

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 June 2001 (14.06.2001)

PCT

(10) International Publication Number
WO 01/43146 A1

(51) International Patent Classification⁷: **H01B 1/20**, 1/22, 1/24, H05K 9/00, H01R 4/64, C08K 3/04, C08L 21/00

(74) Agent: **STROBEL, Wolfgang**; Kroher Strobel, Bavariaring 20, 80336 München (DE).

(21) International Application Number: PCT/EP00/11371

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(22) International Filing Date: 16 November 2000 (16.11.2000)

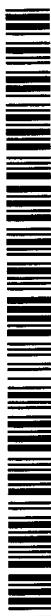
(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

Published:

— *With international search report.*

(26) Publication Language: English


For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(30) Priority Data: 199 59 262.4 9 December 1999 (09.12.1999) DE

(71) Applicant (for all designated States except US): **INSTRUMENT SPECIALTIES [US/US]**; Shielding Way, Delaware Water Gap, PA 18327-0650 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **AIT EL CADI, Mohamed** [FR/FR]; 76, rue des Vignolles, F-75020 Paris (FR). **DUCROS, Jean-Alec** [FR/FR]; 2, rue des Pleus, F-77300 Fontainebleau (FR).

WO 01/43146 A1

(54) Title: NON-SILICONE CONDUCTIVE PASTE FOR THE ELECTRICAL INDUSTRY, AND ITS USE

(57) Abstract: A conductive paste based on an elastomer of the polyoxypolyolefin type or on a member of the polyolefin family is described, provided with an admixture of conductive particles for the production, in the electronics industry, of a sealing element, of a contact element or of a heat-conduction element. This material is particularly suitable for the production of EMI-RFI gaskets, and, compared with materials known hitherto and based on silicone, has improved performance characteristics and environmental properties.

NON-SILICONE CONDUCTIVE PASTE FOR THE
ELECTRICAL INDUSTRY, AND ITS USE

Background of the Invention

5

The invention relates to a conductive paste for the electrical industry and also to its use.

Materials of this type are widely used and are needed in numerous applications. For example, the material has 10 particular importance in connection with the sealing of electromagnetically shielded housings in electronic devices which emit electromagnetic radiation or can be disturbed by electromagnetic radiation penetrating from outside. The housings are produced from an electrically 15 conducting material, or from a material coated so as to be electrically conducting, in order to provide EMI (electromagnetic interference) and, respectively, RFI (radio frequency interference) shielding and to improve electromagnetic compatibility (EMC). It is known that 20 the region of the joints at which the parts of the housing are joined can also be given shielding by using gaskets made from an electrically conducting flexible material.

An example of a material of this type is known from 25 US 4,011,360. This known material is based on an elastomer, typically a silicone rubber material, with an admixture of electrically conducting particles. This material polymerizes when exposed to atmospheric moisture at room temperature.

30 DE 43 19 965 C2 discloses the use of a material of this type for the production of the housings described at the outset. The starting material is extruded as a

- 2 -

strand of paste directly in the region of the joint onto one of the parts of the housing, and polymerizes there to form the gasket. This process is also known to the skilled worker as the formed-in-place-gasket
5 process.

Materials of this type with electrically conducting particles are moreover used for forming contact points or contact areas, known as contact pads. They thus take on the function of contact elements.

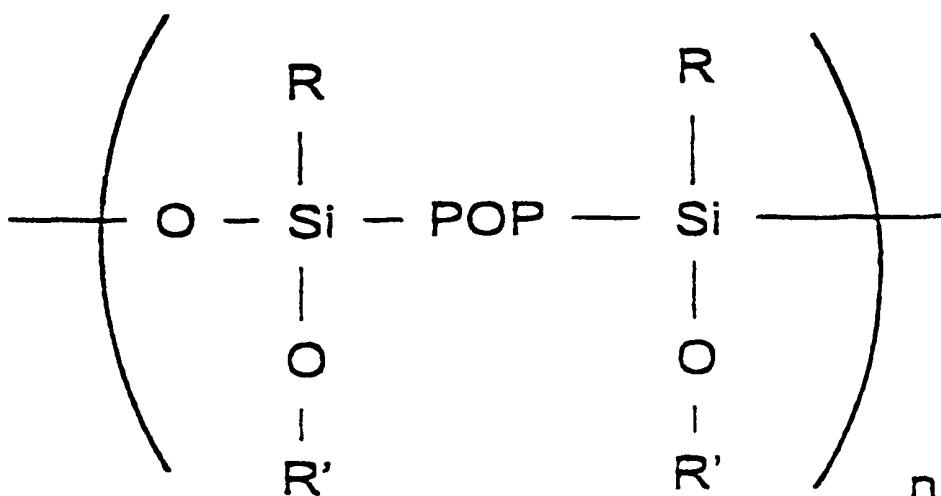
10 It is also possible to use thermally conductive particles in order to form what are known as thermal pads. These have the task of dissipating, for example, heat from an electronic component and of passing the same to a cooling element. One of the most important
15 examples of the application is a microprocessor unit in which the heat generated by the processor is to be passed to a cooling carrier exposed to a fan.

Despite their undisputed useful properties, materials of this type based on silicone have some disadvantages.

20 In this connection a particular problem is that the silicone has the property of emitting gaseous materials with short molecular chains. These constituents condense on (adjacent) metal parts or cold sections of surfaces. The silicone oil deposit insulates the
25 surface (mostly undesirably). For example, it has been observed that a deposit of this type considerably impairs, or destroys, the function of contact relays. Even if the contact is closed mechanically, the deposited silicone oil film can completely prevent
30 electrical contact. Despite the recognized good properties of silicone-containing materials, they have

- 3 -

therefore been largely eliminated by the telephone industry.


Another problem is that the silicone oil film drastically impairs the adhesion of the surface. This 5 problem is particularly evident in the motor vehicle industry, where surfaces are frequently painted or coated. Even small amounts of a silicone deposit are sufficient to impair paint adhesion.

Summary of the Invention

10 The object of the present invention is therefore to provide a material of the type mentioned at the outset in which the problems described have been eliminated. The material provided should be capable of unrestricted application while retaining the good properties of 15 silicone-based materials as mentioned at the outset.

Detailed Description of the Preferred Embodiments

The invention is based on the concept of using, instead of silicone, an elastomer of the polyoxypolyolefin type or a member of the polyolefin family, as in the 20 formula:

- 4 -

where R is alkyl, preferably methyl or ethyl,

where R' is alkyl, preferably methyl or ethyl, and

where POP is a polyoxyolefin, preferably polyoxypropylene.

5 This material has excellent mechanical properties and is particularly suitable for the formed-in-place-gasket process to make sealing elements or damping elements for housings of electronic or telecommunications devices. After polymerization, the sealing or damping 10 elements produced in this way are soft, flexible and nontacky, but they adhere particularly well to the substrate used. They may be applied either manually or by way of computer-controlled equipment or robots.

The excellent properties of the material also mean that 15 it can be processed by further processes known per se, such as (mold)casting, spraying, dispensing or printing.

Finally, the material has good environmental compatibility, since it is free from halogens and 20 nontoxic. In addition, no hazardous gases of any type are produced in the event of a fire.

Since the novel material is a paste, it is firstly easy to process and can be shaped as desired by the processing methods described above. Secondly, its 25 viscosity is such that, specifically if the formed-in-place-gasket process is used, the dimensional stability of the strand produced is sufficient for it to retain its profile without the use of any additional pressures. The polymerization can therefore take place 30 under ambient conditions.

- 5 -

The admixtures of conductive particles represent a filling material which permits the desired property to be achieved in the product by varying the amount, size and makeup of the particles. An important issue, 5 besides purely mechanical properties such as the flexibility or the sealing to be achieved after polymerization, is the conductivity achievable. In this connection, different types of conductivity can be distinguished for the materials under consideration 10 here, corresponding to the purpose for which they are intended to be used.

One of the most important applications relates to the production of gaskets on housings, or on sections of housings, printed circuit boards or the like, in order 15 to achieve shielding with respect to high-frequency electromagnetic waves. Examples of admixtures used for this are nickel powder, silver powder or gold powder or appropriate dusts. However, it is also possible to achieve the shielding effect using powders or dusts 20 made from other materials, such as those based on aluminum, copper, nickel, iron or steel, as long as these are suitably covered or coated. Materials which can be used for the covering or coating are again nickel, silver or gold. It is also possible to use 25 nonconducting particles, such as those based on glass, mica or plastic, as long as these are coated or covered as described above and the electrical conductivity of the particles which is required for an application of this type is achieved.

30 There is also substantial design freedom with regard to the shape of the particles. Besides regularly or irregularly shaped compact particles, there is

- 6 -

particular interest in fibers which allow the strength of the polymerized and thus cured final product to be increased significantly. It is clear that, depending on the fiber material used, a suitable coating or covering 5 must again be present.

Another important group of suitable admixtures is that of particles based on graphite, in particular nickel-graphite or ferrite, which are extremely effective in absorbing the electromagnetic waves. These are 10 therefore used in elements which both damp or seal and have an electromagnetic action.

A final group of admixtures is used to improve thermal conductivity. The materials used for this, for example aluminum oxide (Al_2O_3), boron oxide or magnesium, have 15 particularly high thermal conductivity. These, like the materials described above, are in the form of particles or filling materials when admixed with the base elastomer.

The structure of the conductive paste is usually that 20 of what is known as a single-component material, which cures under ambient conditions at room temperature. The curing time may, if desired, be shortened by exposure to heat, in order to optimize the production process for mass production. The conductive paste may moreover 25 also be thought of in a manner known per se as a two-component material.

In one specific example of an application it is intended that the conductive paste be used for the production of a flexible gasket for an 30 electromagnetically shielded housing. Using a controlled-path nozzle, a paste of the material is

- 7 -

applied directly to a part of a housing in the region in which the housing has a joint to be sealed. During discharge of the plastic material, computer-controlled handling equipment is used to move the nozzle across 5 the part of the housing. The velocity of relative movement of nozzle and housing part is determined by the viscosity of the paste, by the amount and velocity of the material discharging from the die, by the cross-sectional area of the die passage, by the desired cross 10 section of the gasket to be produced and by the makeup of the material.

The strand of material dispensed in this way polymerizes under ambient conditions at room temperature. This procedure takes a relatively long 15 time, but can be accelerated by controlled exposure to heat.

The starting material used is polyoxypolyolefin with an admixture of a powder made from electrically conducting particles. The material is a single-component material 20 and cures under ambient conditions at normal room temperature.

Another important application for these materials is in the production of contact pads, which may per se have any desired shape, for example may be an area or a dot.

25 A comparable method is used to produce a heat-conducting contact element, and here the paste comprises an admixture of particles with high thermal conductivity. The resultant element has a high level of thermal conductivity and prevents build-up of heat on 30 the surface used.

- 8 -

What is claimed is

1. A conductive paste for the electrical industry comprising an elastomer and an admixture of 5 conductive particles,

wherein the elastomer is one of a polyoxypolyolefin type and a polyolefin.

2. A material as claimed in claim 1,

10 wherein the admixture is composed of electrically conductive particles.

3. A material as claimed in claim 1 or 2,

wherein the admixture is a nickel powder, silver powder or gold powder.

4. A material as claimed in claim 1 or 2,

15 wherein the admixture is an aluminum powder, copper powder, nickel powder, iron powder or steel powder, the particles of which have been coated or covered with nickel, with silver or with gold.

5. A material as claimed in claim 1 or 2,

20 wherein the admixture is composed of nonconductive particles which have been coated or covered with nickel, with silver or with gold.

6. A material as claimed in claim 5,

25 wherein the particles are fibers made from glass, mica or plastic.

7. A material as claimed in claim 1 or 2,

- 9 -

wherein the admixture is a graphite powder, ferrite powder or nickel-graphite powder.

8. A material as claimed in claim 1,

5 wherein the admixture is composed of thermally conductive particles.

9. A material as claimed in claim 1 or 7,

wherein the particles are composed of aluminum oxide, boron oxide or magnesium.

10. An electromagnetically shielded housing which has at least two parts which are joined together by a gasket at a joint, where the gasket is applied directly as a strand of the material by means of a die in the region of the joint to at least one of the parts of the housing, and polymerizes there said gasket being formed an elastomer and an admixture of conductive particles, wherein the elastomer is one of a polyoxypolyolefin type and a polyolefin.

20 11. A contact pad formed of an elastomer and an admixture of conductive particles, wherein the elastomer is one of a polyoxypolyolefin type and a polyolefin.

25 12. A heat conducting pad comprising an elastomer and an admixture of conductive particles, wherein the elastomer is one of a polyoxypolyolefin type and a polyolefin wherein the admixture is composed of thermally conductive particles.

13. A heat conducting pad an elastomer and an admixture of conductive particles, wherein the

- 10 -

elastomer is one of a polyoxypolyolefin type and a polyolefin wherein the particles are composed of aluminum oxide, boron oxide or magnesium.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 00/11371

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7	H01B1/20	H01B1/22	H01B1/24	H05K9/00	H01R4/64
	C08K3/04		C08L21/00		

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 H01B H05K H01R C08K C08L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, EPO-Internal, PAJ, INSPEC, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DATABASE WPI Section Ch, Week 199843 Derwent Publications Ltd., London, GB; Class A18, AN 1998-506707 XP002159767 & WO 98 40435 A (ASAHI KAGAKU KOGYO KK), 17 September 1998 (1998-09-17) abstract</p> <p>---</p>	1-13
X	<p>DATABASE WPI Section Ch, Week 198812 Derwent Publications Ltd., London, GB; Class A18, AN 1988-080793 XP002159768 & JP 63 033443 A (SUMITOMO BAKELITE CO), 13 February 1988 (1988-02-13) abstract</p> <p>---</p> <p style="text-align: center;">-/-</p>	1-9

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- *&* document member of the same patent family

Date of the actual completion of the international search

28 February 2001

Date of mailing of the international search report

07/03/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Drouot-Onillon, M-C

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 00/11371

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 103 695 A (SHOWA DENKO KK) 28 March 1984 (1984-03-28) page 6; claims 1-15 ---	1,2,7, 10,11
X	US 4 775 500 A (FUNAKOSHI YASUTOMO ET AL) 4 October 1988 (1988-10-04) the whole document ---	1,2,7,8, 12
A	EP 0 562 179 A (SUMITOMO CHEMICAL CO) 29 September 1993 (1993-09-29) the whole document -----	1-13

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 00/11371

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9840435	A	17-09-1998		NONE
JP 63033443	A	13-02-1988		NONE
EP 0103695	A	28-03-1984	JP 59015440 A	26-01-1984
			JP 59015441 A	26-01-1984
			DE 103695 T	27-09-1984
			US 4557859 A	10-12-1985
US 4775500	A	04-10-1988	JP 61123665 A	11-06-1986
EP 0562179	A	29-09-1993	JP 5271532 A	19-10-1993
			US 5334636 A	02-08-1994
			CA 2084116 A	28-09-1993
			US 5322874 A	21-06-1994
			CA 2084117 A	27-09-1993
			EP 0562178 A	29-09-1993
			JP 6093177 A	05-04-1994