
(19) United States
US 200600533.07A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0053307 A1
Xu et al. (43) Pub. Date: Mar. 9, 2006

(54) SYSTEM FOR OBFUSCATING COMPUTER
CODE UPON DISASSEMBLY

(75) Inventors: Bin Xu, Sunnyvale, CA (US); Jim
Sesma, White City, OR (US); Robert
Freeman, Orange County, CA (US);
Weijun Li, Sunnyvale, CA (US)

Correspondence Address:
TOWNSEND AND TOWNSEND AND CREW,
LLP
TWO EMBARCADERO CENTER
EIGHTH FLOOR
SAN FRANCISCO, CA 94111-3834 (US)

(73) Assignee: Aladdin Knowledge Systems, Ltd., Tel
Aviv (IL)

(21) 11/264,713

(22)

Appl. No.:

Filed: Oct. 31, 2005

Related U.S. Application Data

Continuation of application No. 09/603,575, filed on
Jun. 21, 2000.

(63)

Publication Classification

Int. Cl.
G06F 12/14

(51)
(2006.01)

JUMP Over Obfuscating Instruction
OBFUSCATING INSTRUCTION

12

110

Original Assembly
Code

(52) U.S. Cl. .. 713/190

(57) ABSTRACT

A System for preventing accurate disassembly of computer
code. Such code masking, referred to as “obfuscation,” is
useful to prevent unwanted parties from making copies of an
original author's Software, obtaining valuable information
from the Software for purposes of breaking into a program,
Stealing Secrets, making derivative works, etc. The present
invention uses assembly-language instructions So as to con
fuse the disassembler to produce results that are not an
accurate representation of the original assembly code. In one
embodiment, a method is provided where an interrupt, or
Software exception instruction, is used to mask Several
Subsequent instructions. The instruction used can be any
instruction that causes the disassembler to assume that one
or more Subsequent words, or bytes, are associated with the
instruction. The method, instead, jumps directly to the bytes
assumed associated with the instruction and executes those
bytes for a different purpose. A preferred embodiment works
with a popular Microsoft "ASM assembler language and
“DASM” disassembler. The instructions used to achieve the
obfuscation include “INT instructions. Using this approach
up to 17 bytes of obfuscation can be achieved with five
instructions. Each instruction remains obfuscated until
executed and returns to an obfuscated State afterwards.

102

Hidden instructions
114

Code
Original Assembly 104

Patent Application Publication Mar. 9, 2006 Sheet 1 of 2

112

110

1141

Original Assembly
Code

OBFUSCATING INSTRUCTION

Hidden instructions

am an ame am mar: par up as my aim as an ampus mi

Original Assembly
Code

F.G. 1A.

JUMP Over Obfuscating Instruction

US 2006/0053307 A1

102

1OO

> 104

US 2006/0053307 A1 Mar. 9, 2006 Sheet 2 of 2 ication Pub Patent Application

Japeo";

9 z

US 2006/0053307 A1

SYSTEM FOR OBFUSCATING COMPUTER CODE
UPON DISASSEMBLY

COPYRIGHT NOTICE

0001. A portion of the disclosure recited in the specifi
cation contains material which is Subject to copyright pro
tection. Specifically, Source code instructions are included
for a process by which the present invention is practiced in
a computer System. The copyright owner has no objection to
the facsimile reproduction of the Specification as filed in the
Patent and Trademark Office. Otherwise all copyright rights
are reserved.

BACKGROUND OF THE INVENTION

0002 This invention relates in general to computer soft
ware and more specifically to a System for preventing
accurate disassembly of computer programs.
0.003 Computer software manufacturers have a keen
interest in protecting their Software. Software can be easily
copied, in whole or in part, by making digital copies. Other
forms of the copying do not require a competitor to copy the
actual digital data, but are based on a knowledgeable pro
grammer Viewing the instructions within the Software to
gain information that can allow the programmer to “break”
Security Systems, obtain valuable programming techniques
or trade Secrets of the Software manufacturer, make deriva
tions, manipulate the operation of the original code, etc.
0004 One barrier to copying computer software is that
many forms of Software are distributed in a format that is not
easily decipherable, or readable, by a human.
0005 FIG. 1B is an illustration of various forms in the
prior art which a computer program, or Software, is trans
formed into during the process of creation, distribution, and
ultimate execution of the Software on a user's machine.

0006. In FIG. 1B, human readable source code 10 is
developed by a programmer who is the original author, and
owner, of the work. Such Source code is easily readable and
understandable by a human programmer Since the Source
code is written in text that resembles plain English with
mathematical and logical equations. Many different forms of
Source code exist today based on many different types of
computer languages. "ASSembly code” is a form of human
readable code that is closely tied to a Specific microproces
Sor's instruction Set. ASSembly code has many Similarities to
Source code in terms of the form translations that the
assembly code undergoes prior to being executed. For
purposes of this specification, Source code and assembly
code can be treated Similarly, and terminology and concepts
asSociated with Source code and assembly code can be
interchanged. For example, as discussed below, compilation
and assembly are analogous, as are decompilation and
disassembly.
0007 Returning to FIG. 1B, source code 10 is compiled
by compiler 12. Compiler 12 is a Software process that
translates human-readable Source code to a Series of num
bers which is, for the most part, unreadable by humans.
Source code 10 is thus transformed, or “compiled,” by
compiler 12 to form the human-unreadable object code.
Object code 14 can be linked by linker 20 with other object
code modules as illustrated by object code modules 16 and
18 in FIG. 1B. Once the object code modules are linked by

Mar. 9, 2006

linker 20, they form executable program 22. Executable
program 22 can be loaded by loader 24 into a user's
computer to form executing image 26. Executing image 26
represents the actual numerical information that is executed
by a microprocessor within an end-user's computer.

0008) Note that all forms of source code 10 that exists
after compilation by compiler 12 are, for the most part,
unreadable by a human. In other words, object code modules
14, 16 and 18; executable program 22, and executing image
26 are basically unformatted conglomerations of numbers
that are extremely difficult to understand.
0009. However, tools exist to decompile, or disassemble,
these unreadable versions of source code. Decompiler 28
can accept the unformatted numbers of object code 14,
executable program 22 or executing image 26 and produce
a readable version of the original Source code program. Such
a readable version is referred to as decompiled (or disas
sembled) code 30. While the decompiled code is usually not
as readable as original Source code 10, it is a very effective
tool for allowing an experienced programmer to understand
the operation of the computer program and greatly reduces
the amount of time required to copy, hack, or otherwise
manipulate Source code produced by an original program
C.

0010 Thus, it is desirable to produce an invention which
prevents, or reduces the effectiveness of decompilation, or
disassembly, of compiled or assembled code.

SUMMARY OF THE INVENTION

0011. The present invention prevents disassembly of
computer code. Such prevention includes hiding, masking,
or otherwise “obfuscating,” the original code. This helps
thwart unwanted parties from making copies of an original
author's Software, obtaining valuable information from the
Software for purposes of breaking into the program, Stealing
Secrets, making derivative works, etc. The present invention
uses Special assembly-language instructions to confuse the
disassembler to produce results that are not an accurate
representation of the original assembly code. In one embodi
ment, a method is provided where an interrupt (typically a
Software interrupt) is used to mask Some of the Subsequent
instructions. The instruction used can be any instruction that
causes the disassembler to assume that one or more words
Subsequent to the instruction, are associated with the instruc
tion. The method, instead, jumps directly to the bytes
assumed associated with the instruction and executes those
bytes to achieve the original functionality of the program.
0012 A preferred embodiment works with a popular
Microsoft “ASM' assembler language and “DASM” disas
sembler. The instructions used to achieve the obfuscation
include software interrupt, “INT,” instructions. Using this
approach, up to 17 bytes of obfuscation can be achieved with
five instructions. Each instruction remains obfuscated until
executed and returns to an obfuscated State afterwards.

0013 In one embodiment, the invention provides a
method for obfuscating computer program instructions upon
disassembly, the method comprising inserting an obfuscat
ing instruction or causing a disassembler to not disassemble
one or more bytes Subsequent to the obfuscating instruction;
and inserting a branch instruction to invoke execution of the
one or more bytes Subsequent to the obfuscating instruction.

US 2006/0053307 A1

BRIEF DESCRIPTION OF THE DRAWINGS

0.014 FIG. 1A illustrates software instructions of the
present invention; and
0015 FIG. 1B is an illustration of various forms in the
prior art into which a computer program, or Software, is
transformed during the process of creation, distribution, and
ultimate execution of the Software on a user's machine.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

0016 FIG. 1A illustrates software instructions of the
present invention.
0017. In FIG. 1A, instructions at 100 illustrate the con
cept of code obfuscation. Such instructions are included
within the body of an assembly language program. A larger
portion of the program is illustrated by preceding assembly
code 102 and succeeding assembly code 104. Note that the
obfuscating instruction, and associated instructions, can be
inserted more than once within the program.
0.018. The obfuscating instruction, and associated
instructions, include obfuscating instruction 110, jump
instruction 112 and hidden code 114. During execution of
the assembly code, the assembly program operates as
intended by the original programmer until jump instruction
112 is executed. When jump instruction 112 is executed then
obfuscating instruction 110 is skipped and execution pro
ceeds at hidden instructions 114. In other words, obfuscating
instruction 110 is never executed. Hidden instructions 114
are part of the instructions written by the original program
mer and, thus, are part of the original program. Only jump
instruction 112 and obfuscating instruction 110 need to be
inserted into the original program.
0019. It should be apparent that the program will operate
as originally intended with the exception that a few more
cycles of processor time are required in order to perform the
jump instruction 112. Also, a few more bytes of information
are Stored in the program every time the technique of the
present invention is used to account for jump instruction 112
and obfuscating instruction (or instructions, as described
below). The number of hidden instructions at 114 varies with
the Specific obfuscating instruction, or instructions,
employed, as is discussed in detail, below.
0020 Note that jump instruction 112 need not be imme
diately adjacent to obfuscating instruction 110. Any instruc
tion that directs a processor to obtain the next instruction
from within the "hidden' instructions 114 can be sufficient.
Also, although the invention is discussed with respect to
hidden instructions 114 being immediately adjacent to
obfuscating instruction 110, it is possible that obfuscating
instructions may act to hide non-adjacent instructions.
0021. The present invention is described with respect to
assembly language code in "ASM format. Such format is
produced, for example, by the Microsoft VC++ compiler. It
should be apparent that the techniques of the present inven
tion can be adapted for any type of assembler, or Source
code, or other computer languages and Syntax which provide
a Suitable obfuscation instruction.

0022. By obfuscating code in different places throughout
the program, it is much more difficult for a programmer to
obtain useful information. The decompiler loses Synchroni

Mar. 9, 2006

Zation with the instructions and can display missing, or
incorrect, instructions in place of the actual ones. With
enough portions of the code obscured, a would-be hacker is
required to trace through all the code, manually. The debug
ger (or disassembler) is expecting the code to return after a
jump to a certain instruction, but the code changes the return
location causing the debugger to break out of its gui. Two
code examples are provided in Table I and Table II:

TABLE I

call S-6
DB OEBh
add dword ptresp.6
ret

Highly efficient

0023

TABLE II

call S-12
DB 083h.
jmp $+10
DB 08Bh
Inc esp
ret

Not efficient.

0024. A more advanced technique can involve randomly
eXchanging jump commands in the ASM file with tricky
returns. This requires pushing the destination address
instead of altering the esp register like previous examples.
This way, this (intelligent) obfuscation macro would not be
competing against other macros. By placing the tricky
returns where there is already a jump, the byte overhead is
reduced.

0025. The instruction “INT 35” has obfuscation proper
ties. Unlike INT 20, no additional data is displayed. In fact,
INT's 34-3A or so have the same ability to totally mask three
bytes. AS an example:

actual code the debugger window

O JMP 4 OJMP 4
2 INT 3.5h. 2 INT 3.5h.
4. NOP 7 XOR EAX,EAX
5 NOP
6 NOP
7 XOR EAX,EAX

0026. Of course, as much as this is helpful, three bytes of
obfuscation is not all that impressive. In tandem with INT20
though, it is an entirely other Story. This example:

0027 jmp S+2
0028) INT 35h
0029 jmp S+2
0030) INT 20h
yielded 14 bytes of obfuscation. Much better! But, then

there is this fine example:
0031 jmp S+4
0032). INT 35h
0033). INT 20h

US 2006/0053307 A1

only six bytes long, but yielded an incredible 17 bytes of
obfuscation over five instructions. Each instruction
remains obfuscated until executed and returns to an
obfuscated State afterwards.

0034) Below is some gibberish code that does a fake
comparison, then it jumps into the Second byte of the
compare, which, along with the first byte of the add instruc
tion, cause the program to jump to the byte after the DB. The
purpose of this Snippet is to confuse the cracker, and in the
process obfuscate Six bytes. Although unlikely, to avoid
collision problems, the me instruction should be switched to
Jmp.

3B EB cmp ebp.ebX
O4 OO add a1,Oh
75 FB jne S-5
83 DB 083h.

0035. The object of these are only to obfuscate code.
They are classified as 'petty obfuscators because it would be
more Suitable to reuse a great obfuscator.
0036) To obfuscate four bytes:
0037 jmp S+4 Note: this may need byteswapping
0.038) DD 0660FBCA3h, BSF SPIREG+4 bytes)

0039. To obfuscate five bytes:
0040) jmp S+4
0041) DD 0660FBAA3h; BT WORD PTR REG+4
bytes), 1 byte

0042. To obfuscate six bytes:
0043 jmp S+4
0044) DD 066OFBAA4h; BT WORD PTR REG*4+
REG+4 bytes), 1 byte

0.045 Although the present invention has been discussed
with respect to Specific embodiments, these embodiments
are merely illustrative, and not restrictive, of the invention.
The scope of the invention is to be determined solely by the
appended claims.

What is claimed is:
1. A method for obfuscating computer program instruc

tions upon disassembly, the method comprising:
inserting an interrupt instruction for causing a disassem

bler to not disassemble one or more bytes Subsequent to
the interrupt instruction; and

Mar. 9, 2006

inserting a branch instruction to invoke execution of one
or more bytes Subsequent to the interrupt instruction.

2. The method of claim 1 and comprising repeating Said
inserting an interrupt instruction and Said inserting a branch
instruction.

3. The method of claim 1, wherein said branch instruction
is a jump instruction.

4. The method of claim 1, wherein the steps are performed
manually.

5. The method of claim 1, wherein the steps are performed
by a Software proceSS.

6. The method of claim 5, wherein parameters are Sup
plied to the Software process, the method further comprising
Supplying a parameter to the Software process to Specify the
frequency with which an interrupt instruction is to be
inserted in a predetermined program.

7. The method of claim 6, wherein the frequency is
Specified as a number of instructions of the predetermined
program between each insertion of the obfuscating inter
rupt instruction.

8. A computer-readable media including the following
instructions executable by a processor:

an interrupt instruction for causing a disassembler to not
disassemble one or more bytes Subsequent to the inter
rupt instruction; and

a branch instruction to invoke execution of one or more
bytes Subsequent to the interrupt instruction.

9. A computer-readable media including the following
obfuscating instructions executable by a processor:
JMPS+4

INT 3.5h.
10. A computer-readable media including the following

obfuscating instructions executable by a processor:
JMPS+4

INT 3.5h.

INT 20h.
11. An apparatus for obfuscating computer program

instructions upon disassembly, the apparatus comprising:

an interrupt instruction for causing a disassembler to not
disassemble one or more bytes Subsequent to the inter
rupt instruction; and

a branch instruction to invoke execution of one or more
bytes Subsequent to the interrupt instruction.

