophobic and are independently hydrogen or any linear or branched, substituted or unsubstituted, or cyclo form of any hydrophobic substituent; and

Y may represent a hydrophilic substituent.

2. A polyethylenimine polymer according to claim 1
25 wherein the monomer units identified with α , β and γ form any arrangement in the polyethylenimine polymer.

3. A polyethylenimine polymer according to claim 1
wherein the arrangement of the α , β and γ units are random
30 or in a block copolymer form such as $\alpha\beta\gamma\alpha\beta\gamma\alpha\beta\gamma$.

4. A polyethylenimine polymer according to any preceding claim wherein the polyethylenimine polymer is linear or branched.

35

5. A polyethylenimine polymer according to any preceding claim wherein the Z groups are independently

selected from any of the following hydrophobic substituents: an alkyl, an alkenyl, and alkynyl, an aryl, an acyl, a hydroxy alkyl, a hydroxy acyl, polyethylene glycol or any sugar.

5

6. A polyethylenimine polymer according to any preceding claim wherein the Z groups are independently any linear or branched, substituted or unsubstituted, or cyclo form of the following alkyl, alkenyl, alkynyl, 10 aryl, acyl, hydroxy alkyl, hydroxy acyl, polyethylene glycol or any sugar groups: $C_1 - C_{20}$; $C_1 - C_{12}$; $C_1 - C_6$ or C_1 .

7. A polyethylenimine polymer according to any of claims 1 to 4 wherein the Z groups are $C_1 - C_4$ linear alkyl 15 groups.

8. A polyethylenimine polymer according to any preceding claim wherein Y represents any of the following: $-NH_2$; $-NHA$; $-N^+R_1R_2R_3$; and $-N^+R_1R_2A$.

20

9. A polyethylenimine polymer according to claim 8 wherein R_1 , R_2 , or R_3 is selected from any of the following substituents: an alkyl, an alkenyl, an alkynyl, an aryl, an acyl, a hydroxy alkyl, a hydroxy acyl, polyethylene 25 glycol or any sugar.

10. A polyethylenimine polymer according to claim 8 wherein R_1 , R_2 and R_3 are independently any linear or branched, substituted or unsubstituted, or cyclo form of the following alkyl, alkenyl, alkynyl, aryl, acyl, 30 hydroxy alkyl, hydroxy acyl, polyethylene glycol or any sugar groups: $C_1 - C_{20}$; $C_1 - C_{12}$; $C_1 - C_6$ or C_1 .

11. A polyethylenimine polymer according to claim 8 35 wherein R_1 , R_2 and R_3 are $C_1 - C_4$ linear alkyl groups.

12. A polyethylenimine polymer according to claim 8 wherein all of R_1 , R_2 and R_3 are CH_3 .

13. A polyethylenimine polymer according to any preceding claim wherein there is between 1 and a maximum of 3 R substituents on any single nitrogen.

5 14. A polyethylenimine polymer according to any of claims 8 to 13 wherein the groups A are selected from any of the following linear or branched, substituted or unsubstituted, or cyclo groups: C₁ - C₃₀; C₈ - C₂₄; or C₁₂ - C₁₆.

10 15. A polyethylenimine polymer according to any of claims 8 to 13 wherein the groups A may be linear C₁₂ - C₁₆ alkyl groups.

15 16. A polyethylenimine polymer according to any of claims 8 to 13 wherein the A groups are CH₃(CH₂)₁₅.

17. A polyethylenimine polymer according to any preceding claim wherein the ratio of quaternary ammonium 20 nitrogens to nitrogens of amino groups is selected from any of the following: 0.01% - 100%; 10% - 90%; 30% - 70%; 40% - 60%; 50% - 90%; 60% - 80% or 40% - 90%.

25 18. A polyethylenimine polymer according to any preceding claim wherein a parent polyethylenimine compound used to make the polyethylenimine polymer has an average molecular weight of about 2 - 50kD, or of about 10 - 25 kD.

30 19. A polyethylenimine polymer according to any preceding claim wherein the polyethylenimine polymer has an average molecular weight of about 10 - 25 kD.

35 20. A polyethylenimine polymer according to any preceding claim wherein the polyethylenimine polymer produces hydrophobic domains.

21. A polyethylenimine polymer according to claim 20 wherein the level of hydrophobic modification is from

about 0.01 - 50%, about 0.1 - 20% or about 1 - 10% of amino groups.

22. A polyethylenimine polymer according to any
5 preceding claim wherein monomeric subunits in accordance
with the structure as defined in formula I shown below:

10

15

20

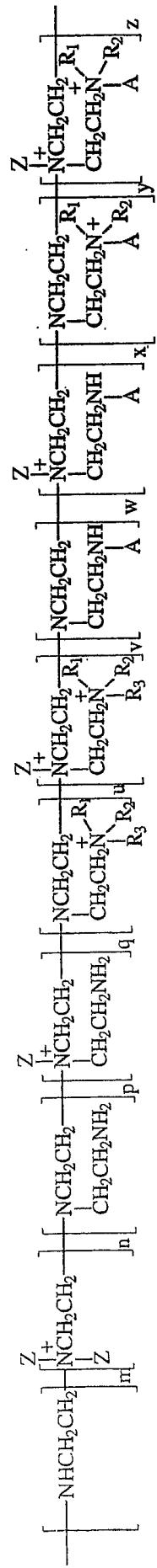
25

30

35

5

10


15

20

25

30

35

wherein m is between 0 - 90 %;
n is between 0 - 100 %;
p is between 0 - 50 %;
q is between 0 - 50 %;
5 u is between 0 - 50 %;
v is between 0 - 50 %;
w is between 0 - 20 %;
x is between 0 - 20 %;
y is between 0 - 20 %; and
10 z is between 0 - 20 %;
wherein, $m + n + p + q + u + v + w + x + y + z = 100\%$.

23. A polyethylenimine polymer according to claim 22
15 wherein the monomer units m, n, p, q, u, v, w, x, y and z
are arranged in any order.

24. A polyethylenimine polymer according to any
preceding claim wherein
20 when m = 0% then n is not equal to 0%;
when n = 0% then m is not equal to 0 %;
when p = 0% then q + u + v + w + x + y + z does not
equal 0%;
when q = 0% then p + u + v + w + x + y + z does not
25 equal 0%.;
when u = 0% then p + q + v + w + x + y + z does not
equal 0%.
when v = 0% then p + q + u + w + x + y + z does not
equal 0%;
30 when w = 0% then x + y + z + n does not equal 0%;
when x = 0% then w + y + z + n does not equal 0%;
when y = 0% then w + x + z + n does not equal 0%;
when z = 0% then w + x + y + n does not equal zero.
35 25. A polyethylenimine polymer according to any of
claims 22 to 24 wherein m + n lies between 50 to 100%.

26. A polyethylenimine polymer according to any of claims 22 to 25 wherein $p + q + u + v$ lies between 20 to 50%.

5 27. A polyethylenimine polymer according to any of claims 22 to 26 wherein $w + x + y + z$ lies between 0.01 to 10%.

10 28. A polyethylenimine polymer according to any of claims 22 to 27 wherein p, q, u, v, w, x, y or z are equal to 0%.

15 29. A polyethylenimine polymer according to any of claims 22 to 27 wherein the sum total of p, q, u, v, w, x, y and z is equal to a value greater than 0% thereby forming a branched compound.

20 30. A polyethylenimine polymer according to any of claims 22 to 27 wherein w, x, y or z are equal to 0%.

20 31. A polyethylenimine polymer according to claim 22 wherein $m + n = 60\%$, $w + x + y + z = 6\%$, and $p + q + u + v = 34\%$.

25 32. A method of forming a polyethylenimine polymer according to any of claims 1 to 31 by reacting a polyethylenimine compound formed from the polymerisation of ethylenimine with a first organo halide to form an organo side chain on the polyethylenimine compound, and

30 then a second organo halide to react with an amino group on the polyethyleneimine compound.

35 33. A method according to claim 32 wherein the ethylenimine is branched or linear.

34. A method according to any of claims 32 and 33 wherein the first organo halide is any linear or branched, substituted or unsubstituted, or cyclo form of

any alkyl, alkenyl, alkynyl, aryl or acyl halide or any hydrophilic halide.

35. A method according to any of claims 32 to 34 wherein
5 the organo group of the first organo halide is selected
from any of the following linear or branched, substituted
or unsubstituted, or cyclo groups: C₁ - C₃₀; C₈ - C₂₄; or C₁₂
- C₁₆.

10 36. A method according to any of claims 32 to 34 wherein
the first organo halide is a linear C₁₂ - C₁₆ alkyl halide.

15 37. A method according to any of claims 32 and 33
wherein the first organo halide is cetyl bromide (e.g.
CH₃(CH₂)₁₅ Br).

20 38. A method according to any of claims 32 to 37 wherein
the second organo halide is an alkyl, alkenyl, alkynyl,
aryl or acyl halide or any hydrophilic halide.

25 39. A method according to any of claims 32 to 38 wherein
the organo group of the second organo halide is selected
from any of the following linear or branched, substituted
or unsubstituted, or cyclo groups: C₁ - C₂₀; C₁ - C₆; or C₁.

40. A method according to any of claims 32 to 37 wherein
the second organo halide is a linear C₁ - C₆ alkyl halide.

41. A method according to any of claims 32 to 37 wherein
30 the second organo halide is methyl iodide.

42. A method according to any of claims 32 to 41 wherein
the polyethylenimine compound and first organo halide are
mixed in an organic solvent such as tetrahydrofuran,
35 which is then refluxed in an alcoholic solution of sodium
hydroxide, and cetyl polyethylenimine is then isolated
and reacted with the second organo halide.

43. A method according to any of claims 32 to 42 wherein the second organo halide is added in the presence of a metal hydroxide (e.g. sodium hydroxide), a metal halide (e.g. sodium iodide) and an alcohol (e.g. methanol).

5

44. A composition comprising a polyethylenimine polymer according to any of claims 1 to 31 and a pharmaceutically acceptable carrier.

10 45. A composition according to claim 44 wherein the ratio of polyethylenimine polymer to pharmaceutically acceptable carrier ranges from any of the following: 0.0001 - 100 w.v., 0.005 - 50 w.v.; 0.001 - 30 w.v.; 0.001 - 10 w.v.; or 0.01 - 1 w.v.

15

46. A pharmaceutical composition comprising a polyethylenimine polymer according to any of claims 1 to 31 and a drug.

20 47. A pharmaceutical composition according to claim 46 wherein the drug is poorly soluble in aqueous solvents such as water.

25 48. A pharmaceutical composition according to any of claims 46 and 47 wherein the drug is selected from any of the following: cyclosporin; steroids such as prednisolone, oestradiol, testosterone; drugs with multicyclic ring structures which lack polar groups such as paclitaxel; and drugs such as etoposide.

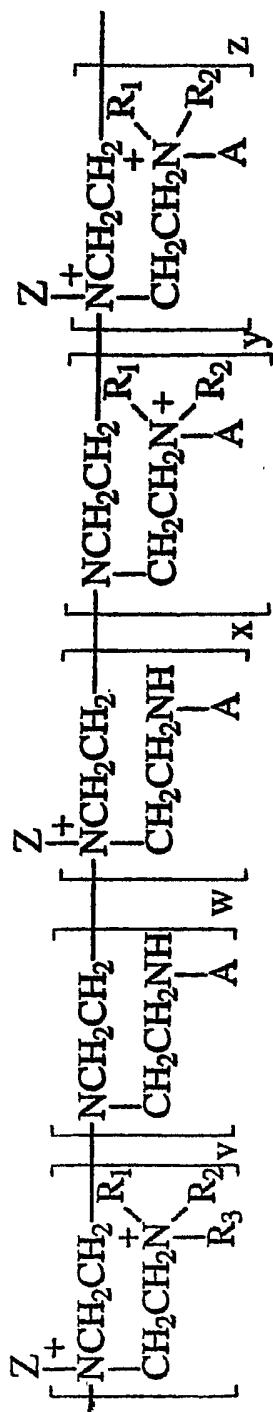
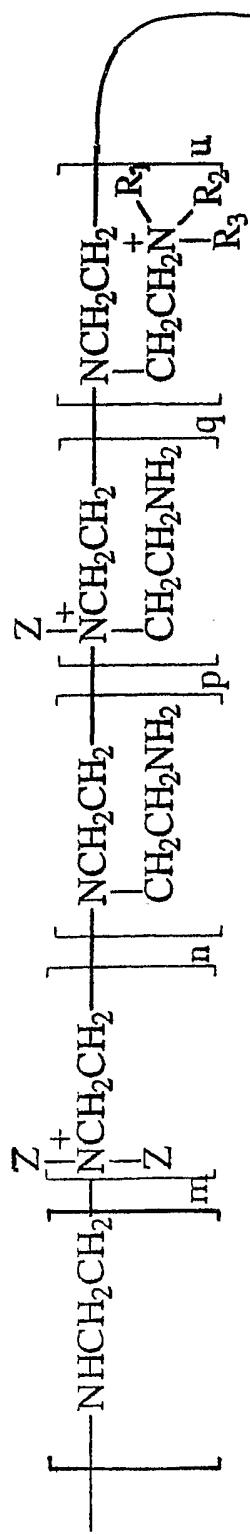
30

49. A pharmaceutical composition according to any of claims 45 to 48 wherein the ratio of the polyethylenimine polymer to the drug is selected from any of the following: 0.001 - 100%; 0.1 - 100%; 1 - 100%; 10 - 90%; 35 30 - 70%.

50. A pharmaceutical composition according to any of claims 46 to 49 wherein the pharmaceutical composition also comprises a pharmaceutically acceptable carrier.

51. A pharmaceutical composition according to any of claims 46 to 50 wherein the ratio of polyethylenimine polymer to drug to pharmaceutically acceptable carrier 5 may be in the range of about 5 - 20mg : 0.5 - 5mg : 0.5 - 5mL or 5 - 20mg : about 5 - 5mg : 0.5 - 5g; about 10mg:2mg:1mL; or about 10mg:2mg:2g.

52. A pharmaceutical composition according to any of 10 claims 50 and 51 wherein the pharmaceutical composition is in the form of any of the following: tablets, suppositories, liquid capsule powder form, or a form suitable for pulmonary delivery.



15 53. A method of dissolving poorly soluble drugs suitable for oral delivery, using a preformed polymer.

54. A method according to claim 53 wherein the preformed 20 polymer is a polyethylenimine polymer according to any of claims 1 to 31.

55. A method according to any of claims 53 and 54 wherein the poorly soluble drug is selected from any of the following: cyclosporin; steroids such as prednisolone; 25 oestradiol; testosterone; drugs with multicyclic ring structures which lack polar groups such as paclitaxel; drugs such as etoposide.

56. Use of a preformed polymer according to any of 30 claims 1 to 31 in dissolving poorly soluble drugs in the preparation of a composition.

57. Use according to claim 56 wherein the composition is 35 pharmaceutical composition comprising a drug and/or a pharmaceutically acceptable carrier.

— Figure

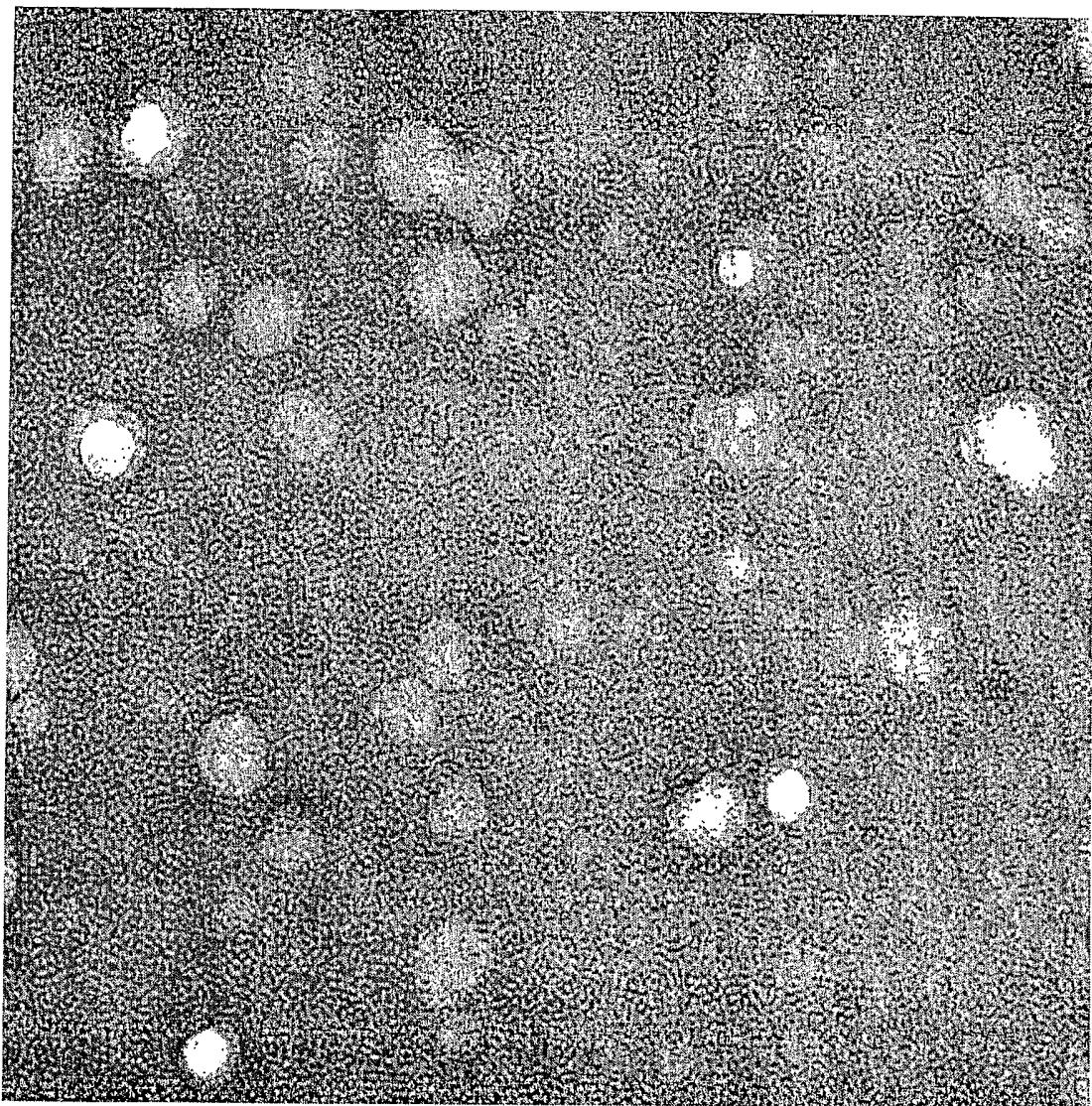


FIGURE 2

INTERNATIONAL SEARCH REPORT

International Application No
PCT/GB 03/04036

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7	C08G73/00	C08G73/02	A61K47/00	A61K47/06	A61K47/16
	A61K47/18	A61K47/30	A61K9/00		

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C08G A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>NÖDING, G.; HEITZ, W.: "Amphiphilic polyethyleneimines based on long-chain alkyl bromide" MACROMOLECULAR CHEMISTRY AND PHYSICS, vol. 199, 1998, pages 1637-1644, XP002268918 cited in the application the whole document</p> <p>-----</p> <p>US 5 681 543 A (NEUMEIER REINHARD ET AL) 28 October 1997 (1997-10-28) column 1, line 20 - line 30 column 2, line 10 - column 4, line 22 column 7, line 43 - line 47 column 8, line 57 - column 10, line 67; claims 1-18; examples 1-28, 45-52</p> <p>-----</p> <p style="text-align: center;">-/-</p>	1-43
X		1-57

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the International search

4 February 2004

Date of mailing of the international search report

18/02/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Kiebooms, R

INTERNATIONAL SEARCH REPORT

International	Application No
PCT/GB	03/04036

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 338 532 A (HEDSTRAND DAVID M ET AL) 16 August 1994 (1994-08-16) column 1, line 19 - line 30 column 3, line 57 - column 4, line 68 column 6, line 61 - column 10, line 29 column 15, line 5 - column 16, line 58 column 34, line 60 - column 37, line 22 column 43, line 43 - column 46, line 26; claims 1-13,20-22,30-47,61 -----	1-57
X	WO 02/30468 A (BETZ ULRICH ; SIMON JOACHIM (DE); BAYER AG (DE); VOLLMER MARTIN (DE);) 18 April 2002 (2002-04-18) page 1, line 3 - line 6 page 2, line 22 - page 13, line 25 page 17, line 20 - page 21, line 14; claims 1-33; examples 1-4 -----	1-57
X	WO 99/43752 A (DNAVEC RESEARCH INC ; SAKAKIBARA HIROYUKI (JP); OKU NAOTO (JP); MIYAZA) 2 September 1999 (1999-09-02) page 1, line 4 - page 52, line 6; claims 1-25; figures 1-16 -----	1-57

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internat

Application No

PCT/GB 03/04036

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5681543	A 28-10-1997	DE 3806795 A1 US 5681544 A AT 130017 T DE 58909479 D1 EP 0331616 A2 GR 3018071 T3 JP 2196864 A JP 2685568 B2 NO 890832 A ,B,		07-09-1989 28-10-1997 15-11-1995 21-12-1995 06-09-1989 29-02-1996 03-08-1990 03-12-1997 30-08-1989
US 5338532	A 16-08-1994	US 6312679 B1 US 5527524 A WO 9524221 A1 US 5560929 A US 5714166 A US 6177414 B1 CA 1316456 C CA 1316524 C CA 1316364 C AT 89743 T AU 609051 B2 AU 7715987 A AU 638153 B2 AU 8139191 A BR 8707431 A BR 8707432 A BR 8707433 A DE 3786000 D1 DE 3786000 T3 DK 205388 A EP 0271180 A1 ES 2054678 T3 FI 881768 A FI 981807 A GR 3024215 T3 HK 54396 A HU 220205 B HU 55245 A2 IE 61356 B1 IL 83567 A JP 2848218 B2 JP 6220190 A JP 6219966 A JP 7108860 B JP 2771404 B2 JP 6009778 A JP 7057735 B JP 63502350 T JP 7057736 B JP 63501876 T JP 7002840 B JP 63501878 T KR 9711151 B1 MX 169992 B NO 881639 A ,B, NZ 221484 A WO 8801178 A1 WO 8801179 A1		06-11-2001 18-06-1996 14-09-1995 01-10-1996 03-02-1998 23-01-2001 20-04-1993 20-04-1993 20-04-1993 15-06-1993 26-04-1991 03-03-1988 17-06-1993 03-10-1991 01-11-1988 01-11-1988 01-11-1988 01-07-1993 21-08-1997 14-06-1988 15-06-1988 16-08-1994 15-04-1988 24-08-1998 31-10-1997 03-04-1996 28-11-2001 28-05-1991 02-11-1994 16-02-1992 20-01-1999 09-08-1994 09-08-1994 22-11-1995 02-07-1998 18-01-1994 21-06-1995 08-09-1988 21-06-1995 28-07-1988 18-01-1995 28-07-1988 07-07-1997 04-08-1993 15-06-1988 29-01-1991 25-02-1988 25-02-1988

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internal application No

PCT/GB 03/04036

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5338532	A	WO ZA	8801180 A1 8706114 A	25-02-1988 26-04-1989
WO 0230468	A	18-04-2002	DE AU CA WO EP	10145134 A1 8994301 A 2424967 A1 0230468 A1 1326645 A1
WO 9943752	A	02-09-1999	CA WO	2321200 A1 9943752 A1
				02-09-1999 02-09-1999